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Summary. This chapter is devoted to laying the algebraic foundations for border
bases of ideals. Using an order ideal O, we describe a zero-dimensional ideal from the
outside. The first and higher borders of O can be used to measure the distance of a
term from O and to define O-border bases. We study their existence and uniqueness,
their relation to Gröbner bases, and their characterization in terms of commuting
matrices. Finally, we use border bases to solve a problem coming from statistics.

4.0 Introduction

El infinito tango me lleva hacia todo
[The infinite tango takes me towards everything]

(Jorge Luis Borges)

The third author was invited to teach a course at the CIMPA school in
July 2003. When the time came to write a contribution to the present volume,
he was still inspired by the tunes of classical tango songs which had been
floating in his mind since his stay in Buenos Aires. He had the idea to create
some variations on one of the themes of his lectures. Together with the first
and second authors, he formed a trio of algebraists. They started to collect
scattered phrases and tunes connected to the main theme, and to rework them
into a survey on border bases. Since the idea was welcomed by the organizers,
you have now the opportunity to enjoy their composition.

In the last few years it has become increasingly evident how Gröbner
bases are changing the mathematical landscape. To use a lively metaphor, we
can say that by considering a Gröbner basis of an ideal I in the polynomial
ring P = K[x1, . . . , xn], we are looking at I from the inside, i.e. by describing
a special set of generators. But a Gröbner basis grants us another perspective.
We can look at I from the outside, i.e. by describing a set of polynomials which
forms a K-vector space basis of P/I, namely the set of terms outside LTσ(I)
for some term ordering σ. However, Gröbner bases are not optimal from the
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latter point of view, for instance, because the bases they provide tend to be
numerically ill-behaved.

This leads us to one of the main ideas behind the concept of a border
basis. We want to find more “general” systems of generators of I which give
rise to a K-basis of P/I. Quotation marks are in order here, since so far the
generalization only works for the subclass of zero-dimensional ideals I. In the
zero-dimensional case, the theory of border bases is indeed an extension of
the theory of Gröbner bases, because there are border bases which cannot be
associated to Gröbner bases. Moreover, border bases do not require the choice
of a term ordering. Our hope is that the greater freedom they provide will
make it possible to construct bases of P/I having additional good properties
such as numerical stability or symmetry.

Even if these considerations convince you that studying border bases is
useful, you might still ask why we want to add this survey to the current
literature on that topic? Our main reason is that we believe that the alge-
braic foundations of border bases have not yet been laid out solidly enough.
Important contributions are scattered across many publications (some in less
widely distributed journals), and do not enjoy a unified terminology or a co-
herent set of hypotheses. We hope that this chapter can be used as a first
solid foundation of a theory which will surely expand quickly.

Now let us look at the content more closely. In Section 4.1 we describe
some techniques for treating pairwise commuting endomorphisms of finitely
generated vector spaces. In particular, we describe a Buchberger-Möller type
algorithm (see Theorem 4.1.7) for computing the defining ideal of a finite set
of commuting matrices. Given pairwise commuting endomorphisms ϕ1, . . . , ϕn

of a finite dimensional K-vector space V , we can view V as a P -module via
f · v = f(ϕ1, . . . , ϕn)(v) for f ∈ P and v ∈ V . Then Theorem 4.1.9 yields
an algorithm for checking whether V is a cyclic P -module, i.e. whether it is
isomorphic to P/I for some zero-dimensional ideal I ⊆ P .

Section 4.2 is a technical interlude where order ideals, borders, indices,
and marked polynomials have their solos. An order ideal is a finite set of
terms which is closed under taking divisors. We use order ideals to describe
a zero-dimensional ideal “from the outside”. The first and higher borders of
an order ideal can be used to measure the “distance” of a term from the
order ideal. The main tune in Section 4.2 is played by the Border Division
Algorithm 4.2.10. It imitates the division algorithm in Gröbner basis theory
and allows us to divide a polynomial by a border prebasis, i.e. by a list of
polynomials which are “marked” by the terms in the border of an order ideal.

And then, as true stars, border bases appear late in the show. They enter
the stage in Section 4.3 and solve the task of finding a system of generators of
a zero-dimensional polynomial ideal having good properties. After we discuss
the existence and uniqueness of border bases (see Theorem 4.3.4), we study
their relation to Gröbner bases (see for instance Propositions 4.3.6 and 4.3.9).
Then we define normal forms with respect to an order ideal, and use border
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bases to compute them. Many useful properties of normal forms are collected
in Proposition 4.3.13.

In the final part of Section 4.3, we explain the connection between border
bases and commuting matrices. This variation leads to the fundamental The-
orem 4.3.17 which characterizes border bases in terms of commuting matrices
and opens the door for our main application. Namely, we use border bases
to solve a problem coming from statistics. This application is presented in
Section 4.4, where we discuss the statistical background and explain the role
of border bases in this field.

Throughout the text, we have tried to provide a generous number of ex-
amples. They are intended to help the reader master the basics of the theory
of border bases. Moreover, we have tried to keep this survey as self-contained
and elementary as possible. When we had to quote “standard results” of
computer algebra, we preferred to rely on the book by the second and third
authors [KR00]. This does not mean that those results are not contained in
other books on the subject; we were merely more familiar with it.

Albert Einstein is said to have remarked that the secret of creativity was
to know how to hide ones sources. Since none of us is Albert Einstein, we
try to mention all sources of this survey. We apologize if we are unaware of
some important contribution to the topic. First and foremost, we would like to
acknowledge the work of Hans J. Stetter (see [AS88], [AS89], and [Ste04]) who
used border bases in connection with problems arising in numerical analysis.
Later H. Michael Möller recognized the usefulness of these results for computer
algebra (see [Möl93], [MS95], and [MT01]). These pioneering works triggered a
flurry of further activities in the area, most notably by Bernard Mourrain (see
for instance [Mou99]) from the algorithmic point of view. A good portion of
the material presented here is taken from the papers [CR97], [CR01], [KK03a],
[Rob98], [Robb], and [RR98]. Moreover, many results we discuss are closely
related to other surveys in this volume.

Naturally, much work still has to be done; or, as we like to put it, there is
still a huge TODO-list. A path which deserves further attention is the connec-
tion between border bases and numerical computation. Many ideas about the
interplay of numerical and symbolic computation were proposed by Stetter,
but we believe that there remains a large gap between the two areas which
has to be addressed by algebraists. What about the algorithmic aspects? Al-
most no computer algebra system has built-in facilities for computing border
bases. Naive algorithms for computing border bases, e.g. algorithms based
on Gröbner basis computations, require substantial improvements in order to
be practically feasible. This is an area of ongoing research. Some results in
this direction are contained in Chapter 3. On the theoretical side we can ask
whether the analogy between border bases and Gröbner bases can be further
extended. First results in this direction are contained in [KK03a], but there
appears to be ample scope for extending the algebraic theory of border bases.
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Finally, wouldn’t it be wonderful to remove the hypothesis that I is zero-
dimensional, i.e. to develop a theory of border bases for the case when P/I
is an infinite-dimensional vector space? At the moment, despite the infinite
tango, we are unfortunately lacking the inspiration to achieve this goal. Some
ideas are presented in [Ste04, Ch. 11].

As for our notation, we refer the readers to [KR00]. In particular, we let
P = K[x1, . . . , xn] be a polynomial ring over a field K. A polynomial of
the form xα1

1 · · ·xαn
n , where α1, . . . , αn ∈ N, is called a term (or a power

product). The monoid of all terms in P is denoted by Tn.

4.1 Commuting endomorphisms

Tango has the habit of waiting
(Ańıbal Troilo, virtuoso bandoneonist)

Every polynomial ideal I is accompanied by the quotient algebra P/I.
A zero-dimensional ideal I corresponds to an algebra P/I of finite vec-
tor space dimension over K. The first part of this section reviews how the
K-algebra P/I is characterized by its P -module structure and how the latter is
given by n pairwise commuting multiplication endomorphisms of theK-vector
space P/I. In particular, for zero-dimensional ideals these endomorphisms can
be represented by pairwise commuting multiplication matrices. Then we ad-
dress the converse realization problem: Which collections of n pairwise com-
muting matrices can be preassigned as multiplication matrices corresponding
to a zero-dimensional ideal? A necessary and sufficient condition is that these
matrices induce a cyclic P -module structure. Whether a P -module structure
on a finite-dimensional K-vector space is cyclic can be checked effectively –
an algorithm is presented in the second part.

4.1.1 Multiplication endomorphisms

Given a K-vector space V which carries a P -module structure, there exist
endomorphisms of V which are associated to the multiplications by the inde-
terminates.

Definition 4.1.1. For i = 1, . . . , n, the P -linear map

ϕi : V −→ V defined by v �→ xi v

is called the ith multiplication endomorphism of V .

The multiplication endomorphisms of V are pairwise commuting, i.e. we have
ϕi ◦ϕj = ϕj ◦ϕi for i, j ∈ {1, . . . , n}. The prototype of such a vector space is
given by the following example.
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Example 4.1.2. Let I ⊆ P be an ideal. The quotient algebra P/I possesses a
natural P -module structure P × P/I → P/I given by (f, g + I) �→ fg + I.
Hence there are canonical multiplication endomorphisms Xi : P/I −→ P/I
such that Xi(f + I) = xi f + I for f ∈ P and i = 1, . . . , n. Note that P/I is a
cyclic P -module with generator 1 + I.

Remark 4.1.3. Let ϕ1, . . . , ϕn be pairwise commuting endomorphisms of a vec-
tor space V . The following three constructions will be used frequently.

1. There is a natural way of equipping V with a P -module structure such
that ϕi is the ith multiplication endomorphism of V , namely the structure
defined by

P × V −→ V such that (f, v) �→ f(ϕ1, . . . , ϕn)(v)

2. There is a ring homomorphism

η : P −→ EndK(V ) such that f �→ f(ϕ1, . . . , ϕn)

3. Every ring homomorphism η : P −→ EndK(V ) induces a P -module struc-
ture on V via the rule f · v = η(f)(v).

The following result allows us to compute the annihilator of V , i.e. the
ideal AnnP (V ) = {f ∈ P | f · V = 0}.
Proposition 4.1.4. Let V be a K-vector space equipped with a P -module
structure corresponding to a ring homomorphism η : P −→ EndK(V ). Then
we have AnnP (V ) = ker(η).

Proof. By Remark 4.1.3, we have f · V = 0 if and only if η(f) = 0. �

Of particular interest are P -module structures on V for which V is a cyclic
P -module. The following proposition shows that such structures are essentially
of the type given in Example 4.1.2.

Proposition 4.1.5. Let V be a K-vector space and a cyclic P -module. Then
there exist an ideal I ⊆ P and a P -linear isomorphism

Θ : P/I −→ V

such that the multiplication endomorphisms of V are given by the formula
ϕi = Θ ◦Xi ◦Θ−1 for i = 1, . . . , n.

