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Summary. Toric (or sparse) elimination theory uses combinatorial and discrete
geometry to exploit the structure of a given system of algebraic equations. The
basic objects are the Newton polytope of a polynomial, the Minkowski sum of a
set of convex polytopes, and a mixed polyhedral subdivision of such a Minkowski
sum. Different matrices expressing the toric resultant shall be discussed, and effec-
tive methods for their construction will be described based on discrete geometric
operations, namely the subdivision-based methods and the incremental algorithm.
The former allows us to produce Macaulay-type formulae of the toric resultant by
determining a matrix minor that divides the determinant in order to yield the pre-
cise resultant. Toric resultant matrices exhibit a quasi-Toeplitz structure, which may
reduce complexity by almost one order of magnitude in terms of matrix dimension.

We discuss perturbation methods to avoid the vanishing of the matrix determi-
nant, or of the toric resultant itself, when the coefficients, which are initially viewed
as generic, take specialized values. This is applied to the problem of implicitizing
parametric (hyper)surfaces in the presence of base points. Another important ap-
plication from geometric modelling concerns the prediction of the support of the
implicit equation, based on toric elimination techniques.

Toric resultant matrices reduce the numeric approximation of all common roots
of a polynomial system to a problem in numerical linear algebra. In addition to a
survey of recent results, this chapter points to open questions regarding the theory
and practice of toric elimination methods.

7.0 Introduction

Toric (or sparse) elimination theory uses combinatorial and discrete geometry
to model the structure of a given system of algebraic equations. In particu-
lar, we consider algebraic equations with a specific monomial structure. It is
thus possible to describe certain algebraic properties of the given system by
combinatorial means. This chapter provides a comprehensive state-of-the-art
introduction to the theory of toric elimination and toric resultants, paying
special attention to the algorithmic and computational issues involved. Dif-
ferent matrices expressing the toric resultants shall be discussed, and effective
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methods for their construction will be defined based on discrete geometric op-
erations, as well as linear algebra. Toric resultant matrices exhibit a structure
close to that of Toeplitz matrices, which may reduce complexity by almost
one order of magnitude. These matrices reduce the numeric approximation of
all common roots to a problem in numerical linear algebra, as described in
Section 7.5 and, in more depth, in Chapters 2 and 3. A relevant feature of
resultant matrices in general, is their continuity with respect to small pertur-
bations in the input coefficients.

Our goal is to exploit the fact that systems encountered in engineer-
ing applications are, more often than not, characterized by some structure.
This claim shall be substantiated by examples in geometric modelling and
computer-aided design as well as robotics; further applications exist in vision,
and structural molecular biology (cf. [Emi97, EM99b]). A specific motivation
comes from systems that must be repeatedly solved for different coefficients,
in which case the resultant matrix can be computed exactly once. This oc-
curs, for instance, in parallel robot calibration, see e.g. [DE01c], where 10,000
instances may have to be solved.

This chapter is organized as follows. The next section describes briefly
the main steps in the theory of toric elimination, which aspires to generalize
the results and algorithms of its mature counterpart, classical elimination.
Section 7.2 presents the construction of toric resultant matrices of Sylvester-
type. The following section offers a method for implicitizing parametric (hy-
per)surfaces, including the case of singular inputs, by means of perturbed
toric resultants. Section 7.4 applies the tools of toric elimination for predict-
ing the support of the implicit equation. The last section reduces solution of
arbitrary algebraic systems to numerical linear algebra, thus yielding methods
which avoid any issues of convergence.

This chapter will be of particular interest to graduate students and re-
searchers in theoretical computer science or applied mathematics wishing to
combine discrete and algebraic geometry. Some basic knowledge of discrete
geometry for polyhedral objects in arbitrary dimension is assumed.

Previous work and open questions are mentioned in the corresponding
sections. All algorithms discussed have been implemented either in Maple
and/or in C, and are publicly available through the author’s webpage. Most
are also available in the Maple library multires or the C++ library synaps,
both accessible on the Internet1.

7.1 Toric elimination theory

Toric elimination generalizes several results of classical elimination theory
on multivariate polynomial systems of arbitrary degree by considering their
structure. This leads to stronger algebraic and combinatorial results in general
1 http://www-sop.inria.fr/galaad/logiciels/
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[CLO98, GKZ94, Stu94a, Stu02]. Assume that the number of variables is n;
roots in (K

∗
)n are called toric, where K is the algebraic closure of the coeffi-

cient field. We use xe to denote the monomial (or power product) xe1
1 · · ·xen

n ,
where e = (e1, . . . , en) ∈ Zn; note that we allow integer exponents. Let the
input Laurent polynomials be

f1, . . . , fn ∈ K[x±1
1 , . . . , x

±1
n ]. (7.1)

Let the support Ai = {ai1, . . . , aimi
} ⊂ Zn denote the set of exponent vectors

corresponding to monomials in fi with nonzero coefficients:

fi =
mi∑
j=1

cijx
aij , for cij �= 0.

The Newton polytope Qi ⊂ Rn of fi is the convex hull of support Ai, in
other words, the smallest convex polytope that includes all points in Ai. This
is a bounded subset of Rn, of dimension up to n. Newton polytopes provide a
bridge from algebra to geometry since they permit certain algebraic problems
to be cast in geometric terms. For background information and algorithms on
polytope theory, the reader may refer to [Ewa96, Sch93]. For arbitrary sets A
and B ⊂ Rn, their Minkowski sum is

A+B = {a+ b | a ∈ A, b ∈ B},

where a+ b represents the vector sum of points in Rn. For convex polytopes
A and B, A+B is a convex polytope.

Definition 7.1.1. Given convex polytopes A1, . . . , An, A
′
k ⊂ Rn, the mixed

volume MV(A1, . . . , An) is the unique real-valued non-negative function, in-
variant under permutations, such that,

MV(A1, . . . , µAk + ρA′
k, . . . , An)

is equal to

µMV(A1, . . . , Ak, . . . , An) + ρMV(A1, . . . , A
′
k, . . . , An),

for µ, ρ ∈ R≥0. Moreover, we set

MV(A1, . . . , An) := n! Vol(A1), when A1 = · · · = An,

where Vol(·) denotes euclidean volume in Rn.

If the polytopes have integer vertices, their mixed volume takes integer values.
Two equivalent definitions are the following.
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Proposition 7.1.2. For λ1, . . . , λn ∈ R≥0 and for convex polytopes Q1, . . . , Qn

lying in Rn, the mixed volume MV(Q1, . . . , Qn) is precisely the coefficient of
λ1λ2 · · ·λn in

Vol(λ1Q1 + · · ·+ λnQn),

when the latter is expanded as a polynomial in λ1, . . . , λn. Equivalently,

MV(Q1, . . . , Qn) =
∑

I⊂{1,...,n}
(−1)n−|I| Vol

(∑
i∈I

Qi

)
.

In the last equality, I ranges over all subsets of {1, . . . , n}, so for n = 2 this
gives MV(Q1, Q2) = Vol(Q1 +Q2)−Vol(Q1)−Vol(Q2).

Exercise 7.1.3. Prove both formulae for the mixed volume from Proposi-
tion 7.1.2, in the case n = 2, using Definition 7.1.1. You may start by proving
that Vol(λ1Q1 + λ2Q2) lies in Z[λ1, λ2] and prove the first part of Proposi-
tion 7.1.2. Then prove the second part of the proposition for n = 2.

One may verify that mixed volume scales in the same way as the number
of common roots of a well-constrained polynomial system with generic coeffi-
cients. In particular, when some Newton polytope is expressed as a Minkowski
sum, this means that the corresponding polynomial equals the product of two
polynomials fif ′i . So, the mixed volume can be written as a sum of mixed
volumes, which corresponds to the fact that the generic number of common
roots is given by a sum of root counts, each count corresponding to a system
of polynomials including either fi or f ′i .

Such properties were used by Kushnirenko in proving a restricted version
of the following theorem, for the unmixed case [Kus75]. Then, Bernstein (also
spelled Bernshtěın) stated, in [Ber75], the now-famous generalization, also
known as the Bernstein-Kushnirenko-Khovanskii (BKK) bound. We are now
ready to state a slight generalization of this theorem.

Theorem 7.1.4. Given system (7.1), the cardinality of common isolated zeros
in (K

∗
)n, counting multiplicities, is bounded by MV(Q1, . . . , Qn), regardless

of the dimension of the variety. Equality holds when a certain subset of the
coefficients corresponding to the vertices of the Qi’s are generic.

Newton polytopes provide a “sparse” counterpart of total degree. The
same holds for mixed volume vis-à-vis Bézout’s bound, which is equal to the
product of all total degrees. The two bounds coincide for completely dense
polynomials, because each Newton polytope is an n-dimensional unit simplex
scaled by deg fi. By definition, the mixed volume of the dense system is

MV((deg f1)S, . . . , (deg fn)S) =
n∏

i=1

deg fi MV(S, . . . , S) =
n∏

i=1

deg fi,
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where S is the unit simplex in Rn with vertex set {(0, . . . , 0), (1, 0, . . . , 0), . . . ,
(0, . . . , 0, 1)}.

