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Summary. This tutorial gives an introductory presentation of algebraic and geo-
metric methods to solve a polynomial system f1 = · · · = fm = 0. The algebraic
methods are based on the study of the quotient algebra A of the polynomial ring
modulo the ideal I = (f1, . . . , fm). We show how to deduce the geometry of solutions
from the structure of A and in particular, how solving polynomial equations reduces
to eigenvalue and eigenvector computations of multiplication operators in A. We
give two approaches for computing the normal form of elements in A, used to ob-
tain a representation of multiplication operators. We also present the duality theory
and its application to solving systems of algebraic equations. The geometric meth-
ods are based on projection operations which are closely related to resultant theory.
We present different constructions of resultants and different methods for solving
systems of polynomial equations based on these formulations. Finally, we illustrate
these tools on problems coming from applications in computer-aided geometric de-
sign, computer vision, robotics, computational biology and signal processing.

3.0 Introduction

Polynomial system solving is ubiquitous in many applications such as com-
puter geometric design, geometric modelling, robotics, computer vision, com-
putational biology, signal processing, . . . Specific methods like minimization,
Newton iterations, . . . are often used, but do not always offer guarantees on
the result. In this paper, we give an introductory presentation of algebraic
methods for solving a polynomial system f1 = · · · = fm = 0. By a reformu-
lation of the problem in terms of matrix manipulations, we obtain a better
control of the structure and the accuracy of computations. The tools that
we introduce are illustrated by explicit computations. A maple package im-
plements the algorithms described hereafter and is publicly available on the
Internet3. We encourage the reader to use it for his own experimentation on
3 http://www.inria.fr/galaad/logiciels/multires/
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the examples illustrating the presentation. For more advanced computations
described in the last section, we use the C++ library synaps available on the
Internet4. Our approach is based on the study of the quotient algebra A of the
polynomial ring by the ideal (f1, . . . , fm). We describe, in the first part, the
well known method of Gröbner basis to compute the normal form of elements
in A which yields the algebraic structure of this quotient. We also mention a
recent generalization of this approach which allows to combine, more safely,
symbolic and numeric computations.

In the second part, we show how to deduce the geometry of solutions from
the structure of A. In particular, we show how solving polynomial systems
reduces to the computation of eigenvalues or eigenvectors of operators of mul-
tiplication in A. In the real case, we also show how to recover information on
the real roots from this algebra.

We also study duality theory and show how to use it for solving polynomial
systems.

Another major operation in effective algebraic geometry is projection. It is
related to resultant theory. We present different notions and constructions of
resultants and we derive methods to solve systems of polynomial equations. In
practice, according to the class of systems that we want to solve, we will have
to choose the resultant construction adapted to the geometry of the problem.
Finally, we illustrate these tools on problems coming from several areas of
applications.

For more details on the material presented here, see [EM].

3.1 Solving polynomial systems

The problem of solving polynomial equations goes back to the ancient Greeks
and Chinese. It is not surprising that a large number of methods exists to
handle this problem. We divide them into the following families and we will
focus essentially on the last two classes.

3.1.1 Classes of solvers

Analytic solvers

The analytic solvers exploit the value of the functional f = (f1, . . . , fm) and
its derivatives in order to converge to a solution or all the solutions of f = 0.
Typical examples are Newton-like methods, Minimization methods, Weier-
strass’ method [Dem87, SS93, Bin96, MR02].

4 http://www.inria.fr/galaad/logiciels/synaps/
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Homotopic solvers

The idea behind the homotopic approaches is to deform a system with known
roots into the system f = 0 that we want to solve. Examples of such con-
tinuation methods are based on projective [MS87b], toric [Li97, VVC94] or
generally flat deformations of f = 0. See Chapter 8 and [AG90b] for more
details.

Subdivision solvers

The subdivision methods use an exclusion criterion to remove a domain if
it does not contain a root of f = 0. These solvers are often used to isolate
the real roots, if possible. Exclusion criteria are based on Taylor’s exclusion
function [DY93], interval arithmetic [Kea90], the Turan test [Pan96], Sturm’s
method [BR90, Roy96], or Descartes’ rule [Usp48, RZ03, MVY02].

Algebraic solvers

This class of methods exploits the known relations between the unknowns.
They are based on normal form computations in the quotient algebra [CLO97,
MT00, MT02] and reduce to a univariate or eigenvalue problem [Mou98].

Geometric solvers

These solvers project the problem onto a smaller subspace and exploit geo-
metric properties of the set of solutions. Tools such as resultant constructions
[GKZ94, EM99b, BEM00, BEM01, Bus01a] are used to reduce the solutions
of the polynomial system to a univariate or eigenvalue problem. This reduc-
tion to univariate polynomials is also an important ingredient of triangular
set methods [Tsü94, Wan95, ALMM99].

3.1.2 Notation

We fix the notation that will be used hereafter. Let K be a field, K be its
algebraic closure, R = K[x1, . . . , xn] = K[x] be the algebra of polynomials in
the variables x = (x1, . . . , xn) with coefficients in K. For the sake of simplicity,
we will assume that K is of characteristic 0.

Let f1, . . . , fm ∈ R be m polynomials. Our objective is to solve the system
f1 = 0, . . . , fm = 0, also denoted by f = 0. If α = (α1, . . . , αn) ∈ Nn, |α| =
α1 + · · ·+ αn,xα = xα1

1 . . . xαn
n .

Let I be the ideal generated by f1, . . . , fm in R and Z(I) be the affine
variety {ζ ∈ K

n
: f1(ζ) = · · · = fm(ζ) = 0}. We will assume that Z(I) =

{ζ1, . . . , ζd} is a non-empty and finite set. The algebraic approach to solve the
system f = 0 is based on the study of the K-algebra A = R/I. The hypothesis
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that Z(I) is finite implies that the K-vector space A is of finite dimension over
K, see Theorem 2.1.2 in Chapter 2. We denote by R̂ (resp. Â) the dual of the
vector space R (resp. A).

Algebraic solvers exploit the properties of A, which means that they must
be able to compute effectively in this algebra. This can be performed by a so-
called normal form algorithm. We are going to describe now two approaches
to compute normal forms.

3.1.3 Gröbner bases

Gröbner bases are a major tool in effective algebraic geometry, which yields
algorithmic answers to many question in this domain [CLO97, BW93, AL94,
Eis95]. It is related to the use of a monomial ordering.

Definition 3.1.1. A monomial ordering is a total order > on the set of mono-
mials of K[x] such that

i) ∀α �= 0, 1 < xα,
ii) ∀(α, β, γ) ∈ (Nn)3, if xα < xβ then xα+γ < xβ+γ .

Some well known monomial orderings are defined as follows:
Let α = (α1, . . . , αn) ∈ Nn and β = (β1, . . . , βn) ∈ Nn.
– The lexicographic ordering with x1 > · · · > xn: xα <l xβ iff there exists

i such that α1 = β1, . . . , αi = βi, αi+1 < βi+1.
– The graded lexicographic ordering with x1 > · · · > xn: xα <gl xβ iff

|α| < |β| or (|α| = |β| and xα <l xβ).
Given a monomial ordering >, we define as in the univariate case, the

leading term of p ∈ R as the term (the coefficient times its monomial) of p
whose monomial is maximal for >. We denote it by L>(p)

(
or simply L(p)

)
.

We write every p ∈ R as p = a0xα0+· · ·+alxαl , with ai �= 0 and α0 > · · · > αl.
Let f, f1, . . . , fm ∈ R. As in the Euclidean division there are polynomi-

als q1, . . . , qm, r such that f = q1f1 + · · · + qmfm + r, where no term of r
divides any of L(f1), . . . ,L(fm) (in this case we say that r is reduced with re-
spect to f1, . . . , fm). This is the multivariate division of f by f1, . . . , fm. The
polynomials q1, . . . , qm are the quotients and r the remainder of this division.

If I is an ideal of R = K[x], we define L>(I)
(
or simply L(I)

)
to be the

ideal generated by the set of leading terms of elements of I.
By Dickson’s lemma [CLO97] or by Noetherianity of K[x], this ideal L>(I)

is generated by a finite set of monomials. This leads to the definition of
Gröbner bases:

Definition 3.1.2. A finite subset G = {g1, . . . , gt} of the ideal I is a Gröbner
basis of I for a given monomial order > iff L>(I) =

(L>(g1), . . . ,L>(gt)
)
.

Some interesting properties of a Gröbner basis G are:
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– For any p ∈ R, the remainder of the multivariate division of p by G is
unique. It is called the normal form of p modulo the ideal I and is denoted
by N(p) (see [CLO97]).

– The polynomial p ∈ I iff its normal form N(p) = 0.
– A basis B of the K-vector space A = R/I is given by the set of monomials

which are not in L>(I). This allows us to define the multiplication table by an
element a ∈ A: We multiply first the elements of B by a as usual polynomials
and then normalize the products by reduction by G.

The ideal I can have several Gröbner bases but only one which is reduced
(i.e. the leading coefficients of elements of G are equal to 1, and every g ∈ G
is reduced with respect to G \ {g}). Efficient algorithms and software have
been developed over the past decades to compute reduced Gröbner bases. We
mention in particular [Fau99], [GS], [GPS01], [Roba].

Example 3.1.3. Let I be the ideal of R = Q[x1, x2] generated by

f1 := 13x2
1 + 8x1 x2 + 4x2

2 − 8x1 − 8x2 + 2 and f2 := x2
1 + x1 x2 − x1 − 1

6 .

The reduced Gröbner basis G of I for the graded lexicographic ordering with
x1 > x2 is (on Maple):

> with(Groebner); G:= gbasis([f1,f2],tdeg(x[1],x[2]));

(30x1x2 − 30x1 − 25− 24x2
2 + 48x2, 15x1

2 + 12x2
2 − 24x2 + 10,

216x2
3 − 648x2

2 + 5x1 + 632x2 − 200).

The leading monomials of elements of G are x1 x2, x1
2, x2

3. Then a basis of A
is {1, x1, x2, x

2
2}. Using the reduction by G, the matrix of multiplication by x1

in this basis is:

> L:= map(u->normalf(u,G,tdeg(x[1],x[2])),
> [x[1],x[1]^2,x[1]*x[2],x[1]*x[2]^2]);

(x1,−4/5 x2
2+8/5 x2−2/3, x1+5/6+4/5 x2

2−8/5 x2,−839

270
x2+8/5 x2

2+
53

54
x1+

85

54
)

> matrixof(L,[[1,x[1],x[2],x[2]^2]]);

⎛⎜⎜⎜⎜⎜⎝
0 −2/3 5/6 85

54

1 0 1 53
54

0 8/5 −8/5 − 839
270

0 −4/5 4/5 8/5

⎞⎟⎟⎟⎟⎟⎠ .
This is the matrix of coefficients of elements of the monomial basis multiplied
by x1, expressed in this basis.
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Since the variety Z(I) is finite, a lexicographic Gröbner basis with xn >
· · · > x1 contains elements g1, . . . , gn such that gi ∈ K[x1, . . . , xi] and L(gi)
depends only on xi. This reduces the problem of solving f = 0 to solving a
triangular system, hence to the problem of finding the roots of a univariate
polynomial. Unfortunately the lexicographic Gröbner bases are not used in
practice because of their high complexity of computation. We proceed as fol-
lows: First we compute a Gröbner basis for another monomial ordering and
then we use a conversion procedure to obtain a lexicographic one. For more
details see for instance [FGLM93].

3.1.4 General normal form

The construction of Gröbner bases may not be numerically stable, as shown
in the following example:

Example 3.1.4. Let

> f1:= x[1]^2+x[2]^2-x[1]+x[2]-2; f2:= x[1]^2-x[2]^2+2*x[2]-3;

The Gröbner basis of (f1, f2) for the graded lexicographic ordering with x1 >
x2 is:

> G:=gbasis([f1,f2],tdeg(x[1],x[2]));

(2x2
2 − x1 − x2 + 1, 2x1

2 − x1 + 3x2 − 5).

The leading monomials of elements of G are x2
1 and x2

2. A monomial basis
of A is {1, x1, x2, x1x2}. Consider now a small perturbation of the system
f1 = f2 = 0 and compute its Gröbner basis for the same monomial ordering:

> gbasis([f1,f2+1.0/10000000*x[1]*x[2]],tdeg(x[1],x[2]));

(−2x2
2 + x1 + x2 − 1 + 0.0000001x1x2, x1

2 + x2
2 − x1 + x2 − 2,

x2
3 − 10000000.9999999999999950000000000000125x2

2

+5000000.2500000124999993749999687500015625000781250x1

+5000000.7500000374999931249999062500171875002343750x2

−5000000.2500000624999993749998437500015625003906250).

