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8.1 INTRODUCTION

The research on the rarefied gas flows carried out by mankind commenced at the

beginning of the 20th century from the study of the low speed flows of micro scale.

In the middle of the 20th century owing to the demands in the aerospace explora-

tion the interest of the rarefied gas dynamics was concentrated mainly on the

flows around bodies flying with hypersonic speed. At the end of the 20th century

microscale low speed gas flows rekindled the interest of the rarefied gas dynamics

community. But after near a hundred years the motivation of the study has trans-

ferred from the research on the basic problems of science into the application

study related to the manufacture and the prediction of the performances of the

micro-machines. There are tremendous changes in the complexity of the flow pat-

terns and the tools of analysis of the problems.

At the beginning of the 20th century there were the experimental research of

Knudsen on the mass flow rate of gas flowing through tiny tubes [1] and the ex-

perimental study by Millikan, Knudsen and Weber on the drag of small sphere in

the air [2, 3, 4]. All these were important basic research topics. Knudsen obtained

the result that the normalized mass flow rate through the tube had a minimum in

the transitional regime (the Knudsen paradox or Knudsen minimum), Millikan

measured the velocity of the charged oil drop and with the help of the formula of

the low speed drag of the small sphere in the air determined exactly the electric

charge of the electron (for this he won the Nobel prize in 1923).

Richard Feynman in his lecture 'There's plenty of room at the bottom' at the

1959 annual meeting of the American Institute of Physics envisaged the possibil-

ity of manufacture of micromachines by the chip processing technology, analyzed

the difficulties that might encountered with the manipulation and control of mi-

cromachines, and even offered a reward of 1000 U.S. dollars for the manufacture
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of a micro motor with diameter less that 1/64 inch (400/xm). The reward was

won by McLellan in November 1960 for making a small motor which was rather

an art work than a machine. In the late 1980s commenced the fabrication and the

research of the flows in the micro-electro-mechanical systems (MEMS). By the

1990s the micromachinary fabrication techniques became mature, including the

combined surface-bulk silicon micro machining, EDM (electro discharge machin-

ing) and LIGA (abbreviation of German words Lithographie Galvanoformung

Abformung, i. e., lithographic electroforming) etc. The size of most tiny micro

motors at present day is 1 ~ lOnm . The Journal of Microelectromechanical Sys-

tems for paying deserved honor to R.P. Feynman for his farsightedness and insight

republished this 1959 lecture in the Journal's initial issue [5]. (R. P. Feynman's

main contribution, of course, is his fundamental research in quantum electrody-

namics for which he won the physics Nobel prize in 1965)

The micro electro mechanical systems (MEMS) fabricated by these techniques

are complicated systems in which simultaneously occur the motion of the working

media, the perception of the sensors and the retroaction controlled by the elec-

tronic components. The full system simulation of MEMS is beyond the scope of

this book: out of the three functions of MEMS only the motion of the working

media is concerned. And in the following sections only the case of gas media will

be addressed in detail. For the case of liquid media, as it was explained in section

6.8, the MD method is the appropriate means of simulation. The MD simulations

revealed strong density fluctuation of the liquid molecules along the normal direc-

tion near the wall [6] which is the result of layered structure of the liquid mole-

cules that have a tendency to arrange in rows parallel to the wall. The layering

phenomenon of the liquid molecules near the wall is the basis of the origination of

the slip boundary condition in liquid (see Thompson and Troian [7]) and the

anomalous diffusion (the diffusion coefficient in the vicinity of the wall decreases

or increases by a large portion in comparison with that in the bulk of the liquid).

Also, in the liquid such phenomena as the wetting, adsorption and electro-kinetics

(the accumulation of ions near the dielectric surfaces that can be driven by the

voltage difference) closely related to the surface effects become prevailing.

To have an idea of the typical spatial and temporal sizes and the flow parameter

(such as the Knudsen number etc.) ranges of the micro devices let's have a close
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look at the modern Winchester hard disc drive [8, 9] and the micromachined

channel fabricated both by the UCLA- CALTECH [10,11, 12] and MIT [13,14]

groups.

In a Winchester-type hard disc drive the write/read head floats approximately

50nm above the spinning platter surface. The head, the platter and the gas layer

between them together form a thin film slider air bearing. The characteristic length

(the height) is less than the mean free path ( ~ 65nm ) of molecules in air at STP.