Proof. Let w ∈ V be a generator of the P -module V . Then the P -linear map
Θ̃ : P −→ V given by 1 �→ w is surjective. Let I = ker Θ̃ be its kernel and
consider the induced isomorphism of P -modulesΘ : P/I → V . The P -linearity
of Θ shows Θ

(
Xi(g + I)

)
= ϕi

(
Θ(g + I)

)
for 1 ≤ i ≤ n and g + I ∈ P/I. �
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By [KR00], Proposition 3.7.1, zero-dimensional ideals I ⊆ P are charac-
terized by dimK(P/I) < ∞. Hence, if the vector space V in this proposition
is finite-dimensional, the ideal I is necessarily zero-dimensional. Now we want
to answer the question, given ϕ1, . . . , ϕn, when is V a cyclic P -module via
the structure defined in Remark 4.1.3.1? We note that if the P -module V is
cyclic, then there exists an element w ∈ V such that AnnP (w) = AnnP (V ).

Proposition 4.1.6 (Characterization of Cyclic P-Modules).
Let V be a K-vector space which carries the structure of a P -module.

1. Given w ∈ V , we have AnnP (V ) ⊆ AnnP (w). In particular, there exists a
P -linear map Ψw : P/AnnP (V ) −→ V defined by f + AnnP (V ) �→ f · w.

2. Let w ∈ V. The map Ψw is an isomorphism of P -modules if and only
if w generates V as a P -module.

Proof. The first claim follows from the definitions. To prove the second claim,
we note that if Ψw is an isomorphism, then we have V = P · w. Conversely,
suppose that V = P ·w. Then the map Ψw is surjective. Let f ∈ P be such that
f+AnnP (V ) ∈ ker(Ψw). Then f(ϕ1, . . . , ϕn) ·w = 0 implies f(ϕ1, . . . , ϕn) = 0
since w generates V . Hence we see that f ∈ AnnP (V ) and Ψw is injective. �

4.1.2 Commuting matrices

In what follows, we let V be a finite-dimensional K-vector space and µ its
dimension. We fix a K-basis V = (v1, . . . , vµ) of V . Thus every endomorphism
of V can be represented by a matrix of size µ×µ overK. In particular, when V
is a P -module, then M1, . . . ,Mn denote the matrices corresponding to the
multiplication endomorphisms ϕ1, . . . , ϕn.

Using the following variant of the Buchberger-Möller algorithm, we can
calculate AnnP (V ) as the kernel of the composite map

η : P −→ EndK(V ) ∼= Matµ(K)

where η is the map defined in Remark 4.1.3.2. Moreover, the algorithm
provides a vector space basis of P/AnnP (V ). To facilitate the formula-
tion of this algorithm, we use the following convention. Given a matrix
A = (aij) ∈ Matµ(K), we order its entries by letting aij ≺ ak� if i < k,
or if i = k and j < �. In this way we “flatten” the matrix to a vector in Kµ2

.
Then we can reduce A against a list of matrices by using the usual Gaußian
reduction procedure.

Theorem 4.1.7 (The Buchberger-Möller Algorithm for Matrices).
Let σ be a term ordering on Tn, and let M1, . . . ,Mn ∈ Matµ(K) be pairwise
commuting matrices. Consider the following sequence of instructions.

M1. Start with empty lists G = [ ], O = [ ], S = [ ], N = [ ], and a list L = [1].
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M2. If L = [ ], return the pair (G,O) and stop. Otherwise let t = minσ(L) and
delete it from L.

M3. Compute t(M1, . . . ,Mn) and reduce it against N = ([N1, . . . ,Nk]) to
obtain

R = t(M1, . . . ,Mn)−
k∑

i=1

ciNi with ci ∈ K

M4. If R = 0, then append the polynomial t −∑
i cisi to the list G, where si

denotes the ith element of S. Remove from L all multiples of t. Continue
with step M2.

M5. If R �= 0, then append R to the list N and t −∑
i cisi to the list S.

Append the term t to O, and append to L those elements of {x1t, . . . , xnt}
which are neither multiples of a term in L nor in LTσ(G). Continue with
step M2.

This is an algorithm which returns the reduced σ-Gröbner basis G of AnnP (V )
and a list of terms O whose residue classes form a K-vector space basis
of P/AnnP (V ).

Proof. Let I = AnnP (V ), and let H be the reduced σ-Gröbner basis of I.
First we prove termination. In each iteration either step M4 or step M5

is performed. By its construction, the list N always contains linearly inde-
pendent matrices. Hence step M5, which appends an element to N , can be
performed only finitely many times. By Dickson’s Lemma (see [KR00], Corol-
lary 1.3.6), step M4 can be performed only finitely many times. Thus the
algorithm terminates.

To show correctness, we prove that after a term t has been treated by the
algorithm, the following holds: the list G contains all elements of H whose
leading terms are less than or equal to t, and the list O contains all elements
of Tn \ LTσ(I) which are less than or equal to t.

This is true after the first term t = 1 has been treated, i.e. appended
to O. Now suppose that the algorithm has finished an iteration. By the
method used to append new terms to L in step M5, all elements of the set
(x1O ∪ · · ·xnO) \ (O ∪ LTσ(I)) are contained in L. From this it follows that
the next term t chosen in step M2 is the smallest term in Tn \ (O ∪ LTσ(I)).
Furthermore, the polynomials appended to S in step M5 are supported in O.
Hence the polynomial t−∑k

i=1 cisi resulting from step M3 of the next iteration
has leading term t.

Now suppose that R = 0 in step M4. By construction, the matrix of
the endomorphism η(si) is Ni for i = 1, . . . , k. Therefore the polynomial
g = t−∑k

i=1 cisi is an element of I = AnnP (V ). Since the support of
∑k

i=1 cisi
is contained in O, the polynomial g is a new element of H.

On the other hand, if R �= 0 in step M5, then we claim that the term t is
not contained in LTσ(I). In view of the way we update L in step M5, the
term t is not in LTσ(G) for the current list G. By induction, the term t is
not a proper multiple of a term in LTσ(H). Furthermore, the term t is not
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the leading term of an element of H because such an element would be of the
form t −∑k

i=1 c
′
isi ∈ I with c′i ∈ K in contradiction to R �= 0. Altogether it

follows that t is an element of Tn \ LTσ(I) and can be appended to O.
In both cases we see that the claim continues to hold. Therefore, when the

algorithm terminates, we have computed the desired lists G and O. �

Let us illustrate the performance of this algorithm with an example.

Example 4.1.8. Let V = Q3, and let V = (e1, e2, e3) be its canonical basis.
Since the two matrices

M1 =

⎛⎝0 1 1
0 2 1
0 1 1

⎞⎠ and M2 =

⎛⎝0 1 0
0 1 1
0 1 0

⎞⎠
commute, they define a Q[x, y]-module structure on V . Let us follow the itera-
tions of the algorithm in computing the reduced σ-Gröbner basis of AnnP (V ),
where σ = DegLex.

1. t = 1, L = [ ], R =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ = I3, N = [I3], S = [1], O = [1], L = [x, y].

2. t = y,L = [x], R =

⎛⎝0 1 0
0 1 1
0 1 0

⎞⎠ = M2, N = [I3,M2], S = [1, y], O = [1, y],

L = [x, y2].

3. t = x, L = [y2], R =

⎛⎝0 0 1
0 1 0
0 0 1

⎞⎠ = M1 −M2, N = [I2,M2,M1 −M2],

S = [1, y, x− y], O = [1, x, y], L = [x2, xy, y2].

4. t = y2, L = [x2, xy],R =

⎛⎝0 0 0
0 0 0
0 0 0

⎞⎠ = M2
2−M2−(M1−M2),G = [y2−x].

5. t = xy, L = [x2], R =

⎛⎝0 0 0
0 0 0
0 0 0

⎞⎠ = M1M2 − 2M2 − (M1 −M2),

G = [y2 − x, xy − x− y].

6. t = x2, L = [ ], R =

⎛⎝0 0 0
0 0 0
0 0 0

⎞⎠ =M2
1 − 3M2 − 2(M1 −M2),

G = [y2 − x, xy − x− y, x2 − 2x− y].
Thus we have AnnP (V ) = (y2−x, xy−x− y, x2− 2x− y), and O = {1, x, y}
represents a K-basis of P/AnnP (V ).

Now we are ready for the main algorithm of this subsection: we can check
effectively whether a P -module structure given by commuting matrices defines
a cyclic module.
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Theorem 4.1.9 (Cyclicity Test).
Let V be a finite-dimensional K-vector space with basis V = (v1, . . . , vm),
and let ϕ1, . . . , ϕn be pairwise commuting endomorphisms of V given by their
respective matrices M1, . . . ,Mn. We equip V with the P -module structure
defined by ϕ1, . . . , ϕn. Consider the following sequence of instructions.

C1. Using Theorem 4.1.7, compute a tuple of terms O = (t1, . . . , tµ) whose
residue classes form a K-basis of P/AnnP (V ).

C2. If dimK(V ) �= µ, then return "V is not cyclic" and stop.
C3. Let z1, . . . , zµ be further indeterminates and A ∈ Matµ(K[z1, . . . , zµ]) the

matrix whose columns are ti(M1, . . . ,Mn) · (z1, . . . , zµ)tr for i = 1, . . . , µ.
Compute the determinant d = det(A) ∈ K[z1, . . . , zµ].

C4. Check if there exists a tuple (c1, . . . , cµ) ∈ Kµ such that the polynomial
value d(c1, . . . , cµ) is non-zero. In this case return "V is cyclic" and
w = c1v1 + · · ·+ cµvµ. Then stop.

C5. Return "V is not cyclic" and stop.

This is an algorithm which checks whether V is a cyclic P -module via
ϕ1, . . . , ϕn and, in the affirmative case, computes a generator.

Proof. This procedure is clearly finite. Hence we only have to prove correct-
ness. By Proposition 4.1.6, we have to check whether Ψw : P/AnnP (V ) −→ V
is an isomorphism for some w ∈ V . For this it is necessary that the dimen-
sions of the two vector spaces agree. This condition is checked in step C2.
Then we use the basis elements {t̄1, . . . , t̄µ} and examine their images for lin-
ear independence. Since we have Ψw(t̄i) = ti(ϕ1, . . . , ϕn)(w) for i = 1, . . . , µ,
the map Ψw is an isomorphism for some w ∈ V if and only if the vectors
{ti(M1, . . . ,Mn)(c1, . . . , cµ)tr | 1 ≤ i ≤ µ} are K-linearly independent for
some tuple (c1, . . . , cµ) ∈ Kµ. This is checked in step C4. �

If the field K is infinite, the check in step C4 can be simplified to checking
d �= 0. For a finite field K, we can, in principle, check all tuples in Kµ. Let us
apply this algorithm by applying it in the setting of Example 4.1.8.

Example 4.1.10. Let V andM1,M2 be defined as in Example 4.1.8. We follow
the steps of the cyclicity test.

C1. The residue classes of O = {1, x, y} form a K-basis of P/AnnP (V ).
C2. We have µ = 3 = dimQ(V ).
C3. We compute I3 · (z1, z2, z3)tr = (z1, z2, z3)tr as well as M1 · (z1, z2, z3)tr =

(z2 + z3, 2z2 + z3, z2 + z3)tr and M2 · (z1, z2, z3)tr = (z2, z2 + z3, z2)tr.