The leading monomials of this Gröbner basis are x1 x2, x1
2, x2

3 and the cor-
responding basis of the perturbed algebra is {1, x1, x2, x

2
2}. After a small per-

turbation, the basis of the quotient algebra may “jump” from one set of mono-
mials to another one, though the two set of solutions are very close from a
geometric point of view. Moreover, some polynomials of the Gröbner basis of
the perturbed system have large coefficients.

Thus, Gröbner bases computations may introduce artificial discontinuities due
to the choice of a monomial order. A recent generalization of this notion has
been proposed in [Mou99, MT00]. It is based on a new criterion which gives
a necessary and sufficient condition for a projection onto a vector subspace of
R to be a normal form modulo the ideal I. More precisely we have:
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Theorem 3.1.5. Let B be a vector space in R = K[x1, . . . , xn] connected to
the constant polynomial 15. If B+ is the vector subspace generated by B ∪
x1B ∪ . . .∪xnB, N : B+ → B is a linear map such that N is the identity on
B, we define for i = 1, . . . , n, the maps

Mi : B → B

b �→ Mi(b) := N(xib).

The two following properties are equivalent:

1. For all 1 ≤ i, j ≤ n, Mi ◦Mj =Mj ◦Mi.
2. R = B ⊕ I, where I is the ideal generated by the kernel of N .

If this holds, the B-reduction along ker(N) is canonical.

In Chapter 4, you will also find more material on this approach and a proof
of Theorem 3.1.5, in the special case of 0-dimensional ideals.

This leads to a completion-like algorithm which starts with the linear
subspace K0 generated by the polynomials f1, . . . , fm, which we wish to solve,
and iterates the construction Ki+1 = K+

i ∩L, where L is a fixed vector space.
We stop when Ki+1 = Ki. See [Mou99, MT00, Tré02] for more details. This
approach allows us to fix first the set of monomials on which we want to do
linear operations and thus to treat more safely polynomials with approximate
coefficients. It can be adapted very naturally to Laurent polynomials, which is
not the case for Gröbner bases computations. Moreover it can be specialized
very efficiently to systems of equations for which the basis of A is known a
priori, such as in the case of a complete projective intersection [MT00].

Example 3.1.6. For the perturbed system of the previous example, the normal
forms for the monomials on the border of B = {1, x1, x2, x1x2} are:

x1
2 = −0.00000005x1x2 + 1/2x1 − 3/2x2 + 5/2,

x2
2 = +0.00000005x1x2 + 1/2x1 + 1/2x2 − 1/2,

x1
2x2 = 0.49999999x1x2 − 0.74999998x1 + 1.75000003x2 + 0.74999994,

x1x2
2 = 0.49999999x1x2 − 0.25000004x1 − 0.74999991x2 + 1.25000004.

This set of relations gives the matrices of multiplication by the variables x1

and x2 in A. An implementation by Ph. Trébuchet of an algorithm com-
puting this new type of normal form is available in the synaps library (see
Solve(L,newmac<C>())).

3.2 Structure of the quotient algebra

In this section we will see how to recover the solutions of the system f = 0
from the structure of the algebra A, which we assume to be given through a
normal form procedure.
5 Any monomial xα �= 1 ∈ B is of the form xix

β with xβ ∈ B and some i in
{1, . . . , n}.
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3.2.1 Dual of the quotient algebra

First we consider the dual R̂ that is, the space of linear forms from R to
K. The evaluation 1ζ at a fixed point ζ is an example of such linear forms:
p ∈ R �→ 1ζ(p) := p(ζ) ∈ K. Another class of linear forms is obtained by
differential operators, namely for α = (α1, . . . , αn) ∈ Nn,

dα : R → K

p �→ 1∏n
i=1 αi!

(
(∂1)α1 · · · (∂n)αnp

)
(0),

where ∂i is the derivative with respect to the variable xi (see also Section
2.2.2 of Chapter 2). If α = (α1, . . . , αn) ∈ Nn and β = (β1, . . . , βn) ∈ Nn,

dα

( n∏
i=1

xβi

i

)
=
{

1 if αi = βi for i = 1, . . . , n
0 otherwise.

It follows that (dα)α∈Nn is the dual basis of the monomial basis (xα)α∈Nn of
R. Notice that (dα)α∈Nn can be defined for every characteristic. We assume
again that K is a field of arbitrary characteristic. We deduce that for every
Λ ∈ R̂ we have Λ =

∑
α∈Nn Λ(xα)dα.

The vector space {∑α∈Nn cα dα1
1 . . .dαn

n : cα ∈ K} (where dαi
i denotes

the map p ∈ R �→ 1
αi!

(∂αi
i p)(0)

)
of formal power series in d1, . . . ,dn with

coefficients in K is denoted by K[[d]] = K[[d1, . . .dn]]. The linear map

Λ ∈ R̂ �→
∑

α∈Nn

Λ(xα)dα ∈ K[[d]]

defines a one-to-one correspondence. So we can identify R̂ with K[[d]]. Under
this identification, the linear form evaluation at 0 corresponds to the constant
power series 1; it is also denoted d0.

Example 3.2.1. Let n = 3. The value of the linear form 1 + d1 + 2d1d2 + d3
2

on the polynomial 1 + x1 + x1x2 is:

(1 + d1 + 2d1d2 + d3
2)(1 + x1 + x1x2) = 4.

The dual R̂ has a natural structure of R-module: For (p, Λ) ∈ R× R̂,
p · Λ : q ∈ R �→ (p · Λ)(q) := Λ(p q) ∈ K.

If p ∈ R and αi ∈ N∗, we check that dαi
i (xi p) = 1

(αi−1)!

(
∂αi−1

i p
)
(0). Conse-

quently, for p ∈ R and α = (α1, . . . , αn) ∈ Nn with αi �= 0 for a fixed i, we
have

(xi · dα)(p) = dα(xi p) = dα1
1 · · ·dαi−1

i−1 dαi−1
i dαi+1

i+1 · · ·dαn
n (p).

That is, xi acts as the inverse of di in K[[d]]. This is the reason why in the
literature such a representation is referred to as the inverse system (see for
instance [Mac94]). If αi = 0, then xi · dα = 0. Then we redefine the product
p · Λ as follows:
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Proposition 3.2.2. (see also [MP00], [Fuh96]) For p ∈ R and Λ ∈ K[[d]],

p · Λ = π+

(
p(d−1

1 , . . . ,d
−1
n )Λ(d)

)
,

where π+ is the projection on the vector space generated by the monomials
with positive exponents.

Example 3.2.1 (continued).

(1 + x1 + x1x2) · (1 + d1 + d1d2 + d3
2) = 3 + d1 + d1d2 + d3

2 + d2.

The constant term of this expansion is the value of the linear form 1 + d1 +
d1d2 + d3

2 at the polynomial 1 + x1 + x1x2.

3.2.2 Multiplication operators

Since the variety Z(I) is finite, the K-algebra A has the decomposition

A = A1 ⊕ · · · ⊕ Ad, (3.1)

where Ai is the local algebra associated with the root ζi (see also Section 2.7,
Chapter 2). So there are elements e1, . . . , en ∈ A such that

e1 + · · ·+ ed ≡ 1 , e2
i ≡ ei , eiej ≡ 0 if i �= j.

These elements are called the fundamental idempotents of A, and generalize
the univariate Lagrange polynomials. They satisfy Ai = eiA and ei(ζj) = 1 if
i = j and 0 otherwise. The dimension of the K-vector space Ai is by definition
the multiplicity of the root ζi, and it is denoted by µζi

.
We recall that a linear form on A can be identified with a linear form on R

which vanishes on the ideal I. Thus the evaluation 1ζ , which is a linear form
on R, is an element of Â iff ζ ∈ Z(I).

The first operators that come naturally in the study of A are the operators
of multiplication by elements of A. For any a ∈ A, we define

Ma : A → A
b �→ Ma(b) := a b.

We also consider its transpose operator

Mt
a : Â → Â
Λ �→ Mt

a(Λ) = Λ ◦Ma.

The matrix of Mt
a in the dual basis of a basis B of A is the transpose of the

matrix of Ma in B.
Example 3.1.3 (continued). Consider the matrix Mx1 of multiplication by x1

in the basis B = {1, x1, x2, x1x2} of A = K[x1, x2]/(f1, f2): We multiply the
monomials of B by x1 and reduce the products to the normal forms, so



134 M. Elkadi & B. Mourrain

1× x1 ≡ x1 , x1 × x1 ≡ −x1x2 + x1 +
1
6
, x2 × x1 ≡ x1x2 ,

x1x2 × x1 ≡ −x1x2 +
55
54
x1 +

2
27
x2 +

5
54
.

Then

Mx1 =

⎛⎜⎜⎜⎜⎜⎝
0 1

6 0 5
54

1 1 0 55
54

0 0 0 2
27

0 −1 1 −1

⎞⎟⎟⎟⎟⎟⎠ .
The multiplication operators can be computed using a normal form algo-

rithm. This can be performed, for instance by Gröbner basis computations
(see Sections 3.1.3 and 3.1.4). In Section 3.5, we will describe another way
to compute implicitly these operators based on resultant matrices (see also
Section 2.3, Chapter 2).

Hereafter, xE = (xα)α∈E denotes a monomial basis of A (for instance
obtained by a Gröbner basis). Then any polynomial can be reduced modulo
(f1, . . . , fm) to a linear combination of monomials of xE .

The matrix approach to solve polynomial systems is based on the following
fundamental theorem:

Theorem 3.2.3. Assume that Z(I) = {ζ1, . . . , ζd}. We have

1. Let a ∈ A. The eigenvalues of the operator Ma (and its transpose Mt
a)

are a(ζ1), . . . , a(ζd).
2. The common eigenvectors of (Mt

a)a∈A are (up to a scalar) 1ζ1 , . . . ,1ζd
.

Proof. 1) Let i ∈ {1, . . . , d}. For every b ∈ A,(
Mt

a(1ζi
)
)
(b) = 1ζi

(a b) =
(
a(ζi)1ζi

)
(b).

This shows that a(ζ1), . . ., a(ζd) are eigenvalues ofMa andMt
a , 1ζi

is an eigen-
vector of Mt

a associated with a(ζi), and 1ζ1 , . . . ,1ζd
are common eigenvectors

to Mt
a , a ∈ A.

Now we will show that every eigenvalue of Ma is one a(ζi). For this we
consider

p(x) =
∏

ζ∈Z(I)

(
a(x)− a(ζ)) ∈ K[x].

This polynomial vanishes on Z(I). Using Hilbert’s Nullstellensatz we can find
an integer m ∈ N such that the operator

pm(Ma) =
∏

ζ∈Z(I)

(
Ma − a(ζ) I

)m

vanishes on A (I is the identity operator). We deduce that the minimal poly-
nomial of the operator Ma divides

∏
ζ∈Z(I)

(
T − a(ζ))m, and that the eigen-

values of Ma belong to {a(ζ) : ζ ∈ Z(I)}.
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2) Let Λ ∈ Â be a common eigenvector toMt
a , a ∈ A, and γ = (γ1, . . . , γn)

such that Mt
xi

(Λ) = γi Λ for i = 1, . . . , n. Then all the monomials xα satisfy(
Mt

xi
(Λ)

)
(xα) = Λ(xi xα) = γiΛ(xα).

From this we deduce that Λ = Λ(1)1γ . As Λ ∈ Â = I⊥, Λ(p) = Λ(1)p(γ) = 0
for every p ∈ I, and 1γ ∈ Â.

Since xE = (xα)α∈E is a basis of A, the coordinates of 1ζi
in the dual

basis of xE are (ζα
i )α∈E . Thus if xE contains 1, x1, . . . , xn (which is often the

case), we deduce the following algorithm:

Algorithm 3.2.4 Solving in the case of simple roots.

Let a ∈ A such that a(ζi) �= a(ζj) for i �= j (which is generically the case) and
Ma be the matrix of multiplication by a in the basis xE = (1, x1, . . . , xn, . . .) of
A.

1. Compute the eigenvectors Λ = (Λ1, Λx1 , . . . , Λxn
, . . .) of Mta.

2. For each eigenvector Λ with Λ1 �= 0, compute and output the point ζ =(
Λx1
Λ1
, . . . ,

Λxn

Λ1

)
.