The typical Knudsen number is about 1.3. The platter speed is typically about

25 m/s (at radius 5cm of the magnetic disc rotating at 4800 revolutions per

minutes), corresponding to a Mach number of -0.07 and a Reynolds number of

-0.12 (see Eq. (0.27)). To enhance the recording capacity the gap is expected to

further decrease resulting in a further increase of the Kn number, and with the

increase of the revolution the Mach number and Reynolds number can also in-

crease. The typical length of the slider bearings in disc drives is 1 mm, i. e. ,

20,000 times the gap at the rear edge of the head, and the width is usually

1/10-1/3 of the length.

The UCLA- CALTECH group first proposed and fabricated an integrated mi-

cro-channel/pressure sensor system using the combined surface-bulk silicon mi-

cro-machining. The microchannels are formed by silicon with a 12/um layer of

wet oxide on the silicon substrate then bulk-etched with HF to obtain a channel

with straight vertical walls of a height of 1.2/j.m . Surface micromachining also

enables them to make micro sized pressure sensors integrated with the flow sys-

tem. The second generation micro channel is 40jum wide and 1.2/um high with

11 pressure sensors uniformly distributed along 4000//m length of the channel

with intervals of 400/jm, the reading from the other two end sensors are omitted

for the end effects. Both helium and nitrogen are used as working media. When

nitrogen is used, as the mean free path of nitrogen molecules is almost the same as

that of the air, the Knudsen number at the outlet of the channel under STP is

-0.055, but when helium is used, as the mean free path is inversely proportional to

the squire root of the molecular mass (see Eq. (2.222)), the Knudsen number is

-0.16, the flow is surely beyond the slip flow regime. Reference [12] showed that

under the conditions of the experiment the Reynolds number is less than 0.07 for

nitrogen and less than 0.009 for helium, corresponding to Mach number of
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-0.0026 and 0.00089 respectively. The MIT micro channel is fabricated approxi-

mately the same way with a height of 1.33, width of 52.25 and length of

7500/um . To measure exactly the flow rate the modified accumulation techniques

have been developed and the thermal stability requirements have been decreased

by five orders of magnitude [13,14]. Nitrogen, argon, carbon dioxide and helium

have been used, the flow of argon has a Knudsen number of 0.05 at the exit at an

atmospheric pressure, that of helium has a Kn ~2.5 at the exit at a low pressure of

6.5xlO3Pa .

The silicon micromachining fabrication technology has manufactured besides

micro channels also micro nozzles, micro valves, micro accelerometers, micro

pumps, micro motors and other micro devices. The gas flows in them owing to the

micro scale of the devices usually enter into the slip flow regime, and the flows in

micro channel, micro pump, micro valve, micro nozzle and the hard disc drive

slider bearing enter the transitional flow regime. Thus for simulation of the gas

flows in MEMS the methods of molecular gas dynamics or rarefied gas dynamics

must be invoked. The objects of study in comparison with circular pipes and

sphere studied in the beginning of 20th century are much more complicated. As for

the tools of solution various methods developed in the transitional regime and

elucidated in chapter 6 can be utilized. In MEMS the flow is usually very slow,

the information to noise ratio is very small, thus leads to difficulties in statistical

simulation. In the next section some methods of solution of the rarefied flow

problems, such as the method of linearized Boltzmann equation, the Lattice

Boltzmann method (LBM), the slip Navier-Stokes solution and the direct simula-

tion Monte Carlo (DSMC) method, will be examined from the point of view of

utilization for simulation of the flows in MEMS. In particular the unfeasibility of

LBM in simulation of transitional flow is shown by comparison with the DSMC

results. A method developed by Fan and Shen called the information preservation

(IP) method allows the simulated molecules to carry the macroscopic information

of the enormous number of molecules one simulated molecule represents, uses it

to obtain the macroscopic characteristics, and in principle has found the way to

overcome difficulties of large noisy to useful information ratio. The IP method

will be introduced in section 8.3, with a general description and some validation of

the method and a program demonstrating the method. In section 8.4 the results of
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IP simulation for the unidirectional flows are described. The specific features of

low flow speed and large length to height ratio of flows in MEMS pose a problem

of elliptic nature with boundary conditions set far apart and requiring to be speci-

fied in the process of solution, leading to the issue of mutual influence of the inlet

and outlet boundary conditions and the need to regulate them. The resolving of the

boundary condition regulation problem by using the conservative scheme of con-

tinuity equation and the super relaxation method is illustrated on the example of

flow in long micro channels in section 8.5. The thin film air bearing problem is

solved in section 8.6. By using the same scheme and method the IP simulation of

the flow of authentic length of the hard disc drive is described and compared with

the result of the Reynolds equation. The use of the degenerated Reynolds equation

is suggested by the author to solve the microchannel flow and to serve as a crite-

rion with the merit of strict kinetic theory to test various methods intending to

solve the transitional internal MEMS flows. The method, the comparison with the

experimental data and the IP calculation and the test of the LBM by it is given in

section 8.7. Finally, some review and summary are given in section 8.8.

