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Abstract Clearance of apoptotic cells by phagocytes can result in either anti-inflam-
matory and immunosuppressive effects or prostimulatory consequences through
presentation of cell-associated antigens to T cells. The differences in outcome are
due to the conditions under which apoptosis is induced, the type of phagocytic cell,
the nature of the receptors involved in apoptotic cell capture, and the milieu in
which phagocytosis of apoptotic cells takes place. Preferential ligation of specific re-
ceptors on professional antigen-presenting cells (dendritic cells) has been proposed
to induce potentially tolerogenic signals. On the other hand, dendritic cells can effi-
ciently process and present antigens from pathogen-infected apoptotic cells to T



cells. In this review, we discuss how apoptotic cells manipulate immunity through
interactions with dendritic cells.

Abbreviations
APC Antigen-presenting cell
CR Complement receptor
CMV Cytomegalovirus
DC Dendritic cell
DTH Delayed type hypersensitivity
GM-CSF Granulocyte-macrophage colony-stimulating factor
HSP Heat shock protein
HSV Herpes simplex virus
IC Immune complex
Ig Immunoglobulin
IFN Interferon
IL Interleukin
LPS Lipopolysaccharide
LPC Lysophosphatidylcholine
MHC Major histocompatibility complex
MBL Mannose-binding lectin
mDC Myeloid dendritic cells
LOX-1 Oxidized low-density receptor 1
PGE2 Prostaglandin E2
PAF Platelet activating factor
PS Phosphatidylserine
PSR Phosphatidylserine receptor
pDC Plasmacytoid dendritic cells
SR-A Scavenger receptor A
SLE Systemic lupus erythematosus
TLR Toll-like receptor
TGF Transforming growth factor
TNF Tumor necrosis factor

1
Introduction

Apoptosis is a physiological form of cell death occurring in normal tis-
sue turnover, during embryogenesis, and after infection or inflammation
of tissues. Uptake of apoptotic cells by surrounding phagocytes offers
their safe disposal and prevents activation of bystander cells and tissue
damage after the release of dying cell contents. Cells undergoing apopto-
sis are characterized by morphological as well as biochemical changes
such as altered distribution of membrane lipids and exposure of modi-
fied carbohydrates on the plasma membrane. These changes enable rec-
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ognition of apoptotic cells by specific receptors on phagocytes and their
rapid uptake. Elimination of apoptotic cells is most expeditiously medi-
ated by resident macrophages, but immature dendritic cells (DCs) also
phagocytose apoptotic cells, albeit less efficiently. Additionally, nonpro-
fessional phagocytes such as epithelial cells [206], fibroblasts [14], glial
cells in the brain [29], mesangial cells in the kidney [83], or hepatocytes
in the liver [43] contribute to the elimination of apoptotic cells or their
derivatives, e.g., apoptotic blebs. The failure of apoptotic cells to fre-
quently elicit clinically significant autoimmune responses is considered
to be an active process whereby phagocytes are rendered immunosup-
pressive. In contrast, apoptotic cells, when delivered to DCs together
with inflammatory signals, are an excellent source of antigen for stimu-
lating of effector T cells. In this review we discuss the characteristics of
apoptotic cell uptake by DCs and the circumstances leading to tolerance
vs. immunity.

2
Apoptotic Cells and Their Receptors

The search for receptors and molecules mediating uptake of apoptotic
cells began with the identification of the avb3 vibronectin receptor on
macrophages [173]. Savill and colleagues later demonstrated that avb3
vibronectin receptor cooperates with the scavenger receptor CD36, and
uses a bridging molecule, thrombospondin, to bind apoptotic cells
[171]. Competitive binding of apoptotic cells and oxLDL by macro-
phages [23, 205] led to the discovery that apoptotic, but not live cells ex-
press oxidized moieties that are structurally analogous to those that en-
able recognition of oxLDL by scavenger receptors [30] such as scavenger
receptor A (SRA), macrosialin or CD68, and oxidized low-density recep-
tor-1 (LOX-1) [145, 153, 168].

The second important group of receptors consists of members recog-
nizing exposed phosphatidylserine (PS). PS, which is usually confined to
the cytoplasmic side of the plasma membrane by a phospholipid
translocase, is translocated to the outer part of the membrane because
of malfunction of the enzyme in cells undergoing apoptosis [217]. Re-
ceptors recognizing PS include PSR, which binds it directly or possibly
via an intermediate molecule, annexin I [11], b2-GPI receptor, the recep-
tor tyrosine kinase MER, and avb3 vibronectin receptor [166, 180],
which use the bridging proteins b2-GPI, Gas6, and MFGE8, respectively
[13, 6, 67, 89]. Recently, serum protein S was identified as yet another
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ligand of PS that expedites uptake of apoptotic cells by macrophages.
Protein S is partially homologous to Gas6, but its receptor on phagocytic
cells remains to be identified [6].