The set of output points ζ contains the simple roots (i.e. roots with multi-
plicity 1) of f = 0, since for such a root the eigenspace associated to the
eigenvalue a(ζ) is one-dimensional and contains 1ζ . But as we will see in the
next example, it can also yield in some cases the multiple roots.
Example 3.1.3 (continued). The eigenvalues, their multiplicities, and the cor-
responding normalized eigenvectors of the transpose of the matrix of multi-
plication by x1 are:

> neigenvects(transpose(Mx1),1);

{
−1

3
, 2, V1 =

(
1,−1

3
,
5
6
,− 5

18
)}

,

{
1
3
, 2, V2 =

(
1,

1
3
,
7
6
,

7
18

)}
.

As the basis of A is (1, x1, x2, x1x2), we deduce from Theorem 3.2.3 that the
solutions of the system f1 = f2 = 0 can be read off from the 2nd and the
3rd coordinates of the normalized eigenvectors: So Z(I) = {(− 1

3 ,
5
6 ), ( 1

3 ,
7
6 )}.

Moreover, the 4th coordinates of V1 and V2 are the products of the 2nd by the
3rd coordinates. In this example the multiplicity 2 of the two eigenvalues is
exactly the multiplicity of roots ζ1 and ζ2 (see Chapter 2, Proposition 2.1.14).

In order to compute exactly the set of roots counted with their multiplicity,
we use the following result. It is based on the fact that commuting matrices
share common eigenspaces and the decomposition (3.1) of the algebra A.

Theorem 3.2.5. [Mou98, MP00, CGT97] There exists a basis of A such that
for all a ∈ A, the matrix of Ma in this basis is of the form
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Ma =

⎛⎜⎝N1
a 0

. . .
0 Nd

a

⎞⎟⎠ with Ni
a =

⎛⎜⎝a(ζi) �
. . .

0 a(ζi)

⎞⎟⎠ .
Proof. For every i ∈ {1, . . . , d}, the multiplication operators in Ai by elements
of A commute. Then using (3.1) it is possible to choose a basis of Ai such
that the multiplication matrices Ni

a by a ∈ A in Ai in this basis are upper-
triangular. By theorem 3.2.3, Ni

a has one eigenvalue, namely a(ζi).

We deduce the algorithm:

Algorithm 3.2.6 Solving by simultaneous triangulation.

input: Matrices of multiplication Mxi
,i = 1, . . . , n, in a basis of A.

1. Compute a (Schur) decomposition P such that the matrices Ti = PMxi
P−1,

i = 1, . . . , n, are upper-triangular.
2. Compute and output the diagonal vectors ti = (t1i,i, . . . , t

n
i,i) of triangular

matrices Tk = (tki,j)i,j.

output: Z(I) = {ti : i = 1, . . . ,dimK(A)}.

The first step in this algorithm is performed by computing a Schur decompo-
sition of Ml (where l is a generic linear form) which yields a change of basis
matrix P. Then we compute the triangular matrices Ti = PMxi

P−1, i = 1, . . . , n,
since they commute with Ml.

3.2.3 Chow form and rational univariate representation

In some problems it is important to have an exact representation of the roots
of the system f = 0. We will represent these roots in terms of solutions of a
univariate polynomial. More precisely, they will be the image of these solutions
by a rational map. The aim of the foregoing developments is to show how to
construct explicitly such a representation.

Definition 3.2.7. The Chow form of the ideal I is the homogeneous polyno-
mial in u = (u0, . . . , un) defined by

CI(u) = det(u0 + u1 Mx1 + · · ·+ un Mxn
) ∈ K[u].

According to Theorem 3.2.5, we have:

Proposition 3.2.8. The Chow form

CI(u) =
∏

ζ∈Z(I)

(u0 + u1ζ1 + · · ·+ unζn)µζ .
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Example 3.1.3 (continued). The Chow form of I = (f1, f2) using the matrices
of multiplication by x1 and x2 is:

> factor(det(u[0]+ u[1]*Mx1+ u[2]*Mx2));

(
u0 +

1
3
u1 +

7
6
u2

)2(
u0 − 1

3
u1 +

5
6
u2

)2

.

It is a product of linear forms whose coefficients yield the roots ζ1 = (− 1
3 ,

5
6 )

and ζ2 = (1
3 ,

7
6 ) of f1 = f2 = 0. The exponents are the multiplicities of the

roots (here 2). When the points of Z(I) are rational (as in this example) we
can easily factorize CI(u) as a product of linear forms and get the solutions
of the system f = 0. But usually, this factorization is possible only on an
algebraic extension of the field of coefficients (see Chapter 9 for more details
on this task).

From the Chow form, it is possible to deduce a rational univariate repre-
sentation of Z(I):

Theorem 3.2.9. (see [Ren92, ABRW96, Rou99, EM99a, Lec00]) Let ∆(u)
be a multiple of the Chow form CI(u). For a generic vector t ∈ Kn+1 we write

∆

gcd
(
∆, ∂∆

∂u0

) (t + u) = d0(u0) + u1d1(u0) + · · ·+ undn(u0) +R(u) ,

where di(u0) ∈ K[u0], R(u) ∈ (u1, . . . , un)2, gcd
(
d0(u0), d0′(u0)

)
= 1. Then

for all ζ ∈ Z(I), there exists a root ζ0 of d0(u0) such that

ζ =
(
d1(ζ0)
d′0(ζ0)

, . . . ,
dn(ζ0)
d′0(ζ0)

)
.

Proof. We decompose ∆(u) as

∆(u) =
( ∏

ζ=(ζ1,...,ζn)∈Z(I)

(u0 + ζ1u1 + · · ·+ ζnun)nζ

)
H(u) ,

with nζ ∈ N∗, where
∏

ζ∈Z(I)(u0+ζ1u1+· · ·+ζnun)nζ and H(u) are relatively
prime. Let

d(u) =
∆(u)

gcd
(
∆(u), ∂∆

∂u0
(u)

) =
( ∏

ζ∈Z(I)

(u0 + ζ1u1 + · · ·+ ζnun)
)
h(u) ,

where
∏

ζ∈Z(I)(u0 + ζ1u1 + · · · + ζnun) and h(u) are relatively prime. If t =
(t1, . . . , tn) ∈ Kn and t = (0, t1, . . . , tn) ∈ Kn+1, we have

d(t + u) =
( ∏

ζ∈Z(I)

(
(t, ζ) + u0 + ζ1u1 + · · ·+ ζnun

))
h(t + u)

= d0(u0) + u1d1(u0) + · · ·+ undn(u0) + r(u) ,
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with (t, ζ) = t1ζ1 + · · ·+ tnζn, d0, . . . , dn ∈ K[u0], r(u) ∈ (u1, . . . , un)2, and

h(t + u) = h0(u0) + u1h1(u0) + · · ·+ unhn(u0) + s(u) ,

with h0, . . . , hn ∈ K[u0] and s(u) ∈ (u1, . . . , un)2. By identification

d0(u0) =
( ∏

ζ∈Z(I)

(
(t, ζ) + u0

))
h0(u0) , and for i = 1, . . . ,n,

di(u0) =
( ∑

ζ∈Z(I)

ζi
∏
ξ �=ζ

(
(t, ξ) + u0

))
h0(u0) +

( ∏
ζ∈Z(I)

(
(t, ζ) + u0

))
hi(u0).

If t ∈ Kn is generic,
∏

ζ∈Z(I)

(
(t, ζ) + u0

)
and h0(u0) are relatively prime. Let

ζ0 = −(t, ζ) be a root of d0(u0), then h0(ζ0) �= 0 and

d0
′(ζ0) =

(∏
ξ �=ζ

(
(t, ξ)− (t, ζ)

))
h0(ζ0) ,

di(ζ0) = ζi

(∏
ξ �=ζ

(
(t, ξ)− (t, ζ)

))
h0(ζ0) , for i = 1, . . . , n.

Moreover we can assume that the generic vector t is such that (t, ζ) �= (t, ξ)
for (ζ, ξ) ∈ Z(I)2 and ζ �= ξ. Then

ζi =
di(ζ0)
d0

′(ζ0)
, for i = 1, . . . , n.

This result describes the coordinates of solutions of f = 0 as the image
by a rational map of some roots of d0(u0). It does not imply that any root of
d0(u0) yields a point in Z(I), so that this representation may be redundant.
However the “bad” prime factors in d0(u0) can be removed by substituting
the rational representation back into the equations f1, . . . , fm.

In Proposition 3.5.4 we will see how to obtain a multiple of CI(u) without
the knowledge of a basis of A.
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Algorithm 3.2.10 Rational univariate representation.

Input: A multiple ∆(u) of the Chow form of the ideal I = (f1, . . . , fm).

1. Compute the square-free part d(u) of ∆(u).
2. Choose a generic t ∈ Kn and compute the first terms of

d(t + u) = d0(u0) + u1 d1(u0) + · · ·+ un dn(u0) + · · ·

3. Compute the redundant rational representation

d0(u0) = 0 ,
( d1(u0)
d0

′(u0)
, . . . ,

dn(u0)
d0

′(u0)

)
.

4. Factorize d0(u0), keep the “good” prime factors and output the rational
univariate representation of Z(I).

Example 3.1.3 (continued). From the Chow form, we deduce the univariate
representation of Z(I):(

u0 +
3
2

)(
u0 +

1
2

)
= 0 , ζ(u0) =

(
− 1

6 (1 + u0)
,

11 + 12u0

12 (1 + u0)

)
.

This gives the solutions

u0 = − 3
2 , ζ1 = ζ(− 3

2 ) =
(

1
3 ,

7
6

)
and u0 = − 1

2 , ζ2 = ζ(− 1
2 ) =

(− 1
3 ,

5
6

)
of f1 = f2 = 0.

3.2.4 Real roots

Now we assume that the polynomials f1, . . . , fm have real coefficients: K = R.
A natural question which arises in many practical problems is how many real
solutions does the system f = 0 have ? We will use properties of the linear
form trace to answer this question.

Definition 3.2.11. The linear form trace, denoted by Tr, is defined by

Tr : A → R

a �→ Tr(a) := tr(Ma),

where tr(Ma) is the trace of the linear operator Ma.

According to Theorem 3.2.5, we have

Tr =
∑

ζ∈Z(I)

µζ 1ζ .
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We associate to Tr and to any h ∈ A the quadratic form:

Qh : (a, b) ∈ A×A �→ Qh(a, b) := Tr(hab) ∈ R,

which gives the following generalization of a result due to Hermite for counting
the number of real roots.

Theorem 3.2.12. (See [PRS93, GVRR99]) Let h ∈ R[x]. We have:

1. The rank of the quadratic form Qh is the number of distinct complex roots
ζ of f = 0 such that h(ζ) �= 0.

2. The signature of Qh is equal to

#{ζ ∈ Rn : f1(ζ) = · · · = fm(ζ) = 0, h(ζ) > 0}− #{ζ ∈ Rn : f1(ζ) = · · · =
fm(ζ) = 0, h(ζ) < 0}, where # denotes the cardinality of a set.

In particular, if h = 1, the rank of Q1 is the number of distinct complex
roots of f = 0 and its signature is the number of real roots of this system.
This allows us to analyze the geometry of the real roots as illustrated in the
following example:
Example 3.1.3 (continued). By direct computations, we have

Tr(1) = 4 , Tr(x1) = 0 , Tr(x2) = 4 , Tr(x1x2) =
2
9
.

We deduce the value of the linear form Tr on the other interesting monomials
by using the transpose operators Mtxi

as follows:

> T0 := evalm([4,0,4,2/9]):
> T1 := evalm(transpose(Mx1)&*T0): T2:= evalm(transpose(Mx2)&*T0):
> T11 := evalm(transpose(Mx1)&*T1): T12:= evalm(transpose(Mx2)&*T1):
> T112:= evalm(transpose(Mx2)&*T11):
> Q1 := matrix(4,4,[T0,T1,T2,T12]);
> Qx1 := matrix(4,4,[T1,T11,T12,T112]);

So we obtain

Q1 =

⎛⎜⎜⎝
4 0 4 2

9
0 4

9
2
9

4
9

4 2
9

37
9

4
9

2
9

4
9

4
9

37
81

⎞⎟⎟⎠ , Qx1 =

⎛⎜⎜⎝
0 4

9
2
9

4
9

4
9 0 4

9
2
81

2
9

4
9

4
9

37
81

4
9

2
81

37
81

4
81

⎞⎟⎟⎠ .
The rank and the signatures of the quadratic forms Q1 and Qx1 are

> rank(Q1), signature(Q1), rank(Qx1), signature(Qx1);

2 , (2, 0) , 2 , (1, 1) ,

which tells us (without computing these roots) that there are 2 real roots, one
with x1 < 0 and another with x1 > 0.
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3.3 Duality

In this section m = n. Let us define the notion of Bezoutian matrix that will
be useful in the following.