There is an intermediate bound between the classical Bézout bound and
mixed volume. It is called the m-homogeneous or, simply, m-Bézout bound,
and holds for multihomogeneous polynomials. Suppose that the n variables
are partitioned into r ≥ 1 sets of nj variables each, for j = 1, . . . , r. Then,
n1 + · · ·+ nr = n. We may assume that there is a homogenizing variable for
each variable subset j such that polynomial fi becomes homogeneous with
respect to each subset, and has degree dij for i = 1, . . . , n and j = 1, . . . , r.
Then, the m-Bézout number is given by

the coefficient of
r∏

j=1

x
nj

j in polynomial
n∏

i=1

⎛⎝ r∑
j=1

dijxj

⎞⎠ .
This number lies always between the classical Bézout bound and the mixed
volume. For a general discussion see [MSW95].

Exercise 7.1.5 (combinatorial). If all dij are equal to dj then recover the
classical Bézout’s bound. Furthermore, show that the mixed volume of a sys-
tem of multihomogeneous polynomials is given by the m-Bézout bound. For
this, write every Newton polytope as Qi =

∑
j dijSj , where Sj is the unit

simplex in nj dimensions.

Mixed volume is usually significantly smaller than Bézout’s bound for
systems encountered in engineering applications. One example is the simple
and generalized eigenproblems on k × k matrices. By adding an equation to
ensure unit length of vectors, the Bézout bound in both cases is 2k+1, whereas
the number of right eigenvector and eigenvalue pairs is 2k. This is precisely
the mixed volume. We might, alternatively, employ the m-Bézout bound to
the k × k system and obtain the exact count, namely k.

It is possible to generalize the notion of mixed volume to that of stable
mixed volume, thus extending the bound to affine roots [HS97b].

The mixed volume computation is tantamount to enumerating all mixed
cells in a mixed (tight coherent) subdivision of Q1 + · · · + Qn. The term
“decomposition” is also used in the literature, instead of “subdivision”. We
express the operation of Minkowski addition on n polytopes as a many-to-one
function from (Rn)n onto Rn:

(Q1, . . . , Qn) →
n∑

i=1

Qi : (p1, . . . , pn) �→
n∑

i=1

pi.

To define an inverse function, i.e., a unique tuple for every point in the sum,
lifting is a standard geometric method. Select n generic linear lifting forms
li : Rn → R, i = 1, . . . , n. Then define the lifted polytopes

Q̂i = {(pi, li(pi)) : pi ∈ Qi} ⊂ Rn+1, i = 1, . . . , n.
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Now consider the Minkowski sum Q̂1 + · · ·+ Q̂n, which is a convex polytope
in Rn+1. The lower hull of this Minkowski sum is an n-dimensional (convex)
polyhedral complex, i.e. a family of convex faces of varying dimensions that
includes all subfaces, such that the intersection of any two faces is itself a face
of both intersecting faces. The lower hull is defined with respect to the unit
vector along the xn+1-axis: It is equal to the union of all n-dimensional faces,
or facets, whose inner normal vector has positive last component.

Each facet of
∑n

i=1 Q̂i can be written itself as a Minkowski sum
∑n

i=1 F̂i

where every F̂i is a face of Q̂i, i = 1, . . . , n. The genericity of the li ensures two
things: First, that the lower hull projects bijectively onto the Minkowski sum∑n

i=1Qi of the original polytopes. Second, it guarantees tightness, which is
the formal term for expressing the fact that every lower hull facet is a unique
sum of faces F̂i so that

∑n
i=1 dim F̂i equals the dimension of the facet, namely

n. Note that for an arbitrary lifting we would have
∑n

i=1 dim F̂i ≥ n, but
tightness means that equality holds.

The subdivision of the lower hull into faces of dimensions from 0 to n
induces a subdivision of the Minkowski sum

∑n
i=1Qi into cells of respective

dimensions. Such a subdivision is called regular and is defined by projecting
each lower-hull face onto one cell. In particular facets, whose dimension is n,
are projected onto n-dimensional (hence, maximal) cells. Furthermore, each
(maximal) cell σ is expressed as the Minkowski sum of faces from the Qi:
Each Minkowski sum

σ = F1 + · · ·+ Fn

is unique, where each Fi is a face of Qi, so that
∑

i dimFi = dimσ. Each Fi

corresponds to F̂i that appears in the unique sum defining the corresponding
lower-hull facet that projects onto σ. This sum is said to be optimal since it
minimizes the aggregate lifting function over the given cell.

The regularity of the subdivision implies its coherence, i.e., a continuous
change of the optimal expressions of every cell σ as a sum of faces. This cell
complex is, therefore, a tight coherent mixed subdivision. We define the mixed
cells to be precisely those where all summand faces are one-dimensional.

Proposition 7.1.6. The mixed volume equals the sum of the volumes of all
mixed cells in the mixed subdivision.

Example 7.1.7. Consider the system

f1 = c10 + c11x1x2 + c12x2
1x2 + c13x1, f2 = c20 + c21x2 + c22x1x2 + c23x1.

These polynomials have Newton polytopes and Minkowski sum as shown in
Figure 7.1. The shown subdivision is achieved with l1 = −x1 − 2x2, l2 =
4x1 + x2.

It is clear that the mixed volume equals 3, which is the exact number of
common roots for two generic polynomials with these supports. However, the
system’s Bézout number equals 4.
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Fig. 7.1. The Newton polytopes and mixed subdivision in Example 7.1.7.

In the sequel, we shall see more examples of mixed subdivision. Some of
the simplest instances appear in Examples 7.2.2 and 7.4.5.

Exercise 7.1.8. Compute the mixed volume of

A1 = {(0, 0), (1, 0), (2, 0)}, A2 = {(0, 0), (0, 1), (0, 2)}.
Can you find a linear lifting that yields a single mixed cell, so that the mixed
volume equals the volume of a single cell?

In terms of complexity classes, the computation of mixed volume is #P-
complete. This computation identifies the integer points comprising a mono-
mial basis of the quotient ring of the ideal defined by the input polynomials.
Mixed, or stable mixed, cells also correspond to start systems (of binomial
equations, hence with an immediate solution) for a toric homotopy to the
original system’s roots. Such issues go beyond the scope of this chapter; see
Chapter 8 or [GLW99, Li97, VG95].

7.1.1 The toric resultant

For a more general introduction to resultants, one may consult Sections 1.3
and 1.6 of Chapter 1, Section 2.3 of Chapter 2, or Chapter 3. The resultant of
a polynomial system of n + 1 polynomials with indeterminate coefficients in
n variables is a polynomial in these indeterminates, whose vanishing provides
a necessary and sufficient condition for the existence of common roots of the
system. Simple examples and a formal definition follow.

The resultant can be expressed by Poisson’s formula, namely C
∏

α f0(α),
where f0 is one of the polynomials, evaluated at all common roots α of the
other n equations, and C is a function of the coefficients of these n polynomi-
als. It is then easy to see that the resultant is homogeneous in the coefficients
of each polynomial.

The history of resultants (and elimination theory) includes such luminaries
as Euler, Bézout, Cayley, and Macaulay. Different resultants exist depending
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on the space of the roots we wish to characterize, namely projective, affine,
toric or residual [BEM01, CLO98, EM99b, Stu02]. Projective resultants (also
known as classical) were historically the first to be studied and characterize
the existence of projective roots. We shall focus on toric resultants below.
Residual resultants were more recently introduced in order to study roots in
the difference of two varieties.

Example 7.1.9. The bilinear system fi = ci0+ci1x1+ci2x2+ci3x1x2, i = 0, 1, 2
is used in modelling a bilinear surface in R3 as the set of values (f0, f1, f2) ∈
R3; see Figure 7.2.

Fig. 7.2. A bilinear surface patch.

The bivariate system of the fi’s has toric resultant equal to

Res = det

⎡⎢⎢⎢⎢⎢⎢⎣
c00 c01 c02 c03 0 0
c10 c11 c12 c13 0 0
c20 c21 c22 c23 0 0
0 c00 0 c02 c01 c03
0 c10 0 c12 c11 c13
0 c20 0 c22 c21 c23

⎤⎥⎥⎥⎥⎥⎥⎦ ,

assuming the matrix [cij ]i,j≥0 is regular. Notice that the first three matrix rows
correspond to the input polynomials, whereas the last three rows correspond
to the same polynomials multiplied by x1. This determinant has degree 2 per
polynomial, which is precisely the mixed volume of two input polynomials;
remark that this is the generic number of roots. Hence the determinant equals
the toric resultant.

In the following sections, we shall discuss ways to construct this matrix
and, ultimately, the resultant. Two alternative ways are presented in Chap-
ter 1.

If our only tool were the projective (classical) resultant, one would consider
3 bivariate polynomials, each of total degree 2. The resultant has degree 4 per
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polynomial, hence 12 in total in the cij ’s. For the bilinear system, certain
coefficients must be specialized to zero. One can show that the projective
(classical) resultant vanishes identically in this case.

