
6

Algorithms and their complexities

Juan Sabia

Departamento de Matemática - Facultad de Ciencias Exactas y Naturales -
Universidad de Buenos Aires and CONICET, Argentina, jsabia@dm.uba.ar

Summary. This chapter is intended as a brief survey of the different notions and
results that arise when we try to compute the algebraic complexity of algorithms
solving polynomial equation systems. Although it is essentially self-contained, many
of the definitions, problems and results we deal with also appear in many other
chapters of this book. We start by considering algorithms which use the dense repre-
sentation of multivariate polynomials. Some results about the algebraic complexities
of the effective Nullstellensatz, of quantifier elimination processes over algebraically
closed fields and of the decomposition of algebraic varieties when considering this
model are stated. Then, it is shown that these complexities are essentially opti-
mal in the dense representation model. This is the reason why a change in the
encoding of polynomials is needed to get better upper bounds for the complexities
of new algorithms solving the already mentioned tasks. The straight-line program
representation for multivariate polynomials is defined and briefly discussed. Some
complexity results for algorithms in the straight-line program representation model
are mentioned (an effective Nullstellensatz and quantifier elimination procedures,
for instance). A description of the Newton-Hensel method to approximate roots of
a system of parametric polynomial equations is made. Finally, we mention some
new trends to avoid large complexities when trying to solve polynomial equation
systems.

6.0 Introduction and basic notation

The fundamental problem we are going to deal with, as in most other chapters
of this book, is to solve (over the field of complex numbers C) a system of
multivariate polynomial equations with coefficients in the field of rational
numbers Q algorithmically, but our particular point of view is related to the
question of whether we can predict how long our algorithms will take. Of
course, we should define what it means to solve such a system. A first possible
answer would be to decide whether there are any solutions to the given system,
and, in case there are solutions, to describe them in a ‘useful’ or at least in
an ‘easy’ way.

242 J. Sabia

Many attempts to do this are based on trying to transform our problem
into a linear algebra one. The reason for this is that we know how to solve
many linear algebra problems effectively.

The focus of our attention will be the algorithmic solutions to these prob-
lems; so, we are going to define what an algorithm is for us (perhaps a rather
inflexible definition but necessary to meet the requirements of our work).
Roughly speaking, the less time an algorithm takes to perform a task, the
better. This will lead to the definition of algebraic complexity, a kind of mea-
sure for the time an algorithm takes to perform what we want it to.

One of the problems we have when we deal with multivariate polynomials
is that the known effective ways to factorize them take a lot of time, so we
will try not to use this tool within our algorithms.

In the different sections of this chapter, we are going to state the problems
that will be taken into account and describe (or just mention, if the description
is beyond the scope of this survey) some ways of solving them.

Before we begin considering the problems, we need to fix some notation
and give some definitions:

A system of polynomial equations is a system⎧⎨⎩ f1(x1, . . . , xn) = 0
. . .

fs(x1, . . . , xn) = 0

where f1, . . . , fs are polynomials in C[X1, . . . , Xn] and the solutions considered
will be vectors (x1, . . . , xn) ∈ Cn. Whenever we want to speak about a group
of variables or a vector, we often use just a capital or lower case letter with no
index; for example in this case, we could have written C[X] or x ∈ Cn. The set
V ⊂ Cn of all the solutions of such a system will be called an algebraic variety
(or simply a variety if the context is clear). Its dimension is the minimum
number of generic hyperplanes such that their common intersection with V
is empty. For example, a point has dimension zero (a generic hyperplane does
not cut it); a line has dimension one (a generic hyperplane cuts it, but two
generic hyperplanes do not), etc. For a more precise definition of dimension
see, for example, [Sha77] or [CLO97].

From the algorithmic point of view, we deal exclusively with polynomials
with coefficients in Q but we still consider all the solutions to our systems in
Cn.

Sometimes it will be useful to take into account fields other than Q and
C. If k is a field, k will denote an algebraic closure of k.

6.1 Statement of the problems

In this section we are going to state some of the questions we usually want
to answer when dealing with systems of polynomial equations. Some of these

6 Algebraic Complexity 243

problems are also mentioned or studied in other chapters of this book, but we
present them here for the sake of this chapter being self-contained.

6.1.1 Effective Hilbert’s Nullstellensatz

Let X = {X1, . . . , Xn} be indeterminates over Q. Given s polynomials
f1, . . . , fs ∈ Q[X], if we want to solve the system of polynomial equations⎧⎨⎩ f1(x1, . . . , xn) = 0

. . .
fs(x1, . . . , xn) = 0

the very first question we would like to answer is whether there exists any
point (x1, . . . , xn) ∈ Cn satisfying this system (that is to say, if the equations
f1 = 0, . . . , fs = 0 share a common solution in Cn).

When all the polynomials f1, . . . , fs have degrees equal to 1, the system
we are dealing with is a linear system and there is a simple computation of
ranks of matrices involving the coefficients of the polynomials which answers
our question:

Suppose our linear system is given by A.xt = B (with A ∈ Qs×n and
B ∈ Qs×1). Then

∃x ∈ Cn / A.xt = B ⇐⇒ rank(A) = rank(A|B)

(where (A|B) denotes the matrix we obtain by adding the column B to the
matrix A).

The first step towards a generalization of this result when we deal with
polynomials of any degree (generalization in the sense that it relates the ex-
istence of solutions to some computations involving the coefficients of the
polynomials considered) is the following well-known theorem:

Theorem 6.1.1. (Hilbert’s Nullstellensatz) Let f1, . . . , fs ∈ Q[X1, . . . , Xn].
Then the following statements are equivalent:
i) {x ∈ Cn / f1(x) = · · · = fs(x) = 0} = ∅.
ii) There exist polynomials g1, . . . , gs ∈ Q[X1, . . . , Xn] such that 1 =

∑
1≤i≤s

gi.fi.

(See Chapter 4 for other versions of this theorem.)
A proof of this theorem can be found in almost any basic textbook on al-

gebraic geometry (see for example [Har83], [Kun85] or [CLO97]). This result
was already known by Kronecker and it essentially shows how a geometric
problem (Is the variety defined as the common zeroes of a fixed set of polyno-
mials empty?) is equivalent to an algebraic one (Is 1 an element of the ideal
(f1, . . . , fs)?).

We will call an algorithm an effective Hilbert’s Nullstellensatz, if given
as input the polynomials f1, . . . , fs, the algorithm computes polynomials
g1, . . . , gs (in case they exist) such that

∑
1≤i≤s

gi.fi = 1.

Later on, we will mention some effective Hilbert’s Nullstellensätze.

244 J. Sabia

6.1.2 Effective equidimensional decomposition

Supposing we already know that a particular system of polynomial equations
has solutions, we may need to answer some questions about the geometry of
the algebraic variety they define in Cn: Does it consist only of finitely many
points? Is there a whole curve of solutions? Are there isolated solutions?, etc.

All these questions can be answered by means of geometric decomposi-
tions of the algebraic variety defined by the original system of polynomials.
These decompositions we are going to define are intimately bound up with
the primary decomposition of ideals considered in Chapter 2 and Chapter 5
but they do not coincide because our approach is exclusively geometric while
these others are purely algebraic.

Definition 6.1.2. An algebraic variety C ⊂ Cn is called irreducible if it
satisfies

C = C1 ∪ C2 where C1 and C2 are algebraic varieties ⇒ C = C1 or C = C2.

The following is a classical result from algebraic geometry. It states that
the affine space Cn is a Noetherian topological space when considering the
Zariski topology (that is, the topology in which the algebraic varieties are the
closed sets) and its proof can be found, for example, in [Sha77] or [CLO97].

Proposition 6.1.3. (Irreducible decomposition) Let V ⊂ Cn be an algebraic
variety. Then, there exist unique irreducible varieties C1, . . . , Cr such that
Ci �⊂ Cj if i �= j and

V =
⋃

1≤i≤r

Ci.

From our point of view and our definitions, the irreducible decomposition is
not algorithmically achievable. If this were so, just by considering the case n =
1, we would be able to find all the roots of any univariate rational polynomial
(note that the irreducible decomposition of {x ∈ C /

∏
1≤i≤d(x− αi) = 0} is

exactly
⋃

1≤i≤d{αi}). This is the reason why we are going to consider a less
refined decomposition of a variety.

Let V =
⋃

1≤i≤r Ci be the irreducible decomposition of the variety V and,
for every 0 ≤ j ≤ n, consider the union of all the irreducible components of
V of dimension j

Vj :=
⋃

{i / 1≤i≤r
and dim Ci=j}

Ci.