CD14 [39] and CD91 [143] are two additional molecules of the recep-
tor array recognizing apoptotic cells. CD14, also known to bind lipo-
polysaccharide (LPS), has not clearly been connected to a discrete mole-
cule on apoptotic cells; however, ICAM-3, which is expressed on apop-
totic cells, has been identified as one molecule recognized by CD14
[132]. Additional candidates include PS [49] and altered carbohydrates,
because CD14 possesses lectinlike activity [64]. Recognition of apoptotic
cells by the a2 macroglobulin receptor (molecule CD91) is more com-
plex. Apparently, CD91 associates with calreticulin and recognizes apop-
totic cells through bridging molecules: either the C1q component of the
complement system or defense collagens such as mannose-binding lec-
tin (MBL) [143], surfactant protein A and D, and bovine conglutinin
[175, 215].

Association with CD91 is not the only occasion where the comple-
ment system is involved in the uptake of apoptotic cells. Two comple-
ment receptors, CR3 and CR4, that belong to the b2 integrin family and
recognize complement fragment iC3b have been identified on macro-
phages and/or DCs. iC3b enhances the clearance of apoptotic cells by
macrophages and DCs, by coating apoptotic cells [216]. The primary
role of complement receptors still remains to be shown, as it is not yet
clear whether they contribute significantly to the internalization of
apoptotic cells or whether they assist other receptors in increased up-
take, perhaps by docking apoptotic cells to phagocytes ([216] and
�koberne and Bhardwaj, unpublished data).

Finally, ABC, an ATP-binding cassette transporter, has been proposed
to play a role in capturing apoptotic cells [123]. However, little is known
about the mechanism by which this transporter mediates phagocytosis.

Apoptotic cell-phagocyte interactions are facilitated by the deactiva-
tion of CD31 (PECAM-1). CD31 is expressed on both viable and phago-
cytic cells and provides a mutual “repulsion” signal that normally pre-
vents ingestion of viable cells. However, during the process of apoptosis,
CD31 is modified so that it no longer mediates detachment, thereby per-
mitting apoptotic cells to dock to scavenger receptors [26].

Recently it was shown that phagocytic cells reach the sites where ex-
tensive apoptotic cell death occurs by chemotaxis to lysophosphatidyl-
choline (LPC) [110], a molecule that is first exposed on the surface of
apoptotic cells in a PLA2 -dependent manner [99] and then released by
apoptotic cells to function as a chemoattractant. LPC is recognized by
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G2A, a recently identified receptor on phagocytes [96]. It is tempting to
speculate that LPC-G2A receptor interaction may also function to take
up apoptotic cells, as G2A was shown to be internalized after binding
LPC [96]. Without doubt, LPC is only one of the factors that facilitate
phagocyte-apoptotic cell interactions, and several more examples will
become apparent in the future.

Human DCs express several of the receptors discussed above, but so
far only a few have been examined for their role in the phagocytosis of
apoptotic cells. Rubartelli et al. [165] showed that avb3 mediates engulf-
ment of apoptotic cells, and Albert et al. [3] could achieve up to 50% in-
hibition of apoptotic cell uptake by DCs previously exposed to specific
antibodies against the receptors avb5 and CD36 . DC scavenger receptor
Lox-1 binds heat shock proteins (HSPs) and cross-presents antigens
bound to HSPs to T cells [36]; thus this receptor may take up not only
apoptotic cells but also the cell-associated debris released from necrotic
cells. This dual ability of Lox-1 may partly account for the capacity of
DCs to present antigens from both apoptotic and necrotic cells [106]. In
macrophages, CD91 binds HSPs and mediates the cross-presentation of
associated antigens, in addition to mediating the binding of apoptotic
cells [16]. Indirect recognition of apoptotic cells via Fc receptors might
also play a role in vivo, as IgG-opsonized tumor apoptotic cells have
been shown to be a good source of antigens in a vaccination study when
charged to DCs [2]. Recently, complement receptors have also been asso-
ciated with recognition of apoptotic cells by DCs, although characteriza-
tion of their role needs further investigation [134, 190, 216].

Mice that lack certain receptors or factors that mediate uptake of
apoptotic cells such as Mer [33], PSR [117], G2A [113], C1q [203], or
IgM [25, 47] exhibit profound defects in phagocytosis of apoptotic cells
and develop syndromes resembling lupus (Mer, C1q, and IgM) or are
rapidly fatal (PSR). Such findings are not surprising, as failure to ade-
quately remove apoptotic cells would have serious consequences, such
as secondary necrosis and consequent inflammation. On the other hand,
a loss of other receptors that also contribute to removal of C1q-op-
sonized apoptotic cells (e.g., CD93) does not result in development of
autoimmune disease [141], nor does the loss of avb5, avb3, or CD36 re-
ceptors. In fact, these mice remain capable of cross-presenting antigens
encoded by apoptotic cells to T cells [21, 179]. A multiple receptor-based
system ensures a fail-safe elimination of apoptotic cells, but it seems that
certain receptors are essential for the prevention of autoimmunity.
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3
Inhibitory Effects of Apoptotic Cells

Several mechanisms have evolved to prevent autoimmunity to self-anti-
gens that are contained within apoptotic cells. Most self-reactive T cell
responses are eliminated early in life by central tolerance. Remaining au-
toimmune T cells are controlled by peripheral tolerance, through dele-
tion, anergy or by induction of regulatory CD4+ or CD8+ Tcells that ac-
tively suppress self-reactive responses. In vivo, the tissue-resident anti-
gen-presenting cells (APCs) take up the surrounding apoptotic cells dur-
ing physiological cell turnover and migrate to lymph nodes where self-
antigens are processed and presented to T cells [88, 130]. In the absence
of inflammation, apoptotic cells may interfere with DC maturation as
well as macrophage activation [172, 210]. Therefore, DCs may reach T
cell areas of lymph nodes in an immature state and induce tolerance
rather than immune responses [40, 82, 161, 177] (Fig. 1).