The simplest case, where the classical projective and toric resultants co-
incide, is that of a linear system of n + 1 equations in n variables. The de-
terminant of the coefficient matrix is the system’s resultant and, under the
assumption on the non-vanishing of certain minors, it becomes zero exactly
when there is a common root. Due to the linearity of the equations, this root
is then unique.

Exercise 7.1.10. Using linear algebra, prove that the resultant of a linear
system vanishes precisely when there exists a unique common root, provided
that certain minors are nonzero. Moreover, apply Cramer’s rule in order to
compute each coordinate of this root as a ratio of determinants.

The question of whether two polynomials f1(x), f2(x) ∈ K[x] have a com-
mon root leads to a condition that has to be satisfied by the coefficients of
both polynomials; again classical and toric resultants coincide. The system’s
Sylvester matrix is of dimension deg f1 +deg f2 and its determinant is the sys-
tem’s resultant, provided the leading coefficients are nonzero. This matrix rows
contain the coefficient vectors of polynomials xkfj , for k = 0, . . . ,deg fi − 1
and {i, j} = {1, 2}.

Bézout developed a method for computing the resultant as a determinant
of a matrix of dimension equal to max{deg f1,deg f2}. Its construction goes
beyond the scope of this chapter; the reader may refer to Chapters 1 and 3.

For an illustration, consider f1 = ad1x
d1 + · · ·+ a0, f2 = bd2x

d2 + · · ·+ b0,
with all coefficients nonzero. Their resultant is the determinant of the Sylvester
matrix, namely ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ad1 ad1−1 · · · a0 0 · · · 0
0 ad1 ad1−1 · · · a0 0 · · · 0
...

. . . . . .
0 ad1 ad1−1 · · · a0
bd2 bd2−1 · · · b0 0 · · · 0
0 bd2 bd2−1 · · · b0 0 0
...

. . . . . .
0 bd2 bd2−1 · · · b0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The interested reader may refer to Section 1.3 of Chapter 1 for a more detailed
discussion on resultants of univariate polynomials.

Exercise 7.1.11. Using the greatest common divisor of f1, f2 prove that the
resultant of these two polynomials vanishes precisely when they have a com-
mon root. Can you compute the coordinates of this root from the kernel
vectors of the Sylvester matrix?
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Toric resultants express the existence of toric roots. Formally,

f0, . . . , fn ∈ K[x±1
1 , . . . , x

±1
n ], (7.2)

fi corresponding to generic point ci = (ci1, . . . , cimi
) in the space of polyno-

mials with support Ai. This space is identified with projective space Pmi−1
K .

Then system (7.2) can be thought of as point c = (c0, . . . , cn). Let Z denote
the Zariski closure, in the product of projective spaces, of the set of all c such
that the system has a solution in (K

∗
)n. Note that Z is an irreducible variety.

A technical assumption is that, without loss of generality, the affine lattice
generated by

∑n+1
i=1 Ai is n-dimensional. This lattice is identified with Zn

possibly after a change of variables, which can be implemented by computing
the appropriate Smith’s Normal form [Stu94a].

Definition 7.1.12. The toric (or sparse) resultant Res = Res(A0, . . . , An) of
system (7.2) is a polynomial in Z[c]. If codim(Z) = 1 then Res is the defining
irreducible polynomial of the hypersurface Z. If codim(Z) > 1 then Res = 1.

An additional assumption we make is that the family A0, . . . , An is es-
sential. This means that, for every proper index subset I ⊂ {0, . . . , n} with
cardinality |I|, the following holds for the dimension of certain Minkowski
sums:

dim

(∑
i∈I

Ai

)
≥ |I|.

Essential support families are also discussed in Section 1.6 of Chapter 1.
Then, the toric resultant Res(A0, . . . , An) is homogeneous in the coeffi-

cients of fi with degfi
Res(Ai) = MV−i. The vanishing of Res(A0, . . . , An) is

a necessary and sufficient condition for the existence of roots in the projec-
tive toric variety X, corresponding to the Minkowski sum of the n+1 Newton
polytopes. A projective toric variety is the closure of the image of the following
map of the torus:

(C∗)n → Pm : t �→ (
tb0 : · · · : tbm

)
,

where the bi ∈ Zn are the vertices of the Minkowski sum. If all Newton
polytopes are identical, then these are simply the vertices of the Newton
polytope. For instance, when this polytope is the unit simplex, the toric re-
sultant coincides with Pn. In the case of bilinear systems (see Example 7.1.9),
X = P1 × P1. Toric varieties are also discussed in Chapter 3 as well as
in [Cox95, GKZ94, KSZ92].

Some fundamental properties of the toric resultant are as follows.

• The toric resultant subsumes the classical resultant in the sense that they
coincide if the polynomials are dense.

• Just as in the classical case, when all coefficients are generic, the resultant
is irreducible.
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• While the classical resultant is invariant under linear transformations of
the variables, the toric resultant is invariant under transformations that
preserve the polynomial support.

• In the case of non-generic coefficients, certain divisibility properties hold.
In particular, when a system of polynomials lies in the ideal generated
by another system, then the latter resultant is divisible by the former
resultant.

7.2 Matrix formulae

Different means of expressing each resultant are possible, distinguished into
Sylvester, Bézout and hybrid-type formulae [BEM01, CLO98, DE03, EM99b,
Stu02]. Ideally, we wish to express it as a matrix determinant, a quotient
of two determinants, or a divisor of a determinant where the quotient is a
nontrivial extraneous factor. This section discusses matrix formulae for the
toric resultant known as toric resultant matrices.

We restrict ourselves to Sylvester-type matrices; such matrices for the toric
resultant are also known as Newton matrices because they depend on the in-
put Newton polytopes. Sylvester-type matrices generalize the coefficient ma-
trix of a linear system and Macaulay’s matrix. The latter extends Sylvester’s
construction to arbitrary systems of homogeneous polynomials, and its de-
terminant is a nontrivial multiple of the projective resultant. Other types of
resultant matrices are discussed in Chapter 3.

The transpose of a Sylvester-type matrix corresponds to the following
linear transformation:

(g0, . . . , gn) �→
n∑

i=0

gifi, (7.3)

where the support of each polynomial gi is related to the matrix. If we ex-
pressed the gi’s in the monomial basis, then (g0, . . . , gn) would be a vector
that multiplies from the left the transposed matrix (or from the right, the
resultant matrix itself). The support of each gi is the set of monomials multi-
plying fi in order to define the rows that correspond to fi. These rows contain
shifted copies of the fi coefficients. The shift is performed in such a way so
as to obtain gifi as the product of gi-block of the vector, multiplied by the
block of rows corresponding to fi. The reader should consult the examples of
resultant matrices given above as well as in the sequel.

Overall, each row expresses the product of a monomial with an input
polynomial; its entries are coefficients of that product, each corresponding to
the monomial indexing the corresponding column. The degree of detM in the
coefficients of fi equals the number of rows with coefficients of fi. This must be
greater than or equal to degfi

Res. It is possible to pick any one polynomial
so that there is an optimal number of rows containing its coefficients; this
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number is obviously degfi
Res. This is true both in the case of Macaulay’s

matrix and in the case of the Newton matrix constructions below.

7.2.1 Subdivision-based construction

There are two main approaches to construct a well-defined, square, gener-
ically nonsingular matrix M , such that Res |detM . The second algorithm
is incremental and shall be presented later. The first approach (cf. [CE93,
CE00, CP93, Stu94a]), relies on a mixed (tight coherent) subdivision of the
Minkowski sum

Q = Q0 + · · ·+Qn,

which generalizes the discussion of Section 7.1. It uses n + 1 generic linear
lifting forms li : Rn → R to define the lifted polytopes. Maximal cells in the
subdivision are written uniquely as σ = F0 + · · · + Fn, where Fi ⊂ Qi and∑

i dimFi = n. Therefore, at least one face is a vertex. The mixed cells are
precisely those where all other summand faces are one-dimensional. If this is
a vertex from Qi, then the cell is said to be i-mixed.

It can been shown [Emi96] that the i-mixed cells are the same as the mixed
cells in the mixed subdivision the n Newton polytopes Q0, . . . , Qi−1,Qi+1, . . . ,
Qn, provided that we use the same lifting functions in both cases. A direct
consequence is that the mixed volume of f0, . . . , fi−1, fi+1, . . . , fn is given by
the sum of volumes of all i-mixed cells, thus extending Proposition 7.1.6.

The matrix construction algorithm uses a subset of (Q+ δ) ∩ Zn to index
the rows and columns of resultant matrix M , where δ ∈ Rn is an arbitrarily
small and sufficiently generic vector. This vector must perturb all integer
points indexing some row (or column) of the matrix in the strict interior of a
maximal cell. It can be chosen randomly and the validity of our choice can be
confirmed by the matrix construction algorithm. The probability of error for
a vector with uniformly distributed entries is bounded in [CE00].