It is obvious that V =
⋃

0≤j≤n Vj where, for every 0 ≤ j ≤ n, either Vj = ∅ or
dimVj = j. This unique decomposition is called the irredundant equidimen-
sional decomposition (or equidimensional decomposition for short) of V .

Note that the information given by this decomposition still allows us to
answer all the questions we asked above. For example, a non-empty variety

6 Algebraic Complexity 245

V consists only of finitely many points if and only if V0 �= ∅ and Vj = ∅ for
every 1 ≤ j ≤ n.

The equidimensional decomposition has the following property, nice from
the algorithmic point of view:

Proposition 6.1.4. Let f1, . . . , fs ∈ Q[X1, . . . , Xn] be polynomials and let
V ⊂ Cn be the algebraic variety of their common zeroes. If Vj is one of the
components appearing in the irredundant equidimensional decomposition of V ,
then there exist polynomials in Q[X1, . . . , Xn] defining Vj.

The core of this result is that there are rational polynomials defining Vj , so
we have a chance to compute the irredundant equidimensional decomposition
algorithmically using only rational coefficients.

We will call an algorithm an effective equidimensional decomposition algo-
rithm if given an algebraic variety V ⊂ Cn defined by rational polynomials,
the algorithm describes the varieties involved in its equidimensional decom-
position (i.e. its equidimensional components) as separate varieties.

A final comment has to be made about the irreducible decomposition of
a variety defined by rational polynomials: we could take into account only
varieties defined by rational polynomials as closed sets to define the rational
Zariski topology in Cn. If this is the case, the irreducible components of a vari-
ety will be still definable by rational polynomials. For example, in the case of
the variety defined by a squarefree polynomial, its rational decomposition will
essentially coincide with the factorization of the considered polynomial, but as
we have stated before, we do not want to deal with polynomial factorization,
and this is why we are not going to consider this problem. (For an algorithm
yielding this irreducible decomposition numerically, see Chapter 8.)

6.1.3 Effective quantifier elimination

Many interesting geometric and algebraic problems can be formulated as first
order statements over algebraically closed fields and a well-known result from
logic states that any first order formula in the language of algebraically closed
fields is equivalent to another formula without quantifiers (see [CK90] for
details). This is the reason why, in the last decades, special efforts have been
made to find efficient algorithms to eliminate quantifiers.

For the sake of simplicity, we will state precisely what elimination of quan-
tifiers means only in a very particular case:

Theorem 6.1.5. Let X1, . . . , Xn, Y1, . . . , Ym be indeterminates over Q and
let f1, . . . , fs, g1, . . . , gt ∈ Q[X1, . . . , Xn, Y1, . . . , Ym] be polynomials. Let

V := {x ∈ Cn / ∃y ∈ Cm : f1(x, y) = 0 ∧ . . . ∧ fs(x, y) = 0 ∧

∧ g1(x, y) �= 0 ∧ . . . ∧ gt(x, y) �= 0}.

246 J. Sabia

Then, there exists a quantifier free formula ϕ involving only polynomials in
Q[X1, . . . , Xn], equalities, inequalities and the symbols ∧ and ∨ such that

V = {x ∈ Cn / ϕ(x)}.
Let us give some simple examples to make this statement clearer.

Example 6.1.6. Suppose we want to describe the set of all the polynomials of
degree bounded by d in one variable that have at least a root in C. This set is

V := {(x0, x1, . . . , xd) ∈ Cd+1 / ∃ y ∈ C : xdy
d + xd−1y

d−1 + · · ·+ x0 = 0}.
Evidently, the Fundamental Theorem of Algebra states that a quantifier-free
way of defining V is

V = {(x0, x1, . . . , xd) ∈ Cd+1 / x0 = 0 ∨ x1 �= 0 ∨ x2 �= 0 ∨ · · · ∨ xd �= 0}.
Example 6.1.7. A very well-known example of a quantifier elimination proce-
dure from linear algebra is the use of the determinant. The set

V := {(xij) ∈ Cn×n / ∃(y1, . . . , yn, y′1, . . . , y′n) ∈ C2n :

(y1, . . . , yn) �= (y′1, . . . , y
′
n) ∧

⎧⎪⎨⎪⎩
x11y1 + · · ·+ x1nyn = x11y

′
1 + · · ·+ x1ny

′
n

. . .

xn1y1 + · · ·+ xnnyn = xn1y
′
1 + · · ·+ xnny

′
n

}

is exactly the subset of Cn×n defined by the determinant:

V = {(xij) ∈ Cn×n / det(xij) = 0}.
Example 6.1.8. The classical resultant with respect to a single variable Y be-
tween two polynomials f1, f2 ∈ Q[X1, . . . , Xn][Y] monic in Y and of degree r
and s respectively is another example of eliminating quantifiers (for the defi-
nition and basic properties of the classic resultant between two polynomials,
some of which will be used later, see, for example, [CLO97], [Mig92], [vdW49]
or [Wal62]):

{x ∈ Cn / ∃y ∈ C : f1(x, y) = 0 ∧ f2(x, y) = 0} =
= {x ∈ Cn / ResY (f1(x, Y), f2(x, Y)) = 0}.

For a more general definition of resultants as eliminating polynomials see
Chapter 2 and Chapter 1.

As before, we will say that we have an efficient quantifier elimination
procedure if we have an algorithm that, from a formula of the type

∃y ∈ Cm : f1(x1, . . . , xn, y) = 0 ∧ . . . ∧ fs(x1, . . . , xn, y) = 0 ∧
∧ g1(x1, . . . , xn, y) �= 0 ∧ . . . ∧ gt(x1, . . . , xn, y) �= 0,

produces a quantifier-free formula ϕ defining the same subset of Cn.

6 Algebraic Complexity 247

6.2 Algorithms and complexity

When we speak about efficiency related to polynomial equation solving, we
mean the existence of algorithms performing different tasks. But what do we
call an algorithm?

The idea of algorithm we deal with is the following: given some data in
a certain way (numbers, formulae, etc), an algorithm will be a sequential list
of fixed operations or comparisons that ends in some logical or mathematical
‘object’ we would like to compute. For example, suppose you want an algo-
rithm to solve the equation ax = b with coefficients in Q and that you can
deal with rational numbers algorithmically (that is to say, comparisons and
operations between rational numbers can be performed somehow). A possible
algorithm to do this would be the one shown in Figure 6.1.

a b

No

No

a = 0 ?

b = 0 ?
x = b/a

x = b/a

Yes

Yes

xEvery
is a solution

There is no
solution

The only solution
is

Fig. 6.1. A possible algorithm to solve the equation ax = b

Speaking a little more formally, our algorithms are directed acyclic graphs.
Each node of a graph represents an element of Q, an operation or a comparison
between two elements of Q. Each ‘incoming’ arrow denotes that the previously
computed element or condition is needed to perform the following operation.
Of course, as any graph, our algorithms have only finitely many nodes. A
further comment has to be said about the graphs being ‘acyclic’. As we want
to predict how long our algorithms will take to compute some object, we will
handle a very fixed or restricted family of algorithms: no ‘WHILE’ instruction
is admitted in our algorithms. We can replace each ‘WHILE’ instruction by a
‘FOR’, provided we know beforehand how many times we have to repeat the
procedure involved. So, an instruction of the kind ‘WHILE x > ε DO...’ is not
acceptable in our algorithms, unless it can be translated into one of the type
‘FOR i = 1 TO n DO...’ and therefore ‘disentangled’ into a known number of
sequential operations to avoid cycles in our graph.

The idea of complexity of an algorithm is related to the time it would take
the algorithm to perform the desired task. The more ‘complicated’ our graph
is, the longer the time it will take. So, a first measure of complexity to be
taken into account may be the number of nodes in the graph. This will be the

248 J. Sabia

notion of complexity we are going to use throughout these notes, also known
as sequential complexity.

Needless to say, this measure of complexity is not very accurate. For ex-
ample, it is much simpler for a machine to perform the sum 1 + 1 than to
add two huge numbers but our measure of complexity does not take this into
account. Moreover, it is generally quicker to compute a sum than a product.
These considerations give place to a number of different kinds of complexities
(non-scalar complexity, bit complexity, etc) which we will not take into ac-
count. But, of course, if an algorithm has a very high complexity in our terms,
then it will be useless to try to run it on any computer.

There are other possible variables to be taken into account when consider-
ing the feasibility of an algorithm: for instance, the space in memory needed
to perform it or whether it is well-parallelizable (that is to say, roughly speak-
ing, whether it can be run fast enough provided we can use simultaneously
a considerable number of processors at a time, or more precisely, that the
depth of the algorithm is polynomial in the log of its sequential complexity).
However, our approach to the subject is intended to be basic and we are not
going to consider these aspects in this chapter either.