8.2 METHODS FOR SOLVING THE RAREFIED GAS
FLOWS IN MEMS

In the previous section we have seen that the gas flows in MEMS typically are in

the slip and transitional flow regimes. The method of Navier-Stokes equation plus

slip boundary condition, the method of linearized Boltzmann equation, the Lattice

Boltzmann method and the direct simulation Monte Carlo (DSMC) method will

be examined in this section from the point of view of utilization for simulation the

flows in MEMS.

The solution of the rarefied gas dynamics problems by using the Na-

vier-Stokes equation with slip boundary conditions (see Chapter 5) can make ad-

vantage of the mature and efficient methods of the Computational Fluid Dynamics

(CFD). Karniadakis and Sherwin developed high order finite element (spectra

element) method [15] to solve the compressible and incompressible Navier-Stokes

equations with the first and higher order slip boundary condition, and by using the

so called /i Flow code solved many interesting MEMS flow problems which
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were also reported in [16]. There is no doubt about the appropriateness of this

method in solving problem in the slip flow regime. Kardiadakis and Beskok ex-

tended the method for use in micro flows with Kn as high as 0.5. This seems to

be a kind of extrapolation beyond the reasonable application range. But it brings

into full play the high efficiency of the continuum model in treating the complex

geometries. Still one should be cautious relative to the results of the extrapolation.

Here we cite two examples with one showing the necessity of the caution and the

other showing the success of the extrapolation. The first example is the calculation

of mass flow rates through short micro channels [17]. The flow rates obtained by

the Navier-Stokes equation with slip boundary conditions and the DSMC methods

(see Fig. 8.1) differs significantly as Kn > 0.1, and the slip Navier-Stokes solution

can not yield the flux minimum predicted first by Knudsen [1] experimentally (for

more detailed account of the Knudsen minimum see section 8.4). The second ex-

ample is the flow in the air bearing between the read/write head and the hard disc

drive platter. The slip corrected Reynolds equation can provide result in fair

agreement with the DSMC result for Knudsen number as high as 4.2 (see [18]).

But the calculation by the generalized Reynolds equation based on the solution of

the linearized Boltzmann equation for the flow rate of Poiseulille flow by Fukui

and Kaneko [19] is in excellent agreement with the result of DSMC. This latter

success of course must attribute to the employment of the Boltzmann equation that
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Fig. 8.1 The variation of the mass flux through short channels calculated by the IP, DSMC
methods and the Navier-Stokes equation with slip boundary conditions [17]
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is appropriate in the entire transitional regime. (For more detailed account of the

thin film air bearing problem see section 8.6.)

The linearized Boltzmann equation (see section 6.2) is suitable for solution of

low speed problems in MEMS, and can serve as the criterion for testing other

methods. At the same time the linearized Boltzmann equation can be used to solve

the flow field with temperature variation which is the typical case in MEMS. It is

an actual task to develop the solution of the linearized Boltzmann equation to

complex geometry. Some times the equation being linearized is not the Boltzmann

equation but the BGK equation, in which case the solution is much simpler. But to

make the solution of the BGK equation corresponding to the physical reality,

some modification of the kind of parameter regulation is needed. And there are

still differences between such solution and the solution based on real molecule

models.

At the second half of 1980 years Frish et al. developed the lattice gas method

[20], in which particles are allocated at lattice consisting of equilateral triangles

with velocities either along the sides of the triangles or equal zero. Every time step

the particles move a cell length (except the particles with zero velocity), and it is

shown that Navier -Stoke equation can be obtained from such lattice gas. The

shortcomings of such lattice gas are: the amount of work increases with the in-

crease of Reynolds number, and it can only simulate incompressible fluid under

small Mach number and the statistical noise is large. The first two shortcomings

are tolerable for small speed micro flows. The latter shortcoming is essential and

is resolved by introducing the lattice Bolotzmann method (LBM, see [21] and [22],

and the literature cited in the latter). Lattice Boltzmann method integrates the ki-

netic theory equation (Boltzmann equation or its simplified version) at the location

of each lattice along each discrete velocity. The arithmetic operations of this

method are simple, and it is easy to treat arbitrary complex geometry and imple-

ment parallel computation. It seems especially suitable for treating micro scale

flows. Recently Nie, Doolen and Chen [23] simulated the flows in microchannels

under large Knudsen numbers in the transitional regime using the LBM and ob-

tained results of the pressure distribution etc. The microchannel flows under the

same parameters are simulated in [24, 25] using both Nie et al.'s LBM method and

DSMC method to examine the feasibility of the LBM method in the transitional
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regime. The simulation results show that for small Knudsen number