The immunosuppressive effects of apoptotic cells were first identified
on macrophages, where production of several proinflammatory factors
such as TNF-a, IL-1b, IL-8, GM-CSF, and thromboxane B2 was inhibited
on their ingestion [50]. In addition, ligation of PSR by apoptotic cells
stimulated TGF-b1 secretion and inhibited LPS-induced TNF-a release
in macrophages [51]. Binding of CR by specific antibodies or natural lig-
ands also inhibited IL-12 and IFN-g production by monocytes [125] or
even induced IL-10 production [226]. Similarly, ligation of CD36 in-
duced IL-10 production and inhibited TNF-a and IL-12 production in
response to LPS [219].

It is interesting that pathogens often mimic apoptotic cells and take
advantage of the same receptors to enter phagocytes and to promote im-
munosuppressive effects. For example, infectious stages of Leishmania
major bind CR3 and suppress IL-12 production by macrophages [63,
124, 128]. Also, Bordetella pertussis binds CR3, induces IL-10, and in-
hibits IL-12 production by a macrophage cell line on exposure to LPS
and IFN-g [129].

DCs were long believed to stay immunologically inert after ingestion
of apoptotic cells, but data now suggest that they also play an active role
in immunosuppression [200]. In this respect, the possible involvement
of complement receptors, CD36 and PSR has received the greatest atten-
tion.
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3.1
Complement Receptors CR3 and CR4

Myeloid DCs express high levels of two complement receptors, CR3
(CD11b/CD18) and CR4 (CD11c/CD18), which both recognize iC3b, a
breakdown product of complement and an opsonin for apoptotic cells.
Apoptotic cells activate complement via the classical pathway [101] or

Fig. 1 Maturation state of DC influences T cell responses. In the periphery, DCs con-
tinuously capture physiologically dying apoptotic cells and process their antigens. In
the absence of maturation signals, these DCs retain low expression of MHC and cos-
timulatory molecules while they upregulate their expression of CCR7. They can then
migrate to the draining lymph nodes, present antigens derived from apoptotic cells
to T cells, and induce anergy, deletion, or tolerance of antigen-specific T cells. In ad-
dition, these DCs can be further skewed to a tolerizing activity by the cytokines, e.g.,
IL-10 or TGF-b, that are produced by neighboring macrophages that have ingested
apoptotic cells, by tumor cells, or by microbes. In contrast, when DCs undergo mat-
uration, the presentation of antigens derived from apoptotic cells results in the prim-
ing of effector T cells. Factors that contribute to full maturation of DCs include im-
paired clearance of apoptotic cells that is followed by secondary necrosis and release
of inflammatory cell contents, presence of microbial components, inflammatory cy-
tokines produced by infected cells or by components of preexisting immunity, such
as opsonization by antibodies or activation by CD40 molecule on activated Tcells
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the alternative pathway [126, 207]. On activation, C3 breaks into C3a
and C3b. The latter is deposited on the surface of apoptotic cells and is
probably rapidly converted into iC3b by serum factor H or I [126, 131,
149]. Molecules on apoptotic cells responsible for activation of comple-
ment have not been identified, but exposure of PS and deposition of C3b
fragments have been positively correlated [133]. In addition, IgM
antibodies that activate the classic pathway of complement, bind LPC,
a recently defined “find and eat me” marker of apoptotic cells (The
“find and eat me” concept is nicely reviewed in [111]). In support of the
role of IgM antibodies in noninflammatory removal of apoptotic cells,
IgM�/� mice were found to develop SLE-like disorders [25, 47].

Recently, ligation of the complement receptors CR3 and CR4 has been
implicated in the induction of DCs with regulatory properties [190, 216].
Verbovetski et al. used serum-deprived apoptotic Jurkat cells opsonized
with complement fragment iC3b to show that engagement of CR3 and
CR4 prevents DC maturation on stimulation with either LPS or CD40L.
Interestingly, despite the inhibition of upregulation of various matura-
tion markers, complement-treated DCs still heightened the expression of
CCR7 (a receptor for the chemokines CCL19 and 21 expressed in the
lymph node), so conceivably these DCs could migrate and induce toler-
ogenic T cells in the secondary lymphoid organs [216].

Further confirmation of the importance of CR in DC modulation
comes from animal experimental models. Morelli et al. [134] showed
that iC3b fragments exert immunomodulary functions in vivo. They
demonstrated that in mice splenic marginal zone DCs use complement
receptors CR3 and CR4 to phagocytose circulating apoptotic cells. Inter-
action of apoptotic cells with these complement receptors reduces the
production of inflammatory cytokines such as IL-1a, IL-1b, and TNF-a
but does not interfere with production of TGF-b1.