To run an algorithm, we need to encode some given data: for the moment,
we will refer to the number of nodes we need to encode the input data our
algorithm can deal with as the size of the input. This size generally depends on
some quantities such as the number of variables and the number and degrees
of polynomials involved. We will say an algorithm is polynomial when its
complexity is bounded by a polynomial function in the size of the input.

We will also use the usual O notation to express orders of complexities:
given two functions f : N → N and g : N → N, we say that f = O(g) if and
only if there exists k ∈ N such that f(x) ≤ kg(x) for all x ∈ N.

6.3 Dense encoding and algorithms

As we are trying to solve algorithmic problems involving polynomials, we
need to encode them somehow. The first (and most naive) way of encoding
a polynomial is to copy the usual way a polynomial is given: as a sum of
monomials. To do this in a way a computer can understand it, we need to
know a bound for the degree of the polynomial and the number of variables
involved in advance. Then, we should order somehow all the monomials of
degree less than or equal to the known bound for the degree in the number
of variables involved. Once this is done, we can encode the polynomial as the
vector of its coefficients in the preset order.

For example, let f(X,Y) = X2− 2XY + Y 2 + 3 be a polynomial we want
to encode. As we know deg(f) = 2, we only have to store the coefficients of the
monomials up to this degree. We previously fix an order for all the monomials
up to degree 2 in two variables, for example (1, X, Y,X2, XY, Y 2) and, using
this order, the polynomial f will be encoded as (3, 0, 0, 1,−2, 1).

6 Algebraic Complexity 249

This way of encoding polynomials is called the dense encoding.
Let f be a polynomial of degree bounded by d (d ≥ 2) in n variables and

let us consider how many coefficients it has, that is to say how many numbers
will be needed to encode it (i.e. its size when considered as an input), provided
we are given a previous monomial ordering. According to our definition, we
have to compute how many monomials in n variables of degree bounded by d
there are, and the exact number is

(
d+n

d

)
. If we consider that we are working

with a fixed number of variables n but that the degrees can change, taking
d ≥ 2, we have that (

d+ n
d

)
=

∏
1≤i≤n

d+ i
i

≤ 2dn.

Furthermore, asymptotically in d we have that these two quantities are of
the same order because

dn∏
1≤i≤n

d+i
i

≤ n!

and this is why we say that a polynomial of degree d ≥ 2 in n variables has
O(dn) coefficients.

6.3.1 Hilbert’s Nullstellensatz and dense encoding

As we have seen in Section 6.1.1, an effective Hilbert’s Nullstellensatz is any
algorithm that, given as input the polynomials f1, . . . , fs ∈ Q[X1, . . . , Xn],
decides whether there exist polynomials g1, . . . , gs ∈ Q[X1, . . . , Xn] such that∑

1≤i≤s

gi.fi = 1 (6.1)

and computes a particular solution (g1, . . . , gs) to this identity.
The first step may be to find a bound for the possible degrees of some

polynomial solutions g1, . . . , gs to Equation (6.1) as a function of s, n and a
bound d for the degrees of the polynomials f1, . . . , fs. If we are able to do
so, our problem can be easily transformed into a linear algebra problem: we
could write new variables for the coefficients of the polynomials g1, . . . , gs
up to the degree we found as a bound and Equation (6.1) would turn into
a linear system by identifying the coefficients on the left with those on the
right. That is why some authors consider the following problem an effective
Hilbert’s Nullstellensatz:

Show explicitly a function ϕ : N3 → N satisfying the following property:
Let f1, . . . , fs ∈ Q[X1, . . . , Xn] such that deg(fi) ≤ d (1 ≤ i ≤ s). If 1 ∈

(f1, . . . , fs), there exist polynomials g1, . . . , gs ∈ Q[X1, . . . , Xn] with deg(gi) ≤
ϕ(n, s, d) (1 ≤ i ≤ s) such that

∑
1≤i≤s gi.fi = 1.

In the case the polynomials we obtain by homogenizing f1, . . . , fs have no
common zeros at infinity, the Fundamental Theorem of Elimination Theory

250 J. Sabia

(see [Laz77] and Chapter 1, for example) shows that ϕ(n, s, d) ≤ n(d− 1)+1,
but in the general case this bound does not work.

Just as an example, we are going to show a very elementary result of this
kind, where we obtain bounds similar to the ones obtained by G. Hermann
[Her26], whose proof was corrected in [MW83].

Theorem 6.3.1. Let f1, . . . , fs ∈ Q[X1, . . . , Xn] such that deg(fi) ≤ d (1 ≤
i ≤ s). If 1 ∈ (f1, . . . , fs), there exist polynomials g1, . . . , gs ∈ Q[X1, . . . , Xn]
with deg(gi) ≤ (3d)2

n−1
(1 ≤ i ≤ s) such that

∑
1≤i≤s gi.fi = 1.

Proof. We shall prove this theorem using induction on n.
For n = 1, let f1, . . . , fs ∈ Q[X] and suppose deg f1 = d ≥ deg fi (2 ≤

i ≤ s). If 1 =
∑

1≤i≤s hi.fi, applying the division algorithm by f1 in Q[X], we
have

hi = f1.qi + ri (2 ≤ i ≤ s).
Then we obtain, rearranging the sum, that

1 = f1.(h1 +
∑

2≤i≤s

qi.fi) +
∑

2≤i≤s

fi.ri.

As deg ri ≤ d−1 (2 ≤ i ≤ s), we have that deg(f1.(h1+
∑

2≤i≤s qi.fi)) ≤ 2d−1.
Therefore, calling g1 = h1 +

∑
2≤i≤s qi.fi and gi = ri (2 ≤ i ≤ s) we get that

1 =
∑

1≤i≤s gi.fi and deg gi ≤ d− 1 (1 ≤ i ≤ s).
Suppose now the result is true for n. Let f1, . . . , fs ∈ Q[X1, . . . , Xn+1] be

such that deg(fi) ≤ deg(f1) = d (2 ≤ i ≤ s).
We want to deal with polynomials which are monic with respect to a vari-

able. To do so, consider the following change of variables (where λ2, . . . , λn are
new parameters): X1 = Y1, X2 = Y2 +λ2Y1, . . . , Xn = Yn +λnY1. The polyno-
mials we obtain when applying this change of variables have maximum degree
in Y1 and their leading coefficients in this variable are the homogeneous parts
of maximum degree of the original polynomials evaluated in (1, λ2, . . . , λn).
Choosing a suitable n − 1-tuple such that these homogeneous parts do not
vanish, we get the desired linear change of variables.

So, without loss of generality, we can suppose every polynomial fi is monic
in X1. Introduce new variables U1, . . . , Us, V1, . . . , Vs and consider the poly-
nomials

F :=
∑

1≤i≤s

Uifi and G :=
∑

1≤i≤s

Vifi in Q[U, V][X1, . . . , Xn+1].

The resultant of these polynomials with respect to the variable X1,

ResX1(F,G) ∈ Q[U, V][X2, . . . , Xn+1]

is bi-homogeneous in the groups of variables (U, V) of bi-degree (d, d). We are
going to prove that, if we write

6 Algebraic Complexity 251

ResX1(F,G) =
∑
α,β

hα,β(X2, . . . , Xn+1)UαV β ,

f1, . . . , fs have a common root in Cn+1 if and only if (hα,β)|α|=d,|β|=d have a
common root in Cn.

If (x1, . . . , xn+1) ∈ Cn+1 is a common root of f1, . . . , fs, then

ResX1(F,G)(x2, . . . , xn+1)(U, V) = 0

and therefore, (hα,β)|α|=d,|β|=d have a common root in Cn.
On the other hand, if (x2, . . . , xn+1) is a common root of (hα,β)|α|=d,|β|=d,

consider the polynomialsF andG in Q(U1, . . . , Us, V1, . . . , Vs)[X1, X2, . . . , Xn+1].
Then, F (X1, x2, . . . , xn+1) and G(X1, x2, . . . , xn+1) share a common root in
Q(U, V). But, as the roots of F (X1, x2, . . . , xn+1) lie in Q(U) and the roots of
G(X1, x2, . . . , xn+1) lie in Q(V), the common root must be in C. That is, there
exists x1 ∈ C such that F (x1, . . . , xn+1) = 0 and G(x1, . . . , xn+1) = 0. As the
variables U, V are algebraically independent, we conclude that (x1, . . . , xn+1)
is a common root of the polynomials f1, . . . , fs.