Now consider an integer point p, such that p+δ lies in an arbitrary maximal
cell σ. The algorithm associates to p the pair (i, j) if and only if aij ∈ Qi is
a vertex in the optimal sum of σ and i is the maximum index of any vertex
summand. The row of M corresponding to p shall contain the coefficients of
polynomial

xp−aijfi.

The entries corresponding to column monomials that do not explicitly appear
in the row polynomial are set to zero. If σ is i-mixed, then aij is the unique
vertex summand. For non-mixed cells, the Minkowski sum has more than one
vertices, and the above rule defines a matrix with the minimum number of
rows with f0, because in these cases it shall avoid the 0 index.

Therefore, the number of f0 rows equals the number of integer points in
0-mixed cells, which equals

MV(f1, . . . , fn) = degf0
Res(Ai).
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As for the number of fi rows, for i > 0, this is larger or equal to the number of
integer points in i-mixed cells. The above argument tells us that this is at least
as large as degfi

Res. Now recall that the degree of the matrix determinant in
the coefficients of fi equals the number of its rows containing shifted copies of
the coefficient vector of fi. The algorithm may use an analogous rule to avoid
index i if we wish the matrix to have the minimum number of rows containing
fi, for i > 0.

It can be proven that every principal minor of matrix M , including its de-
terminant, is nonzero when the polynomials have generic coefficients [CE00].
The proof of this theorem uses an adequate specialization of the input coeffi-
cients, in terms of a new parameter t. In particular, the coefficient in fi that
multiplies the monomial xaj is specialized to tli(aj), where li is the lifting ap-
plied to Qi. Then, each row of the specialized matrix, indexed by some point
p, is multiplied by the power th−lk(as). Here, h denotes the vertical distance
of p ∈ Rn to the lower hull of

∑
i≥0 Q̂i and we have assumed that p has been

associated to the pair (k, s). The last step in the proof establishes that the
product of all diagonal entries in the new matrix equals the trailing term of
its determinant with respect to t.

Moreover, it is not so hard to show that the determinant of M vanishes
whenever Res = 0. We thus arrive at the following theorem.

Theorem 7.2.1 ([CE93, CE00]). We are given an overconstrained system
with fixed supports. With the above notation, matrix M is well-defined and
square. Its determinant is generically nonzero and divisible by the toric resul-
tant Res.

Example 7.2.2. Let us apply the subdivision-based algorithm to construct
Sylvester’s matrix. Take

f0 = c00 + c01x, f1 = c10 + c11x+ c12x2.

There are two possible subdivisions obtained with linear liftings; one is shown
in Figure 7.3, along with the δ perturbation.

For illustration, we note that the algorithm associates to point 2 the
pair (1, 2), i.e. the matrix row indexed by x2 shall contain the coefficients
of x2−2f1 = f1. A similar argument builds the other rows of the matrix. The
reader may check that this is indeed the well-known Sylvester matrix.

Example 7.2.3. For n = 2, let us apply the subdivision-based algorithm in the
case of linear polynomials. Take

fi = ci0 + ci1x1 + ci2x2, i = 0, 1, 2.

One possible linear lifting induces the subdivision in Figure 7.4. The same
figure shows the perturbation of choice, so that we recover the matrix of the
system’s coefficients, as expected. In fact, any vector δ ∈ R>0 would do.
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+ 2

δ

0 Q0Q1+

Fig. 7.3. The Minkowski sum of the lifted Newton segments and the induced sub-
division in Example 7.2.2.

Then, there are three integer points in the perturbed Minkowski sum,
namely (1, 2), (1, 1), and (2, 1). They are associated, respectively, to pairs
[2, (0, 1)], [1, (0, 0)] and [0, (1, 0)]. For instance, the row indexed by x1x

2
2 shall

contain polynomial x(1,2)−(0,1)f2 = x(1,1)f2.

+ +(0,0)

(0,1) +Q0 + (0,1)

(0,1)+ +

δ

Fig. 7.4. The mixed subdivision and the perturbation with respect to the original
Minkowski sum.

The resultant matrix is therefore

M =

⎡⎣ c01 c02 c03c11 c12 c13
c21 c22 c23

⎤⎦ ,
with rows corresponding to the polynomials x1x2fi and columns indexed by
x2

1x2, x1x
2
2, x1x2.

There is a greedy variant from [CP93] of the subdivision-based algorithm.
It starts with a single row, corresponding to some integer point, and proceeds
iteratively by adding new rows (and columns) as need be. For a given set
of rows, the column set comprises all columns required to express the row
polynomials. For a given set of columns, the rows are updated to correspond to
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the same set. The algorithm continues by adding rows and the corresponding
columns until a square matrix has been obtained.

Example 7.2.4. Consider a system of 3 polynomials in 2 unknowns:

f0 = c01 + c02xy + c03x2y + c04x,
f1 = c11y + c12x2y2 + c13x2y + c14x,
f2 = c21 + c22y + c23xy + c24x.

a12

a13
a02

01a

a24a21

a22 a2303

a a

a
a11

1404

Fig. 7.5. The supports and Newton polytopes in Example 7.2.4.

The Newton polytopes are shown in Figure 7.5. The mixed volumes are
MV(Q0, Q1) = 4, MV(Q1, Q2) = 4, MV(Q2, Q0) = 3, so the toric resultant’s
total degree is 11. Compare this with the Bézout numbers of these subsystems:
8, 6, 12; hence the projective resultant’s total degree is 26.

Assume that the lifting functions are l0(x, y) = Lx+L2y, l1(x, y) = −L2x−
y, l2(x, y) = x−Ly, where L& 1. The lifted Newton polytopes and the lower
hull of their Minkowski sum is shown below. These functions are sufficiently
generic since they define a mixed subdivision where every cell is uniquely
defined as the Minkowski sum of faces Fi ⊂ Qi.



284 I.Z. Emiris

The lower hull of the Minkowski sum of the lifted Qi’s is then projected to
the plane, yielding generically a mixed subdivision ofQ. Figure 7.6 shows Q+δ
and the integer points it contains; notice that every point belongs to a unique
maximal cell. Every maximal cell σ is labeled by the indices of the Qi vertex
or vertices appearing in the unique Minkowski sum σ = F0 + · · · + Fn, with
ij denoting vertex aij ∈ Qi. For instance, point (1, 0) belongs to a maximal
cell σ = a01 +F +F ′, where F, F ′ are the edges (a14, a13) ⊂ Q1 and (a21, a24)
respectively. The corresponding row in the matrix will be filled in with the
coefficient vector of x(1,0)f0.

1
x x43x x2

01 01
01 24

1301,13 1301,22

01 23 23

12,2312
22

y

3y

y2

Fig. 7.6. A mixed subdivision of Q perturbed by (−3/8,−1/8), in Example 7.2.4.

The Newton matrix M appears below with rows and columns indexed by
the integer points in the perturbed Minkowski sum. M contains, by construc-
tion, the minimum number of f0 rows, namely 4. The total number of rows is
4 + 4 + 7 = 15, i.e., the determinant degree is higher than optimal by 1 and
3, respectively, in the coefficients of f1 and f2.
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1, 0 2, 0 0, 1 1, 1 2, 1 3, 1 0, 2 1, 2 2, 2 3, 2 4, 2 1, 3 2, 3 3, 3 4, 3

1, 0 c01 c04 0 0 c02 c03 0 0 0 0 0 0 0 0 0
2, 0 c21 c24 0 c22 c23 0 0 0 0 0 0 0 0 0 0
0, 1 0 0 c01 c04 0 0 0 c02 c03 0 0 0 0 0 0
1, 1 0 0 0 c01 c04 0 0 0 c02 c03 0 0 0 0 0
2, 1 c14 0 c11 0 c13 0 0 0 c12 0 0 0 0 0 0
3, 1 0 c14 0 c11 0 c13 0 0 0 c12 0 0 0 0 0
0, 2 0 0 c21 c24 0 0 c22 c23 0 0 0 0 0 0 0
1, 2 0 0 0 c21 c24 0 0 c22 c23 0 0 0 0 0 0
2, 2 0 0 0 0 0 0 0 0 c01 c04 0 0 0 c02 c03

3, 2 0 0 0 0 c21 c24 0 0 c22 c23 0 0 0 0 0
4, 2 0 0 0 0 0 c14 0 0 c11 0 c13 0 0 0 c12

1, 3 0 0 0 0 0 0 0 c21 c24 0 0 c22 c23 0 0
2, 3 0 0 0 c14 0 0 c11 0 c13 0 0 0 c12 0 0
3, 3 0 0 0 0 0 0 0 0 c21 c24 0 0 c22 c23 0
4, 3 0 0 0 0 0 0 0 0 0 c21 c24 0 0 c22 c23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The greedy version produces a matrix with dimension 14 which can be

obtained by deleting the row and the column corresponding to point (1, 3).

The subdivision-based approach can be coupled with the existence of a mi-
nor in the Newton matrix that divides the determinant so as to yield the exact
toric resultant [D’A02]. D’Andrea has proposed a recursive lifting procedure
that gives a much lower value to a chosen vertex ofQ0. The cells whose optimal
sum does not contain this vertex are then further subdivided by assigning this
special role to a vertex of Q1, and so on. This generalizes Macaulay’s famous
quotient formula that yields the exact projective resultant [Mac02].