Definition 3.3.1. The Bezoutian Θf0,...,fn
of f0, . . . , fn ∈ R is the polynomial

Θf0,...,fn
(x,y)=

∣∣∣∣∣∣∣
f0(x) θ1(f0)(x,y) · · · θn(f0)(x,y)

...
...

...
...

fn(x) θ1(fn)(x,y) · · · θn(fn)(x,y)

∣∣∣∣∣∣∣ ∈ K[x,y],

where

θi(fj)(x,y) =
fj(y1, . . . , yi−1, xi, . . . , xn)− fj(y1, . . . , yi, xi+1, . . . , xn)

xi − yi .

Set Θf0,...,fn
(x,y) =

∑
α,β aα,βxαyβ with aα,β ∈ K, we order the monomials

xαyβ , then the matrix Bf0,...,fn
:= (aα,β)α,β is called the Bezoutian matrix

of f0, . . . , fn.

The Bezoutian was initially used by E. Bézout to construct the resultant of
two polynomials in one variable [Béz64].

When f0 is the constant 1 and f is the polynomial map (f1, . . . , fn), the
Bezoutian Θ1,f1,...,fn

will be denoted by ∆f .
We will define the residue τf associated to f = (f1, . . . , fn) and we will

give some of its important properties (for more details see [SS75], [Kun86],
[EM96], [BCRS96], also Chapter 1 of this book).

The dual Â of the vector space A has a natural structure of A-module: If
(a, Λ) ∈ A× Â, the linear form a.Λ : b ∈ A �→ (a.Λ)(b) := Λ(ab).

Definition 3.3.2. The finite K-algebra A is called Gorenstein if the A-
modules Â and A are isomorphic.

Set ∆f =
∑

α,β aα,β xαyβ with aα,β ∈ K, we define the linear map

∆f
� : R̂ → R

Λ �→ ∆f
�(Λ) :=

∑
α

(∑
β

aα,β Λ(yβ)
)
xα.

This map induces naturally a linear one also denoted by ∆f
� : Â → A. Since

the number of polynomials m is equal to the number n of variables and the
affine variety Z(I) is finite, one can prove that ∆f

� is an isomorphism of
A-modules (see [SS75], [Kun86], [EM96], [BCRS96]). Then A is a Gorenstein
algebra. Thus we can state the following definition:

Definition 3.3.3. The residue τf of f = (f1, . . . , fn) is the linear form on R
such that
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1. τf (h) = 0,∀h ∈ I,
2. ∆f

�(τf )− 1 ∈ I.
In the univariate case, let f = fd xd + · · ·+f0 be a polynomial of degree d. For
h ∈ R let r = rd−1x

d−1 + · · ·+ r0 be the remainder in the Euclidean division
of h by f , then

τf (h) =
rd−1

fd
. (3.2)

In the multivariate case, if for each i = 1, . . . , n, fi depends only on xi, then

τf (xα1
1 . . . xαn

n ) = τf1(x
α1
1 ) . . . τfn

(xαn
n ). (3.3)

If the roots of f1 = · · · = fn = 0 are simple (this is equivalent to the fact
that the Jacobian of f , denoted by Jac(f), does not vanish on Z(I)

)
, then

τf =
∑

ζ∈Z(I)
1ζ

Jac(f)(ζ) .
But in the general multivariate setting the situation is more complicated.

We will show how to compute effectively τf for an arbitrary map f .
An important tool in the duality theory is the transformation law.

Proposition 3.3.4. (Classical transformation law)
Let g = (g1, . . . , gn) be another polynomial map such that the variety de-

fined by g1, . . . , gn is finite and

∀ i = 1, . . . , n , gi =
n∑

j=1

ai,jfj with ai,j ∈ K[x].

Then τf = det(ai,j) · τg.
Proposition 3.3.5. (Generalized transformation law [BY99, EM96]).

Let (f0, . . . , fn) and (g0, . . . , gn) be two maps of K[x0,x] = K[x0, x1, . . . , xn]
which define finite affine varieties. We assume that f0 = g0 and there are pos-
itive integers mi and polynomials ai,j such that

∀ i = 1, . . . , n , fmi
0 gi =

n∑
j=1

ai,jfj .

Then τ(f0,...,fn) = det(ai,j) · τ(gm1+···+mn+1
0 ,g1...,gn)

.

If f0 = x0 andm1 = · · · = mn = 0, the generalized transformation law reduces
to the classical one.

Another important fact in this theory is the following formula:

Jac(f) · τf = Tr , (3.4)

where Tr : a ∈ R �→ Tr(a) ∈ K (Tr(a) is the trace of the endomorphism of
multiplication by a in the vector space A). If the characteristic of K is 0, we
deduce from this formula that dimK(A) = τf

(
Jac(f)

)
.
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3.3.1 Residue calculus

The effective construction of the residue of the polynomial map f = (f1, . . . , fn)
is based on the computation of algebraic relations between f1, . . . , fn and the
coordinate functions xi (see also Section 1.5.4 of Chapter 1). We give here a
method using Bezoutian matrices to get them.

Let f0, . . . , fn be n+1 elements of R such that the n polynomials f1, . . . , fn
are algebraically independent over K. For algebraic dimension reasons there
is a nonzero polynomial P such that P (f0, . . . , fn) = 0. We will show how to
find such a P by means of the Bezoutian matrix.

Proposition 3.3.6. (see [EM00]) Let u = (u0, . . . , un) be new parameters.
Then every nonzero maximal minor P (u0, . . . , un) of the Bezoutian matrix
of the elements f0 − u0, . . . , fn − un in K[u0, . . . , un][x] satisfies the identity
P (f0, . . . , fn) = 0.

This proposition comes from the fact that we can write the Bezoutian ma-
trix of f0 − u0, . . . , fn − un (up to invertible matrices with coefficients in
K(u1, . . . , un)

)
as ⎛⎜⎜⎜⎜⎜⎜⎝

Mf0 − u0I 0

0 ∗

⎞⎟⎟⎟⎟⎟⎟⎠ (3.5)

where I is the identity matrix, Mf0 is the matrix of multiplication by f0 in the
vector space K(u1, . . . , un)[x]/(f1 − u1, . . . , fn − un). By Cayley-Hamilton’s
theorem every maximal minor of this Bezoutian matrix gives an algebraic
relation between f0, . . . , fn (for more details see [EM00]).

In practice, we use a fraction free Gaussian elimination (Bareiss method)
in order to find a nonzero maximal minor of the Bezoutian matrix (see the
implementation of the function melim in the multires package).

We will see now how to compute effectively the residue τf .

Proposition 3.3.7. For i ∈ {1, . . . , n}, let

Pi(u0, . . . , un) = ai,0(u1, . . . , un)umi
0 + · · ·+ ai,mi

(u1, . . . , un)

be an algebraic relation between xi, f1, . . . , fn. If for each i there is ki ∈
{0, . . . ,mi − 1} such that ai,ki

(0) �= 0, then for h ∈ R the computation of
the multivariate residue τf (h) reduces to univariate residue calculus.

Proof. If ji = min{k : ai,k(0) �= 0}, we have

gi(xi) = ai,ji
(0)xmi−ji

i + · · ·+ ai,mi
(0) =

n∑
j=1

Ai,jfj , Ai,j ∈ K[x].
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By the transformation law and (3.3) there are scalars cα such that

τf (h) = τ(g1,...,gn)

(
hdet(Ai,j)

)
=

∑
α=(α1,...,αn)

cα τg1(x
α1
1 ) . . . τgn

(xαn
n ).

If w are formal parameters, similarly for every h ∈ R, τf−w(h) is
a rational function in w whose denominator is the product of powers of
a1,0(w), . . . , an,0(w). But it is not clear how to recover τf (h) from this func-
tion. For an arbitrary map f , τf (h) can be computed using the generalized
transformation law.

For (α1, . . . , αn) ∈ Kn and a new variable x0, we define the multi-index
m = (m1, . . . ,mn) and the polynomials Ri, Si as follows: If Pi(u0, . . . , un) is
an algebraic relation between xi, f1, . . . , fn, then there are Bi,j ∈ K[x0, . . . , xn]
such that

Pi(xi, α1x0, . . . , αnx0) =
n∑

j=1

(fj − αjx0)Bi,j (3.6)

= xmi
0

(
Ri(xi)− x0Si(xi, x0)

)
. (3.7)

From the transformation laws we deduce the following result:

Proposition 3.3.8. If for each i = 1 . . . n, the univariate polynomial Ri does
not vanish identically, then for h ∈ R we have

τf (h) =
∑

k∈Nn:|k|≤|m|
τ
(x

|m|+1−|k|
0 ,R

k1+1
1 ,...,Rkn+1

n )

(
Sk1

1 . . . S
kn
n hdet(Bi,j)

)
.

Proof. From (3.6) and Proposition 3.3.5, we have

τf (h) = τ(x0,f1−α1x0,...,fn−αnx0)(h) = τ
(x

|m|+1
0 ,R1−x0S1,...,Rn−x0Sn)

(
hdet(Bi,j)

)
.

Using the identities

R
|m|+1
i − (x0Si)|m|+1 = (Ri − x0Si)

|m|∑
ki=0

R
|m|−ki

i (x0Si)ki , i = 1 . . . n,

and Proposition 3.3.4 we deduce the formula in Proposition 3.3.8.

Propositions 3.3.6 and 3.3.8 give an effective algorithm to compute the
residue of a map in the multivariate setting. They reduce the multivariate
residue calculus to the univariate one.

We will show how to use the residue for solving polynomial systems. Let
ζ1, . . . , ζD be the solutions of the system f = 0 (each solution appears as many
times as its multiplicity). Let us fix i ∈ {1, . . . , n}. Using formula (3.4) and
Theorem 3.2.5, we can compute the Newton sums
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Sj = τf
(
xi

jJac(f)
)

= Tr(xi
j) = ζ1,i

j + · · ·+ ζD,i
j ,

where ζ1,i, . . . , ζD,i are the i-th coordinates of ζ1, . . . , ζD. If σ1, . . . , σD are the
elementary symmetric functions of ζ1,i, . . . , ζD,i (i.e. σj =

∑
1≤i1<···<ij≤D ζ1,i1 . . . ζD,ij

),
we can obtain the univariate polynomial

Ai(T ) = (T − ζ1,i) . . . (T − ζD,i) = TD + σ1T
D−1 + · · ·+ σD

by means of the Newton identities:

kσk = −Sk − σ1Sk−1 − · · · − σk−1S1 , 1 ≤ k ≤ D. (3.8)

The residue τf allows us to find the univariate polynomials Ai(T ), 1 ≤ i ≤ n,
and then to deduce the i-th coordinates of the roots of the system f1 = · · · =
fn = 0.

For other applications of residue theory see [EM98, EM].

3.4 Resultant constructions

Projection is one of the most used operations in effective algebraic geometry
[Eis95, CLO98]. It reduces the dimension of the problem that we have to solve
and often simplifies it. The resultant is a tool to perform such a projection and
has many applications in this domain. It leads to efficient methods for solving
polynomial equations based on matrix formulations [EM99b]. We present here
different notions of resultants (see also Chapter 1).

We recall that a resultant of a polynomial system fc on a complete variety
X is a polynomial ResX(fc) on the coefficients c of this system (considered
as variables) such that the vanishing of ResX(fc) is a necessary and sufficient
condition for fc to have a solution in the variety X. The best known formu-
lation of the resultant is in the case of two univariate polynomials. It is given
by the Sylvester matrix. Another classical one is the projective resultant of n
homogeneous polynomials in n variables. It can be computed using Macaulay
matrices (see Chapter 2, Section 2.3, or [DD01]). Recently a refined notion
of resultants (on toric varieties) has been studied. It takes into account the
actual monomials appearing in the polynomials. Its construction follows the
same process as in the projective case except that the notion of degree is re-
placed by the support of a polynomial (for more details see Chapter 7). Here
we will focus on an even more recent generalization of these resultant notions.