Sohn and colleagues used a rat model to show complement involve-
ment in systemic tolerance induced in an immunoprivileged site. OVA-
loaded APC pretreated with either polymeric iC3b or iC3b-opsonized
erythrocytes induced suppression of DTH to OVA when injected into
rats. These observations were supported by in vitro studies demonstrat-
ing that after exposure to iC3b-opsonized erythrocytes, OVA-loaded
APCs produced TGF-b2 and IL-10. However, the authors used peritoneal
exudate cells that represent a nonhomogeneous population as APCs
[190].

Altogether, these studies provide support for the hypothesis that en-
gagement of complement receptors CR3 and CR4 interferes with DCs
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maturation. Furthermore, they imply that such DCs could be involved
in tolerance induction.

3.2
The Scavenger Receptor CD36

Plasmodium falciparum is a parasite causing malaria in humans. During
its intraerythrocytic stages it expresses the protein PfEMP-1 in erythro-
cyte membranes that mediates binding to host cells [138]. All variants of
PfEMP-1 analyzed so far bind the scavenger receptor CD36 [15]. P. falci-
parum-infected erythrocytes bind CD36 directly and the CD51/av inte-
grin chain indirectly (via thrombospondin) and consequently inhibit
LPS-induced expression of maturation markers on human DCs [209,
211]. Engagement of these receptors with antibodies inhibited DC matu-
ration [210], and therefore CD36 and avb3 or avb5 are among candidates
for receptors with immunosuppressive activity. Interestingly, it was re-
cently shown that CD8+ T cell responses are impaired during malaria in-
fection [142], although the mechanisms leading to this impairment have
not been identified.

3.3
The Phosphatidylserine Receptor

Although not yet shown in DCs, in macrophages the recognition of PS
by PSR is crucial for a switch to an anti-inflammatory response [75] and
also to resolve an already established inflammation through production
of TGF-b, PGE2, and PAF and inhibition of IL-12 production [85]. In ad-
dition to its immunosuppressive role, PSR is better known for mediating
phagocytosis of apoptotic cells via a “tether-tickle mechanism.” This
theory proposes usage of different sets of receptors for docking the
apoptotic cell to the phagocyte (“tether” signal) or providing a “tickle”
signal resulting in phagocytosis of apoptotic cells. The “tickle” signal is
provided by PSR as simultaneous binding of PSR converts adhesion into
ingestion even by receptors that are normally not involved in phagocy-
tosis [79]. Ligation of PSR is necessary for activation of Rac1 and Cdc42,
stimulation of Arp2/3 complex-dependent actin polymerization, and
phagosome formation [79]. In contrast to activated macrophages, imma-
ture DCs express Cdc42 and are constitutively macropinocytic and pha-
gocytic [61]. As mature DCs downregulate expression of PSR, it is un-
likely that PSR plays a “tickling” role [191] and receptors such as avb5
integrin may be self-sufficient for phagosome formation [5].
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4
Cross-Presentation

Apoptotic cells were first appreciated not for their role in tolerance in-
duction, but as a source of antigen in priming of T cell immune respons-
es. CD8+ T cells generally recognize major histocompatibility complex
(MHC) class I molecules presenting peptides of 8–10 amino acids. These
cells are crucial for immune responses to tumors and to pathogens such
as viruses and intracellular bacteria and are primed when naive T cells
encounter professional APC bearing an antigenic peptide. Two mecha-
nisms are responsible for loading of peptides onto MHC class I mole-
cules: the first is the endogenous or classic pathway in which the anti-
gens are derived from proteins produced or existing in the cytosol of an
APC. The second mechanism, also referred to as “cross-presentation,”
involves an exogenous pathway in which antigens are derived from exog-
enous sources (such as apoptotic cells) that have been taken up by the
APC. The term “cross-priming” discriminates the priming of CD8+ Tcell
responses to antigen derived from such sources. Cross-presentation
when associated with maturation of DCs results in priming of effector
CD4+ and CD8+ T cell responses (cross-priming) but when associated
with immature or partially mature DCs can lead to “cross-tolerance” (re-
viewed in [20, 136, 137]).

4.1
Cell Types Responsible for Cross-Presentation

In contrast to macrophages that can cross-present but cannot cross-
prime, DCs are efficient at both cross-presentation and cross-priming
[27, 102, 158]. Cell types responsible for cross-presentation in vivo have
been extensively studied in mouse models. DCs were always the prime
candidate and their role was formally confirmed in the studies by den
Haan et al. [37], where the authors showed that the CD8+ subset of DCs
presents cell-associated antigens to cytotoxic T cells. Further confirma-
tion comes from Jung et al. [95], who have shown that by short-term de-
pletion of CD11c+ DCs in mice, they could abrogate cross-priming of
CD8+ T cells . However, classification of DCs in mice is complex and not
directly comparable to humans. In humans fewer DC subsets are known
so far [the predominant are myeloid DCs (mDCs), plasmacytoid DCs
(pDCs) and the Langerhans cells], whereas in mice at least six subsets of
DCs have been characterized on the basis of their phenotype [72, 77,
155]. These murine DC subsets display differential and complex capaci-
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ties to cross-present antigens derived from cellular sources vs. immune
complexes (ICs). For example, CD8+ DCs but not CD8� DCs cross-pres-
ent antigens from ovalbumin (OVA)-loaded spleen cells to CD8+ T cells
[38]. Furthermore, CD8+ DCs also present soluble OVA in vivo to CD8+