Thus we let A =

⎛⎝z1 z2 + z3 z2
z2 2z2 + z3 z2 + z3
z3 z2 + z3 z2

⎞⎠ and calculate d = det(A) =

(z1 − z3)(z22 − z2z3 − z23).
C4. Since K is infinite and d �= 0, the algorithm returns "V is cyclic". For

instance, since d(1, 1, 0) = 1, the element w = e1 + e2 generates V as a
P -module.
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The following example shows that V can fail to be cyclic even when the
dimensions of V and P/AnnP (V ) agree.

Example 4.1.11. Let V = Q3, and let V = (e1, e2, e3) be its canonical basis. We
equip V with the Q[x, y]-module structure defined by the commuting matrices

M1 =

⎛⎝0 0 0
1 0 0
0 0 0

⎞⎠ and M2 =

⎛⎝0 0 0
0 0 1
0 0 0

⎞⎠
Let us apply the cyclicity test step-by-step.

C1. The algorithm of Theorem 4.1.7 yields O = {1, x, y}.
C2. We have µ = 3 = dimQ(V ).

C3. We calculate A =

⎛⎝z1 0 0
z2 z1 z3
z3 0 0

⎞⎠ and d = det(A) = 0.

C5. The algorithm returns "V is not cyclic".

We end this section by considering the special case n = 1. In this univariate
case some of the topics discussed in this section look very familiar.

Example 4.1.12. Suppose we are given a finitely generated K-vector space V
and an endomorphism ϕ of V . We let P = K[x] and observe that V becomes
a P -module via the rule (f, v) �→ f(ϕ)(v). When is it a cyclic P -module? Let
us interpret the meaning of the steps of our cyclicity test in the univariate
case. To start with, let M be a matrix representing ϕ.

C1. The algorithm of Theorem 4.1.7 applied to M yields a monic polynomial
f(x) = xd + cd−1x

d−1 + · · · + c0, which is the minimal polynomial of M
(and of ϕ), and the tuple O = (1, x, x2, . . . , xd−1).

C2. The minimal polynomial ofM is a divisor of the characteristic polynomial
of M, and the degree of the latter is dimK(V ). So the algorithm stops at
step C2 only if the minimal polynomial and the characteristic polynomial
differ.

C3. The matrix A can be interpreted as the matrix whose columns are the
vectors v, ϕ(v), . . . , ϕd−1(v) for a generic v. If det(A) = 0, then the endo-
morphisms 1, ϕ, . . . , ϕd−1 are linearly dependent, a contradiction. Hence
det(M) necessarily is non-zero and V is a cyclic P -module.

In conclusion, steps C3, C4, C5 are redundant in the univariate case. This
corresponds to the well-known fact that V is a cyclic K[x]-module if and only
if the minimal polynomial and the characteristic polynomial of ϕ coincide.
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4.2 Border prebases

Given a zero-dimensional polynomial ideal I, we want to study the residue
class ring P/I by choosing a K-basis and examining the multiplication ma-
trices with respect to that basis. How can we find a basis having “nice” prop-
erties? One possibility is to take the residue classes of the terms in an order
ideal, i.e. in a finite set of terms which is closed under forming divisors.

The choice of an order ideal O yields additional structure on the monoid
of terms Tn. For instance, there are terms forming the border of O, i.e. terms
t outside O such that there exist an indeterminate xi and a term t′ in O
with t = xit

′. Moreover, every term t has an O-index which measures the
distance from t to O. The properties of order ideals, borders, and O-indices
are collected in the first subsection.

The second subsection deals with O-border prebases. These are sets of
polynomials each of which consists of one term in the border of O and a
linear combination of terms in O. Using O-border prebases, we construct a
division algorithm and define normal remainders.

4.2.1 Order ideals

Let Tn denote the monoid of terms in n indeterminates. Moreover, for every
d ≥ 0, we let Tn

d be the set of terms of degree d and Tn
<d =

⋃d−1
i=0 Tn

i . The
following kind of subset of Tn is central to this section.

Definition 4.2.1. A non-empty, finite set of terms O ⊂ Tn is called an order
ideal if it is closed under forming divisors, i.e. if t ∈ O and t′ | t imply t′ ∈ O.

Order ideals have many other names in the literature. For instance, sta-
tisticians sometimes call them complete sets of estimable terms (see Sec-
tion 4.4). In Chapter 3, the more general notion of “sets of polynomials con-
nected to 1” is used.

Definition 4.2.2. Let O ⊂ Tn be an order ideal.

1. The border of O is the set

∂O = Tn
1 · O \ O = (x1O ∪ · · · ∪ xnO) \ O

The first border closure of O is the set ∂O = O ∪ ∂O.
2. For every k ≥ 1, we inductively define the (k + 1)st border of O by
∂k+1O = ∂(∂kO) and the (k + 1)st border closure of O by the rule
∂k+1O = ∂kO ∪ ∂k+1O. For convenience, we let ∂0O = ∂0O = O.

The kth border closure of an order ideal O is an order ideal for every k ≥ 0.
In Chapter 3, the kth border of O is denoted by O[k].

Example 4.2.3. Let O be the order ideal {1, x, y, x2, xy, y2, x3, x2y, y3, x4, x3y}
in T2. Then we visualize O and its first two borders as follows.
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Let us collect some properties of order ideals, their borders and border
closures.

Proposition 4.2.4 (Basic Properties of Borders).
Let O ⊂ Tn be an order ideal.

1. For every k ≥ 0, we have a disjoint union ∂kO =
⋃k

i=0 ∂
iO.

2. For every k ≥ 1, we have ∂kO = Tn
k · O \ Tn

<k · O.
3. We have a disjoint union Tn =

⋃∞
i=0 ∂

iO.
4. A term t ∈ Tn is divisible by a term in ∂O if and only if t ∈ Tn \ O.

Proof. The definition of the first border closure of O yields ∂O = O∪Tn
1 · O.

Inductively, it follows that ∂k+1O = ∂kO ∪ Tn
1 · ∂kO = ∂kO ∪ Tn

k+1O. This
proves the first claim. Then the second claim is a consequence of the equality
∂k+1O = ∂k+1O \ ∂kO. The third claim follows from the observation that
every term is in ∂kO for some k ≥ 0.

Finally, the fourth claim holds because the second claim implies the fact
that t ∈ ∂kO for some k ≥ 1 is equivalent to the existence of a factorization
t = t′t′′ where deg(t′) = k − 1 and t′′ ∈ ∂O. �

The above partition of Tn allows us to define a “distance” between a term
and an order ideal.

Definition 4.2.5. Let O ⊂ Tn be an order ideal.

1. For every t ∈ Tn, there exists a unique number k ∈ N such that t ∈ ∂kO.
We call k the index of t with respect to O and write indO(t) = k.

2. For an arbitrary polynomial f ∈ P \ {0}, we define the index of f with
respect to O by indO(f) = max{indO(t) | t ∈ Supp (f)}.
By this definition, the kth border of O consists precisely of the terms

of index k. Notice that every polynomial f ∈ P \ {0} has a representation
f = c1t1 + · · ·+ csts where c1, . . . , cs ∈ K \ {0} and such that t1, . . . , ts ∈ Tn

satisfy indO(t1) ≥ · · · ≥ indO(ts). However, this representation is in general
not unique since several terms in the support of f may have the same index
with respect to O.

Let us point out some of the most useful properties of the index.
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Proposition 4.2.6. Let O ⊂ Tn be an order ideal.

1. For a term t ∈ Tn, the number k = indO(t) is the smallest natural number
such that t = t′t′′ with a term t′ ∈ Tn of degree k and with t′′ ∈ O.

2. Given two terms t, t′ ∈ Tn, we have indO(t t′) ≤ deg(t) + indO(t′).
3. For f, g ∈ P \ {0} such that f + g �= 0, we have

indO(f + g) ≤ max{indO(f), indO(g)}
4. For f, g ∈ P \ {0}, we have

indO(f g) ≤ min{deg(f) + indO(g),deg(g) + indO(f)}
Proof. The first claim follows from the proof of Proposition 4.2.4.4. The second
claim follows from the first. The third claim is a consequence of the inclusion
Supp (f+g) ⊆ Supp (f)∪Supp (g). The last claim follows from the observation
that Supp (fg) ⊆ {t′t′′ | t′ ∈ Supp (f), t′′ ∈ Supp (g)} and from the second
claim. �

Although the partial ordering on Tn defined by the index appears similar
to a term ordering, it has a serious drawback: this ordering is incompatible
with term multiplication, i.e. indO(t) ≥ indO(t′) does not, in general, imply
indO(t t′′) ≥ indO(t′ t′′). Our next example is a case in point.

Example 4.2.7. Let O = {1, x, x2} ⊂ T(x, y). Then O is an order ideal with
border ∂O = {y, xy, x2y, x3}. The following sketch illustrates the situation.
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Multiplying the terms on both sides of the inequality indO(y) > indO(x2)
by x2, we get indO(x2 · y) < indO(x2 · x2). Similarly, if we multiply the terms
on both sides of the equality indO(y) = indO(x2y) by x, we get the inequality
indO(x · y) < indO(x · x2y).

4.2.2 Border division

In this subsection we introduce an important tool for dealing with zero-
dimensional ideals: an O-border prebasis, i.e. a set of polynomials of which
each is a linear combination of one term in ∂O and terms in O. In this way
we imitate the definition of a Gröbner basis where each polynomial is a lin-
ear combination of the leading term and smaller terms. Then we present a
process for dividing arbitrary polynomials by those of an O-border prebasis.
However, the remainder of this division process is not uniquely determined.
This indicates that O-border prebases are a first step in the right direction
and that we must take one more step in the next section.
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Definition 4.2.8. Let O = {t1, . . . , tµ} be an order ideal, and let ∂O =
{b1, . . . , bν} be its border. A set of polynomials G = {g1, . . . , gν} is called an
O-border prebasis if the polynomials have the form gj = bj −

∑µ
i=1 αijti

such that αij ∈ K for 1 ≤ i ≤ µ and 1 ≤ j ≤ ν.
In particular, a border prebasis can be interpreted as a tuple of polynomials

marked by the border terms (b1, . . . , bν) in the following sense.

Definition 4.2.9. A pair (g, b) is said to be a marked polynomial if g is a
non-zero polynomial and b ∈ Supp (g) with coefficient 1. A tuple of polynomials
(g1, . . . , gν) is marked by a tuple of terms (b1, . . . , bν) if (g1, b1), . . . , (gν , bν)
are marked polynomials.

The definition of a border prebasis only fixes the shape of our generators.
Note that this notion requires a bit more than that of marked polynomials –
the unmarked terms in the polynomial’s support have to be in the order ideal.
Border prebases are already sufficient to perform polynomial division with
remainder. The following algorithm provides a fundamental tool in working
with border prebases. It is similar to the procedure called “B-reduction” in
Chapter 3.

Proposition 4.2.10 (Border Division Algorithm).
Let O = {t1, . . . , tµ} be an order ideal, let ∂O = {b1, . . . , bν} be its border, and
let {g1, . . . , gν} be an O-border prebasis. Given a polynomial f ∈ P , consider
the following instructions.