Then we have reduced the number of variables by one. Note that, because
of Hilbert’s Nullstellensatz, we have shown that

1 ∈ (f1, . . . , fs) ⇐⇒ 1 ∈ (hα,β)|α|=d,|β|=d.

ResX1(F,G) can be written as a linear combination of F and G. Taking
into account the degrees of the polynomials involved, we can state that there
exist polynomials R and S in Q[U, V][X] of degree bounded by 2d2 in the
variables X such that ResX1(F,G) = RF + SG. Rewriting this identity into
powers of U and V , we have that

hα,β =
∑

1≤i≤s

p
(α,β)
i fi

where the polynomials p(α,β)
i have degrees bounded by 2d2. Using the in-

ductive hypothesis for the polynomials (hα,β)|α|=d,|β|=d whose degrees are
bounded by 2d2, the theorem follows. �

Evidently, this kind of bound is not good for algorithmic purposes. There
are much better bounds for the degrees of the polynomials appearing in the
Nullstellensatz but the proofs are beyond the scope of this survey. Brow-
nawell, in [Bro87], obtained the first single exponential bound ϕ(d, n, s) =
3min{n, s}ndmin{n,s} in the characteristic zero case. Then, in [Kol88] and
[FG90] the most precise bounds known up to now for any characteristic were
found: ϕ(d, n, s) = (max{3, d})n. In [SS95] a better bound for the particular
case when d = 2, namely ϕ(2, n, s) = n2n+2, was shown.

More precise bounds involving other parameters than d, n and s were
obtained in [Som97], [KSS97] and [GHM+98] (see Section 6.6.2).

252 J. Sabia

Let us make a final comment on the complexity of an algorithm that, using
the dense encoding of polynomials, decides whether the variety they define is
empty or not and, if it is empty, gives as output a linear combination of the
input polynomials equal to 1.

If the input polynomials f1, . . . , fs have degrees bounded by d and the
bound for the degrees of the polynomials involved in the linear combination
given by the Nullstellensatz is ϕ(d, n, s), then we only need to solve a system of
O ((ϕ(d, n, s) + d)n) linear equations in O(sϕ(d, n, s)n) variables (or to prove
that this system has no solution). The complexity of doing this, using the
techniques in [Ber84] and [Mul87], is of order O(s4.(ϕ(d, n, s) + d)4n).

Therefore, using the best Effective Nullstellensäzte known up to now, that
essentially state ϕ(d, n, s) = dn, the complexity of any algorithm using dense
encoding will be at least of order O(sdn2

) (see Proposition 6.3.4 below).

6.3.2 Quantifier elimination and dense encoding

Suppose now we are given s + t polynomials in Q[X1, . . . , Xn][Y1, . . . , Ym] of
degrees bounded by d and we want to give algorithmically a quantifier-free
formula equivalent to

∃y ∈ Cm : f1(x, y) = 0 ∧ · · · ∧ fs(x, y) = 0 ∧ g1(x, y) �= 0 ∧ · · · ∧ gt(x, y) �= 0.
(6.2)

Rabinowicz’s trick allows us to consider only equalities by means of a new
indeterminate Z and therefore, the previous formula is equivalent to

∃y ∈ Cm ∃z ∈ C : f1(x, y) = 0∧ · · · ∧ fs(x, y) = 0∧ (1− z. ∏
1≤i≤t

gi(x, y)
)

= 0.

For a fixed x ∈ Cn, using Hilbert’s Nullstellensatz, this last formula is
equivalent to

∃/p1, . . . , ps, ps+1 ∈ C[Y1, . . . , Ym, Z] / 1 =
∑

1≤i≤s

pifi + ps+1

(
1− Z.

∏
1≤i≤t

gi
)
.

Any effective Hilbert’s Nullstellensatz providing upper bounds for the de-
grees of the polynomials pi involved allows us to translate this last formula
into a quantifier-free formula in the coefficients of the polynomials fi and gj
by means of linear algebra. Suppose the linear system involved is A.Xt = B
where A ∈ C�×k and B ∈ C�. The non-existence of solutions is equivalent
to the condition rank(A) �= rank(A|B). Using that the rank of a matrix can
be computed by means of the determinants of its minors, this last condition
can be translated into a (very long) formula involving ∧, ∨, equalities and
inequalities to zero. This formula works for every x ∈ Cn and therefore, this
formula is equivalent to (6.2).

6 Algebraic Complexity 253

It is evident that the better the effective Nullstellensatz we are using, the
smaller the complexity of this kind of algorithm will be, provided we compute
the rank of the matrices involved in a smart way (for example, using the
algorithm in [Mul87]).

Given a first order prenex formula ϕ (‘prenex’ meaning that there are sev-
eral blocks of existential and universal quantifiers placed at the beginning of
the formula) with coefficients over an algebraically closed field, let |ϕ| be its
length, i.e. the number of symbols needed to encode ϕ, let n be the number
of indeterminates involved, let D be one plus the sum of the degrees of the
polynomials that appear in ϕ and let r be the number of blocks of quantifiers.
Heintz and Wüthrich (see [Hei83] and [HW75]) exhibited elimination algo-
rithms for algebraically closed fields of given characteristic with complexity
bounded by |ϕ|DnO(n)

. In fact, in the 1940s, Tarski already knew the exis-
tence of elimination algorithms but he did not describe them explicitly (see
[Tar51]). Later, using the fundamental techniques described in [CG83] and
[Hei83], Chistov and Grigor’ev considered the problem for prenex formulae
and obtained in [CG84] and [Gri87] more precise complexity bounds of or-
der |ϕ|DnO(r)

. However, these bounds depend on arithmetic properties of the
base field involved because polynomial factorization algorithms are used as
subalgorithms. None of the algorithms mentioned before are efficiently well-
parallelizable. Finally, in [FGM90], a well-parallelizable elimination algorithm
within the same sequential complexity bounds obtained in [CG84] and [Gri87]
is constructed combining the methods in [Hei83] with some effective versions
of Hilbert’s Nullstellensatz (see Section 6.3.1). Moreover, the complexity of
this algorithm does not depend on particular properties of the base field k.
Later, the same result was obtained in [Ier89]. In the context of quantifier
elimination, it is also worth mentioning the work of Renegar (see [Ren92]) on
elimination over real closed fields since the bounds obtained there are very
sharp and imply the bounds for elimination over complex numbers.

6.3.3 Equidimensional decomposition and dense encoding

Different algorithms describing decompositions of an algebraic variety V have
been given. Chistov and Grigor’ev (see [CG83]) exhibit an algorithm for the
computation of the irreducible decomposition provided an algorithm that fac-
torizes multivariate polynomials with coefficients in the base field is given.
Giusti and Heintz (see [GH91]) present an algorithm for the equidimensional
decomposition of algebraic varieties which is well-parallelizable. Although we
do not include the proof of this last result here, we can state their main
theorem and the complexity obtained:

Theorem 6.3.2. Let f1, . . . , fs be polynomials in Q[X1, . . . , Xn] of degree
bounded by d and let V be the variety they define. There exists an algorithm
of complexity s5dO(n2) which computes, for every 0 ≤ i ≤ n, dO(n2) polynomi-

254 J. Sabia

als of degree bounded by dn defining the equidimensional component of V of
dimension i.

A more recent algorithm to decompose an algebraic variety using Bézoutian
matrices can be found in [EM99a]. However, the decomposition obtained there
may not be minimal (embedded components may appear) and the algorithm
is probabilistic (see Section 6.6.1).

6.3.4 A lower bound

In this section, we are going to show that the better bounds already obtained
(and mentioned before) for the efficient Hilbert’s Nullstellensatz are of the
best possible order.

To do so, we are going to state a very well-known example by Masser and
Philippon (see [Bro87]) that gives a very high lower bound for the degrees of
the polynomials appearing in the Nullstellensatz:

Example 6.3.3. Take the following polynomials in Q[X1, . . . , Xn]:

f1 = Xd
1 , f2 = X1 −Xd

2 , . . . , fn−1 = Xn−2 −Xd
n−1, fn = 1−Xn−1X

d−1
n .

If g1, . . . , gn ∈ Q[X1, . . . , Xn] are polynomials such that 1 =
∑

1≤i≤n gifi,
consider a new variable T and evaluate the polynomials in the following vector
of elements in Q(T):

(T (d−1)dn−2
, . . . , T d−1, 1/T).

Note that, under such evaluation, all the polynomials fi vanish for 2 ≤ i ≤ n
and so we have that

1 = g1
(
T (d−1)dn−2

, . . . , T d−1, 1/T
)
T (d−1)dn−1

.