T cells but CD8� DCs preferentially present soluble OVA to CD4+ T cells
[38]. However, the efficiency of cross-presentation of cell-associated
antigens is several hundredfold greater than cross-presentation of solu-
ble antigen [116]. Finally, both CD8+ and CD8� DCs cross-present im-
mune complexes (ICs) to CD8+ T cells. However, only the CD8� DCs
cross-present ICs to CD4+ T cells. The loss of all three FcRs leads to loss
of presentation to CD8+ T cells by CD8� DCs but there is no effect on
CD8+ DCs—perhaps because these DCs may acquire ICs via comple-
ment fixation [38]. Another intriguing and open question is whether an-
tigen acquisition in the peripheral tissues and transport to the draining
lymph node can be segregated from the presentation of antigen to T
cells. In support, recent studies by Belz et al. suggest that in addition to
DCs that have migrated from the periphery, the lymph node-resident,
non migrating DCs are responsible for antigen presentation after trans-
fer of antigen from the migrating DCs [19].

Less is known about the role of pDCs in cross-presentation. Although
pDCs are generally more appreciated for the production of type I inter-
ferons, studies by Jung et al [95] cannot exclude their role in cross-prim-
ing (in mice CD11c is expressed by the pDC and the mDC). Interesting-
ly, pDCs lack (mouse) or express low levels (human) of CR3—one of the
primary receptors identified so far that negatively influences DC matu-
ration on apoptotic cell internalization [65, 77, 134, 190, 216]. However,
pDCs might be less specialized for endocytosis compared to mDCs as
cord blood and blood pDC are not very efficient in uptake of proteins
[56, 193] and studies of tonsil or blood human pDC show that they are
not very efficient in endocytosis of latex or dextran beads [65, 199].
They may be better in the transfer of membranes from live, necrotic, or
apoptotic targets, although still less efficient compared to mDCs [199].
Moreover, the profile of expression of cathepsins in human mDC and
pDCs might suggest that they differ in their capacity to process and
present antigens [54]. Indeed, murine pDCs are less potent than mDCs
in assembly of viral peptide-MHC class II complexes after in vivo or in
vitro exposure to virus [104]. In addition, after intravenous injection
into female mice, both CpG-matured male pDCs and mDCs were able to
induce direct CTL priming against the male-specific transplantation an-
tigen. However, contrary to mDCs, CpG-matured male pDC prepulsed
with soluble OVA injected into female animals failed to cross-prime
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OVA-specific CD8+ Tcells or prime OVA-specific CD4+ Tcells [167]. Fur-
ther studies are required to determine whether pDCs have a direct role
in cross-priming or whether they promote cross-presentation and cross-
priming ability of “bystander” mDC through production of type I IFN.

4.2
Mechanism of Cross-Presentation

Presentation of exogenous antigens onto MHC class I by APCs occurs by
at least two distinct mechanisms [8, 103, 116, 140, 159]. Antigens de-
rived from various sources, e.g., soluble proteins, ICs, and protein-coat-
ed latex beads, can be conveyed from the endocytic compartment into
the cytosol of APCs. In the cytosol, antigens are degraded into oligopep-
tides and are transported via the transporter associated with antigen
processing (TAP) into the endoplasmatic reticulum (ER) for loading
onto newly synthesized MHC class I molecules [57, 68, 103, 116, 140,
152, 159, 160]. In addition, cell-associated viral antigens also appear to
require TAP for cross-presentation [57, 186]. Alternatively, antigens can
be processed in endosomal compartments where peptides are generated
with participation of cathepsin S, loaded on recycling MHC class I mole-
cules, and transported to the cell surface for presentation [68, 152, 182].
This pathway is TAP-independent and is used by soluble proteins, multi-
branched lysine with attached peptides, and, under some conditions,
proteins chaperoned by HSPs [8, 103, 148].

Recently, it was proposed that the process facilitating cross-presenta-
tion is carried out in a special compartment, an early ER-derived phago-
some [1] that has the characteristics of both the ER and the phagosomes.
After endocytosis exogenous antigens are transported from this com-
partment into the cytosol, possibly via the Sec61 complex, where degra-
dation by proteasomes occurs [1, 80]. The peptides produced by protea-
somes are then transported back via TAP complex into the lumen of this
distinctive compartment, where antigens are finally loaded on MHC
class I molecules [66, 80]. The presence of MHC class I molecules in this
compartment can be explained by a target signal that they bear in their
cytoplasmic domain, which directs them to endosomal compartments
[120]. Conceivably, peptides generated in the cytosol through this mech-
anism could also access MHC class I peptides in the ER. This novel
mechanism has been studied in the cross-presentation of antigen-coated
latex beads by mouse DCs, and involvement of a similar process in
cross-presentation of dying cells by human DCs is plausible [57].
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4.3
Sources of Antigen for Cross-Presentation

In vitro, several forms of antigens can access the exogenous pathway for
MHC class I presentation (reviewed in [106]), including remainders of
dying cells such as apoptotic cells, apoptotic bodies or necrotic cells,
HSPs, DNA- or RNA-encoded antigens, organisms, e.g., bacteria, viruses,
viruslike particles, exosomes, immune complexes, and soluble proteins
[135, 224] and even “bits” of live cells which “are nibbled off” by phago-
cytes [158, 69, 70].