D1. Let f1 = · · · = fν = 0, c1 = · · · = cµ = 0, and h = f .
D2. If h = 0, then return (f1, . . . , fν , c1, . . . , cµ) and stop.
D3. If indO(h) = 0, then find c1, . . . , cµ ∈ K such that c1t1 + · · · + cµtµ = h.

Return (f1, . . . , fν , c1, . . . , cµ) and stop.
D4. If indO(h) > 0, then let h = a1h1+· · ·+ashs such that a1, . . . , as ∈ K\{0}

and h1, . . . , hs ∈ Tn satisfy indO(h1) = indO(h). Determine the smallest
index i ∈ {1, . . . , ν} such that h1 factors as h1 = t′ bi and so that the term
t′ ∈ Tn has degree indO(h)−1. Subtract a1t′gi from h, add a1t′ to fi, and
continue with step D2.

This is an algorithm which returns a tuple (f1, . . . , fν , c1, . . . , cµ) ∈ P ν ×Kµ

such that
f = f1g1 + · · ·+ fνgν + c1t1 + · · ·+ cµtµ

and deg(fi) ≤ indO(f)− 1 for all i ∈ {1, . . . , ν} with figi �= 0. This represen-
tation does not depend on the choice of the term h1 in Step D4.

For the reader’s convenience we reproduce the proof from [KK03a].

Proof. First we show that Step D4 can be executed. Let k = indO(h1). By
Proposition 4.2.4.2, there is a factorization h1 = t̃ ti for some term t̃ of degree k
and some ti ∈ O, and there is no such factorization with a term t̃ of smaller
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degree. Since k > 0, we can write t̃ = t′ xj for some t′ ∈ Tn and j ∈ {1, . . . , n}.
Then we have deg(t′) = k − 1, and the fact that t̃ has the smallest possible
degree implies xj ti ∈ ∂O. Thus we have h1 = t′ (xj ti) = t′ bk for some
bk ∈ ∂O.

Next we prove termination. We show that Step D4 is performed only fi-
nitely many times. Let us investigate the subtraction h − a1t′gi in Step D4.
Using the representation gi = bi −

∑µ
k=1 αkitk given in Definition 4.2.8, this

subtraction becomes

h− a1t′gi = a1h1 + · · ·+ ashs − a1t′bi + a1t′
µ∑

k=1

αkitk

Now a1h1 = a1t′bi shows that a term of index indO(h) is removed from h and
replaced by terms of the form t′ tl ∈ ∂k−1O which have strictly smaller index.
The algorithm terminates after finitely many steps because, for a given term,
there are only finitely many terms of smaller or equal index.

Finally, we prove correctness. To this end, we show that the equation

f = h + f1g1 + · · ·+ fνgν + c1t1 + · · ·+ cµtµ
is an invariant of the algorithm. It is satisfied at the end of Step D1. A poly-
nomial fi is only changed in Step D4. There the subtraction h − a1t′gi is
compensated by the addition (fi + a1t′)gi. The constants c1, . . . , cµ are only
changed in Step D3 in which h is replaced by the expression c1t1 + · · ·+ cµtµ.
When the algorithm stops, we have h = 0. This proves the stated representa-
tion of f . The additional claim that this representation does not depend on
the choice of h1 in Step D4 follows from the observation that h1 is replaced
by terms of strictly smaller index. Thus the different executions of Step D4
corresponding to the reduction of several terms of a given O-index in h do not
interfere with one another, and the final result – after all those terms have
been rewritten – is independent of the order in which they have been taken
care of. �

Notice that in Step D4 the algorithm uses a representation of h which is
not necessarily unique. Moreover, to make the factorization of h1 unique, we
chose the index i minimally, but this choice had not been forced upon us.
Finally, the result of the division depends on the numbering of the elements
of ∂O, as our next example shows.

Example 4.2.11. Let n = 2, and let O = {t1, t2, t3} with t1 = 1, t2 = x, and
t3 = y. Then the border of O is ∂O = {b1, b2, b3} with b1 = x2, b2 = xy,
and b3 = y2. The polynomials g1 = x2 + x + 1, g2 = xy + y, and g3 =
y2 +x+1 constitute an O-border prebasis. We want to divide the polynomial
f = x3y2 − xy2 + x2 + 2 by this O-border prebasis.

For easy reference, the next borders are ∂2O = {x3, x2y, xy2, y3}, ∂3O =
{x4, x3y, x2y2, xy3, y4}, and ∂4O = {x5, x4y, x3y2, x2y3, xy4, y5}. We apply
the Border Division Algorithm and follow its steps.
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D1. Let f1 = f2 = f3 = 0, c1 = c2 = c3 = 0, and h = x3y2−xy2 +x2 +2. The
O-indices of the terms in h are 4,2,1 and 0 respectively, so h has index 4.

D4. We have x3y2 = xy2 · b1 with deg xy2 = ind(h)− 1. Thus we put f1 = xy2

and h = x3y2 − xy2 + x2 + 2− xy2(x2 + x+ 1). The terms in the support
of h = −x2y2 − 2xy2 + x2 + 2 have O-indices 3,2,1 and 0 respectively.

D4. We have x2y2 = y2 · b1 with deg y2 = ind(h)− 1. Add −y2 to f1 to obtain
f1 = xy2 − y2 and put h = −x2y2 − 2xy2 + x2 + 2 + y2(x2 + x+ 1). The
terms in the support of h = −xy2 +x2 +y2 +2 have O-indices 2,1,1 and 0
respectively.

D4. We have xy2 = y · b2 with deg y = ind(h)− 1. Put f2 = −y and put h =
−xy2+x2+y2+2+y(xy+y). The terms in the support of h = x2+2y2+2
have O-indices 1,1 and 0 respectively.

D4. We have x2 = 1 · b1 with deg 1 = ind(h) − 1. Add 1 to f1 to obtain
f1 = xy2 − y2 + 1 and put h = x2 + 2y2 + 2− 1(x2 + x+ 1). The terms in
the support of h = 2y2 − x+ 1 have O-indices 1,0 and 0 respectively.

D4. We have y2 = 1 · b3 with deg 1 = ind(h)− 1. Add 2 to f3 to obtain f3 = 2
and put h = 2y2 − x + 1 − 2(y2 + x + 1). The terms in the support of
h = −3x− 1 have O-indices 0 and 0. Thus indO(h) = 0.

D3. We have h = −1 · t1−3t2 +0t3. The algorithm returns the following tuple
(xy2 − y2 + 1,−y, 2, 1, −3, 0) and stops.

Therefore we have a representation

f = (xy2 − y2 + 1)g1 − y g2 + 2 g3 − 1 t1 − 3 t2 + 0 t3

Second we perform the algorithm with respect to the shuffled tuple
(g′1, g

′
2, g

′
3) = (g3, g2, g1).

D1. Let f1 = f2 = f3 = 0, c1 = c2 = c3 = 0, and h = x3y2−xy2 +x2 +2. The
O-indices of the terms in in the support of h are 4,2,1 and 0 respectively,
so h has index 4.

D4. We have x3y2 = x3 · b′1 with deg x3 = ind(h) − 1. Thus we put f ′1 = x3

and h = x3y2 − xy2 + x2 + 2− x3(y2 + x+ 1). The terms in the support
of h = −x4 − x3 − xy2 + x2 + 2 have O-indices 3,2,2,1 and 0 respectively.

D4. We have x4 = x2 · b′3 with deg x2 = ind(h) − 1. Add −x2 to f ′3 to obtain
f ′3 = x2 and put h = −x4−x3−xy2 +x2 +2+x2(x2 +x+1). The terms in
the support of h = −xy2 + 2x2 + 2 have O-indices 2,1, and 0 respectively.

D4. We have xy2 = x · b′1 with deg x = ind(h) − 1. Add x to f ′1 to obtain
f ′1 = x3 +x and put h = −xy2 +2x2 +2+x(y2 + y+1). The terms in the
support of h = 2x2 + xy + x+ 2 have O-indices 1,1,0 and 0 respectively.

D4. We have x2 = 1 · b′3 with deg 1 = ind(h) − 1. Add 2 to f ′3 to obtain
f ′3 = x2 + 2 and put h = 2x2 + xy + x+ 2− 2(x2 + x+ 1). The terms in
the support of h = xy − x have O-indices 1 and 0 respectively.

D4. We have xy = 1 · b′2 with deg 1 = ind(h)− 1. Add 1 to f ′2 to obtain f ′2 = 1
and put h = xy − x − 1(xy + y). The terms in the support of h = x − y
have O-indices 0 and 0. Thus we have indO(h) = 0.
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D3. We write h = 0t1 + 1t2 − 1t3. The algorithm returns the following tuple
(x3 + x, −1, x3 + x, 0, 1, −1) and stops.

Therefore we have a representation

f = (x3 + x)g′1 − 1 g′2 + (x2 + 2) g′3 + 1 t1 − 3 t2 − 1 t3
= (x2 + 2)g1 − 1 g2 + (x3 + x) g3 + 0 t1 + 1 t2 − 1 t3

These calculations show that the order of the polynomials does affect the
outcome of the Border Division Algorithm.

If we fix the tuple (g1, . . . , gν) then the result of the Border Division
Algorithm is uniquely determined. The given polynomial f is represented
in P/(g1, . . . , gν) by the residue class of the linear combination c1t1+· · ·+cµtµ.
We introduce a name for this linear combination.

Definition 4.2.12. Let O={t1, . . . , tµ} be an order ideal, let G = {g1, . . . , gν}
be an O-border prebasis, and let G = (g1, . . . , gν). The normal O-remainder
of a polynomial f with respect to G is

NRO,G(f) = c1t1 + · · ·+ cµtµ
where f = f1g1 + · · ·+ fνgν + c1t1 + · · ·+ cµtµ is the representation computed
by the Border Division Algorithm.

Example 4.2.13. Let G = (g1, g2, g3) and G′ = (g′1, g
′
2, g

′
3) be the tuples con-

sidered in Example 4.2.11. The above computations lead to

NRO,G(f) = −3x− 1 and NRO,G′(f) = x− y

So the normal O-remainder depends on the ordering of the polynomials in G.
In the next section we shall encounter a special kind of border prebasis for
which this unwanted dependence disappears.

An important consequence of the Border Division Algorithm is that the
residue classes of the elements of O generate P/(g1, . . . , gν) as a K-vector
space. But, as the above examples show, this system of generators is not
necessarily a basis.

Corollary 4.2.14. Let O={t1, . . . , tµ} be an order ideal and G = {g1, . . . , gν}
an O-border prebasis. Then the residue classes of the elements of O gener-
ate P/(g1, . . . , gν) as a K-vector space. More precisely, the residue class of
every polynomial f ∈ P can be represented as a linear combination of the
residue classes {t̄1, . . . , t̄ν} by computing the normal remainder NRO,G(f) for
G = (g1, . . . , gν).
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4.3 Border bases

After all these preparations we are ready to introduce the fundamental notion
of this article: border bases. They are special systems of generators of zero-
dimensional ideals which do not depend on the choice of a term ordering,
but the choice of an order ideal. We discuss their existence and uniqueness
and compare them to Gröbner bases of the given ideal. Then we show how
one can use border bases to define normal forms, and we characterize border
bases by the property that the associated multiplication matrices are pairwise
commuting.