This identity implies that degXn
(g1) ≥ (d − 1)dn−1 and therefore deg g1 ≥

(d− 1)dn−1.

This simple example shows that, with the notation above, a lower bound
for the degrees of the polynomials gi appearing in the expression 1 =∑

1≤i≤s gi.fi is dO(n), and therefore we have

Proposition 6.3.4. Any general algorithm that, from an input of s polyno-
mials f1, . . . , fs ∈ Q[X1, . . . , Xn] of degrees bounded by d, computes (provided
they exist) polynomials g1, . . . , gs ∈ Q[X1, . . . , Xn] such that 1 =

∑
1≤i≤s gi.fi

and encodes them in dense form must have complexity of order at least O(dn2
).

Moreover, in [FGM90], it is shown that, from the point of view of overall
complexity, the complexities they attain for the quantifier elimination algo-
rithm are optimal when using dense encoding. In fact, they prove the following

6 Algebraic Complexity 255

Theorem 6.3.5. There exists a sequence of first order formulae (containing
quantifiers and two free variables) ϕk (k ∈ N) over an algebraically closed field
with the following properties:

• |ϕk| = O(k)
• For each quantifier free formula θ equivalent to ϕk involving the polyno-

mials F1, . . . , Fs, there exists i, 1 ≤ i ≤ s, such that degFi ≥ 22ck

, where
c > 0 is a suitable constant.

Note that this theorem states lower bounds for the degrees of the poly-
nomials appearing in the output formula, and the greater the degrees, the
greater the number of nodes needed to encode them.

6.4 Straight-line Program encoding for polynomials

6.4.1 Basic definitions and examples

The comments in Section 6.3.4 show us that it is impossible to obtain more
efficient general algorithms when dealing with dense encoding of polynomials.
There are at least two ways of avoiding this problem: the first one is to change
the form the polynomials are encoded (that is to say, to try to find a shorter
way for encoding polynomials) while the second one is to design non-general
algorithms which can only solve special problems but within a lower com-
plexity. We will now discuss the first of these: changing the way we encode
polynomials.

One attempt that has been made to change the representation of poly-
nomials is the so-called ‘sparse’ encoding, which consists in specifying which
monomials of a given polynomial have non-zero coefficients and which are
these coefficients. Suppose a polynomial P has only a few monomials with
respect to its degree. The sparse encoding will consist of a number of vectors
which specify the (non-zero) coefficient of every monomial appearing in P . For
example, if P = 2X15Y 4 + 2X7Y 3 − 3X2 + 1, it can be encoded by a vector
of four three-tuples, one for each of the monomials appearing in P . In each
three-tuple, the first coefficient would stand for the degree of the monomial
in X, the second one for the degree of the monomial in Y and the third one
would be the coefficient of the monomial, that is, P would be encoded in the
following way

P := ((15, 4, 2); (7, 3, 2); (2, 0,−3); (0, 0, 1))

instead of using a vector of
(
21
2

)
= 210 coordinates.

This way of encoding polynomials has proved to be efficient when dealing
with particular families of polynomials (see, for example, Chapter 7 and Chap-
ter 3) and there is a lot of theory and many algorithms that use the sparse
encoding. For a complete background of this theory (including sparse resul-
tants, Newton polytopes, toric varieties and Bernstein theorem, among other

256 J. Sabia

interesting and very useful notions) we suggest the reader refer to [CLO98],
[GKZ94] and [Ful93].

However, it is not clear whether it is worth it to use this sparse encoding in
a general algorithm: the output polynomials may have too many monomials.
Moreover, the sparse encoding does not behave well under linear changes of
coordinates in the sense that a ‘short’ polynomial in the sparse form can
change into a very ‘long’ one by means of a linear change of variables: note
that

(X + Y)100 =
∑

0≤i≤100

(
100
i

)
XiY 100−i

(that is, a single monomial may turn into a polynomial with many monomials
under a linear change of variables).

An alternative way to encode polynomials (the one we are going to study
here) is based on the following idea:

Let P be the polynomial P := (X + Y)100 − 1. Why can we define this
polynomial so easily (that is to say, using a small number of symbols) but it
takes so much space to encode it for a machine (in both the sparse and the
dense encoding)?

The answer perhaps is that we are used to thinking of a polynomial as
a ‘formal expression’ rather than a function that can be evaluated. But, as
far as fields of characteristic zero are concerned, polynomial functions and
polynomials can be considered as the same objects. Therefore, if we define a
polynomial function by defining its exact value at every point (that is to say,
by means of describing how to evaluate it), we will be defining a polynomial.
In the previous example, the polynomial P would be the only polynomial in
Q[X,Y] such that, to evaluate it at a pair (x, y), you have to compute the
sum of x and y to the 100-th power and subtract 1 from the result. This way
of encoding a polynomial will be called a straight-line program. Let us put
these ideas more precisely:

Definition 6.4.1. Let X1, . . . , Xn be indeterminates over Q and let R ∈ N.
An element β := (Q1, . . . , QR) ∈ Q(X1, . . . , Xn)R is a straight-line pro-
gram (slp for short) if each Qρ satisfies one of the following two conditions:

• Qρ ∈ Q ∪ {X1, . . . , Xn} or
• ∃ρ1, ρ2 < ρ and ∗ ∈ {+,−, ·,÷} such that Qρ = Qρ1 ∗Qρ2 .

We say β is a division-free slp if Qρ = Qρ1 ÷Qρ2 ⇒ Qρ2 ∈ Q− {0}.
From now on, we are only going to deal with division-free slp’s. Note

that, in this case, each element Qρ is a polynomial in Q[X1, . . . , Xn]. If F ∈
{Qρ / 1 ≤ ρ ≤ R}, we say that β computes or calculates F .

There are several measures of complexity that can be taken into account
when considering slp’s. For example:

• The total length of β (denoted by L(β)) is the quantity of operations
performed during the slp β (more precisely, it is the number of coordinates
Qρ defined as the result of an operation between two previous coordinates).

6 Algebraic Complexity 257

• The additive length of β (L±(β)) is the quantity of sums and subtractions
performed during the slp.

• The non-scalar length of β (LQ(β)) is the number of products between two
non-rational elements performed during the slp.

Given any polynomial F ∈ Q[X1, . . . , Xn] we will define its total length
(also called total complexity) as

L(F) := min{L(β) / β is an slp computing F}.
We can respectively define L±(F) and LQ(F).

Exercise 6.4.2. Prove that, for any F ∈ Q[X1, . . . , Xn], L(F) = O((LQ(F))2).

From now on, unless it expressly stated, we will only consider the total
length of an slp of a polynomial and, for the sake of shortness, we will simply
call it its length.

As an example, we are going to show an slp that calculates the polynomial
F (X) = 1+X+X2 +X3 + · · ·+X2j−1 efficiently. Of course, we can compute
every power of X and then add them up, but it would yield an slp of length
2j+1 − 3. A better slp computing F , based on the binary expansion of any
positive integer up to 2j − 1 is the following one :

β :=
(
1, X,X2, X4, . . . , X2j−1

, 1 +X, 1 +X2, 1 +X4, . . . , 1 +X2j−1
,

(1 +X)(1 +X2), (1 +X)(1 +X2)(1 +X4), . . . ,
∏

0≤i≤j−1

(1 +X2i

)
)

and L(β) = 3j − 2.
Another well-known example of slp encoding a polynomial is Horner’s rule

for univariate polynomials:

a0+a1X+a2X2+· · ·+adX
d = (a0+X(a1+X(a2+X(. . . (ad−1+adX) . . .))).

The length of this slp is 2d and it involves d products and d sums. It
can be proved that the number of sums and the number of products involved
in any slp computing this polynomial are bounded by d when the elements
X, a0, . . . , ad are algebraically independent (see, for example, [BCS97]).

Exercise 6.4.3. Let P ∈ Q[X,Y] be a polynomial whose sparse encoding is
P = ((m1, n1, c1), . . . , (ms, ns, cs)). Find a bound for L(P).

Exercise 6.4.4. Find an infinite family of polynomials in Q[X,Y] such that
the number of nodes needed to encode each of them into the sparse form is
(much) greater than its length.

Exercise 6.4.5. Given a generic polynomial of degree d in Q[X,Y], find an
upper bound for its length.

258 J. Sabia

Exercise 6.4.6. Try to generalize the three previous exercises to the case of
n-variate polynomials.