Whereas in vitro data clearly show that apoptotic cells are an impor-
tant source of antigens [3, 105, 107] fewer data are available regarding
their role in vivo. Huang et al. [82] have shown that mouse DC subsets
can acquire apoptotic cells in the intestine and transport the ingested
material to mesenteric lymph nodes. Bevan�s group [37] showed that the
CD8+ subset of murine DCs can ingest OVA-loaded cells and prime
OVA-specific T cells. Although not shown, these cells were presumably
dying. Iyoda et al. [90] have confirmed the above studies and state that
the majority of the cells ingested by DCs were apoptotic before injection.
Further confirmation for cross-presentation of apoptotic cells by DCs
comes from Hugues et al. [84]. In their studies, induction of apoptosis of
pancreatic b-cells led to the access of islet antigens to CD11c+ and
CD11b+ DCs and induced the development of regulatory CD4+ T cells
[84]. Studies by Scheinecker et al. [177] do not address the viability of
cross-presented cells but clearly show that cell-associated antigens are
taken up and processed by CD11c+ DCs that in turn migrate to draining
lymph nodes where antigens are recognized by specific T cells. The iden-
tity of the cellular fraction that has the predominant role in cross-prim-
ing of cell-associated antigens (whether these are HSP-associated pro-
teins, native proteins, peptides, or some other component) has only re-
cently begun to be explored. Some answers have come from the group of
Shen and Rock [183], who show that the fully processed peptides are
not a major source for cross-presentation but that rather native proteins
released from the dying cells are taken up by the surrounding APCs.
Partially supporting these observations Norbury et al. [139] demonstra-
ted that proteasomal substrates are the prime form of antigens trans-
ferred from donor to recipient cells. However, the contribution of HSP-
peptide complexes should not be excluded on the basis of these results.
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5
Cross-Priming Versus Cross-Tolerance

Under noninflammatory conditions apoptotic cells serve as a source of
antigen for DCs; however, DCs fail to upregulate MHC and costimulato-
ry molecules [118, 177] but upregulate the chemokine receptor CCR7 as-
sociated with migration to lymph nodes [216]. After uptake of apoptotic
cells in the steady state, DCs reach lymph nodes in an immature state
and are presumably responsible for induction of “cross-tolerance.” The
DCs most probably express some degree of costimulation to sufficiently
activate T cells but not to generate long-term effector and memory cells
[71, 118, 197]. When steady-state conditions are altered, e.g., during in-
fection with pathogens, DCs can undergo activation, present antigens
from dying cells, and prime effector T cells instead. We discuss below
cross-priming to microbial antigens during infection and factors that
might be involved in the switch from tolerance to immunity.

5.1
Cross-Priming to Microbial Antigens

It is unlikely that all microbes are able to infect professional APCs. In
addition, microbial immune escape mechanisms involve abrogation of
presentation on MHC class I molecules but nevertheless efficient long-
term immunity is established, as in the case of cytomegalovirus (CMV)
or herpes simplex virus (HSV) [225]. Therefore, alternative mechanisms
such as cross-presentation are essential for priming of CD8+ T cells at
least in the above-mentioned circumstances. In vitro, antigens of numer-
ous viruses have been shown to be presented via cross-presentation of
dying infected cells (for review see [55]), starting with pioneering stud-
ies on influenza virus by Albert and colleagues [4]. Later, the repertoire
was extended to vaccinia virus [107], human CMV [9, 10, 202], Epstein-
Barr virus [76, 201], HIV-1 [108, 7], canarypox virus [87], HSV [154],
and measles virus [178, 181]. Apoptosis of infected cells is also a prereq-
uisite for cross-presentation of bacteria such as Salmonella [227] or my-
cobacteria [176], whereas some other bacteria such as Klebsiella [93] or
Listeria may utilize different sources of antigens [187, 208, 91]. Interest-
ingly enough, cross-presentation of bacterial antigens not only occurs in
the context of MHC class I molecules but also in the context of CD1b
molecules as shown for the mycobacterial antigens [176]. Bearing in
mind that, in addition to the better-studied viruses, numerous bacteria
and parasites also induce apoptosis of infected cells [122, 220], the list of
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microorganisms to which immune responses develop via cross-presenta-
tion of apoptotic cells is expected to increase substantially.

Although studies by Sigal et al. [185] confirmed that cross-priming to
viral antigens can indeed take place in vivo during infection, the rele-
vance of cross-priming in relation to direct priming in vivo remains an
open question. Yewdell and colleagues [31] have recently shown in a
convincing study that cross-priming indeed plays an important role in
vivo for induction of antiviral immunity. When DCs are directly infected
and infection results in partial apoptosis of the APC, presumably both
direct and cross-presentation will take place. However, when DCs are
not infected or when the infection kills APC rapidly, cross-presentation
would be the prime mechanism for activating T cells. This opinion is to
some extent opposed by studies of Zinkernagel and colleagues [58] in
which the authors claim that in the priming of T cell responses to tumor
and viral antigens, cross-presentation is only of minor importance.