The existence of a non-recursive algorithm, relying on a single lifting, is
still open in the general case. It is, nonetheless, possible for n = 2 and for
families of sufficiently different Newton polytopes. A glimpse of what this
lifting may look like is offered by the hybrid matrix constructed in [DE01b].

Example 7.2.5 (Continued from Example 7.1.9). The bilinear system fi =
ci0+ci1x1+ci2x2+ci3x1x2, i = 0, 1, 2, despite its apparent simplicity, does not
admit an optimal toric resultant matrix, when we apply the subdivision-based
algorithm. In contrast, the greedy variant may yield an optimal matrix and the
incremental algorithm of the next section produces the optimal 6× 6 matrix
in Example 7.1.9. It is possible to construct the following 9 × 9 numerator
matrix, using the subdivision-based algorithm:
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M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c00 c01 c02 c03 0 0 0 0 0
c10 c11 c12 c13 0 0 0 0 0
c20 c21 c22 c23 0 0 0 0 0
0 0 0 c00 c01 c02 0 0 c03
0 c10 0 c12 c13 0 c11 0 0
0 0 c20 c21 0 c23 0 c22 0
0 c20 0 c22 c23 0 c21 0 0
0 0 c10 c11 0 c13 0 c12 0
0 0 0 c10 c11 c12 0 0 c13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f0
f1
f2

x1x2f0
x1f1
x2f2
x1f2
x2f1
x1x2f1

The choice was δ = (2
3 ,

1
2 ) and the lifting is such that one vertex of the

first polytope has an infinitesimal lifting value compared to the other val-
ues. It is now possible to define a denominator matrix M ′, of dimension 3,
which is a submatrix of M . It is defined by the rows indexed by polynomi-
als f1, f2, x1x2f1 and the respective columns; these correspond precisely to
the integer points in non-mixed cells. The ratio of the determinants yields
precisely the toric resultant.

7.2.2 Incremental construction

The second algorithm [EC95], is incremental and yields usually smaller ma-
trices and, in any case, no larger than those of the subdivision algorithm. The
flexibility of the construction makes it suitable for overconstrained systems.
On the downside, there exists a randomized step so certain properties of the
subdivision-based construction cannot be guaranteed a priori.

The selection of integer points, which correspond to monomials multiply-
ing the row polynomials, uses a vector v ∈ (Q∗)n. The goal is to choose an
adequate subset of integer points in

Q−i :=
n∑

j=0,j �=i

Qj , i = 0, . . . , n.

This is achieved by first sorting all points p ∈ Q−i ∩ Zn according to their
distance, along v, from the boundary. This distance is defined as follows, for
point p:

v-distance(p) := max{s ∈ R≥0 : p+ sv ∈ Q−i}.
The construction is incremental, in the sense that successively larger point
sets are considered by decreasing the lower bound on the v-distance of the
set’s points. For given point sets, a candidate matrix is defined. If the number
of rows is at least as large as the number of columns and it has full rank for
generic coefficients, then the algorithm terminates and returns a nonsingular
maximal square submatrix. The determinant of this submatrix is a nontrivial
multiple of the toric resultant; otherwise, new rows (and columns) are added
to the candidate.



7 Toric resultants 287

In those cases where a minimum matrix of Sylvester type provably exists
[SZ94, WZ94], the incremental algorithm produces this matrix. For general
multi-homogeneous systems, the best vector is obtained in [DE03]. These are
precisely the systems for which v can be deterministically specified; otherwise,
a random v can be used. Different choices can be tried out so that the smallest
matrix may be chosen.

Example 7.2.6 (Continued from Example 7.2.4). Figure 7.7 shows Q−0 in bold
and randomly chosen vector v = (20, 11). The different point subsets in Q−0

with respect to v-distance are shown by the thin-line polygons. In fact, the
thin lines represent contours of fixed v-distance. The final point set from Q−0

is the following, shown with the respective v-distances:
{(0, 1; 3/20), (1, 0; 1/10), (1, 1; 1/10), (1, 2; 1/11)}.

v

y

x

Fig. 7.7. Q−0 subsets with different v-distance bounds and vector v.

This v leads to a 13×12 nonsingular matrixM shown below. Deleting the
last row defines the 12× 12 resultant submatrix.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1, 2 2, 2 0, 1 1, 1 2, 1 3, 1 1, 0 2, 0 3, 2 2, 3 3, 3 0, 2
0, 1 c02 c03 c01 c04 0 0 0 0 0 0 0 0
1, 0 0 0 0 0 c02 c03 c01 c04 0 0 0 0
1, 1 0 c02 0 c01 c04 0 0 0 c03 0 0 0
1, 2 c01 c04 0 0 0 0 0 0 0 c02 c03 0
0, 0 0 c12 c11 0 c13 0 c14 0 0 0 0 0
1, 0 0 0 0 c11 0 c13 0 c14 c12 0 0 0
1, 1 c11 0 0 0 c14 0 0 0 c13 0 c12 0
0, 1 0 c13 0 c14 0 0 0 0 0 c12 0 c11
0, 1 c23 0 c21 c24 0 0 0 0 0 0 0 c22
1, 1 c22 c23 0 c21 c24 0 0 0 0 0 0 0
1, 0 0 0 0 c22 c23 0 c21 c24 0 0 0 0
2, 1 0 c22 0 0 c21 c24 0 0 c23 0 0 0
2, 2 0 c21 0 0 0 0 0 0 c24 c22 c23 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Other techniques to reduce matrix size (and mixed volumes) include the

introduction of new variables to express subexpressions which are common to
several input polynomials. For an illustration, see [Emi97].

Clearly, mixed volume captures the inherent complexity of algebraic prob-
lems in the context of sparse elimination and thus provides lower bounds
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on the complexity of algorithms. On the other hand, several toric elim-
ination algorithms rely on Minkowski sums of Newton polytopes. There-
fore, a crucial question in deriving output-sensitive upper bounds is the
relation between mixed volume and the volume of these Minkowski sums.
In manipulating mixed volumes, some fundamental results can be found
in [Sch93]. In particular, the Aleksandrov-Fenchel inequality leads to the fol-
lowing bound [Emi96, Lut86]:

MVn(Q1, . . . , Qn) ≥ (n!)nVol(Q1) · · ·Vol(Qn).

For a system of Newton polytopes Qi, define its scaling factor s to be the
minimum real value so that Qi + ti ⊂ sQµ for all Qi, where Qµ is the poly-
tope of minimum euclidean volume and the ti ∈ Rn are arbitrary translation
vectors. Clearly, s ≥ 1 and s is finite if and only if all polytopes have an affine
span of the same dimension. Let e denote the basis of natural logarithms, and
suppose that the volumes Vol(Qi) > 0 for all i. Then, for a well-constrained
system, we have

Vol

(
n∑

i=1

Qi

)
= O(ensn)MV(Q1, . . . , Qn),

whereas for an overconstrained system the same techniques yield

Vol

(
n∑

i=0

Qi

)
= O

(
ensn

n

) n∑
i=0

MV−i,

where MV−i = MV(Q0, . . . , Qi−1, Qi+1, . . . , Qn) [Emi96].
As a consequence, the asymptotic bit complexity of both subdivision-based

and incremental algorithms is singly exponential in n, proportional to the total
degree of the toric resultant, and polynomial in the number of Qi vertices,
provided all MV−i > 0.

Newton matrices, including the candidates constructed by the incremen-
tal algorithm, are characterized by a structure that generalizes the Toeplitz
structure and has been called quasi-Toeplitz [EP02] (cf. [CKL89]). By ex-
ploiting this structure, determinant evaluation has quasi-quadratic arithmetic
complexity and quasi-linear space complexity in the matrix dimension (here
“quasi” means that polylogarithmic factors are ignored). The efficient imple-
mentation of this structure is open today and is important for the competi-
tiveness of the entire approach.

7.3 Implicitization with base points

The problem of switching from a rational parametric representation to an
implicit, or algebraic, representation of a curve, surface, or hypersurface lies
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at the heart of several algorithms in computer-aided design and geometric
modelling. Given are rational parametric expressions

xi = pi(t)/q(t) ∈ K(t) = K(t1, . . . , tn), i = 0, . . . , n,

over some field K of characteristic zero. The implicitization problem consists
in computing the smallest algebraic hypersurface in terms of x = (x0, . . . , xn)
containing the closure of the image of the parametric map t �→ x. The most
common case is for curve and surface implicitization, namely when n = 1 and
n = 2 respectively. Resultants offer an efficient approach for this problem, but
face certain questions due to degeneracy conditions, discussed below. Several
other algorithms exist for this problem, including methods based on Gröbner
bases, moving surfaces, and residues. Their enumeration goes beyond the scope
of this chapter; cf. also, Chapter 3.