3.4.1 Resultant over a unirational variety

A natural extension of the toric resultant is to replace the monomial parame-
terization by a rational one. The polynomial system fc is defined on an open
subset of Kn and is of the form
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fc :=

⎧⎪⎪⎨⎪⎪⎩
f0(t) =

∑k0
j=0 c0,j κ0,j(t)

...
fn(t) =

∑kn

j=0 cn,j κn,j(t)

(3.9)

where t = (t1, . . . , tn) ∈ Kn and the κi,j are nonzero rational functions, which
we can assume to be polynomials by reduction to the same denominator.

Let Ki = (κi,j)j=0,...,ki
and U be the open subset of Kn such that Ki(t) �= 0

on U for i = 0, . . . , n. Assume that there exists σ0, . . ., σN ∈ R defining a map

σ : U → PN

t �→ (
σ0(t) : · · · : σN (t)

)
,

and homogeneous polynomials ψi,j(x0, . . . , xN ), i = 0, . . . , n, j = 0, . . . , ki,
satisfying

κi,j(t) = ψi,j

(
σ0(t), . . . , σN (t)

)
and deg(ψi,j) = deg(ψi,0) ≥ 1.

Let Xo be the image of σ and X be its closure in PN . In order to construct
the resultant associated to the system (3.9) on the variety X we assume the
following conditions (D):{

(D1) The Jacobian matrix of σ = (σi)i=0,...,N is of rank n at one point of U,
(D2) For generic c, f1 = · · · = fn = 0 has a finite number of solutions in U.

We will show that these conditions are sufficient to define the resultant. Let
Uo = {t ∈ U : κi,0(t) �= 0 for i = 0, . . . , n} be the dense open subset of U and
consider the parameterization

τ : Pk0−1 × · · · × Pkn−1 × Uo → Pk0 × · · · × Pkn × PN

(c̃0, . . . , c̃n, t) �→
(
c0, . . . , cn, σ(t)

)
with ci = (ci,0, c̃i) and ci,0 = − 1

κi,0(t)

∑ki

j=1 ci,jκi,j(t). We denote by W o the
image of τ , W its closure in Pk0 ×· · ·×Pkn ×PN , π1 : Pk0 ×· · ·×Pkn ×PN →
Pk0×· · ·×Pkn , and π2 : Pk0×· · ·×Pkn×PN → PN the canonical projections.

Theorem 3.4.1. Under the conditions (D), the variety W is irreducible and
projects onto a hypersurface Z = π1(W ). Moreover if ResX(fc) is one equation
of Z, for any specialization of the parameters c = (ci,j), ResX(fc) = 0 if and
only if there exists (c, x) ∈ W such that f̃i(x) :=

∑ki

j=0 ci,j ψi,j(x) = 0 for
i = 0, . . . , n.

Proof. The variety W is the closure of a parameterized variety, so it is irre-
ducible and its projection Z is also irreducible.

According to (D1), the Jacobian of σ is of rank n on an open subset of
U . This implies that the dimension of the variety X is n. The fibers of the
projection π2 : W o → Xo are linear spaces of dimension

∑n
i=0 ki − n− 1, for
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we have Ki(t) �= 0 when t ∈ U . By the fiber theorem ([Sha77] or [Har95]), we
deduce that W is of dimension

∑n
i=0 ki − 1.

Consider now the restriction of π1 to W o. According to (D2), there exists
an open subset of Pk0 × · · · × Pkn on which the number of solutions of the
system f1 = · · · = fn = 0 is finite. The fibers of π1 on this open subset is
therefore of dimension 0. This shows that the projection π1(W o), and thus
Z, is of the same dimension as W , that is a hypersurface of Pk0 × · · · × Pkn

defined (up to a scalar) by one equation ResX(fc).
As the fibers of π2 above Xo are of dimension

∑n
i=0 ki − n − 1 and W

is of dimension
∑n

i=0 ki − 1, π2(W ) is an irreducible variety of dimension n
containing Xo. This shows that X = π2(W ). Consequently for a specialization
of the coefficients c, ResX(fc) = 0 iff there exists x ∈ X such that (c, x) ∈W ,
i.e. f̃i(x) = 0 for i = 0, . . . , n.

The degree of the resultant ResX(fc) in the coefficients ci,j of fi is
bounded by (but not necessarily equal to) the generic number of points of
Vi = Z(f̃0, . . . , f̃i−1, f̃i+1, . . . , f̃n) ∩ X. In the case where the linear forms
f̃i(ζ), ζ ∈ Vi, in ci,j , are all distinct, the degree of ResX(fc) in the coeffi-
cients of fi is exactly the number of generic roots of Vi. This is the case when
t1, . . . , tn appear among the κi,j , j = 0, . . . , ki, as it is illustrated below.

We can compute a non-trivial multiple of ResX(fc) using the Bezoutian
matrix.

Theorem 3.4.2. Assume that the conditions (D) are satisfied. Then any
maximal minor of the Bezoutian matrix Bf0,...,fn

is divisible by ResX(fc).

This theorem is a consequence of hypotheses (D) and the fact that if the
variety defined by f1, . . . , fn is finite then the Bezoutian of f0, . . . , fn admits
a block decomposition of the form (3.5), for more details see [BEM00].

Example 3.4.3. Consider the three following polynomials:⎧⎨⎩ f0 = c0,0 + c0,1t1 + c0,2t2 + c0,3(t12 + t22)
f1 = c1,0 + c1,1t1 + c1,2t2 + c1,3(t12 + t22) + c1,4(t12 + t22)2

f2 = c2,0 + c2,1t1 + c2,2t2 + c2,3(t12 + t22) + c2,4(t12 + t22)2.

We are looking for conditions on the coefficients ci,j such that these three
elements have a common “root”. The projective resultant of these polynomials
in P2 is zero (for all the values of parameters ci,j), because the corresponding
homogenized polynomials vanish at the points (0 : 1 : i) and (0 : 1 : −i)

)
.

The toric resultant also vanishes (these polynomials have common roots in
the associated toric variety). Now we consider the map

σ : K2 → P3

(t1, t2) �→ (1 : t1 : t2 : t21 + t22).

The rank of the Jacobian matrix of σ is 2 and
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ψ0 = (x0, x1, x2, x3) , ψ1 = ψ2 = (x2
0, x0x1, x0x2, x0x3, x

2
3) ,

where (x0 : x1 : x2 : x3) are the homogeneous coordinates in P3. We have
fi =

∑
ci,jψi,j ◦ σ for i = 0, 1, 2. For generic values of the coefficients ci,j , the

system f1 = f2 = 0 has a finite number of solutions in K2. By Theorem 3.4.2,
any nonzero maximal minor of Bf0,f1,f2 is divisible by ResX(f0, f1, f2).

> mbezout([f1,f2,f3],[t1,t2]);

The Bezoutian matrix of f1, f2, f3 is of size 12×12 and has rank 10. A maximal
minor is a huge polynomial in (ci,j) containing 207805 monomials. It can be
factored as q1q2(q3)2ρ, with

q1 = −c0,2c1,3c2,4 + c0,2c1,4c2,3 + c1,2c0,3c2,4 − c2,2c0,3c1,4

q2 = c0,1c1,3c2,4 − c0,1c1,4c2,3 − c1,1c0,3c2,4 + c2,1c0,3c1,4

q3 = c0,3
2c1,1

2c2,4
2 − 2c0,3

2c1,1c2,1c2,4c1,4 + c0,3
2c2,4

2c1,2
2 + · · ·

ρ = c2,0
4c1,4

4c0,2
4 + c2,0

4c1,4
4c0,1

4 + c1,0
4c2,4

4c0,2
4 + c1,0

4c2,4
4c0,1

4 + · · ·
The polynomials q3 and ρ contain respectively 20 and 2495 monomials.
As for generic equations f0, f1, f2, the number of points in the varieties
Z(f0, f1), Z(f0, f2), Z(f1, f2) is 4 (see for instance [Mou96]), the resultant
ResX(f0, f1, f2) is homogeneous of degree 4 in the coefficients of each fi.
Thus, ResX(f0, f1, f2) is equal to the factor ρ.

3.4.2 Residual resultant

In practical situations the equations have common zeroes which are inde-
pendent of the parameters of the problem. These ”degenerate” zeroes are
not interesting for the resolution of this problem. We present here a resul-
tant construction which allows us to remove these degenerate solutions when
they form a complete intersection [BEM01] (for more details see [BEM01],
[BKM90, CU02, Bus01a]).

We denote by S (resp. Sν for ν ∈ N) the set of homogeneous polynomials
(resp. of degree ν) in the variables x0, . . . , xn with coefficients in K.

Let g1, . . . , gr be r (with r ≤ n + 1) homogeneous polynomials in S of
degree k1 ≥ · · · ≥ kr, and let d0 ≥ · · · ≥ dn be n+ 1 integers such that dn ≥
max(k1, kr + 1). We assume that G = (g1, . . . , gr) is a complete intersection
and we consider the system

fc :=

⎧⎪⎨⎪⎩
f0(x) =

∑r
i=1 hi,0(x) gi(x)

...
fn(x) =

∑r
i=1 hi,n(x) gi(x)

where hi,j(x) =
∑

|α|=dj−ki
ci,jα xα is the generic homogeneous polynomial of

degree dj − ki. We look for a condition on the coefficients c = (ci,jα ) such that
fc has a solution “outside” the variety defined by G. Such a condition is given
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by the residual resultant defined in [BEM01]. This resultant is constructed as
a resultant over the blow-up π : X̃ → X = Pn of Pn along the coherent sheaf
of ideals G associated to G ([Har83]).

If G̃ is the sheaf on X̃ inverse image of G by π and G̃di
= G̃ ⊗ π∗(OX(di)

)
,

the degree of the residual resultant in the coefficients of each fi is Ni =∫
X̃

∏
j �=i c1(G̃dj

), with c1(G̃dj
) is the first Chern class of G̃dj

. Using intersection
theory [Ful98], we can give an explicit formula for Ni if G is a complete
intersection. More precisely we have:

Theorem 3.4.4. [BEM01] There exists an irreducible and homogeneous poly-
nomial ResG,d0,...,dn

in K[c] which satisfies

ResG,d0,...,dn
(f0, . . . , fn) = 0 ⇔ Z(F : G) �= ∅.

Moreover, if for a fixed j ∈ {0, . . . , n} we denote by d the n-tuple d =
(d0, . . . , dj−1, dj+1, . . . , dn) , σ0(d) = (−1)n , σ1(d) = (−1)n−1

∑
l �=j dl ,

σ2(d) = (−1)n−2
∑

j1 �=j,j2 �=j,j1<j2
dj1dj2 , . . . ,

σn(d) =
∏

l �=j dl, rj(T ) = σn(d) +
∑n

l=r σn−l(d)T l, and

Prj
(y1, . . . , yr) = det

⎛⎜⎜⎜⎝
rj(y1) · · · rj(yr)
y1 · · · yr
...

...
yr−1
1 · · · yr−1

r

⎞⎟⎟⎟⎠ .
The degree of ResG,d0,...,dn

in the coefficients of each polynomial fj is

Nj =
Prj

P1
(k1, . . . , kr).

The polynomial ResG,d0,...,dn
is called the residual resultant. In order to com-

pute it, let ∆i1...ir
be the r × r minor of the matrix (hi,j)1≤i≤r,0≤j≤n corre-

sponding to the columns i1, . . . , ir, (e0, . . . , en) and (ẽ0, . . . , ẽn) be two bases
of the S-module Sn+1. A matrix whose determinant is a non-trivial multiple
of ResG,d0,...,dn

can be constructed using the following result:

Theorem 3.4.5. [BEM01] For ν ≥ νd,k =
∑n

i=0 di − n − (n − r + 2)kr, the
map

∂ν :

( ⊕
0≤i1<...<ir≤n

Sν−di1−···−dir +
∑r

i=1 ki
ei1 ∧ . . . ∧ eir

)⊕(i=n⊕
i=0

Sν−di ẽi

)
−→ Sν

ei1 ∧ . . . ∧ eir −→ ∆i1...ir

ẽi −→ fi

is surjective if and only if Z(F : G) = ∅. In this case, every nonzero maximal
minors of size dimK(Sν) of the matrix of ∂ν is a multiple of ResG,d0,...,dn

, and
the gcd of all these minors is exactly the residual resultant.
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This result is based on the resolution of the ideal
(
(f0, . . . , fn) : G

)
given

in [BKM90].