4.3.1 Existence and uniqueness of border bases

As above, let P = K[x1, . . . , xn] be a polynomial ring over a fieldK. Moreover,
let I be a zero-dimensional ideal in P .

Definition 4.3.1. Let O = {t1, . . . , tµ} be an order ideal and G = {g1, . . . , gν}
an O-border prebasis consisting of polynomials in I. We say that the set G is
an O-border basis of I if the residue classes of t1, . . . , tµ form a K-vector
space basis of P/I.

Next we see that this definition implies that anO-border basis of I actually
generates I.

Proposition 4.3.2. Let O = {t1, . . . , tµ} be an order ideal, and let G be an
O-border basis of I. Then I is generated by G.

Proof. By definition, we have (g1, . . . , gν) ⊆ I. To prove the converse inclusion,
let f ∈ I. Using the Border Division Algorithm 4.2.10, the polynomial f can
be expanded as f = f1g1 + · · ·+ fνgν + c1t1 + · · ·+ cµtµ, where f1, . . . , fν ∈ P
and c1, . . . , cµ ∈ K. This implies the equality of residue classes 0 = f̄ =
c1t̄1 + · · ·+ cµt̄µ in P/I. By assumption, the residue classes t̄1, . . . , t̄µ form a
K-vector space basis. Hence c1 = · · · = cµ = 0, and the expansion of f turns
out to be f = f1g1 + · · ·+ fνgν . This completes the proof. �

Remark 4.3.3. Let O = {t1, . . . , tµ} be an order ideal and G an O-border
prebasis which generates an ideal I. We let 〈O〉K = Kt1 + · · · +Ktµ be the
vector subspace of P generated by O. Then Corollary 4.2.14 shows that the
residue classes of the elements of O generate P/I. Since the border basis prop-
erty requires that these residue classes are linearly independent, the following
conditions are equivalent.

1. The set G is an O-border basis of I.
2. We have I ∩ 〈O〉K = {0}.
3. We have P = I ⊕ 〈O〉K .
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Having defined a new mathematical object, it is natural to look for its
existence and possibly its uniqueness. In the following theorem, we mention
the field of definition of an ideal. For a discussion on this concept, see [KR00],
Section 2.4. Furthermore, given an ideal I ⊆ P and a term ordering σ, we
denote the order ideal Tn \ LTσ(I) by Oσ(I).

Theorem 4.3.4 (Existence and Uniqueness of Border Bases).
Let O = {t1, . . . , tµ} be an order ideal, let I be a zero-dimensional ideal in P ,
and assume that the residue classes of the elements in O form a K-vector
space basis of P/I.

1. There exists a unique O-border basis G of I.
2. Let G′ be an O-border prebasis whose elements are in I. Then G′ is the
O-border basis of I.

3. Let k be the field of definition of I. Then we have G ⊂ k[x1, . . . , xn].

Proof. First we prove Claim 1. Let ∂O = {b1, . . . , bν}. For every i ∈ {1, . . . , ν},
the hypothesis implies that the residue class of bi in P/I is linearly dependent
on the residue classes of the elements of O. Therefore I contains a polynomial
of the form bi −

∑µ
j=1 αijtj such that αij ∈ K. Then G = {g1, . . . , gν} is

an O-border prebasis, and hence an O-border basis of I by Definition 4.3.1.
Let G′ = {g′1, . . . , g′ν} be another O-border basis of I. If, for contradiction,
there exists a term b ∈ ∂O such that the polynomials in G and G′ marked
by b differ, their difference is a non-zero polynomial in I whose support is
contained in O. This contradicts the hypothesis and Claim 1 is proved.

To prove the second claim, it suffices to observe that, by Definition 4.3.1,
the set G′ is an O-border basis of I and to apply the first part. Finally, we
prove Claim 3. Let k be the field of definition of I, let P ′ = k[x1, . . . , xn],
and let I ′ = I ∩ P ′. Given a term ordering σ, the ideals I and I ′ have the
same reduced σ-Gröbner basis (see [KR00], Lemma 2.4.16). Hence we have
Oσ(I) = Oσ(I ′), and therefore dimk(P ′/I ′) = dimK(P/I). The elements of O
are in P ′ and they are linearly independent modulo I ′. Hence their residue
classes form a k-vector space basis of P ′/I ′. Let G′ be the O-border basis
of I ′. Then G′ is an O-border prebasis whose elements are contained in I.
Thus the statement follows from Claim 2. �

Given an order ideal O consisting of dimK(P/I) many terms, does the
O-border basis of I always exist? The answer is negative, as our next example
shows.

Example 4.3.5. Let P = Q[x, y], and let I be the vanishing ideal of the set of
five points X = {(0, 0), (0,−1), (1, 0), (1, 1), (−1, 1)} in the affine space A2(Q),
i.e. let I = {f ∈ P | f(p) = 0 for all p ∈ X}. It is known that dimK(P/I) = 5.
In T2, the following order ideals contain five elements:

O1 = {1, x, x2, x3, x4}, O2 = {1, x, x2, x3, y}, O3 = {1, x, x2, y, y2},
O4 = {1, x, x2, y, xy}, O5 = {1, x, y, y2, y3}, O6 = {1, y, y2, y3, y4},
O7 = {1, x, y, xy, y2}
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Not all of these are suitable for border bases of I. For example, the residue
classes of the elements of O1 cannot form a K-vector space basis of P/I since
x3 − x ∈ I. Similarly, the residue classes of the elements of O6 cannot form a
K-vector space basis of P/I since y3 − y ∈ I.

So, let us strive for less and ask another question. Does a given zero-
dimensional ideal possess a border basis at all? Using Theorem 4.3.4, we can
rephrase the question in the following way. Given a zero-dimensional ideal I,
are there order ideals such that the residue classes of their elements form a
K-vector space basis of P/I? This time the answer is yes, as we can show
with the help of Gröbner bases.

Given an order ideal O ⊂ Tn, its complement Tn \O is the set of terms of
a monomial ideal. Recall that every monomial ideal has a unique minimal set
of generators (see [KR00], Proposition 1.3.11). The elements of the minimal
set of generators of the monomial ideal corresponding to Tn \O are called the
corners of O. A picture illustrates the significance of this name.

............................... ................

........

.......................

................

xi

yj

• • •
1

• • •
•

×
×
×

Proposition 4.3.6. Let σ be a term ordering on Tn. Then there exists a
unique Oσ(I)-border basis G of I, and the reduced σ-Gröbner basis of I is the
subset of G consisting of the polynomials marked by the corners of Oσ(I).

Proof. By Macaulay’s Basis Theorem (see [KR00], Theorem 1.5.7), the residue
classes of the elements in Oσ(I) form a K-vector space basis of P/I. Thus
Theorem 4.3.4.1 implies the existence and uniqueness of the Oσ(I)-border
basis G of I.

To prove the second claim, we let b ∈ Tn \ Oσ(I) be a corner of Oσ(I).
The element of the minimal σ-Gröbner basis of I with leading term b has the
form b − NFσ,I(b), where NFσ,I(b) is contained in the span of Oσ(I). Since
the Oσ(I)-border basis of I is unique, this Gröbner basis element agrees with
the border basis element marked by b. Thus the second claim follows and the
proof is complete. �

To summarize the discussion, the ideal I does not necessarily have an
O-border basis for every order ideal O consisting of dimK(P/I) terms, but
there always is an O-border basis if O is of the form O = Oσ(I) for some term
ordering σ. This motivates our next question. Do all border bases belong to
order ideals of the form Oσ(I)? In other words, is there a bijection between
the reduced Gröbner bases and the border bases of I? The answer is no, as
our next example shows.
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Example 4.3.7. Let P = Q[x, y], and let X ⊂ A2(Q) be the set of points
X = {p1, p2, p3, p4, p5)}, where p1 = (0, 0), p2 = (0,−1), p3 = (1, 0),
p4 = (1, 1), and p5 = (−1, 1). Furthermore, let I ⊂ P be the vanishing
ideal of X (see Example 4.3.5). The map eval : P/I −→ Q5 defined by
f + I �→ (f(p1), . . . , f(p5)) is an isomorphism of K-vector spaces.

Consider the order ideal O = {1, x, y, x2, y2}. The matrix of size 5 × 5
whose columns are (eval(1), eval(x), . . . , eval(y2)) is invertible. Therefore the
residue classes of the terms in O form a Q-vector space basis of P/I, and I has
an O-border basis by Theorem 4.3.4.1.

The border of O is ∂O = {xy, x3, y3, xy2, x2y}. The O-border basis of I is
G = {g1, . . . , g5} with g1 = x3 − x, g2 = x2y − 1

2y − 1
2y

2, g3 = xy − x− 1
2y +

x2 − 1
2y

2, g4 = xy2 − x− 1
2y + x2 − 1

2y
2, and g5 = y3 − y. To show that this

border basis is not of the form Oσ(I), consider the polynomial g3 in more
detail. For any term ordering σ we have x2 >σ x and y2 >σ y. Moreover,
either x2 >σ xy >σ y

2 or y2 >σ xy >σ x
2. This leaves either x2 or y2 as the

leading term of g3. Since these terms are contained in O, the order ideal O
cannot be the complement of LTσ(I) in T2 for any term ordering σ.

The upshot of this example is that the set of border bases of a given zero-
dimensional ideal is strictly larger than the set of its reduced Gröbner bases.
Therefore there is a better chance of finding a “nice” system of generators
of I among border bases than among Gröbner bases. For instance, sometimes
border bases are advertised by saying that they keep symmetry. While this is
true in many cases, the claim has to be taken with a grain of salt. Just have
a look at the following example.

Example 4.3.8. Let P = Q[x, y] and I = (x2 + y2 − 1, xy − 1). The ideal I is
symmetric with respect to the indeterminates x and y. Moreover, we have
dimK(P/I) = 4. The only symmetric order ideal consisting of four terms is
O = {1, x, y, xy}. But I does not have an O-border basis, since we have
xy − 1 ∈ I. It may be interesting to observe that the residue classes of the
elements 1, x− y, x+ y, x2 − y2 form a K-vector space basis of P/I.

Let us investigate the relationship between Gröbner bases and border bases
a little further. A list (or a set) of marked polynomials ((g1, b1), . . . , (gν , bν))
is said to be marked coherently if there exists a term ordering σ such that
LTσ(gi) = bi for i = 1, . . . , ν. Furthermore, recall that an O-border (pre)basis
can be viewed as a tuple of polynomials marked by terms in the border of O.

Proposition 4.3.9. Let O be an order ideal such that the residue classes of
the elements of O form a K-vector space basis of P/I. Let G be the O-border
basis of I, and let G′ be the subset of G consisting of the elements marked by
the corners of O. Then the following conditions are equivalent.

1. There exists a term ordering σ such that O = Oσ(I).
2. The elements in G′ are marked coherently.
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3. The elements in G are marked coherently.

Moreover, if these conditions are satisfied, then G′ is the reduced σ-Gröbner
basis of I.