A last comment has to be made about the complexity of algorithms when
dealing with straight-line programs. An slp can be obviously considered as a
directed acyclic graph without branchings and, therefore, it has nodes. The
complexity of an algorithm using the slp encoding will be the total number of
nodes, that is to say, the ones arising as operations or comparisons plus the
internal nodes of the slp’s involved.

6.4.2 Some apparent disadvantages

When we are dealing with slp’s to encode polynomials, we face a fundamental
problem: the same polynomial may be encoded by means of many different
slp’s. So, it is not straightforward to verify a polynomial identity.

Suppose you are given an slp of length L that evaluates a polynomial F
in n variables of degree bounded by d. If you want to know whether F ≡ 0, a
naive attempt would be to interpolate F , but it would take so many points to
do so that the complexity of doing this would again be too large (within the
same order as the number of nodes needed in the dense representation of F).

Another way to solve the problem is to find a smaller particular set of
points such that two polynomials of bounded length and degree coincide if
and only if they coincide when evaluated in all these points. Luckily, there is
a result due to Heintz and Schnorr stating the existence of this set:

Theorem 6.4.7. (see [HS82]) Let W̃ (d, n, L) ⊂ Q[X1, . . . , Xn] be the set of
polynomials of degree bounded by d that can be calculated by means of an slp
of length L. Let Γ ⊂ Q be a set of 2L(1 + d)2 elements. Then, there exists a
set of points {α1, . . . , αm} ⊂ Γn with m = 6(L+ n)(L+ n+ 1) satisfying

F ∈ W̃ (d, n, L) such that F (αi) = 0 ∀ 1 ≤ i ≤ m⇒ F ≡ 0.

The set {α1, . . . , αm} is called a correct test sequence or a set of questors.
Unfortunately, we do not know how to construct such a set within a reasonable
cost. A way to avoid this problem is to consider probabilistic algorithms (which
we will briefly discuss later in Section 6.6.1).

Another question we can ask is how many polynomials can be evaluated
easily (that is to say, can be calculated by means of short slp’s). The answer
again, as we are going to see now, is not very encouraging (see [Sch78] and
[HS80]):

For fixed n, d and L, let us consider the set of all the polynomials F ∈
Q[X1, . . . , Xn] with deg(F) ≤ d and non-scalar length LQ(F) ≤ L.

Observe that each of these polynomials can be computed by a ‘non-scalar’
slp (that is to say, the only coordinates we are taking into account in this slp
are the products between non-scalar elements)

6 Algebraic Complexity 259

β := (β−n+1, . . . , β0, β1, . . . , βL)

where β−n+i = Xi (1 ≤ i ≤ n) and, defining β−n := 1,

βk =

⎛⎝ ∑
−n≤j≤k−1

a
(k)
j .βj

⎞⎠ .
⎛⎝ ∑

−n≤j≤k−1

b
(k)
j βj

⎞⎠ .
Considering new variables A(k)

j and B(k)
j (1 ≤ k ≤ L; −n ≤ j ≤ k −

1), there exist polynomials Q(k)
α ∈ Q[A(k)

j , B
(k)
j] such that the coefficients

of any polynomial Fk that can be computed in the k-th step of β are the
specializations of these polynomials in some rational vectors a and b, that is
to say

Fk =
∑
α

Q(k)
α (a, b)Xα.

So we have

Proposition 6.4.8. For every L, n ∈ N there exist Qα ∈ Z[T1, . . . , Tm] poly-
nomials with m = (L + n)(L + n + 1), α ∈ (N0)n, |α| ≤ 2L, degQα ≤ 2|α|L
such that for every F ∈ Q[X1, . . . , Xn] satisfying LQ(F) ≤ L,

F =
∑
α

Qα(t)Xα for some t ∈ Qm.

Now, we can consider the morphism obtained by evaluating the family of
polynomials (Qα : |α| ≤ d):

(Qα : |α| ≤ d) : C(L+n)(L+n+1) → C(n+d
n).

Therefore, if F :=
∑

α cαX
α ∈ Q[X1, . . . , Xn] is any polynomial that has

deg(F) ≤ d and non-scalar length LQ(F) ≤ L, considering it as the vector
(cα) ∈ Q(n+d

n), it turns out that F ∈ Im(Qα : |α| ≤ d).
As a consequence, we have that, for fixed d, n, L ∈ N, the set

W (n, d, L) := Im(Qα : α ∈ (N0)n, |α| ≤ d) ⊂ C(n+d
n)

is a closed set that contains all the vectors of coefficients of polynomials F ∈
Q[X1, . . . , Xn] such that degF ≤ d and LQ ≤ L.

A very important remark is that, as W (n, d, L) is defined by means of a
polynomial function in (L+n)(L+n+1) variables, its dimension is bounded by
dimW (n, d, L) ≤ (L+n)(L+n+ 1). This can be interpreted in the following
way: the polynomials of degree bounded by d with non-scalar complexity
bounded by L considered in C(n+d

n) (a space of dimension
(
n+d

n

)
), lie in a

variety of dimension (L+n)(L+n+1). So, as long as L satisfies (L+n)(L+
n + 1) <

(
n+d

n

)
, there are very few polynomials easy to evaluate since the

260 J. Sabia

complement of the variety they lie in is a non-empty open set in the Zariski
topology. Therefore, most polynomials are difficult to evaluate.

Taking these last observations into account, one may wonder if it would
be useful to deal with slp’s when trying to solve polynomial equations. The
answer is affirmative as we will see in the following sections.

6.4.3 A fundamental result

In [GH93], Giusti and Heintz obtain a fundamental result using for the first
time straight-line programs to solve algorithmically a problem related to solv-
ing a system of polynomial equations. In that paper, they give a polynomial
algorithm that can decide whether a given algebraic variety V is empty or
not from the polynomials defining V encoded in dense form. In fact, they go a
little further: given polynomials, encoded in dense form and defining a variety
V , they can find the dimension of V algorithmically in polynomial time.

In a first step, they design an algorithm that, given polynomials defining
a variety V , computes a variety Z, either zero-dimensional or empty, satis-
fying the following conditions (V0 will denote, as usual, the zero-dimensional
equidimensional component of V):

• V0 ⊂ Z ⊂ V (that is to say, all the isolated points of V are in Z and all
the points of Z are points in the variety.)

• The way Z is presented makes it ‘easy’ to decide whether it is empty or
not (a more precise description of this way of presenting Z will be given
in Section 6.4.4).

Note that, if we already know that the variety V is either empty or has
dimension 0, we can decide if it is empty by means of this result (V = ∅ ⇐⇒
Z = ∅).

The general idea of the algorithm computing the dimension of V is the
following: suppose the variety V is defined by f1, . . . , fs ∈ Q[X1, . . . , Xn].
Generally, if it is not empty, when we cut it with a hyperplane H1, we will
obtain a variety V ∩H1 of dimension dimV − 1. Continuing this process with
‘generic’ hyperplanes, we have that, after dimV + 1 steps, by reducing the
dimension by one in each step, we get the empty set. Then, as dimV ≤ n,
when we cut it with n+ 1 ‘generic’ hyperplanes we obtain the empty set:

V ∩H1 ∩ · · · ∩Hn+1 = ∅.

So, we have that V ∩H1∩· · ·∩Hn is either the empty set or a variety consisting
only of isolated points and we are under the required hypotheses to decide
whether it is empty or not. If it is not empty, then dimV = n. If it is empty,
we consider the variety V ∩H1 ∩ · · · ∩Hn−1 and repeat the process. After at
most n+ 1 steps we will know the dimension of V (because it is equal to the
minimum number of ‘generic’ hyperplanes we have to cut V with to obtain
the empty set minus one).

6 Algebraic Complexity 261

The sets of n+1 hyperplanes that do not satisfy the desired conditions can
be considered as elements of a proper closed set in a proper affine space CN ,
that is to say the whole construction we have made works for almost every
set of n + 1 hyperplanes. This is what we meant by ‘generic’ hyperplanes in
the last paragraph.

The proof of the result by Giusti and Heintz is beyond the scope of this
survey, but we are going to take into account some of the ideas used there.

6.4.4 An old way of describing varieties: the Shape lemma

In [GH93], Giusti and Heintz use a particular way of defining zero-dimensional
varieties which was already used by Kronecker (see [Kro82]). This way of pre-
senting the variety is called a shape lemma presentation or a geometric resolu-
tion of the variety. (This same description is presented under different names
in other chapters of this book: single variable representation in Chapter 2,
univariate representation in Chapter 3 and shape lemma in Chapter 4.) The
idea of this presentation is quite simple:

Suppose we are given a zero-dimensional variety Z ⊂ Cn defined by poly-
nomials in Q[X1, . . . , Xn] and consisting of D points

x(1) = (x(1)
1 , . . . , x

(1)
n), . . . , x(D) = (x(D)

1 , . . . , x(D)
n).