Example 3.4.6. (The residual of two points in P2). We consider the following
system in P2: ⎧⎨⎩ f0 = a0x2

0 + a1x0x1 + a2x0x2 + a3(x2
1 + x2

2)
f1 = b0x

2
0 + b1x0x1 + b2x0x2 + b3(x2

1 + x2
2)

f2 = c0x
2
0 + c1x0x1 + c2x0x2 + c3(x2

1 + x2
2).

If G = (x0, x
2
1 + x2

2), νd,k = 2 and a nonzero maximal minor of the matrix of
∂ν is ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 b0 c0 0 0 0

0 0 0 −b1c3 + c1b3 −b2c3 + c2b3 −c1a3 + a1c3

a1 b1 c1 0 −c3b0 + b3c0 0

c2 b2 c2 −c3b0 + b3c0 0 a0c3 − c0a3
a3 b3 c3 0 −b1c3 + c1b3 0

a3 b3 c3 −b2c3 + c2b3 0 −c2a3 + a2c3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The formula for the degrees gives N0 = N1 = N2 = 2 and we check that
this minor is the residual resultant times c3(c1b3 − c3b1). It has the minimal
degree N0 in the coefficients of f0. In this example the projective and toric
resultants vanish identically.

Example 3.4.7. (The residual of a curve in P3). We consider the following
system of cubics in P3 containing the umbilic:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0 = (a0x0 + a1x1 + a2x2 + a3x3)(x
2
0 + x2

1 + x2
2) + (a4x

2
0 + a5x

2
1 + a6x

2
2 + a7x

2
3+

a8x0x1 + a9x0x2 + a10x0x3 + a11x1x2 + a12x1x3 + a13x2x3)x3

f1 = (b0x0 + b1x1 + b2x2 + b3x3)(x
2
0 + x2

1 + x2
2) + (b4x

2
0 + b5x

2
1 + b6x

2
2 + b7x

2
3+

b8x0x1 + b9x0x2 + b10x0x3 + b11x1x2 + b12x1x3 + b13x2x3)x3

f2 = (c0x0 + c1x1 + c2x2 + c3x3)(x
2
0 + x2

1 + x2
2) + (c4x

2
0 + c5x

2
1 + c6x

2
2 + c7x

2
3+

c8x0x1 + c9x0x2 + c10x0x3 + c11x1x2 + c12x1x3 + c13x2x3)x3

f3 = (d0x0 + d1x1 + d2x2 + d3x3)(x
2
0 + x2

1 + x2
2) + (d4x

2
0 + d5x

2
1 + d6x

2
2 + d7x

2
3+

d8x0x1 + d9x0x2 + d10x0x3 + d11x1x2 + d12x1x3 + d13x2x3)x3

Let G = (x3, x
2
0 + x2

1 + x2
2). The previous construction gives N0 = N1 =

N2 = N3 = 15. The size of the matrix Mν of ∂ν is a 84 × 200. A maximal
minor of rank 84 whose determinant has degree 15 in the coefficients of f0 has
been constructed as follows. We extract from Mν 69 independent columns (by
considering a random specialization). We add to this submatrix the columns
of Mν depending on the coefficients of f0 and independent of the 69 columns,
in order to get a 84 × 84 matrix with a nonzero determinant. It yields a
nonzero multiple of the residual resultant. Notice that the projective and
toric resultants are identically 0 in this example.
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3.5 Geometric solvers

Let us describe now how to exploit the resultant constructions to solve poly-
nomial systems.

3.5.1 Multiplicative structure

Let f0, . . . , fn ∈ R and M0 =
(
M00 M01

M10 M11

)
be the transpose of the matrix

defined in Section 2.3 of Chapter 2. Here, we use the natural convention that
the columns of the resultant matrices represent multivariate polynomials.

Theorem 3.5.1. [PS96, ER94, MP00, CLO98] For generic systems f1, . . . , fn,
the matrix of multiplication by f0 in the basis

xE0 = {xα0
0 . . . xαn

n : 0 ≤ αi < deg fi, i = 1, . . . , n}
of A = R/(f1, . . . , fn) is the Schur complement of M1,1 in M0, namely Mf0 =
M00 − M01M11−1M10.

Proof. (see also proof of Theorem 2.3.2 of Chapter 2) Since xE0 is a basis of
the quotient by the polynomials xd1

1 , . . . , x
dn
n , it remains a basis for generic

polynomials f1, . . . , fn of degree d1, . . . , dn.
In order to compute the matrix of Mf0 in this basis, we have first to

multiply the elements of the basis by f0. This is represented in a matrix form

by the block C0 :=
(
M00

M10

)
. Then we have to reduce these polynomials in terms

of the basis xE0 by multiples of polynomials f1, . . . , fn. The multiples that

we use are represented by the coefficient matrix C1 :=
(
M01

M11

)
. The reduction

corresponds to the matrix operation C0 − C1 M
−1
11 M10 which yields the block

Mf0 := M00 − M01M11
−1M10.

Example 3.1.3 (continued). The matrix M0 associated to the polynomials f1, f2
of example 3.1.3, and a generic linear form f0 = u0 + u1x1 + u2x2 is:

> M_0 := mresultant([u[0]+u[1]*x[1]+u[2]*x[2],f1,f2],[x[1],x[2]]);

M0 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0 0 0 0 0 0 2 0 0 − 1
6

ub2 u0 0 0 2 0 −8 0 − 1
6 0

ub1 0 u0 0 0 2 −8 − 1
6 0 −1

0 u1 u2 u0 −8 −8 8 0 −1 1
0 0 u1 0 0 −8 13 −1 0 1
0 u2 0 0 −8 0 4 0 0 0
0 0 0 0 0 13 0 1 0 0
0 0 0 0 4 0 0 0 0 0
0 0 0 u1 13 8 0 1 1 0
0 0 0 u2 8 4 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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In this example a basis of A is S0 = {1, x1, x2, x1x2}. The Schur complement
M00 − M01M11−1M10 of M11 in M0 is the 4× 4 matrix:

> M(u):= uschur(M_0,4);

M(u) :=

⎛⎜⎜⎜⎜⎜⎝
u0 − 25

24 u2
1
6 u1

5
54 u1 − 5

54 u2

u2 u0 + 2u2 0 2
27 u1 + 5

54 u2

u1 − 5
4 u2 u0 + u1

55
54 u1 − 55

54 u2

0 u1 + 5
4 u2 u2 − u1 u0 − u1 + 2u2

⎞⎟⎟⎟⎟⎟⎠ .
By Theorem 3.5.1, the coefficient of ui in M(u) is the matrix of the operator
Mxi

.
An advantage of this approach is that we have a direct matrix representa-

tion of the multiplication operator without using an algorithm to compute a
normal form in A. This formula is a continuous function of the coefficients of
input polynomials in the open set of systems such that M11 is invertible. Thus
it can be used with approximated coefficients, which is useful in many practi-
cal applications. However the main drawback is that the size of the matrix M0

increases very quickly with the number of variables. One way to tackle this
problem consists in exploiting the structure of the matrices (i.e. their sparsity
and quasi-Toeplitz structure) as described in [MP00, BMP00]. Another way
to handle it and to keep a continuous representation of the matrix of multipli-
cation has been proposed in [MT00]. In some sense, it combines the previous
resultant approach with the normal form method proposed in section 3.1.4,
replacing the computation of a big Schur complement M00 − M01M11−1M10 by
the inversion of much smaller systems.

In the next table, we compare the size of different systems to invert (first
lines) with the size m of the matrix M11 to invert in Macaulay’s formulation,
in the case of projective resultants of quadrics (di = 2) in Pn. Here D is the
Bézout bound or the dimension of the K-vector space A.

n 5 6 7 8 9 10 11

5 6 7 8 9 10 11
20 30 42 56 72 90 110
30 60 105 168 252 360 495
20 60 140 280 504 840 1320
5 30 105 280 630 1260 2310

6 42 168 504 1260 2772
7 56 252 840 2310

8 72 360 1320
9 90 495

10 110
11

Σ 80 192 448 1024 2304 5120 11264

m 430 1652 6307 24054 91866 351692 1350030

D 32 64 128 256 512 1024 2048
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3.5.2 Solving by hiding a variable

Another approach to solve a system of polynomial equations consists in hiding
a variable (that is, in considering one of the variables as a parameter), and
in searching the values of this hidden variable for which the system has a
solution. Typically, if we have n equations f1 = 0, . . . , fn = 0 in n variables, we
“hide” a variable, say xn, and apply one of resultant constructions described
before to the overdetermined system f1 = 0, . . . , fn = 0 in the n− 1 variables
x1, . . . , xn−1 and a parameter xn. This leads to a resultant matrix S(xn) with
polynomial entries in xn. It can be decomposed as

S(xn) = Sd x
d
n + Sd−1x

d−1
n + · · ·+ S0,

where Si has coefficients in K and the same size than S(xn). We look for the
values ζn of xn for which the system has a solution ζ ′ = (ζ1, . . . , ζn−1) in the
corresponding variety X ′ (of dimension n − 1) associated with the resultant
formulation. This implies that

v(ζ ′)t S(ζn) = 0, (3.10)

where v(ζ ′) is the vector of monomials indexing the rows of S evaluated at
ζ ′. Conversely, for generic systems of the corresponding resultant formulation
there is only one point ζ ′ above the value ζn. Thus the vectors v satisfying
S(ζn)t v = 0 are scalar multiples of v(ζ ′). From the entries of these vectors,
we can deduce the other coordinates of the point ζ ′. This will be assumed
hereafter6.

The relation (3.10) implies that v(ζ ′) is a generalized eigenvector of St(xn).
Computing such vectors can be transformed into the following linear general-
ized eigenproblem⎛⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎣
0 I · · · 0
...

. . . . . .
...

0 · · · 0 I
St
0 St

1 . . . S
t
d−1

⎤⎥⎥⎥⎦− ζn
⎡⎢⎢⎢⎢⎣

I 0 · · · 0

0
. . . . . .

...
...

. . . I 0
0 · · · 0 −St

d

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ w = 0. (3.11)

The set of eigenvalues of (3.11) contains the values of ζn for which (3.10)
has a solution. The corresponding eigenvectors w are decomposed as w =
(w0, . . . ,wd−1) so that the solution vector v(ζ ′) of (3.10) is

v(ζ ′) = w0 + ζnw1 + · · ·+ ζd−1
n wd−1.

This yields the following algorithm:
6 Notice however that this genericity condition can be relaxed by using duality,

in order to compute the points ζ′ above ζn (when they form a zero-dimensional
fiber) from the eigenspace of S(ζn).
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Algorithm 3.5.2 Solving by hiding a variable.

input: f1, . . . , fn ∈ R.

1. Construct the resultant matrix S(xn) of f1, . . . , fn (as polynomials in
x1, . . . , xn−1, with coefficients in K[xn]) adapted to the geometry of the
problem.

2. Solve the generalized eigenproblem S(xn) v = 0.
3. Deduce the coordinates of roots ζ = (ζ1, . . . , ζn) of f1 = · · · = fn = 0.

output: The roots of f1 = · · · = fn = 0.

Here again, we reduce the resolution of f1 = 0, . . . , fn = 0 to an eigenvector
problem.

Example 3.5.3. We illustrate this algorithm on the system⎧⎨⎩ f1 = x1 x2 + x3 − 2
f2 = x1

2x3 + 2x2 x3 − 3
f3 = x1 x2 + x2

2 + x2 x3 − x1 x3 − 2.

We hide x3 and use the projective resultant formulation (see Section 2.3 in
Chapter 2). We obtain a 15× 15 matrix S(x3), and compute its determinant:

> S:=mresultant([f1,f2,f3],[t1,t2]):det(S);

det(S) := x3
4 (x3 − 1)

(
2x3

5 − 11x3
4 + 20x3

3 − 10x3
2 + 10x3 − 27

)
.

The root x3 = 0 does not yield an affine root of the system f1 = f2 = f3 = 0
(the corresponding point is at infinity). Substituting x3 = 1 in S(x3), we get
a matrix of rank 14. The kernel of S(1)t is generated by

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

This implies that the corresponding root is (1, 1, 1). For the other eigenvalues
(which are the roots of the last factor in det(S)), we proceed similarly in order
to obtain the 5 other (simple) roots of f1 = f2 = f3 = 0. Here are numerical
approximation of these roots:

(0.511793− 1.27671 i, 0.037441 + 1.92488 i,−0.476671− 0.937337 i),
(0.511793 + 1.27671 i, 0.037441− 1.92488 i,−0.476671 + 0.937337 i),
(−1.38186 + 0.699017 i,−0.171994 + 0.704698 i, 2.25492 + 1.09402 i),
(−1.38186− 0.699017 i,−0.171994− 0.704698 i, 2.25492− 1.09402 i),
(0.0734678, 0.769107, 1.9435).