Proof. Let us prove that 1) implies both 2) and the additional claim. The fact
that G′ is the reduced σ-Gröbner basis of I follows from Proposition 4.3.6.
Hence G′ is marked coherently. Now we show that 2) implies 3). For every
polynomial g ∈ G\G′, there exists a polynomial g′ ∈ G′ such that the marked
term of g is of the form b = t LTσ(g′). Then the support of the polynomial
g − t g′ is contained in O, and therefore g = t g′. This proves that also g is
marked coherently with respect to σ.

Since 3) ⇒ 2) is obvious, only 2)⇒ 1) remains to be shown. Let σ be a term
ordering which marks G′ coherently. Denote the monomial ideal generated by
the leading terms of the elements in G′ by LTσ(G′). Since LTσ(I) ⊇ LTσ(G′),
we get Oσ(I) = Tn \ LTσ(I) ⊆ Tn \ LTσ(G′) = O. Also the residue classes
of the elements of Oσ(I) form a K-vector space basis of P/I, and hence the
inclusion is indeed an equality. �

The proposition applies for instance to the monomial ideal I generated
by the corners of O. Later we shall see that the equivalent conditions of this
proposition apply for a particular type of zero-dimensional ideals, namely the
vanishing ideals of distracted fractions (see Example 4.4.5). The following
remark will be useful in the last section.

Remark 4.3.10. Assume that there exists a term ordering σ such that every
corner of O is σ-greater than every element in O. Then we have O = Oσ(I)
for all ideals I such that the residue classes of the terms in O form a K-vector
space basis of P/I. We do not know whether the converse holds, but we believe
it does.

4.3.2 Normal forms

In Gröbner basis theory one can define a unique representative of a residue
class in P/I by using the normal form of a polynomial f . The normal form
is obtained by computing the normal remainder of f under the division by
a Gröbner basis. It does not depend on the Gröbner basis, but only on the
given term ordering and the ideal I. Hence it can be used to make the ring
operations in P/I effectively computable. In this subsection we imitate this
approach and generalize the normal form to border basis theory.

Let O = {t1, . . . , tµ} be an order ideal, let G = {g1, . . . , gν} be the
O-border basis of a zero-dimensional ideal I, and let G be the tuple (g1, . . . , gν).
In this situation the normal O-remainder of a polynomial does not depend on
the order of the elements in G.

Proposition 4.3.11. Let π : {1, . . . , ν} −→ {1, . . . , ν} be a permutation, and
let G′ = (gπ(1), . . . , gπ(ν)) be the corresponding permutation of the tuple G.
Then we have NRO,G(f) = NRO,G′(f) for every polynomial f ∈ P .
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Proof. The Border Division Algorithm applied to G and G′, respectively, yields
representations

f = f1g1 + · · ·+ fνgν + NRO,G(f) = f ′1gπ(1) + · · ·+ f ′νgπ(ν) + NRO,G′(f)

where fi, f ′j ∈ P . Therefore we have NRO,G(f)−NRO,G′(f) ∈ 〈O〉K ∩ I. The
hypothesis that I has an O-border basis implies 〈O〉K ∩ I = {0}. Hence the
claim follows. �

This result allows us to introduce the following definition.

Definition 4.3.12. Let O={t1, . . . , tµ} be an order ideal and G = {g1, . . . , gν}
an O-border basis of I. The normal form of a polynomial f ∈ P with respect
to O is the polynomial NFO,I(f) = NRO,G(f).

The normal form NFO,I(f) of f ∈ P can be calculated by dividing f by
the O-border basis of I. It is zero if and only if f ∈ I. Further basic properties
of normal forms are collected in the following proposition.

Proposition 4.3.13 (Basic Properties of Normal Forms).
Let O be an order ideal, and suppose that I has an O-border basis.

1. If there exists a term ordering σ such that O = Oσ(I), then we have
NFO,I(f) = NFσ,I(f) for all f ∈ P .

2. For f1, f2 ∈ P , we have NFO,I(f1 − f2) = NFO,I(f1)−NFO,I(f2).
3. For f ∈ P , we have NFO,I(NFO,I(f)) = NFO,I(f).
4. For f1, f2 ∈ P , we have NFO,I(f1 f2) = NFO,I

(
NFO,I(f1) NFO,I(f2)

)
.

5. Let M1, . . . ,Mn ∈ Matn(K) be the matrices of the multiplication endo-
morphisms of P/I with respect to the basis given by the residue classes of
the terms in O. Suppose that t1 = 1, and let e1 be the first standard basis
vector of Kν . Then we have

NFO,I(f) = (t1, . . . , tν) · f(M1, . . . ,Mn) · e1
for every f ∈ P .

Proof. Claim 1) follows because both NFO,I(f) and NFσ,I(f) are equal to the
uniquely determined polynomial in f + I whose support is contained in O.
Claims 2), 3), and 4) follow from the same uniqueness. To prove the last
claim, we observe that e1 is the coordinate tuple of 1 + I in the basis of P/I
given by the residue classes of the terms in O. Since Mi is the matrix of the
multiplication by xi, the tuple f(M1, . . . ,Mn) · e1 is the coordinate tuple
of f + I in this basis. From this the claim follows immediately. �
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4.3.3 Border bases and commuting matrices

The purpose of this subsection is to provide the link between border bases
and the theory of commuting endomorphisms discussed in the second section.
More precisely, we shall characterize border bases by the property that their
corresponding formal multiplication matrices commute.

Let O = {t1, . . . , tµ} be an order ideal with border ∂O = {b1, . . . , bν},
and let G = {g1, . . . , gν} be an O-border prebasis. For j = 1, . . . , ν, we write
gj = bj −

∑µ
i=1 αijti with α1j , . . . , αµj ∈ K.

In Section 4.1 we saw that a K-vector space basis of P/I allows us to
describe the multiplicative structure of this algebra via a tuple of commuting
matrices. If G is a border basis, we can describe these matrices as follows.

Remark 4.3.14. In the above setting, assume that G is a border basis. Then
{t̄1, . . . , t̄µ} is a K-vector space basis of P/I, and each multiplication endo-
morphism Xk of P/I corresponds to a matrix Xk = (ξij), i.e.,

Xk(t̄1) = ξ11t̄1 + · · ·+ ξµ1t̄µ
...

Xk(t̄µ) = ξ1µt̄1 + · · ·+ ξµµt̄µ

In these expansions only two cases occur. The product xk tj either equals some
term in the order ideal tr ∈ O or some border term bs ∈ ∂O. In the former
case we have

Xk(t̄j) = 0 t̄1 + · · ·+ 0 t̄r−1 + 1 t̄r + 0 t̄r+1 + · · ·+ 0 t̄µ

i.e., the jth column of Xk is the rth standard basis vector er. In the latter case
we have xktj + I = bs + I = α1st1 + · · ·+αµstµ + I, where the coefficients αis

are given by gs = bs −
∑

i αisti. Therefore we have

Xk(t̄j) = α1st̄1 + · · ·+ αµst̄µ

i.e., the jth column of Xk is (α1s, . . . , αµs)tr. Observe that all matrix compo-
nents ξij are determined by the polynomials g1, . . . , gν .

In view of this remark, at least formally, multiplication matrices can be
defined for any border prebasis.

Definition 4.3.15. Let O={t1, . . . , tµ} be an order ideal and G = {g1, . . . , gν}
an O-border prebasis. For 1 ≤ k ≤ n, define the kth formal multiplication
matrix Xk column-wise by

(Xk)∗j =

{
er, if xk tj = tr
(α1s, . . . , αµs)tr, if xk tj = bs
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To get some insight into the meaning of this definition, let us have a look
at example 4.3.7 “from the outside.”

Example 4.3.16. Let P = Q[x, y], and let O = {t1, t2, t3, t4, t5} be the order
ideal given by t1 = 1, t2 = x, t3 = y, t4 = x2, and t5 = y2. The border
of O is ∂O = {b1, b2, b3, b4, b5} where b1 = xy, b2 = x3, b3 = y3, b4 = x2y,
and b5 = xy2. The polynomials g1 = xy − x − 1

2y + x2 − 1
2y

2, g2 = x3 − x,
g3 = y3 − y, g4 = x2y − 1

2y − 1
2y

2, and g5 = xy2 − x− 1
2y + x2 − 1

2y
2 define a

border prebasis of I = (g1, . . . , g5). Now we compute the formal multiplication
matrices X and Y.

On the one hand, we have x t1 = t2, x t2 = t4, x t3 = b1, x t4 = b2, and
x t5 = b5. On the other hand, we have y t1 = t3, y t2 = b1, y t3 = t5, y t4 = b4,
and y t5 = b3. Thus we obtain

X =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
1 0 1 1 1
0 0 1/2 0 1/2
0 1 −1 0 −1
0 0 1/2 0 1/2

⎞⎟⎟⎟⎟⎠ and Y =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 1 0 0 0
1 1/2 0 1/2 1
0 −1 0 0 0
0 1/2 1 1/2 0

⎞⎟⎟⎟⎟⎠
By Example 4.3.7, this border prebasis is even a border basis of I. Hence the
formal multiplication matrices are the actual multiplication matrices. As such
they commute.

The following theorem is the main result of this subsection. We charac-
terize border bases by the property that their formal multiplication matrices
commute. A more general theorem is contained in Chapter 3.

Theorem 4.3.17 (Border Bases and Commuting Matrices).
Let O = {t1, . . . , tµ} be an order ideal. An O-border prebasis {g1, . . . , gν} is
an O-border basis of I = (g1, . . . , gν) if and only if its formal multiplication
matrices are pairwise commuting. In that case the formal multiplication ma-
trices represent the multiplication endomorphisms of P/I with respect to the
basis {t̄1, . . . , t̄µ}.
Proof. Let X1, . . . ,Xn be the formal multiplication matrices corresponding to
the given O-border prebasis G = {g1, . . . , gν}. If G is an O-border basis, then
Remark 4.3.14 shows that X1, . . . ,Xn represent the multiplication endomor-
phisms of P/I. Hence they are pairwise commuting.

It remains to show sufficiency. Without loss of generality, let t1 = 1. The
matrices X1, . . . ,Xn define a P -module structure on 〈O〉K via

f · (c1t1 + . . . cµtµ) = (t1, . . . , tµ)f(X̃1, . . . , X̃n)(c1, . . . , cµ)tr

First we show that this P -module is cyclic with generator t1. To do so, we
use induction on the degree to show ti · t1 = ti for i = 1, . . . , µ. The induction
starts with t1 = (t1, . . . , tµ)Iµ · e1. For the induction step, let ti = xj tk. Then
we have
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ti · t1 = (t1, . . . , tµ)ti(X1, . . . ,Xn)e1 = (t1, . . . , tµ)Xj tk(X1, . . . ,Xn)e1
= (t1, . . . , tµ)Xjek = (t1, . . . , tµ)ei = ti

Thus we obtain a surjective P -linear map Θ̃ : P → 〈O〉K such that f �→ f · t1
and an induced isomorphism of P -modules Θ : P/J → 〈O〉K with J = ker Θ̃.
In particular, the residue classes t1 +J, . . . , tµ +J are K-linearly independent.