5.2
Factors That Influence the Priming Capability of Dendritic Cells

What factors distinguish the cross-presentation of microbial antigens
that lead to effector cell responses and cross-presentation of self-anti-
gens that induce tolerogenic responses? We consider the state of DCs
during encounter of the antigen to set the stage. To avoid autoimmune
responses, by default DCs do not mature on encounter of apoptotic cells
and therefore immature DCs could induce tolerance [127, 170, 198]. In
contrast, when signs of danger (e.g., infection) are present, DCs undergo
maturation and switch to an active immunostimulatory role [127].

In vitro, several factors defining “danger” were shown to induce mat-
uration and enhance cross-presentation by DCs that have ingested apop-
totic cells [105, 106, 107]. However, in vivo signals responsible for the
switch from tolerance to immunity of apoptotic cells are still poorly
characterized. We would expect that in vivo the final outcome would de-
pend on multiple factors, including stimulation through Toll-like recep-
tors (TLRs), presence of proinflammatory cytokines, engagement of
CD40, and presence and inhibitory activity of antigen-specific regulato-
ry T cells, to name only a few. Below we discuss some of the factors that
might be involved in turning on the cross-priming ability of DCs.
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5.2.1
Microbial Factors

Microbial molecules influence the cross-priming capability of DCs on
several levels. First, molecules derived from pathogens such as dsRNA,
ssRNA, unmethylated CpG containing DNA (CpG DNA), LPS, or pepti-
doglycans, which bind an array of TLRs transmit signals that induce
DCs maturation (reviewed in [97]). Second, certain TLR ligands when
added to culture together with soluble OVA induce cross-presentation by
bone marrow-derived CD11c+ CD4� CD8a� DCs [35]. The importance
of TLR9 in activation of DCs after endocytosis of antigen was implied by
experiments in TLR9-deficient mice in which injection of OVA covalent-
ly linked to CpG DNA induced cross-presentation but not cross-priming
[74]. How stimulatory signals mediated through TLR9, and possibly oth-
er TLRs, combine with signals induced by cell-bound antigen, namely
apoptotic cells, remains to be determined. Studies in DCs and macro-
phages indicate that this mechanism is complex, as the production of
cytokines by these cells when cultured in the presence of apoptotic cells
and TLR ligands, differs from that when they are exposed to either TLR
ligands or apoptotic cells alone [121, 200, 216]. TLR ligation might also
influence the efficiency of phagocytosis of apoptotic cells. Although not
yet shown for DCs, murine macrophages upregulate the expression of
apoptotic cell receptors, e.g., SR-A, Lox-1, and CD36, after triggering of
certain TLRs [44]. Additionally, two groups have shown that ligation of
TLR increases the uptake of antigens [24, 221]. However studies by Blan-
der and Medzhitov [24] demonstrate that while ligation of TLR by bacte-
ria increases their uptake and influences the maturation of phagosomes,
no influence was seen on the uptake and digestion of simultaneously
phagocytosed apoptotic cells. Notably, while uptake of infected apoptot-
ic cells was not studied, the bacteria and uninfected apoptotic cells were
confined to distinct compartments.

Finally, pathogen-derived TLR ligands such as LPS and CpG DNA
were shown to induce DC maturation and overturn the inhibitory capac-
ity of regulatory T cells in vitro, in a costimulatory molecule-indepen-
dent and IL-6-dependent fashion [151]. However, this reversal of the
suppressive effects of regulatory cells in vivo was either not observed
[147] or was shown to require persistent TLR signaling [223]. In their
paper [223], Yang and colleagues compared infection with hemaggluti-
nin (HA)-encoding recombinant virus with injection of TNF-a-matured
and HA-loaded DC in the ability to activate HA-specific CD8+ T cells.
Lentiviruses or vaccinia viruses succeeded to break CD8 tolerance and
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to protect against tumoral challenge. DC-based vaccines failed unless
regulatory CD4+ Tcells were removed, TLR ligand was constantly added,
or mice were concomitantly infected with an irrelevant virus (not en-
coding HA). However, ex vivo TLR-ligand-matured DCs could not break
tolerance and after withdrawal of LPS, the production of proinflamma-
tory cytokines by DCs diminished rapidly [223].

5.2.2
Endogenous Adjuvants

DCs also undergo maturation in the absence of foreign substances. Mas-
sive apoptotic cell death can result in failure of clearance of apoptotic
cells and secondary necrosis [164]. Necrotic, in contrast to apoptotic
cells mature DCs and lead to initiation of immune responses [22, 60,
170]. Several reports have described the endogenous activation of DCs
via engagement of TLRs. Endogenous factors that are released from or
are associated with necrotic cells induce DC activation (reviewed in
[188]). They include immunostimulatory self DNA that binds TLR9 [48],
self ssRNA that may stimulate TLR7 and TLR8 [41, 73], secondary struc-
tures of mRNA that activate TLR3 [98], HMGB-1 that signals through
TLR2, TLR4 [150], or RAGE [174], and HSPs that stimulate TLR4 [144,
212–214]. HSPs are one of the prime candidates to contribute to conver-
sion of a tolerogenic to a priming signal. They induce innate immune
responses [214], they are released after necrosis, and the amount of ex-
pression correlates with maturation of DCs [192]. In addition, increased
expression of HSPs by apoptotic cells also increases the immunogenicity
of the latter [53]. Interestingly, feverlike thermal conditions enhance
HSP expression on cell membranes and promote DC maturation and the
priming of specific T cells [52, 53]. Recently, uric acid was identified as
another factor associated with cell death and activation of DCs [184]. Fi-
nally, the immune system is alerted to massive cell death not only by fac-
tors released from dying cells, but also by factors emanating from dis-
ruption of tissue architecture, e.g., fibrinogen [189], oligosaccharides of
hyaluronan [204], EDA-containing fibronectin [146], and heparan sul-
fate proteoglycan that stimulate TLR4.