3.5.3 Isolated points from resultant matrices

In this section, we consider n equations f1, . . . , fn in n unknowns, but we do
not assume necessarily that they define a finite affine variety Z(f1, . . . , fn).
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We are interested in computing a rational univariate representation of the
isolated points of this variety. We denote by I0 the intersection of the primary
components of I = (f1, . . . , fn) corresponding to isolated points of Z(I) and
Z0 = Z(I0). We denote by C0(u) the Chow form associated to the ideal I0
(see Section 3.2.3).

First we consider that I = I0. Let f0 = u0 + u1x1 + · · ·+ unxn be a
generic affine form (the ui are considered as variables). We choose one of the
previous resultant constructions for f0, . . . , fn which yields a matrix

M0 =
(
M00 M01

M10 M11

)
such that M11 is invertible (if it exists). The blocks M00, M10 depend only on
the coefficients of f0. From Section 3.5.1 and according to the relation(

M00 M01

M10 M11

)(
I 0

−M−1
11 M10 I

)
=
(
M00 − M01M

−1
11 M10 M01

0 M11

)
we deduce that det(M0) = det(Mf0) det(M11). This means that det(M0) is a scalar
multiple of the Chow form of the ideal I. Such a construction applies for a
system which is generic for one of the mentioned resultant formulations. We
can obtain a rational univariate representation of Z(I) applying Algorithm
3.2.10.

If the affine variety Z(I) is not finite, we can still deduce a rational uni-
variate representation of the isolated points from the previous resultant con-
struction in (at least) two ways.

When the system is not generic for a given construction, a perturbation
technique can be used. Introducing a new parameter ε and considering a
perturbed system fε (for instance fε = f + ε f0), we obtain a resultant matrix
Sε(u) whose determinant is of the form

∆(u, ε) = εk∆k(u) + εk+1∆k+1(u) + · · · with ∆k �= 0.

It can be shown that ∆k(u) is a multiple of the Chow form of I0. Applying
Algorithm 3.2.10 to this multiple of the Chow form yields a rational univariate
representation of Z0 (see [Gri86, Chi86, Can90, GH91, LL91] for more details).

The use of a new parameter ε has a cost that we want to remove. This can
be done by exploiting the properties of the Bezoutian matrix.

Proposition 3.5.4. [EM99a, BEM00] Any nonzero maximal minor ∆(u) of
the Bezoutian matrix of polynomials f0 = u0 + u1x1 + · · ·+ unxn, f1, . . . , fn
is divisible by the Chow form C0(u) of the isolated points of I = (f1, . . . , fn).

The interesting point here is that we get directly the Chow form of the isolated
points of Z(I) even if this variety is not finite. In other words, we do not need
to perturb the system for computing a multiple of C0(u). Another advantage
of this approach is that it yields an “explicit” formulation for ∆(u), and its
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structure can be handled more carefully (for instance, by working directly on
the matrix form instead of dealing with the expansion of minors). So we have
the following algorithm:

Algorithm 3.5.5 Rational univariate representation of the iso-
lated points.

Input : f1, . . . , fn ∈ K[x1, . . . , xn]

1. Compute a nonzero multiple ∆(u) of the Chow form of f1, . . . , fn, from
an adapted resultant formulation of f0 = u0 +u1x1 + · · ·+unxn, f1, . . . , fn
(for instance using the Bezoutian matrix).

2. Get a rational univariate representation of the isolated (and maybe some
embedded) roots of f1 = · · · = fn = 0 by applying Algorithm 3.2.10.

In practice, instead of expanding completely the polynomial d(t+u) in Algo-
rithm 3.2.10, it would be advantageous to consider u1, . . . , un as infinitesimal
numbers (i.e. u2

i = uiuj = 0 for i, j = 1, . . . , n) in order to get only the first
terms d0(u0) + u1d1(u0) + · · ·+ undn(u0) of the expansion of d(t + u). More-
over, we can describe these terms as sums of determinants of matrices deduced
from resultant matrices. This allows us to use fast interpolation methods to
compute efficiently d0(u0), . . . , dn(u0).

3.5.4 Solving overdetermined systems

In many problems (such as in reconstruction in computer vision, autocalibra-
tion in robotics, identification of sources in signal processing, . . . ), each ob-
servation yields an equation. Thus, we can generate as many (approximated)
equations as we want but usually only one solution is of (physical) interest.
Thus we are dealing with overconstrained systems which have approximate
coefficients (due to measurement errors for instance).

Here again we are interested in matrix methods which allow us to handle
systems with approximate coefficients. The methods of the previous sections
for the construction of resultant matrices M0 admit natural generalizations
[Laz77] to overconstrained systems, that is, to systems of equations f1 =
. . . = fm = 0, with m > n, defining a finite number of roots. We consider a
map of the form

S : V1 × · · · × Vm → V

(q1, . . . , qm) �→
m∑

i=1

fi qi

where V and Vi are linear subspaces generated by monomials of R. This yields
a rectangular matrix S.

A case of special interest is when this matrix is of rank N − 1, where N is
the number of rows of S. In this case, it can be proved [EM] that Z(f1, . . . , fm)
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is reduced to one point ζ ∈ Kn, and if xF = (xα)α∈F is the set of monomials
indexing the rows of S that

(ζα)α∈F S = 0.

Using Cramer’s rule, we see that ζα/ζβ (α, β ∈ F , ζβ �= 0) can be expressed
as the ratio of two maximal minors of S. If 1, x1, . . . , xn ∈ xF (which is the
case most of the time), we obtain ζ as a rational function of maximal minors
of S, and thus of input coefficients of f1, . . . , fm.

Algorithm 3.5.6 Solving an overconstrained system defining a
single root

Input: A system f1, . . . , fm ∈ K[x1, . . . , xn] (with m > n) defining a single
solution.

1. Compute the resultant matrix S for one of the proposed resultant formu-
lations.

2. Compute the kernel of S and check that it is generated by one vector
w = (w1,wx1 , . . . ,wxn

, . . .).

Output: ζ = (wx1
w1
, . . . ,

wxn

w1
).

Let us illustrate this algorithm, with a projective resultant construction.

Example 3.5.7. We consider the case of 3 conics:

> f1:= x1^2-x1*x2+x2^2-3;
> f2:= x1^2-2*x1*x2+x2^2+x1-x2;
> f3:= x1*x2+x2^2-x1+2*x2-9;
> S:=mresultant([f1,f2,f3],[x1,x2]);

S :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 0 0 0 0 0 0 0 0 0 0 −9 0 0 0
0 −3 0 0 0 0 −1 0 0 0 −9 2 0 0 0
0 0 −3 0 0 0 1 0 0 0 0 −1 0 0 −9
−1 0 0 −3 0 −1 −2 0 1 0 −1 1 −9 0 2
0 1 −1 0 −1 −2 0 1 1 0 0 0 −1 2 1
0 −1 1 0 0 1 0 −1 −2 −1 1 0 2 0 1
0 0 0 1 −2 0 0 1 0 0 0 0 0 1 0
0 0 0 −1 1 0 0 −2 0 0 0 0 1 1 0
0 0 0 1 0 0 0 1 0 1 0 0 1 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0 −9 −1
1 0 0 0 0 0 1 0 −1 −9 2 1 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 0 1 2 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The rows of S are indexed by

(1, x2, x1, x1x2, x1
2x2, x1x2

2, x1
3x2, x1

2x2
2, x1x2

3, x1
2, x2

2, x1
3, x2

3, x1
4, x2

4).
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We compute the kernel of St in order to check its rank and to deduce the
common root ζ of the system:

> kernel(transpose(S));

{(1, 2, 1, 2, 2, 4, 2, 4, 8, 1, 4, 1, 8, 1, 16)}.
Considering the list of monomials which index the rows of S we deduce that
ζ = (1, 2).

In case that the overdetermined system has more than one root, we can
follow the same approach. We chose a subset E of F (if possible containing
the monomials 1, x1, . . . , xn) such that the rank of the matrix indexed by
the monomials xF\E is the rank r = N − D of S. The set xE will be the
basis of A. Assuming that the monomials xi xE , i = 1, . . . , n, are also in
xF , we complete the matrix S with the block of coefficients of f0 xE0 , where
f0 = u0 +u1 x1 + · · ·+un xn. By a Schur complement computation, we deduce
the matrix of multiplication by f0 in the basis xE of A. Now, by applying the
algorithms of Section 3.2.2, we deduce the roots of the overdetermined system
f1, . . . , fm (see [EM99b] for more details on this approach).

3.6 Applications

We will use the tools and methods developed above to solve some problems
coming from several areas of applications.

3.6.1 Implicitization of a rational surface

A rational surface (S) in K3 may be represented by a parametric representa-
tion:

(S) : x =
f(s, t)
d1(s, t)

, y =
g(s, t)
d2(s, t)

, z =
h(s, t)
d3(s, t)

,

where f, g, h, d1, d2, d3 ∈ K[s, t] or by an implicit equation (i.e. F ∈ K[x, y, z]
of minimal degree satisfying F (a, b, c) = 0 for all (a, b, c) ∈ (S)

)
. These two

representations are important for different reasons. For instance, the first one
is useful for drawing (S) and the second one to intersect surfaces or to decide
whether a point is in (S) or not.

We will investigate the implicitization problem, that is the problem of
converting a parametric representation of a rational surface into an implicit
one.

These last decades have witnessed a renewal of this problem motived by
applications in computer-aided geometric design and geometric modelling
([SAG84], [Buc88a], [Hof89], [Kal91], [CM92], [AGR95], [CGZ00], [AS01],
[CGKW01]). Its solution is given by resultants, Gröbner bases, moving sur-
faces (see [SC95], [BCD03], [D’A01]). The techniques based on resultants and
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moving surfaces fail in the presence of base points (i.e. common roots of
f, g, h, d1, d2, d2). The Gröbner bases methods are fairly expensive in practice
even if the dimension is small. Recently, methods using residual resultants and
approximation complexes have been proposed but only under some restrictive
geometric hypotheses on the zero-locus of base points which are difficult to
verify ([Bus01b], [BJ03], [BC]). We propose an approach based on the residue
calculus extending [GV97]. This method works in the presence of base points
and no geometric hypotheses on the zero-locus of base points are needed.

In order to find an implicit equation of (S), as in Proposition 3.3.6 we can
compute a nonzero maximal minor of the Bezoutian matrix of polynomials
xd1 − f, yd2 − g, zd3 − h with respect to s, t. In general, this yields a multiple
of the implicit equation as shown below.

Example 3.6.1. Let (S) be the surface parameterized by

x = s , y =
t2s+ 2t+ s

t2
, z =

t2 − 2st− 1
t2

.

The Bezoutian matrix of x − s, yt2 − t2s − 2t − s, zt2 − t2 + 2ts + 1 in
(K[x, y, z])[s, t] is a 4× 4 matrix.

> melim([x*d1-f,y*d2-g,z*d3-h],[s,t]);

(z − 1)2(4x4 − 4x3y + x2z2 − 8x2z + 2xyz + 4x2 + y2 + 4z − 4).

The second factor in this expression is the expected implicit equation.
The use of the Bezoutian matrix produces an extraneous term along with

the implicit equation. We will see how to use the residue calculus in order to
remove it from this equation.

Let us consider the polynomials in (K[x, y, z])[s, t]⎧⎨⎩ F (s, t) = x d1(s, t)− f(s, t)
G(s, t) = y d2(s, t)− g(s, t)
H(s, t) = z d3(s, t)− h(s, t).

Let Z0 = {ζ ∈ K(y, z)
2

: G(ζ) = H(ζ) = 0} = Z1 ∪ Z2, where Z1 is the alge-
braic variety Z0∩Z(d1d2d3) = {ζ ∈ K(y, z)

2
: G(ζ) = H(ζ) = d1d2d3(ζ) = 0}

and Z2 = Z0\Z1. If Z2 is finite, let Q(x, y, z) be the following nonzero element

Q(x, y, z) =
∏

ζ∈Z2

F (ζ) =
( ∏

ζ∈Z2

d1(ζ)
)(
xm + σ1(y, z)xm−1 + · · ·+ σm(y, z)

)

where m is the number of points (counting their multiplicities) in Z2 and
σi(y, z) is the i-th elementary symmetric function of

{ f(ζ)
d1(ζ) : ζ ∈ Z2

}
.
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Theorem 3.6.2. The implicit equation of the surface (S) is the square-free
part of the numerator of

E(x, y, z) := xm + σ1(y, z)xm−1 + · · ·+ σm(y, z) ∈ K(y, z)[x].