Next we show I ⊆ J . Let bj = xk tl. Then we have

gj(X1, . . . ,Xn)e1 = bj(X1, . . . ,Xn)e1 −
µ∑

i=1

αijti(X1, . . . ,Xn)e1

= Xk tl(X1, . . . ,Xn)e1 −
µ∑

i=1

αijei = Xk el −
µ∑

i=1

αijei

=
µ∑

i=1

αijei −
µ∑

i=1

αijei = 0

Therefore we have gj ∈ ker Θ̃ for j = 1, . . . , ν and I ⊆ J , as desired.
Hence there is a natural surjective ring homomorphism Ψ : P/I → P/J .

Since the set {t1 + I, . . . , tµ + I} generates the K-vector space P/I, and since
the set {t1 +J, . . . , tµ +J} is K-linearly independent, both sets must be bases
and I = J . This shows that G is an O-border basis of I. �

The following example shows that the formal multiplication matrices cor-
responding to an O-border prebasis are not always commuting.

Example 4.3.18. Let P = Q[x, y] andO = {t1, t2, t3, t4, t5} with t1 = 1, t2 = x,
t3 = y, t4 = x2, and t5 = y2. Then the border of O is ∂O = {b1, b2, b3, b4, b4}
with b1 = xy, b2 = x3, b3 = y3, b4 = x2y, and b5 = xy2. Consider the set
of polynomials G = {g1, g2, g3, g4, g5} with g1 = xy − x2 − y2, g2 = x3 − x2,
g3 = y3 − y2, g4 = x2y − x2, and g5 = xy2 − y2. It is an O-border prebasis of
the ideal I = (g1, . . . , g5). Its multiplication matrices

X =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 1 1 0
0 0 1 0 1

⎞⎟⎟⎟⎟⎠ and Y =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 1 0
0 1 1 0 1

⎞⎟⎟⎟⎟⎠
do not commute:

X · Y =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 1 0
1 1 1 0 1

⎞⎟⎟⎟⎟⎠ �= Y · X =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 1 0
1 0 1 0 1

⎞⎟⎟⎟⎟⎠
By the theorem, the set G is not an O-border basis of I.
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The condition that the formal multiplication matrices of a border basis
have to commute can also be interpreted in terms of the syzygies of that
basis (see [Ste04]). Based on the results of this section one can now imitate
the development of Gröbner basis theory for border bases. For instance, the
border basis analogues of the conditions A – D which characterize Gröbner
bases in [KR00], Chapter 2, are examined by the first two authors in [KK03a].

4.4 Application to statistics

Fifty percent of the citizens of this country
have a below average understanding of statistics.

(Anonymous)

In this last section we see how to solve a problem in computational commu-
tative algebra whose motivation comes from statistics. Does this sound strange
to you? Well, come and see. Our problem comes up in the branch of statistics
called design of experiments. If you want to get a more detailed understanding
of this theory, we suggest that you start exploring it by reading [Rob98]. Or,
if you prefer the statisticians’ point of view, you can consult [PRW00].

To get to the heart of the problem, let us introduce some fundamental
concepts of design of experiments. A full factorial design is a finite set of
points in affine space An(K) ∼= Kn of the form D = D1×· · ·×Dn where Di is
a finite subset of K. Associated to it we may consider the vanishing ideal ID =
{f ∈ P | f(p) = 0 for all p ∈ D}. It is a complete intersection ID = (f1, . . . , fn)
such that fi ∈ K[xi] is a product of linear forms for i = 1, . . . , n. For instance,
in A2(Q) we have the full factorial design

............................... ................

........

.......................

................

x

y

• •
•

•
•
•

•

•
• •

• • •

whose vanishing ideal in Q[x, y] is ID =
(
x(x−1)(x−2)(x−3), y(y−1)(y−2)

)
.

The particular shape of the generators of ID implies that they are the reduced
σ-Gröbner basis of ID with respect to any term ordering σ. Hence the order
ideal OD = Tn \ LTσ(ID) is canonically associated to D. In the example at
hand we have for instance

OD = {1, x, y, x2, xy, y2, x3, x2y, xy2, x3y, x2y2, x3y2}

If a particular problem depends on n parameters and each parame-
ter can assume finitely many values Di ⊆ K, the full factorial design
D = D1 × · · · ×Dn corresponds to the set of all possible experiments. The
main task in the design of experiments is to identify an unknown function
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f : D −→ K. This function is a mathematical model of a quantity which
has to be computed or optimized. Since it is defined on a finite set, it can
be determined by performing all experiments in D and measuring the value
of f each time. Notice that a function f defined on a finite set is necessarily
a polynomial function.

However, in most cases it is impossible to perform all experiments corre-
sponding to the full factorial design. The obstacles can be, for instance, lack
of time, lack of money, or lack of patience. Only a subset of those experiments
can be performed. The question is how many and which? In statistical jargon
a subset F of a full factorial design D is called a fraction. Our task is to
choose a fraction F ⊆ D that allows us to identify the model. In particular,
we need to describe the order ideals whose residue classes form a K-basis
of P/IF . Statisticians express this property by saying that such order ideals
(or complete sets of estimable terms, as they call them) are identified by F .

Even more important is the so-called inverse problem. Suppose we are
given an order ideal O. We would like to determine all fractions F ⊆ D
such that the residue classes of the elements of O form a K-basis of P/IF .
The main result of [CR97] was a partial solution of this inverse problem. More
precisely, all fractions F ⊆ D were found such that O = Oσ(IF ) for some term
ordering σ. However, we have already pointed out that some order ideals O
do not fit into this scheme (see Example 4.3.7). Later, in the paper [CR01]
the full solution was presented, and the main idea was to use border bases.

Before delving into the general solution of the inverse problem following
the technique employed in [CR01], let us briefly explain an example of an
actual statistical problem. This example is taken from [BHH78] and adapted
to our setting and terminology.

Example 4.4.1. A number of similar chemical plants had been successfully
operating for several years in different locations. In a newly constructed plant
the filtration cycle took almost twice as long as in the older plants. Seven
possible causes of the difficulty were considered by the experts.

1. The water for the new plant was somehow different in mineral content.
2. The raw material was not identical in all respects to that used in the older

plants.
3. The temperature of filtration in the new plant was slightly lower than in

the older plants.
4. A new recycle device was absent in the older plants.
5. The rate of addition of caustic soda was higher in the new plant.
6. A new type of filter cloth was being used in the new plant.
7. The holdup time was lower than in the older plants.

These causes lead to seven variables x1, . . . , x7. Each of them can assume
only two values, namely old and new which we denote by 0 and 1, respectively.
Our full factorial design D ⊆ A7(Q) is therefore the set D = {0, 1}7. Its
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vanishing ideal is ID = (x2
1−x1, x

2
2−x2, . . . , x

2
7−x7) in the polynomial ring

P = Q[x1, x2, . . . , x7].
The model f : D −→ Q is the length of a filtration cycle. In order to

identify it, we would have to perform 128 cycles. This is impracticable, since
it would require too much time and money. On the other hand, suppose for a
moment that we conduct all experiments and the output is f = a+ b x1 + c x2

for some a, b, c ∈ Q. At this point it becomes clear that we wasted many
resources. Had we known in advance that the polynomial has only three un-
known coefficients, we could have identified them by performing only three
suitable experiments! Namely, if we determine three values of the polynomial
a+ b x1 + c x2, we can find a, b, c by solving a system of three linear equations
in these three indeterminates. If the matrix of coefficients is invertible, this is
an easy task.

However, a priori one does not know that the answer has that shape indi-
cated above. In practice, one has to make some guesses, perform well-chosen
experiments, and possibly modify the guesses until the process yields the de-
sired answer. In the case of the chemical plant, it turned out that only x1

and x5 were relevant for identifying the model.

In this example there is one point which needs additional explanation. How
can we choose the fraction F such that the matrix of coefficients is invertible?
In other words, given a full factorial design D and an order ideal O ⊆ OD,
which fractions F ⊆ D have the property that the residue classes of the ele-
ments of O are a K-basis of P/IF ? This is precisely the inverse problem stated
above. In order to explain its solution, we introduce the following terminology.

Definition 4.4.2. For i = 1, . . . , n, let �i ≥ 1 and Di = {ai1, ai2, . . . , ai�i
} ⊆

K. Then we say that the full factorial design D = D1 × · · · × Dn ⊆ An(K)
has levels (�1, . . . �n).

The polynomials fi = (xi−ai1) · · · (xi−ai�i
) with i = 1, . . . , n generate the

vanishing ideal ID of D. They are called the canonical polynomials of D.
Since {f1, . . . , fn} is a universal Gröbner basis of ID (i.e. a Gröbner basis
with respect to every term ordering), the order ideal

OD = {xα1
1 · · ·xαn

n | 0 ≤ αi < �i for i = 1, . . . , n}

represents a K-basis of P/ID. We call it the complete set of estimable
terms of D.

The following auxiliary result will be useful for proving the main theorem.

Lemma 4.4.3. Let D be a full factorial design, let {f1, . . . , fn} be its canon-
ical polynomials, let K be the algebraic closure of K, and let I be a proper
ideal of K[x1, . . . , xn] such that ID ⊆ I.
1. The ideal I is a radical ideal. It is the vanishing ideal of a fraction of D.
2. The ideal I is generated by elements of P , and I ∩ P is a radical ideal.



198 A. Kehrein, M. Kreuzer, and L. Robbiano

3. The polynomials of every border basis of I are elements of P .

Proof. First we prove Claim 1. Let An(K) be the affine space of dimension n
over K, and let F ⊂ An(K) be the set of zeros of I. Since ID ⊆ I, we have
F ⊆ D. By localizing the ring A = K[x1, . . . , xn]/ID at the maximal ideals m
corresponding to the points of d, we see that either IAm = (1) or IAm = mAm.
Therefore I is a radical ideal, and hence it is the defining ideal of F .

Since I is the defining ideal of a finite set of points with coordinates in K,
it is the intersection of ideals generated by linear forms having coefficients
in K. Consequently, the ideal I is defined over K which proves Claim 2. The
third claim follows from Theorem 4.3.4. �

Now we are ready to state the main result of this section. Our goal is to
solve the inverse problem. The idea is to proceed as follows. We are given a
full factorial design D and an order ideal O. By Theorem 4.3.4, ideals I such
that O represents a K-basis of P/I are in 1-1 correspondence with border
bases whose elements are marked by the terms in ∂O. Except for the bor-
der basis elements which are canonical polynomials of D, we can write them
down using indeterminate coefficients and require that the corresponding for-
mal multiplication matrices are pairwise commuting. For I to be the vanishing
ideal of a fraction contained in D, we have to make sure that I contains ID. To
this end, we require that the normal O-remainders of the canonical polynomi-
als of D are zero. By combining these requirements, we arrive at the following
result.

Theorem 4.4.4 (Computing All Fractions).
Let D be a full factorial design with levels (�1, . . . , �n), and let O = {t1, . . . , tµ}
be a complete set of estimable terms contained in OD with t1 = 1. Consider
the following definitions.

1. Let C = {f1, . . . , fn} be the set of canonical polynomials of D, where fi is
marked by x�i

i for i = 1, . . . , n.
2. Decompose ∂O into ∂O1 = {x�1

1 , . . . , x
�n
n } ∩ ∂O and ∂O2 = ∂O \ ∂O1.