Implicitization is equivalent to eliminating all parameters t from the poly-
nomial system

fi(t) = pi(t)− xiq(t), i = 0, . . . , n,

regarded as polynomials in t. The resultant is well-defined for this system,
and shall be a polynomial in x, equal to the implicit expression, provided
that it does not vanish and the parametrization is generically one-to-one.
Otherwise, the resultant is a power of the implicit equation. More subtle is
the case where the resultant is identically zero. This happens precisely when
there exist values of t, known as base points, for which the fi vanish for all
xi; in other words, the pi(t) and q(t) evaluate to zero. Base points forming
a component of codimension 1 can be easily removed by canceling common
factors in the numerator and denominator of the rational expressions for the
xj ’s. But higher codimension presents a harder problem.

Besides cases where the (toric) resultant vanishes, another problem with
non-generic coefficients is that the resultant matrix may be identically singu-
lar. We understand that avoiding degeneracies is an important problem, whose
relevance extends beyond the question of implicitization with base points.
In [DE01a], a toric (sparse) projection operator is defined by perturbing the
subdivision-based matrix such that, after specialization, this operator is not
identically zero but vanishes on roots in the proper components of the variety,
including all isolated roots.

This is a standard idea in handling degeneracies in the case of resultants.
In the classical context, Canny [Can90] perturbed each fi by adding a new
factor εxdi

i , where i = 1, . . . , n, and f0 by adding ε, where ε is a positive
infinitesimal indeterminate. Rojas proposed a perturbation scheme for toric
resultants in [Roj99a] which yields a perturbed resultant of low degree in ε but
is, nonetheless, rather expensive to compute. Our scheme generalizes [Can90]
and requires virtually no extra computation besides the matrix construction.

Suppose we have a family p := (p0(x) . . . , pn(x)) of Laurent polynomials
such that supp(pi) ⊂ Ai, and Res(p0, . . . , pn) �= 0. The Toric Generalized
Characteristic Polynomial (p-GCP) is
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Cp(ε) := Res (f0 − εp0, . . . , fn − εpn) .

Let Cp,k(y1, . . . , ym) be the coefficient of Cp(ε) of lowest degree in ε, namely
k. The coefficient Cp,k is a suitable projection operator. In fact, the polyno-
mials pi may have random coefficients and support including precisely those
monomials of fi which appear on the diagonal of the toric resultant matrix.
The perturbation has been implemented in Maple; see also Section 7.5.

Example 7.3.1 (Continued from Example 7.2.4). In the special case

f0 = 1 + x1 x2 + x2
1 x2 + x1, f2 = 1 + x2 + x1 x2 + x1,

the toric resultant vanishes for all c1j since the variety V (f0, f1) has positive
dimension: it is formed by the union of the isolated point (1,−1) and the line
{−1}×C. For a specific lifting and matrix construction, the trailing coefficient
in the perturbed determinant is that of ε2 and equals

−(c12c13)(c14 − c11 + c12 − c13)(c14 + c11 − c12 + c13).

So we can recover in the last two factors the value of f1 at the isolated zero
(1,−1) and the point (−1,−1) in the positive-dimensional component.

The next example illustrates the perturbation method in applying toric
resultants for system solving.

Example 7.3.2. This is the example of [Roj99a]. To the system

f1 := 1+2x−2x2y−5xy+x2 +3x3y, f2 := 2+6x−6x2y−11xy+4x2 +5x3y,

we add f0 := u1x+u2y+u0, which does not have to be perturbed. We use the
function spresultant from Maple library multires to construct a 16 × 16
matrix M in parameters u0, u1, u2, ε. The number of rows per polynomial are,
respectively, 4, 6, 6, whereas the mixed volumes of the 2×2 subsystems are all
equal to 4. Here is the Maple code for these operations, where e stands for ε:

M := spresultant ([f0,f1,f2], [x,y]):
DM := det(M): # in u0,u1,u2,e
degree (DM,e); # outputs 12
ldg := ldegree(DM,e); # outputs 1
phi := primpart(coeff(DM,e,ldg)):
factor(phi);

For certain ω and δ, we have used p1 := −3x2 + x3y, p2 := 2 + 5x2. The
perturbed determinant has maximum and minimum degree in ε, respectively,
12 and 1. The trailing coefficient gives two factors corresponding to isolated
solutions (1/7, 7/4) and (1, 1): (49 u2 + 4 u1 + 28 u0 ) (u2 + u1 + u0 ). Another
two factors give points on the line {−1} × C of solutions, but the specific
points are very sensitive to the choice of ω and δ. One such choice yields:
(−u0 + u1 ) (27 u2 + 40 u1 − 40 u0 ).



7 Toric resultants 291

Example 7.3.3. In the robot motion planning implementation of Canny’s
roadmap algorithm in [HP00], numerous “degenerate” systems are encoun-
tered. Let us examine a 3 × 3 system, where we hide x0 to obtain dense
polynomials of degrees 3, 2, 1:

f0 = 54x1
3 − 21.6x1

2x2 − 69.12x1x2
2 + 41.472x2

3 + (50.625 + 75.45x0)x1
2

+ (−92.25 + 32.88x0)x1x2 + (−74.592x0 + 41.4)x2
2+

+(131.25 + 19.04x0
2 − 168x0)x1 +

(−405 + 25.728x0
2 + 126.4x0

)
x2+

+(−108.8x0
2 + 3.75x0 + 234.375),

f1 = −37.725x1
2 − 16.44x1x2 + 37.296x2

2 + (−38.08x0 + 84)x1+
+ (−63.2− 51.456x0)x2 + (2.304x0

2 + 217.6x0 − 301.875),
f2 = 15x1 − 12x2 + 16x0.

The Maple function spresultant applies an optimal perturbation to an iden-
tically singular 14 × 14 matrix in x0. Now detM(ε) is of degree 14 and the
trailing coefficient of degree 2, which provides a bound on the number of affine
roots. We obtain

φ(x0) =
(
x0 − 1434

625

)(
x0 − 12815703325

21336

)
,

the first solution corresponding to the unique isolated solution but the second
one is superfluous, hence the variety has dimension zero and degree 1.

Our perturbation method applies directly, since the projection operator
will contain, as an irreducible factor, the implicit equation. The extraneous
factor has to be removed by factorization. Distinguishing the implicit equa-
tion from the latter is straightforward by using the parametric expressions to
generate points on the implicit surface.

Example 7.3.4. Let us consider the de-homogenized version of a system defined
in [Bus01b]:

p0 = t21, p1 = t31, p2 = t22, q = t31 + t32.

It has one base point, namely (0, 0), of multiplicity 4. The toric resultant here
does not vanish, so it yields the implicit equation

x3
2x

2
1 − x3

0x
2
1 + 2x3

0x1 − x3
0.

But under the change of variable t2 → t2 − 1 the new system has zero toric
resultant. The determinant of the perturbed 27 × 27 resultant matrix has a
trailing coefficient which is precisely the implicit equation. The degree of the
trailing term is 4, which equals in this case, the number of base points in the
toric variety counted with multiplicity.

Example 7.3.5. The problem of computing the sparse, or toric, discriminant of
a polynomial specified by its support can be formulated as an implicitization
problem [DS02, GKZ94]. Let us fix the polynomial support in Zm, and suppose
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that the support’s cardinality equals m + 1 + s, s ≥ 0. The case s = 2 was
studied in [DS02] and reduces to curve implicitization, though the approach
used in that article was not based on implicitization.

Here s = 3, so we have a surface implicitization problem with base points.
Base points forming a component of codimension 1 can be easily removed by
canceling common factors in the numerator and denominator of the rational
expressions for the x0, . . . , xs−1.

The parametric expressions for the xi’s and the ensuing implicitization
problem shall be defined in terms of the entries of some matrix B, specified
from the support of the input polynomial. Its row dimension is s and its
column dimension equals the cardinality of the polynomial support. We do
not go into the technical details of deriving B from the support.

Let us consider a specific example with m = 3 and s = 3, hence the sup-
port cardinality equals 7. The problem reduces to implicitizing the parametric
surface given by

xi =
7∏

j=1

(b0j + t1b1j + t2b2j)
bij , i = 0, 1, 2,

where the matrix B = (bij), for i = 0, . . . , 2, j = 1, . . . , 7, is as follows:

B =

⎡⎢⎢⎣
1 0 −1 0 2 −1 −1

0 1 −1 2 0 −1 −1

1 1 −2 1 0 −1 0

⎤⎥⎥⎦ .
There are base points forming components of codimension 2, including a single
affine base point (1,−1). Our algorithm constructs a 33 × 33 matrix, whose
perturbed determinant has a trailing term of degree 3 in ε. The corresponding
coefficient has total degree 14 in x0, x1, x2. When factorized, it yields the
precise implicit equation, which is of degree 9 in x0, x1, x2.

7.4 Implicit support

In this section, we exploit information on the support of the toric resultant
in order to predict the support of the implicit equation of a parametric (hy-
per)surface.