5.2.3
Cytokines in Dendritic Cells� Milieu

The milieu in which DCs encounter apoptotic cells may regulate their
stimulatory capacity. For example, DCs exposed in vitro to IL-10, TGF-
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b, vascular endothelial growth factor (VEGF), or IL-10 homolog have di-
minished IL-12 production, expression of costimulatory molecules, and
capacity to stimulate T cells [18, 34, 100, 194–196]. These factors can be
produced by macrophages on ingestion of apoptotic cells, by tumor
cells, or by microbes [46, 59, 62, 109, 195]. On the other hand, recogni-
tion of microbes by macrophages and neutrophils results in the produc-
tion of inflammatory cytokines such as TNF-a, IL-6, or IL-1b, which
mature DCs and contribute to their activation and priming capabilities
[115]. For example, Shigella flexneri and Salmonella induce macrophage
apoptosis, activation of caspase 1, and release of IL-1b and IL-18 [92,
169].

The role of type I IFNs, especially IFN-a in cross-priming has also
gained substantial attention. In mice, type I IFNs, secreted either on
TLR9 triggering [32] or viral infection [112], when coadministered with
antigens were shown to be sufficient for cross-priming. IFN-a is pro-
duced in great amounts after interaction of pDCs with virus and not
only influences other cells (e.g., NK cells), but can also induce matura-
tion and perhaps cross-priming by bystander mDCs [56, 112]. Involve-
ment of proinflammatory cytokines in overturning the tolerogenic po-
tential of apoptotic cells has been demonstrated in studies by Zimmer-
mann et al. By using an artificial model of TNF-a conjugated to apoptot-
ic melanoma cells they could achieve full maturation of DCs on apoptot-
ic cell ingestion and priming of partially protective CTL responses [228].

5.2.4
Opsonization of Apoptotic Cells with Antibodies

Sole cross-linking of FcgRI or FcgRII leads to NF-kB translocation and
production of TNF-a by monocytes [45]. In addition, opsonization with
antibodies and targeting FcgR was shown to mediate internalization and
to overcome initial inhibitory effects of apoptotic cells [2]. Ligation of
FcgR also interferes with expression of IL-10-inducible genes [94], show-
ing the importance of this receptor as a “switch” to immunostimulatory
DCs. Defective clearance of apoptotic cells in susceptible individuals was
linked to initiation of autoimmunity (reviewed in [222]). Additionally,
autoreactive antibodies were shown to target self-antigens located in
apoptotic blebs or the chromatin released from apoptotic cells [28, 157,
162]. Apoptotic cells combined with lupus IgG induce generation of im-
mune complexes that contain DNA. These complexes can simultaneously
bind TLR9 (with the chromatin part) and the FcR (with the antibody)
on pDC and B cells. Such binding induces IFN-a production by pDC
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[17] and could also further activate B cells ([114] and reviewed in
[218]), resulting in amplified autoimmune responses.

5.2.5
Ligation of CD40

Ligation of CD40 on DCs is one of the better-explored mechanisms that
can override inhibitory effects of apoptotic cells. CD40 interacts with
CD40 ligand (molecule CD154) that is expressed on immune cells such as
activated B and T cells, but also on mononuclear phagocytes and activat-
ed platelets and during an inflammatory response on epithelial cells and
smooth muscle cells among others (reviewed in [156]). Stimulation of
CD40 was shown to override immune unresponsiveness induced by im-
mature DCs [42, 86, 163]. In addition, tolerance induced by dying OVA-
loaded cells in mice was abolished when agonistic anti-CD40 antibody
was coinjected. Studies in mice show that CD40-deficient DCs are only
capable of inducing a transient immune response that is followed by un-
responsiveness to subsequent challenge with the same antigen [78]. A
pivotal role of CD40 is supported by several therapeutic approaches in
which blocking of CD40-CD154 interaction results in silencing of autoim-
mune disease in mouse models and induction of tolerance [12, 81, 119].

6
Concluding Remarks

Apoptotic cell death as a consequence of normal tissue turnover inhibits
DC maturation and leads to tolerance. However, the concurrent presence
of microbes, stress, or massive cell death presumably prevents the inhib-
itory effects of apoptotic cells and leads to DC maturation and induction
of immune responses. Several receptors have already been associated
with inhibition or stimulation of DC maturation. Molecular mechanisms
leading to different outcomes after apoptotic cell ingestion are being
evaluated. In the future, it will be necessary to study the signaling path-
ways triggered and to evaluate the hierarchy and cooperation of signals
transduced via different receptors. This information will lead to new
strategies to develop “tolerogenic” or “immunostimulatory” DCs.
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