Suppose also that their first coordinates are all different from one another.
Therefore, we can obtain a polynomial Q ∈ Q[T] of degree D whose zeroes
are exactly these first coordinates; namely

Q =
∏

1≤i≤D

(T − x(i)
1).

Moreover, using interpolation, fixing an index j, (2 ≤ j ≤ n), there exists a
unique polynomial Pj ∈ Q[T] of degree bounded by D−1 such that Pj(x

(i)
1) =

x
(i)
j for every 1 ≤ i ≤ D. Then,

Z = {x ∈ Cn / Q(x1) = 0 ∧ x2 − P2(x1) = 0 ∧ · · · ∧ xn − Pn(x1) = 0}.
This parametric description of Z (note that all coordinates are parame-

trized as functions of x1) has the additional property of telling us how many
points are in Z (this quantity coincides with the degree of Q).

The only inconvenience of this description is that we need the first co-
ordinates of the points to be different from one another and this is not al-
ways the case. The way to solve this is to consider an affine linear form
�(X) = u0 + u1X1 + · · · + unXn in Q[X1, . . . , Xn] such that �(x(i)) are all
different from one another (in this case we say either that � is a primitive
element of Z or that � separates the points in Z).

Now, we are able to define what we call a geometric resolution of a zero
dimensional variety:

262 J. Sabia

Definition 6.4.9. Let Z = {x(1), . . . , x(m)} ⊂ Cn be a zero-dimensional vari-
ety defined by polynomials in Q[X1, . . . , Xn]. A geometric resolution of
Z consists of an affine linear form �(X) = u0 + u1X1 + · · · + unXn in
Q[X1, . . . , Xn], and polynomials Q, P1, . . . , Pn ∈ Q[T] (where T is a new
variable) such that:

• �(x(i)) �= �(x(k)) if i �= k.
• Q(T) =

∏
1≤i≤D(T − �(x(i)))

• For 1 ≤ j ≤ n, degPj ≤ D − 1 and

Z = {(P1(ξ), . . . , Pn(ξ)) / ξ ∈ C such that Q(ξ) = 0}.
As this description of Z is uniquely determined up to � we call it the

geometric resolution of Z associated to �.
For the sake of simplicity, we also define the notion of geometric resolution

for the empty set, and in this case, the polynomial Q is 1.
Although this definition is quite easy to understand, the problem underly-

ing it is to find (given the zero-dimensional variety Z ⊂ Cn defined by polyno-
mials f1, . . . , fs) a proper linear form and the polynomials Q,P1, . . . , Pn (note
that our definition is based on the coordinates of the points in Z!).

In [GH93] Giusti and Heintz do not find the exact geometric resolution
of the isolated points of a variety V but they are able to find a linear form
� which separates the isolated points of V , a polynomial which vanishes over
the specialization of � in the isolated points of V and, by means of them,
they find a geometric resolution of a zero-dimensional variety Z, satisfying
V0 ⊂ Z ⊂ V . Given the polynomials defining V , in a first step they introduce
a new variable to make a deformation in order to reduce the problem to
the case of a zero-dimensional projective variety. Then, using some ideas and
results of [Laz77] about the regularity of the Hilbert function of a suitable
graded ring and some linear algebra algorithms ([Ber84] and [Mul87]), they
obtain the characteristic polynomials of several linear maps which allow them
to get the desired geometric resolution.

Note that, if the variety V is zero-dimensional, the algorithm of [GH93]
computes a geometric resolution of V . For an improved and more detailed
version of this construction of a geometric resolution of a zero-dimensional
variety from polynomials defining it, see [KP96].

6.4.5 Newer algorithms, lower bounds

The paper we have already mentioned ([GH93]) is a milestone in the devel-
opment of algorithms solving polynomial equations symbolically. The main
theorem proved there is:

Theorem 6.4.10. There exists an algorithm that, given polynomials f1, . . . , fs
in Q[X1, . . . , Xn] of degrees bounded by d in the dense encoding defining an
algebraic variety V ⊂ Cn, computes dimV within complexity sO(1)dO(n).

6 Algebraic Complexity 263

Note that this result allows us to answer the first question concerning a
polynomial equation system (whether its set of solutions is empty or not) just
by computing its dimension.

Some of the problems stated have since been solved within polynomial
time (that is to say, by means of polynomial algorithms), by using different
tools.

In [GHS93], given polynomials f1, . . . , fs ∈ Q[X1, . . . , Xn] such that the va-
riety they define is empty, a family of polynomials g1, . . . , gs ∈ Q[X1, . . . , Xn]
such that 1 =

∑
1≤i≤s gi.fi holds is constructed. The polynomials g1, . . . , gs

have degree bounded by dO(n2) and are obtained in an slp encoding. The
complexity of the whole algorithm is sO(1)dO(n) (compare with the end of
Subsection 6.3.1). In [FGS95] the same problem is re-considered by using du-
ality theory and a complete different algorithm is designed so that the new
polynomials g1, . . . , gs obtained have degree bounded by dO(n).

A quantifier elimination algorithm using slp’s was obtained in [PS98]. The
main result there is more general than the one we have stated above, but
adapted to our case it would essentially mean that the elimination stated
before can be done in polynomial time in the size of the input.

We can also mention polynomial algorithms for the equidimensional de-
composition of varieties(see [JS02] and [Lec00]). However, these algorithms are
probabilistic (see Section 6.6.1 for a brief account on probabilistic algorithms).

6.5 The Newton-Hensel method

The use of slp’s as a way of encoding polynomials made it possible to adapt
algorithmically a very well-known concept, the Newton-Hensel method, which
can be seen as a particular version of the implicit function theorem. (Compare
with the Hensel operator defined in Chapter 9.)

Let T1, . . . , Tm, X1, . . . , Xn be indeterminates over a field Q. Given t ∈ Cm,
T − t will represent the vector (T1 − t1, . . . , Tm − tm).

Let f1, . . . , fn ∈ Q[T,X] be polynomials. We will denote by f the vector
of polynomials (f1, . . . , fn), by Df the Jacobian matrix of f with respect to
the indeterminates X and by Jf its determinant.

Lemma 6.5.1. Let f1, . . . , fn ∈ Q[T,X] and let (t, ξ) ∈ Cm × Cn such that

f1(t, ξ) = 0, . . . , fn(t, ξ) = 0 and Jf(t, ξ) �= 0.

Then, there exists a unique n-tuple of formal power series R = (R1, . . . ,Rn) ∈
C[[T − t]]n such that:

• f1(T,R) = 0, . . . , fn(T,R) = 0
• R(t) := (R1(t), . . . ,Rn(t)) = ξ.

264 J. Sabia

Proof. (This is only a sketch; for a very detailed proof of this fact, see for
example [HKP+00].)

Given f(X) = (f1(T,X), . . . , fn(T,X)), we define the Newton-Hensel op-
erator associated to it as

Nf (X)t := Xt −Df(X)−1.f(X)t.

Note that Jf(X) is not the zero polynomial (from our hypothesis, Jf(t, ξ) �=
0) and, therefore, our definition makes sense.

We define the following sequence of rational functions:{
R(0) := ξ
R(k) := Nf (R(k−1)) = Nk

f (ξ) for k ∈ N

The first thing to take into account is whether we can define this sequence
(that is to say, if we do not try to divide by zero) but this fact can be induc-
tively proved using that R(k)(t) = ξ.

The following conditions are fulfilled (this can be proved recursively):

• fi(T,R(k)) ∈ (T − t)2k ⊂ C[[T − t]] for every 1 ≤ i ≤ n
• R(k+1)

j −R(k)
j ∈ (T − t)2k ⊂ C[[T − t]] for every 1 ≤ j ≤ n

where (T−t) indicates the ideal in C[[T−t]] generated by T1−t1, . . . , Tm−tm.
Therefore, the sequences (R(k)

j)k∈N are convergent (1 ≤ j ≤ n) and the
n-tuples of their limits R := (R1, . . . ,Rn) is the vector we are looking for.

�

Just to show how this works, we are going to discuss an example briefly.

Example 6.5.2. Given n polynomials of degrees d1, . . . , dn in n variables defin-
ing a zero-dimensional variety V and for a generic linear form �, we show how
to compute, in many cases at least, the polynomial Q(T) of Definition 6.4.9
that leads to a geometric resolution of V :

We consider generic polynomials f1, . . . , fn of degrees d1, . . . , dn in the
variables X1, . . . , Xn:

f1(T,X) =
∑

|α|≤d1

T (1)
α Xα

...

fn(T,X) =
∑

|α|≤dn

T (n)
α Xα

(note that each coefficient of fi is a new variable T (i)
α).