3. Let C1 be the subset of C marked by ∂O1, and let C2 = C \ C1.
4. Let η = #(∂O2). For i = 1, . . . , η and j = 1, . . . , µ, introduce new inde-

terminates zij.
5. For every bk ∈ ∂O2, let gk = bk −

∑µ
j=1 zkjtj ∈ K(zij)[x1, . . . , xn].

6. Let G = {g1, . . . , gη} and H = G ∪ C1. Let M1, . . . ,Mn be the formal
multiplication matrices associated to the O-border prebasis H.

7. Let I(O) be the ideal in K[zij ] generated by the entries of the matrices
MiMj −MjMi for 1 ≤ i < j ≤ n, and by the entries of the column
matrices f(M1, . . . ,Mn) · e1 for all f ∈ C2.

Then I(O) is a zero-dimensional ideal in K[zij ] whose zeros are in 1-1
correspondence with the solutions of the inverse problem, i.e. with fractions
F ⊆ D such that O represents a K-basis of P/IF .
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Proof. Let p = (α11, . . . , αµ η) ∈ Kµη
be a zero of I(O). When we substitute

the indeterminates zij by the coordinates of p in the matrices M1, . . . ,Mn,
we obtain pairwise commuting matrices M1, . . . ,Mn which feature the addi-
tional property that f(M1, . . . ,Mn) · e1 = 0 for every f ∈ C2.

Now we substitute the coordinates of p in the polynomials of G and get
polynomials ḡk = bk−

∑µ
j=1 αkjtj ∈ P . Then we form the setsG = {ḡ1, . . . , ḡη}

and H = G ∪ C1, and we let I be the ideal generated by H. Since the set H
is an O-border prebasis of the ideal generated by it, the set H is an O-border
prebasis of I. Moreover, the fact that M1, . . . ,Mn are the formal multipli-
cation matrices of H implies that M1, . . . ,Mn are the formal multiplication
matrices of H. Hence we can apply Theorem 4.3.17 and conclude that H is
the O-border basis of I.

By definition, we have C1 ⊆ I. Using Proposition 4.3.13.5, we see that
f(M1, . . . ,Mn) · e1 = 0 implies NFO,I(f) = 0, and therefore f ∈ I for
all f ∈ C2. Altogether, we have C = C1 ∪ C2 ⊆ I, and thus ID ⊆ I. By
Lemma 4.4.3.1, it follows that I is the vanishing ideal of a fraction of D.

Conversely, let F be a fraction of D such that O represents a K-basis
of P/IF . Consider the O-border basis B of IF and write B = B1 ∪ B2 such
that B1 contains the polynomials marked by ∂O1 and B2 contains the poly-
nomials marked by ∂O2. Since ∂O1 ⊆ ∂OD, the polynomials in B1 have the
shape required for OD-border basis elements of ID, i.e. they agree with the
polynomials in C1. The polynomials in B2 are of the form ḡk = bk−

∑µ
j=1 αkjtj

where bk ∈ ∂O2 and αkj ∈ K. Let p = (αij) ∈ Kµη. We claim that p is a zero
of I(O).

The point p is a zero of the entries of the matrices MiMj −MjMj for
1 ≤ i < j ≤ n, since the matrices M1, . . . ,Mn obtained by substituting p
inM1, . . . ,Mn are the formal multiplication matrices of B and thus commute
by Theorem 4.3.17. The point p is a zero of the entries of f(M1, . . . ,Mn)·e1 for
f ∈ C2, since f(M1, . . . ,Mn) · e1 equals NFO,IF

(f) by Proposition 4.3.13.5,
and this normal form is zero because f ∈ C2 ⊆ ID ⊆ IF . Altogether, we have
shown that p is a zero of I(O), as claimed. �

Using distracted fractions (see [RR98]), one can show that there always
exists at least one solution of the inverse problem. Let us look at an example
to illustrate the method.

Example 4.4.5. Let D be the full factorial design D = {0, 1, 2, 3} × {0, 1, 2}
contained in A2(Q), and let O = {1, x, y, x2, xy, y2, x3, x2y} ⊂ OD. The
order ideal O can be visualized as follows.

............................... ................

........

.......................

................
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y

• •
•

•
•
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•

•
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We want to find a fraction F ⊆ D such that O represents a K-basis
of P/IF . One solution is to use the distracted fraction whose points are ex-
actly the points marked by bullets in the above sketch, i.e. the following set
F = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0)}. An easy computa-
tion shows that the vanishing ideal of F is

IF =
(
x(x− 1)(x− 2)(x− 3), x(x− 1)(x− 2)y, xy(y − 1, y(y − 1)(y − 2)

)
Moreover, these three generators are a universal Gröbner basis of IF and
Oσ(IF ) = O for every term ordering σ.

We end this section with two examples intended to explain how Theo-
rem 4.4.4 solves the inverse problem.

Example 4.4.6. Let D be the full factorial design D = {−1, 0, 1} × {−1, 1}
with levels (3, 2) contained in A2(Q). The complete set of estimable terms
of D is OD = {1, x, y, x2, xy, x2y}. We want to solve the inverse problem for
the order ideal O = {1, x, y} and follow the steps of Theorem 4.4.4.

1. The set of canonical polynomials of D is C = {f1, f2}, where f1 = x3 − x
and f2 = y2 − 1.

2. We decompose ∂O = {x2, xy, y2} into ∂O1 = {y2} and ∂O2 = {x2, xy}.
3. Let C1 = {f2} and C2 = {f1}.
4. Let η = 2. Choose six new indeterminates z11, z12, z13, z21, z22, z23.
5. Define g1 = x2 − (z11 + z12x+ z13y) and g2 = xy − (z21 + z22x+ z23y).
6. Let G = {g1, g2} and H = {g1, g2, f2}. The formal multiplication matrices

associated to H are

M1 =

⎛⎝0 z11 z21
1 z12 z22
0 z13 z23

⎞⎠ and M2 =

⎛⎝0 z21 1
0 z22 0
1 z23 0

⎞⎠
7. Let I(O) ⊆ Q[z11, . . . , z23] be the ideal generated by the entries of the

matrices M1M2 −M2M1 and f1(M1,M2) · e1 = (M3
1 −M1) · e1. We

obtain I(O) = (z12z21 − z11z22 − z21z23 + z13, z21z22 + z23, z22z23 + z21,
z222 − 1, z13z22 − z12z23 + z223 − z11, z22z23 + z21, z11z12 + z13z21,
z212 + z13z22 + z11 − 1, z12z13 + z13z23).

Using a computer algebra system, for instance CoCoA, we can check
that I(O) is a zero-dimensional, radical ideal of multiplicity 18. This means
that among the 20 =

(
6
3

)
triples of points of D, there are 18 triples which

solve the inverse problem. The two missing fractions are {(0, 0), (0, 1), (0, 2)}
and {(1, 0), (1, 1), (1, 2)}.

When we apply the theorem to larger full factorial designs, the calculations
involved in determining the zeros of I(O) quickly become voluminous.
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Example 4.4.7. Let D be the full factorial design D = {−1, 0, 1} × {−1, 0, 1}
with levels (3, 3) contained in A2(Q). The complete set of estimable terms
of D is OD = {1, x, y, x2, xy, y2, x2y, xy2, x2y2}. We want to solve the in-
verse problem for the order ideal O = {1, x, y, x2, y2} and follow the steps
of Theorem 4.4.4.

1. The set of canonical polynomials of D is C = {f1, f2}, where f1 = x3
1−x1

and f2 = x3
2 − x2.

2. We decompose ∂O = {x3, x2y, xy, xy2, y3} into ∂O1 = {x3, y3} and
∂O2 = {x2y, xy, xy2}.

3. Let C1 = {f1, f2} and C2 = ∅.
4. Let η = 3. Choose 15 new indeterminates z11, z12, . . . , z35.
5. Define g1 = x2y− (z11 + z12x+ z13y+ z14x2 + z15y2) and g2 = xy− (z21 +
z22x+z23y+z24x2+z25y2) and g3 = xy2−(z31+z32x+z33y+z34x2+z35y2).

6. Let G = {g1, g2, g3} andH = {g1, g2, g3, f1, f2}. The formal multiplication
matrices associated to H are

M1 =

⎛⎜⎜⎜⎜⎝
0 0 z21 0 z31
1 0 z22 1 z32
0 0 z23 0 z33
0 1 z24 0 z34
0 0 z25 0 z35

⎞⎟⎟⎟⎟⎠ M2 =

⎛⎜⎜⎜⎜⎝
0 z21 0 z11 0
0 z22 0 z12 0
1 z23 0 z13 1
0 z24 0 z14 0
0 z25 1 z15 0

⎞⎟⎟⎟⎟⎠
7. Let I(O) be the ideal in Q[z11, . . . , z35] generated by the entries of the

matrixM1M2−M2M1. Thus I(O) is the ideal generated by the following
20 polynomials:

z21z23 + z25z31 − z11 z21z22 + z11z24 − z31
z13z21 + z15z31 − z21 z21z32 + z11z34 − z21

z22z23 + z25z32 − z12 + z21 + z24 z222 + z12z24 − z32
z13z22 + z15z32 + z11 + z14 − z22 z22z32 + z12z34 − z22

z223 + z25z33 − z13 z22z23 + z13z24 + z21 + z25 − z33
z13z23 + z15z33 − z23 z23z32 + z13z34 − z23 + z31 + z35

z23z24 + z25z34 − z14 + z22 z14z24 + z22z24 − z34
z13z24 + z15z34 + z12 − z24 z24z32 + z14z34 − z24
z23z25 + z25z35 − z15 z15z24 + z22z25 + z23 − z35
z13z25 + z15z35 − z25 z25z32 + z15z34 − z25 + z33

Again we can use a computer algebra system and check that I(O) is a zero-
dimensional, radical ideal of multiplicity 81. This means that among the
126 =

(
9
5

)
five-tuples of points in D there are 81 five-tuple which solve the

inverse problem.
One of the zeros of I(O) is the point p ∈ Q15 whose coordinates are

z11 = 0 z12 = 0 z13 = − 1
2 z14 = 0 z15 = − 1

2

z21 = 0 z22 = −1 z23 = − 1
2 z24 = 1 z25 = − 1

2

z31 = 0 z32 = −1 z33 = − 1
2 z34 = 1 z35 = − 1

2
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The corresponding O-border basis is {x3− x, x2y− 1
2y− 1

2y
2, xy− x− 1

2y+
x2− 1

2y
2, xy2−x− 1

2y+x2− 1
2y

2, y3− y}. The fraction defined by this basis
is

F0 = {(0, 0), (0,−1), (1, 0), (1, 1), (−1, 1)}
This is our old friend of Example 4.3.7!

In view of our discussion in Section 4.3.1 it is natural to ask how many
of the 81 fractions F found above have the property that O is not of the
form Oσ(IF ) for any term ordering σ. We have seen in Example 4.3.7 that at
least the fraction F0 is of that type. By combining Theorem 4.4.4 and some
techniques discussed in [CR97], one can show that 36 of those 81 fractions
are of that type. This is a surprisingly high number which shows that border
bases provide sometimes a much more flexible environment for working with
zero-dimensional ideals than Gröbner bases do.

There will never be a last tango
(Brad Hooper)