Proof. Let us choose a point (y0, z0) in the open subset U of K
2

such that the
specialization Z̃2 of Z2 is finite in K

2
and the denominators of σ1, . . . , σm do

not vanish. Then we have Q(x0, y0, z0) = 0 if and only if

xm
0 + σ1(y0, z0)xm−1

0 + · · ·+ σm(y0, z0) = 0 ,

which is equivalent to the existence of an element ζ0 ∈ Z̃2 such that
x0 = f(ζ0)

d1(ζ0)
. In other words, the numerator of E(x, y, z) vanishes on a point

(x0, y0, z0) ∈ U if and only if it belongs to (S), which implies that the square-
free part of the numerator of E(x, y, z) is up to a scalar the implicit equation
of the surface (S).

The coefficients σi(y, z) in Theorem 3.6.2 can be computed using the New-
ton identities (3.8). So we need to compute the Newton sums Si(y, z) =∑

ζ∈Z2

( f(ζ)
d1(ζ)

)
, i = 0, . . . ,m. By adding a variable we can assume that d1 = 1.

Algorithm 3.6.3 Implicitization of a rational surface

input: Polynomials f, g, h, d1, d2, d3 in K[s, t].

1. Compute an algebraic relation As(u0, u1, u2) (resp. At(u0, u1, u2)) between
s, G = y d2 − g, H = z d3 − h (resp. t,G,H) in K[y, z][s, t].
• If the univariate polynomials Rs = As(s, 0, 0), Rt = At(t, 0, 0) do not

vanish identically (which is often the case), let M be the 2× 2 matrix

such that
(
Rs

Rt

)
=M

(
G
H

)
.

– Compute the degree

m = τ(G,H)

(
Jac(G,H)

)
= τ(Rs,Rt)

(
Jac(G,H) det(M)

)
in x of the polynomial E(x, y, z) ∈ K(y, z)[x] in Theorem 3.6.2.
– For i from 1 to m, compute

Si(y, z) = τ(G,H)

(
Jac(G,H)f i

)
= τ(Rs,Rt)

(
Jac(G,H) det(M)f i

)
.

• If the polynomial RsRt ≡ 0, the power sums Si(y, z), for i = 0, . . . ,m,
are computed using the algebraic relations As(u0, u1, u2), At(u0, u1, u2)
and the formula in Proposition 3.3.8.

2. Use the Newton identities (3.8) to obtain the elementary symmetric func-
tions σi(y, z) from the Newton sums Si(y, z), i = 1, . . . ,m.

output: The numerator of xm + σ1(y, z)xm−1 + · · ·+ σm(y, z) ∈ K(y, z)[x].
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Example 3.6.1 (continued). In this case, the univariate polynomials Rs and
Rt are equal to

Rs = −4 + 4z3 + 4s4 + 4s2 + 21s2z2 − 16s2z − 4s3y − 12z2 − 10z3s2

+z4s2 − 8zs4 + 4z2s4 + 2yz3s+ 8ys3z − 4ys3z2 − 4z2ys
+2zsy + y2 − 2y2z + z2y2 + 12z,

Rt = 4z − 4− 8t3y + 8t3yz + 16t2 − 20t2z + 4z2t2 + 4t4z2 − 8t4z + 4t4.

The computation of the Newton sums gives

S0 = 4, S1 = y, S2 = −1
2
z + 4z + y − 2, S3 =

1
4
y(−3z2 + 18z − 12 + 4y2)

S4 =
1
8
z4 − 2z3 − z2y2 + 9z2 − 12z + 6y2z + y4 − 5y2 + 6.

And the implicit equation of (S) is

x4 − x3y +
1
4
x2z2 − 2x2z + x2 +

1
2
zxy + z +

1
4
y2 − 1.

3.6.2 The position of a camera

We consider a camera which is observing a scene. In this scene, three points
A,B,C are identified. The center of the camera is denoted by X. We assume
that the camera is calibrated, that is, we know the focal distance, the projec-
tion of the center of the camera, . . . Then, we easily deduce the angles between
the rays XA, XB, XC from the images of the points A,B,C.

We denote by α the angle between XB and XC, β the angle between XA and
XC, γ between XA and XB. These angles are deduced from the measure-
ments in the image. We also assume that the distances a between B and C, b
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between A and C, c between A and B are known. This leads to the following
system of polynomial constraints:⎧⎨⎩x

2
1 + x2

2 − 2 cos(γ)x1x2 − c2 = 0
x2

1 + x2
3 − 2 cos(β)x1x3 − b2 = 0

x2
2 + x2

3 − 2 cos(α)x2x3 − a2 = 0
(3.12)

where x1 = |XA|, x2 = |XB|, x3 = |XC|. Once we know the distances
x1, x2, x3, the two symmetric positions of the center X are easily deduced. The
system (3.12) can be solved by direct polynomial manipulations, expressing
x2 and x3 in terms of x1 from the two first equations and substituting in the
last one. After removing the square roots, we obtain a polynomial of degree
8 in x1, which implies at most 16 positions of the center X in this problem.
Another simple way to get this equation is to eliminate the variables x2, x3,
using the Bezoutian construction (from the multires package), and we obtain

> melim([f1,f2,f3], [x2,x3]);

2 cos(α)
(
64 cos(β)2cos(α)2cos(γ)2 − 64 cos(β)3 cos(α) cos(γ) − 64 cos(β) cos(α)3 cos(γ) + 16 cos(γ)4

−64 cos(β) cos(α) cos(γ)3 + 16 cos(β)4 + 32 cos(β)2cos(α)2 + 32 cos(β)2cos(γ)2 + 16 cos(α)4

+32 cos(α)2cos(γ)2 + 64 cos(β) cos(α) cos(γ) − 32 cos(β)2 − 32 cos(α)2 − 32 cos(γ)2 + 16
)

x8
1 + · · ·

Once this equation of degree 8 in x1 is known, the numerical solving is easy.

3.6.3 Autocalibration of a camera

We consider here the problem of computing the intrinsic parameters of a
camera from observations and measurements in 3 images of the same scene.
Following the approach described in [Fau93], the camera is modeled by a pine
hole projection. From the 3 images, we suppose that we are able to compute
the fundamental matrices relating a pair of points in correspondence in two
images. If m, m’ are the images of a point M ∈ R3 in two photos, we have
m Fm’=0, where F is the fundamental matrix.
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From 3 images and the 3 corresponding fundamental matrices, we deduce the
so-called Kruppa equations on the 6 intrinsic parameters of the camera. See
[Kru13], [Fau93] for more details. This is a system of 6 quadratic homogeneous
equations in 6 variables. We solve this overdetermined system by choosing 5
equations among the six, solving the corresponding affine system and choosing
the best solutions for the last equation among the 32 solutions. This took 0.38s
on a Alpha 500Mhz workstation for the following experimentation:

Exact root Computed root
1.049401330318981 1.049378730793354
4.884653820635368 4.884757558650871
6.011985256613766 6.011985146332036
.1726009605860270 .1725610425715577
1.727887086410446 1.727898150468536

The solver used for this computation has been developed by Ph. Trébuchet
[Tré02] and is available in the library synaps [DRMRT02] (see Solve(L,
newmac<C>()).

3.6.4 Cylinders through 4 and 5 points

We consider the problem of finding cylinders through 4 or 5 points. The system
that we use is described in [DMPT03].

The number of solutions for the problems that we consider are the following:

• Cylinders through 5 points: 6 = 3× 3− 3 solutions.
• Cylinders through 4 points and fixed radius: 12 = 3× 4 solutions.
• Lines tangent to 4 unit balls: 12 solutions.
• Cylinders through 4 points and extremal radius: 18 = 3 × 10 − 3 × 4

solutions.
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Here are experimental results also performed with the solver developed by
Ph. Trébuchet:

Problem time max(|fi|)
Cylinders through 5 points 0.03s 5 · 10−9

Parallel cylinders through 2×4 points 0.03s 5 · 10−9

Cylinders through 4 points, extremal radius 2.9s 10−6

The computation was performed on an Intel PII 400 128 MB of RAM.
max(|fi|) is the maximum of the norm of the defining polynomials fi eval-
uated at the approximated roots. The relatively huge time spent in the last
problem is due to the treatment of multiple roots.

3.6.5 Position of a parallel robot

Consider a parallel robot, which is a platform controlled by 6 arms:

From the measurements of the length of the arms, we would like to know the
position of the platform. This problem is a classical benchmark in polynomial
system solving. We know from [RV95, Laz93, Mou93] that this problem has
at most 40 solutions and that this bound is reached [Die98]. Here is the 40
degree curve that we obtain when we remove an arm of the mechanism:
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The geometric constraints describing the position of the platform are trans-
formed into a system of 6 polynomial equations:

‖RYi + T −Xi‖2 − d2i = 0 , i = 1, . . . , 6,

where R equals

1
a2 + b2 + c2 + d2

⎛⎜⎜⎝
a2 − b2 − c2 + d2 2 ab− 2 cd 2 ac+ 2 bd

2 ab+ 2 cd −a2 + b2 − c2 + d2 2 bc− 2 ad

2 ac− 2 bd 2 ad+ 2 bc −a2 − b2 + c2 + d2

⎞⎟⎟⎠
i.e. the rotation of the platform with respect to a reference frame, and
T = (u, v, w) is its translation. Using again the solver by Ph. Trébuchet
and a different modelisation (with point coordinates in the first column, and
quaternions in the second column), and one deduced from the residual resul-
tant construction (in the column “redundant”) as described in [Bus01a], and
different numerical precision, we obtain the following results:

Direct modelisation Quaternions Redundant
250 b. 3.21s 128 b. - 250 b. 8.46s 128 b. 6.25s 250 b. 1.5s 128 b. 1.2s

Here n b. denotes the number n of bits used in the computation.

3.6.6 Direct kinematic problem of a special parallel robot

Resultant constructions can also be used for some special geometry of the
platform. Here is an example where two attached points of the arms on the
platform are identical. We solve this problem by using the Bezoutian formula-
tion, which yields a 20×20 matrix of polynomials in one variable. The number
of complex solutions is also 40. The code for the construction of the matrix is
generated in a pre-processing step and the parameters defining the geometry
of the platform are instantiated at run time. This yields the following results.
There are 6 real solutions, one being of multiplicity 2:
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We obtain the following error |‖RYi + T − Xi‖2 − d2i | < 10−6 and the time
for solving is 0.5s on an Intel PII 400, 128 MB of RAM.

3.6.7 Molecular conformation

Similar resultant constructions can also be used, in order to compute the
possible conformations of a molecule when the position and orientation of
the links at the extremity are known. The approach is similar to the one
described in [RR95]. It was developed by O. Ruatta, based on the synaps
library. Here also, the resultant matrix is constructed in a preprocessing step
and we instantiate the parameters describing the geometry of the molecule at
run-time. In this example, we obtain 6 real solutions among the 16 complex
possible roots:
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The numeric error on the solutions is bounded by 10−6 and the time for solving
is 0.090s, on a standard workstation.

3.6.8 Blind identification in signal processing

Finally, we consider a problem from signal processing described in detail in
[GCMT02]. It is related to the transmission of an input signal x(n) of size p
depending on the discrete time n into a convolution channel of length L. The
output is y(n) and we want to compute the impulse response matrix H(n)
satisfying:

y(n) =
L−1∑
m=0

H(m)x(n−m) + b(n),

where b(n) is the noise. If b(n) is Gaussian centered, a statistic analysis of
the output signal yields the equations:

L−1∑
m=0

p∑
i=1

hα,i(m)hβ,i(m)(−1)n−m = E(yα(n)yβ(n− l)) ,

where hα,i(m) are the unknowns and the E(yα(n)yβ(n− l)) are known from
the output signal measurements. We solve this system of polynomial equations
of degree 2 in 6 variables, which has 64 solutions for p = 1, with the algebraic
solver of Ph. Trébuchet and we obtain the following results:
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A real root
x0 -1.803468527372455
x1 -5.162835380624794
x2 -7.568759900599482
x3 -6.893354578266418
x4 -3.998807562745594
x5 -1.164422870375179
Error = 10−8, Time = 0.76s