Consider the variety W := {(x1, . . . , xn) ∈ Cn / xd1
1 −1 = 0, . . . , xdn

n −1 =
0}. Of course, we know all the points in this set: they are n-tuples of roots
of unity. Let t be the vector of coefficients of the polynomials defining W .
Therefore we are under the conditions needed to apply Lemma 6.5.1 because

6 Algebraic Complexity 265

we have that, for every ξ ∈W , (t, ξ) is a particular instance of (T,X) that sat-
isfy the needed hypotheses (it is easy to see that in this instance, Jf(t, ξ) �= 0).
Then, by applying the Newton-Hensel algorithm we can approximate vectors
of power series in T − t which will be roots of the original system and we can
do it as precisely as we want.

We will have then
∏

1≤i≤n di different (approximations of) vectors of power
series that should be all the roots of the original system in C(T) (it can be
seen that the system we are dealing with has dimension zero when we think
of T as a set of parameters and Bézout’s theorem states that the number of
solutions is bounded by

∏
1≤i≤n di).

Suppose that, from every ξ ∈ W , we obtain the associated solution Rξ ∈
C[[T − t]]n of the original system. Then∏

ξ∈W

(Y − �(Rξ))

is a polynomial in Q[[T − t]][Y] that vanishes at every point Rξ. In fact, this
polynomial is the polynomial of minimal degree defining the image of our
original variety under the morphism

Q(T)
n → Q(T)
w �→ �(w)

As our original variety is definable with polynomials in Q(T)[X], this poly-
nomial we obtain must be in Q(T)[Y] and therefore, by multiplying it by a
fixed polynomial h ∈ Q[T] we obtain a polynomial M ∈ Q[T][Y] satisfying
the following:

M(T, �(X1, . . . , Xn)) ∈ (f1, . . . , fn)

(here we are using that the ideal the polynomials f1, . . . , fn define is radical).
Therefore, given n polynomials in n variables defining a zero-dimensional

variety V , provided the vector of their coefficients t0 do not lie in a hyper-
surface, we can obtain by evaluating M(T, Y) in t0 a non-zero polynomial
M(t0, Y) ∈ Q[Y] which specialized in the linear form � vanishes over the ze-
roes of V . This is a fundamental step we mentioned before (see Sections 6.4.3
and 6.4.4).

Of course a lot of work has to be done to succeed in finding this polynomial.
For example one should know somehow up to what precision the Newton-
Hensel algorithm is needed, how to compute the polynomial h, and so on, but
this is just an example of how things work.

There are two main features to be taken into account when considering the
Newton-Hensel algorithm. The first one is that an approximation of the power
series vector up to a given precision can be obtained in very few steps (note

266 J. Sabia

that to obtain the series we are looking for up to degree θ we only have to
apply log2 θ steps of our iteration). The second one is that the Newton-Hensel
method deals essentially with slp’s. In fact, an algorithmic statement of the
Newton-Hensel method is the following lemma (see [GHH+97] for a proof):

Lemma 6.5.3. Under the same hypotheses and notation of Lemma 6.5.1, sup-
pose the polynomials f1, . . . , fn have degree bounded by d and are given by an
slp of length L. Let κ ∈ N, then there exists an slp of length O(κd2n7L)
which evaluates polynomials g(κ)

1 , . . . , g
(κ)
n , h(κ) ∈ Q[T][X] with h(κ)(t, ξ) �= 0

which represent the numerators and the denominator of the rational functions
obtained in the κ-th iteration of the Newton-Hensel operator.

The Newton-Hensel method has been successfully used to obtain more ef-
ficient algorithms to solve polynomial equation systems. This tool has been
introduced in this framework for the first time in [GHM+98], where an algo-
rithm solving zero-dimensional systems was designed and an effective Null-
stellensatz was stated. However, these procedures required computing with
algebraic numbers. In [GHH+97], the first completely rational algorithm us-
ing the Newton-Hensel method was obtained and the complexity bounds were
improved in [GLS01] and in [HMW01]. The Newton-Hensel method has been
extensively applied to other problems: for example, to solve parametric sys-
tems (see [HKP+00] and [Sch03b]) and to obtain equidimensional decompo-
sitions of varieties (see [Lec00] and [JKSS04]). Some of these algorithms work
under certain particular hypotheses while the others work for any given input
probabilistically (see Section 6.6.1).

Moreover, in [Lec02] an extension of the Newton-Hensel operator adapted
to the non-reduced case was presented. Then, this extension was applied to
obtain an algorithm that computes the equidimensional decomposition of a
variety (see [Lec03]).

All these algorithms share an important feature: they all use the Newton-
Hensel operator, and therefore they can deal with input polynomials codified
by means of slp’s.

6.6 Other trends

In this last section, we would like to discuss briefly some ideas involved in
algorithmic procedures which have been mentioned earlier.

6.6.1 Probabilistic algorithms

Sometimes our algorithms may depend on the choice of an object satisfying
certain conditions (a linear form separating points, a point where a polynomial
does not vanish, etc). These choices may be very expensive from the algorith-
mic point of view. Think of a polynomial f in n indeterminates of degree d. If

6 Algebraic Complexity 267

we want to get a n-tuple v such that f(v) �= 0 we have to check through many
points. Sometimes, they may even involve a procedure we do not know how
to accomplish (for example, we know we have to look for a point that is not a
root of certain polynomial of bounded degree, but we cannot compute exactly
the involved polynomial). To avoid this, one can choose a random point v to
go on. Of course, this may lead to an error. Then, a probabilistic algorithm
would be an algorithm that ‘generally’ performs the task we want accurately,
but with a bounded probability of error.

Most algorithms involving slp’s can be considered as probabilistic algo-
rithms if we do not know an adequate correct test sequence for the kind of
slp’s involved. In this case, if we want to decide whether an slp represents the
0 polynomial or not, we just choose a random point and evaluate the slp in
it. If the result is not zero, we are sure that the polynomial is not the zero
polynomial but if it is zero, we can suppose that the polynomial is the zero
one.

A clear example of this is the following (already mentioned in Sec-
tion 6.4.3): We have a non-empty variety V and we want to compute its
dimension. We cut it with a random hyperplane and consider what happens.
Suppose that this intersection is empty. We would assume that the original
variety is of dimension 0. It is generally the case, but if we are unlucky and
the original variety was lying in a hyperplane parallel to the one we chose,
our deduction would be false.

In most of the probabilistic algorithms we consider, the generic condition
a random point should satisfy is that it is not a zero of a given polynomial
f ∈ Q[X1, . . . , Xn] of bounded degree. The random point we choose has integer
coordinates taken from a finite subset of N big enough. The estimation of the
probability of success is done by means of the following well-known result (see
[Sch80] and [Zip79]):

Lemma 6.6.1. Let R ⊂ N be a finite subset. Let f ∈ Q[X1, . . . , Xn]− {0} be
a polynomial. Then, for random choices of elements a1, . . . , an ∈ R, we have
that

Prob(f(a1, . . . , an) = 0) ≤ deg f
#R

.

For example, some of the equidimensional decomposition algorithms al-
ready mentioned ([Lec00], [JS02], [JKSS04]) are probabilistic.

6.6.2 Non-general algorithms

In Section 6.4, we have mentioned that a possible way to avoid the high
complexities involved in dense encoding was to design specific algorithms that
would not work for every polynomial system but only for some of them. This
is already being done, in the sense that some of the algorithms being produced
in computer algebra may be general but work better (have lower complexity)
in special cases. This leads us to consider other invariants (not only the degree,

268 J. Sabia

quantity and number of variables of the polynomials involved) to compute the
complexity of the algorithms. Roughly speaking, the new invariants involved
have to do somehow with the geometry of the varieties involved (that is the
semantic features of the problem) and not with the way the variety is presented
(the syntactic ones). For a further discussion on this topic see, for example
[GHM+98]. Many of the previously mentioned results deal with this new kind
of invariants (see, for example, [GHH+97], [KSS97], [HKP+00], [Lec00] and
[JKSS04]).

Acknowledgment

I would like to thank Alicia Dickenstein and Ioannis Emiris for inviting me
to take part in the writing of this book. I would also like to thank Gabriela
Jeronimo for her help in the writing of this chapter, and Mike Stillman for
having read it thoroughly and for his comments and advice.