Our approach is to consider the extreme monomials i.e., the vertices of the
Newton polytope of the toric resultant Res. The output support scales with
the sparseness of the parametric polynomials and is much tighter than the one
predicted by degree arguments. In many cases, we obtain the exact support
of the implicit equation, as seen by applying our Maple program. Moreover,
it is possible to specify certain coefficients in this equation. Our motivation
comes mainly from two implicitization algorithms which apply interpolation,
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namely the direct method of [CGKW01] and the one based on perturbations
(cf. Section 7.3 or [MC92]).

The initial form Inω(F ) of a multivariate polynomial F in k variables, with
respect to some functional ω : Zk → R, is the sum of all terms in F which
maximize the inner product of ω with the corresponding exponent vector. Let
us define

k := |A0|+ · · ·+ |An|,
then ω defines a lifting function on the input system, by lifting every support
point a ∈ Ai to (a, ω(a)) ∈ Zn × R. This generalizes the linear lifting of
Section 7.2. The lower hull facets of the lifted Minkowski sum correspond to
maximal cells of an induced coherent mixed subdivision ofQ. If ω is sufficiently
generic, then this subdivision is tight; in the sequel, we assume our mixed
subdivision is both coherent and tight and denote it by ∆ω. If Fi ∈ Ai is a
vertex summand of an i-mixed cell, then the corresponding coefficient in fi is
denoted by ciFi

. We recall our assumption that the Ai span Zn.

Theorem 7.4.1. The initial form of the toric resultant Res with respect to a
generic ω equals the monomial

Inω(Res) =
n∏

i=0

∏
F

c
Vol(F )
iFi

, (7.4)

where Vol(·) denotes ordinary Euclidean volume and the second product is
over all mixed cells of type i in the mixed subdivision ∆ω.

For a detailed proof of this theorem, see [Stu94a]. This proof can be
obtained from the toric resultant matrix construction, by means of the
subdivision-based algorithm. Let us use the same specialization of the co-
efficients in terms of a new parameter t, as in the discussion that leads to
Theorem 7.2.1. Then, the resultant becomes univariate in t and the proof is
completed by relating, on the one hand, the degree of Inω(Res) in t and, on
the other, the sum of all exponents in expression (7.4). The latter, for fixed i,
equals MV−i = degfi

Res.
For a generic vector ω, the initial form Inω(Res) corresponds to a vertex

of the Newton polytope of the resultant Res. It is precisely the vertex with
inner normal ω. So, by varying the lifting ω, we can compute all vertices of
this Newton polytope, hence a superset of the resultant’s support.

A bijective correspondence exists between the extreme monomials and the
configurations of the mixed cells of the Ai. So, it suffices to compute all distinct
mixed-cell configurations, as discussed in [MC00, MV99].

Another (simpler) means of reducing the number of relevant mixed sub-
divisions is by bounding the number of cells. This bound is usually straight-
forward to compute in small dimensions (e.g. when n = 2, 3) and reduces
drastically the set of mixed subdivisions. For instance, when studying the im-
plicitization of a biquadratic surface, the total number of mixed subdivisions
is 19728, whereas those with 8 cells is 62.



294 I.Z. Emiris

In certain special cases, we can be more specific about the Newton polytope
of the toric resultant. First, its dimension equals k− 2n− 1 [GKZ94, Stu94a].
Certain corollaries follow: For essential support families (defined in [Stu94a]),
a 1-dimensional Newton polytope of Res is possible if and only if all polynomi-
als are binomials. The only resultant polytope of dimension 2 is the triangle;
in this case the support cardinalities must be 2 and 3. For dimension 3, the
possible polytopes are the tetrahedron, the square-based pyramid, and poly-
tope N2,2 given in [Stu94a]; the support cardinalities are respectively 2, 2 and
3.

One corollary of Theorem 7.4.1 (and of its proof) is that the coefficients
of all extreme monomials are in {−1, 1} [GKZ91, CE00, Stu94a]. Sturm-
fels [Stu94a] also specifies, for all extreme monomials, a way to compute their
precise coefficients. But this requires computing several coherent mixed sub-
divisions, and goes beyond the scope of the present chapter.

The so-called Cayley trick introduces a new point set C := {(z, a0j , 1) :
a0j ∈ A0} ∪ {(ei, aij , 1) : i = 1, . . . , n, aij ∈ Ai} ⊂ Z2n+1, where z =
(0, . . . , 0) ∈ Nn is the zero vector and ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Nn has a
unit at the i-th position and n− 1 zeroes.

Theorem 7.4.2. The problem of computing all mixed subdivisions of supports
A0, . . . , An, which lie in Zn, is equivalent to computing all regular triangula-
tions of the set C defined above. This set contains k0 + · · ·+ kn points, where
ki = |Ai|.
Example 7.4.3 (Continued from Example 7.2.2). The Cayley trick in the uni-
variate case goes as follows. Consider f0 = c00 + c01x, f1 = c10 + c12x2, then
the points in the set C appear in the columns of matrix[

0 0 1 1
0 1 0 2

]
.

There are two possible triangulations of these points, namely([
0
0

]
,

[
0
1

]
,

[
1
2

])
,

([
0
0

]
,

[
1
0

]
,

[
1
2

])
,

which is the one shown in Figure 7.3, and([
0
0

]
,

[
0
1

]
,

[
1
0

])
,

([
0
1

]
,

[
1
0

]
,

[
1
2

])
.

Efficient algorithms (and implementations) exist for computing all regular
triangulations of a point set [Ram01]. Regular are those triangulations that
can be obtained by projection of a lifted triangulation.

We produce a superset of the monomials in the support of the im-
plicit equation of the input. Consider, as in Section 7.3 the polynomials
fi(t) = pi(t) − xiq(t), where we ignore the specific values of the coefficients.
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This is an interesting feature of the algorithm, namely that it considers the
monomials in the parametric equations but not their actual coefficients. This
shows that the algorithm is suitable for use as a preprocessing off-line step
in CAGD computations, where one needs to compute thousands of examples
with the same support structure in real time. This handles the implicitiza-
tion of (multiparametric) families of (hyper)surfaces, indexed by one or more
parameters.

Of course, the generic resultant coefficients are eventually specialized to
functions of the xi. Then, any bounds on the implicit degree in the xi may be
applied, in order to reduce the final support set. One step yields as by-product
all partial mixed volumes MV−i for i = 0, . . . , n, and hence the implicit degree
separately in the xi variables.

We examine our method on some small examples, and summarize the
results in Table 7.1 below.

Example 7.4.4. We consider the Folium of Descartes, shown also in Figure 7.8.
x = 3t2/(t3 + 1), y = 3t/(t3 + 1).

–3

–2

–1

0

1

2

–3 –2 –1 1 2

Fig. 7.8. The Folium of Descartes

The output monomials are {y3, x3, x3 y3, x y, y2 x2}. After applying the
degree bound d = 3 we obtain the support {y3, x3, x y}, which is optimal,
since the implicit equation is x3 + y3 − 3 x y = 0.

Example 7.4.5. An example in 3 dimensions comes from [Buc88b]; the surface
is drawn in Figure 7.9. The parametric expressions are: x = s t, y = s t2, z =
s2.

In order to apply toric elimination theory, we consider polynomials

f0 = c00 − c01st, f1 = c10 − c11st2, f2 = c20 − c21s2.

There are the following two possible mixed subdivisions, each containing ex-
actly three maximal cells, all of which are mixed, see Figure 7.10.

The computed support is optimal and the implicit equation is x4−y2z = 0.
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Fig. 7.9. The surface in Example 7.4.5.

c00

c01

c10

c11 c20

c21

Fig. 7.10. Mixed cells in the subdivisions, with vertex summands shown.

Example 7.4.6. Let us consider a system attributed to Fröberg and discussed
in Chapter 1.

x = t48 − t56 − t60 − t62 − t63, y = t32.

The Minkowski sum is the segment Q0 + Q1 = [0, 95]. One type of triangu-
lations, obtained from a non-linear lifting, divides it to the following 3 cells
(which are all segments):

(Q′
0 + 0), (a+Q1), (Q′′

0 + 32), where Q′
0 = [0, a], Q′′

0 = [a, 63],

and a ∈ A0 = {0, 48, 56, 60, 62, 63}. Every such triangulation yields a support
point ya. The triangulation (0+Q1), (Q0 +32), which is induced from a linear
lifting, yields support point x32. Note that only certain of these monomials
are extreme when we consider the resultant in terms of all input coefficients,
in order for the respective coefficients to lie in {−1, 1}.

Therefore, we find, as the toric resultant support, the triangle with vertices
(32, 0), (0, 48) and (0, 63). Equivalently, it is delimited by the y-axis and the
lines y = −(3/2)x+ 48 and y = −(63/32)x+ 63, as shown in Figure 7.11.

Counting the points with integer coordinates inside (and on the sides) of
the triangle, we see that there are 257 such points, which is seen to be optimal
by actually computing the resultant.
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Fig. 7.11. Toric resultant support.

Table 7.1. Predicting the implicit support.

Problem
Input
Degree

Degree of
Implicit Eq.

General
# monomials

# monomials
from [EK03]

Unit Circle 2 2 6 3

Descartes Folium, Ex. 7.4.4 3 3 10 3

Fröberg-Dickenstein, Ex. 7.4.6 63 63 1057 257

Buchberger, Example 7.4.5 1,2 4 35 2

Busé, Example 7.3.4 3 5 56 4

Bilinear, Example 7.1.9 1,1 2 10 9

Example 7.4.7. The well-known bicubic surface represents a challenge for our
current implementation: x = 3 t (t−1)2+(s−1)3+3 s, y = 3 s (s−1)2+t3+3 t,
z = −3s(s2−5s+5)t3 −3(s3 +6s2−9s+1)t2+ t(6s3 +9s2−18s+3)−3s(s−
1). We computed 737129 regular triangulations (by TOPCOM) [Ram01]. For
illustration purposes, we show one of them:

{2,3,4,7,13},{3,4,5,7,13},{3,5,6,7,13},{3,6,9,13,14},
{6,9,12,13,14},{3,6,9,14,15},{6,9,12,14,15},{6,12,13,14,16},
{6,12,14,15,16},{6,12,15,16,17},{3,6,9,15,18},{6,9,12,15,18},
{6,12,15,17,18},{3,9,15,18,19},{3,6,9,18,19},{6,9,12,18,19},
{6,12,16,17,20},{6,12,17,18,20},{3,6,9,19,23},{6,9,12,19,23},
{6,12,19,22,23},{6,12,22,23,24},{6,12,23,24,25},{3,6,9,23,26},
{6,9,12,23,26},{6,12,23,25,26},{0,2,4,7,13},{3,6,7,9,13},
{6,12,18,19,22},{6,12,18,20,24},{6,7,9,12,13},{6,12,18,22,24}.

The size of the file is 383 MBytes. This underlines the fact that we should not
compute all regular triangulations but only the mixed-cell configurations.
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7.5 Algebraic solving by linear algebra

To solve well-constrained system (7.1) by the resultant method we define an
overconstrained system and apply the resultant matrix construction. For a
more comprehensive discussion the reader may refer to Chapters 2 and 3,
or [CLO98, EM99c].

One advantage of resultant-based methods is that resultant matrix M
need be computed only once, for all systems with the same supports. So this
step is thought of as being carried out off-line, while the matrix operations to
approximate all isolated roots for each coefficient specialization constitute the
online part. Numerical issues for the latter are discussed in [Emi97, EM99c].

Resultant matrices reduce system solving to certain standard operations in
computer algebra. In particular, univariate or multivariate determinants can
be computed by evaluation and interpolation techniques. However, the de-
terminant development in the monomial basis may be avoided because there
are algorithms for univariate polynomial solving as well as multivariate poly-
nomial factorization which require only the values of these polynomials at
specific points; cf. e.g. [Pan97]. All of these evaluations would exploit the
quasi-Toeplitz structure of Sylvester-type matrices [CKL89, EP02].

We present two ways of defining an overconstrained system. The first
method adds to the given system an extra polynomial, namely

f0 = u0 + u1x1 + · · ·+ unxn ∈ (K[u0, . . . , un])[x±1
1 , . . . , x

±1
n ],

thus yielding a well-studied object, the u-resultant. Coefficients u1, . . . , un may
be randomly specialized or left as indeterminates; in the latter case, solving
reduces to factorizing the u-polynomial. It is known that the u-resultant fac-
torizes into linear factors u0 + u1α1 + · · · + unαn where (α1, . . . , αn) is an
isolated root of the original system. This is an instance of Poisson’s formula.
Now, u0 is usually an indeterminate that we shall denote by x0 below for
uniformity of notation. Matrix M will describe the multiplication map for f0
in the coordinate ring of the ideal defined by the system in (7.1).

An alternative way to obtain an overconstrained system is by hiding one of
the original variables in the coefficient field and consider the system as follows
(we modify the previous notation to unify the subsequent discussion):

f0, . . . , fn ∈ (K[x0]) [x±1
1 , . . . , x

±1
n ].

M is a matrix polynomial in x0, and may not be linear.
An important issue concerns the degeneracy of the input coefficients. This

may result in the trivial vanishing of the toric resultant or of detM when
there is an infinite number of common roots (in the torus or at toric infinity)
or simply due to the matrix constructed. An infinitesimal perturbation has
been proposed [DE01a] which respects the structure of Newton polytopes and
is computed at no extra asymptotic cost, cf. Section 7.3.
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The perturbed determinant is a polynomial in the perturbation variable,
whose leading coefficient is nonzero whereas the least significant coefficient
is detM . Irrespective of which coefficients vanish, there is always a trailing
nonzero coefficient which vanishes when x0 takes its values at the system’s
isolated roots, even in the presence of positive-dimensional components. This
univariate polynomial is known as a projection operator because it projects
the roots to the x0-coordinate. Univariate polynomial solving thus yields these
coordinates. Again, the u-resultant allows us to recover all coordinates via
multivariate factoring.

A basic property of resultant matrices is that right vector multiplication
expresses evaluation of the row polynomials. Specifically, multiplying by a
column vector containing the values of column monomials q at some α ∈ (K

∗
)n

produces the values of the row polynomials

αpfip
(α).

Computationally it is preferable to have to deal with as small a matrix as
possible. To this end we partition M into four blocks Mij so that the upper
left submatrix M11 is square, independent of x0, and of maximal dimension
so that it remains well-conditioned.

If the matrix is obtained from the subdivision-based algorithm, then we
know that M11 corresponds to the integer points in the 0-mixed cells. More
precisely, the columns of M11 are indexed by those points, whereas its rows
contain the multiples of f0 with the corresponding monomials. It can be proven
that these monomials form a basis of the quotient ring defined by the ideal
of f1, . . . , fn, namely K[x±1

1 , . . . , x
±1
n ]/〈f1, . . . , fn〉. For a proof, see [Emi96,

PS96].
Once M11 is specified, let A(x0) = M22(x0) −M21(x0)M−1

11 M12(x0). To
avoid computing M−1

11 , we may use its LU (or QR) decomposition to solve
M11X =M12 and compute A =M22 −M21X.

Let E be the monomial set indexing the rows and columns of M and let
B ⊂ E index A. If (α0, α) ∈ Kn+1

is a common root with α ∈ Kn
, then

detA(α0) = 0 and, for any vector v′ = [· · ·αq · · · ], where q ranges over B,
A(α0)v′ = 0. Moreover,[

M11 M12(α0)
0 A(α0)

] [
v
v′

]
=
[

0
0

]
⇒ M11v +M12(α0)v′ = 0,

determines v once v′ has been computed. Vector [v, v′] contains the values of
every monomial in E at α.

It can be shown that E affinely spans Zn and an affinely independent
subset can be computed in polynomial time [Emi96]. Given v, v′ and these
points, we can compute the coordinates of α. If all independent points are in
B then v′ suffices for solving. To find the vector entries that will allow us to
recover the root coordinates, it is typically sufficient to search in B for pairs of
entries corresponding to q1, q2 such that q1 − q2 = (0, . . . , 0, 1, 0, . . . , 0). This
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lets us compute the i-th coordinate, if the unit appears at the i-th position.
In general, the problem of choosing the best vector entries for computing the
root coordinates is open, and different choices may lead to different accuracy.

To reduce the problem to an eigendecomposition, let r be the dimension
of A(x0), and d ≥ 1 the highest degree of x0 in any entry. We wish to find all
values of x0 at which

A(x0) = xd
0Ad + xd−1

0 Ad−1 + · · ·+ x0A1 +A0

becomes singular. These are the eigenvalues of the matrix polynomial. Fur-
thermore, for every eigenvalue λ, there is a basis of the kernel of A(λ) defined
by the right eigenvectors of the matrix polynomial associated to λ. If Ad is
nonsingular then the eigenvalues and right eigenvectors of A(x0) are the eigen-
values and right eigenvectors of monic matrix polynomial A−1

d A(x0). This is
always the case when adding an extra linear polynomial, since d = 1 and
A1 = I is the r × r identity matrix; then

A(x0) = −A1(−A−1
1 A0 − x0I).

Generally, the companion matrix of a monic matrix polynomial is a square
matrix C of dimension rd. The eigenvalues of C are precisely the eigenvalues
λ of A−1

d A(x0), whereas its right eigenvector w = [v1, . . . , vd] contains a right
eigenvector v1 of A−1

d A(x0) and vi = λi−1v1, for i = 2, . . . , d.
We now address the question of a singular Ad. The following rank bal-

ancing transformation in general improves the conditioning of Ad. If matrix
polynomial A(x0) is not identically singular for all x0, then there exists a
transformation x0 �→ (t1y + t2)/(t3y + t4) for some ti ∈ Z, that produces a
new matrix polynomial of the same degree and with nonsingular leading co-
efficient. If Ad is ill-conditioned for all linear rank balancing transformations,
then we build the matrix pencil and apply a generalized eigendecomposition
to solve C1x + C0. This returns pairs (α, β) such that matrix C1α + C0β is
singular with an associated right eigenvector.
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