(KM = 0.0194) the LBM and DSMC methods agree fairly well. For Kn = 0.194,

the velocity profiles of the LBM and the DSMC (as well the IP) methods differ

slightly, but the pressure distribution results have apparent difference (see Fig.

8.2). In the transitional regime, when Kn = 0.388, the DSMC simulation results

do not verify the negative deviation of the pressure from the linear distribution

predicted by the LBM method, and the results of the LBM and DSMC differ

significantly in magnitudes (see Fig. 8.3). This shows clearly that this version of

LBM is not able to simulate the MEMS flows in transitional regime.

The direct simulation Monte Carlo (DSMC) method (see Chapter 7) is an ap-

propriate method to treat gas flows in MEMS and is able to simulate flow prob-

lems in regimes from free molecular to continuum. The simulation results of

DSMC for bench mark problems can be used as criteria for other methods and it is

able to treat problems abundant physical contents, including chemical vapor depo-

sition, plasma processing and the flow field with temperature variations. But utili-

zation of DSMC method in MEMS flows encounters with the problems of the

excessively high demands to the storage and computation time of the computer.

Take the micro channels with embedded pressure sensors fabricated by the global

processing techniques [10, 11] as example, the size being 1.2x40x3000/«w3.
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When the cell dimension Ar is taken of the order of the mean free path X , even

treating the problem as two-dimensional (neglect the span wise variation),6xlO5

cells must be allocated. If distribute 20 molecules in each cell, about 107 mole-

cules must be followed in the simulation. The macroscopic velocity of the gas

flow in the experiments of [10-14] is 0.2-0.5m/s , the time for transiting the

channel is about 10~2.?, or 108A/ (the time step At is taken as the order of the

collision timel0~'°.s). This makes un-accomplishable the task of gradual regulat-

ing the inlet and outlet boundary conditions of the channel to gain the steadiness

of the flow (this requires multiple transit times). The difficulty of simulating the

low speed flow in MEMS also lies in huge statistical scatter on the DSMC results.

The order of the useful information is of the order U = 0.2m/s, and the back-

ground noise under room temperature cm =yj2kT Im is of the order of Wmls.

Only when the sample size N is as big as 108, the standard deviation cml^jN

could be small enough, and this is an excessive requirement for the computation

time. This makes some researchers think that DSMC is not suitable for simulating

gas flows inside MEMS [26]. In fact there have been many experimental results of

the micro-channel flows [10-14], at the same time the DSMC simulation of the

micro channel flow has been limited to the high speed and even hypersonic cases

[27, 28].
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Recently the results of the DSMC method with fluctuations have been filtered

by using the flux-corrected transport (FCT) method [29] as filter. It is shown, that

when the flow velocities are much smaller than the thermal velocity and the num-

ber of the real molecules is much larger than the number of simulated molecules,

FCT can extract smooth solution from the noisy solution of DSMC with the high

frequency statistical fluctuations eliminated. But verification by experiment or

exact solution is needed to judge whether the filtered solution is in exact agree-

ment with physically real solution.

8.3 INFORMATION PRESERVATION (IP) METHOD

8.3.1 THE DESCRIPTION OF THE METHOD

Fan and Shen proposed a particle-based method, called the information preserva-

tion (IP) method [30, 31], to treat the problems encountered by the DSMC method

of the huge ratio of the noise to the useful information and the demand of ex-

tremely large sample size. This is a method imbedded in the DSMC method in

which each simulated molecule is assigned two velocities: thermal velocity c

and information velocity ui. The former is just the molecular velocity c in the

DSMC method and is used to calculate the motion, collision and the reflection of

molecules at the surfaces following the same algorithms and models as the DSMC

method. Besides c we suppose that each molecule carries the so called informa-

tion velocity (IP velocity) ut to record the collective velocity of the enormous

number of real molecules represented by each simulated molecule. The IP veloci-

ties do not produce any influence on the motion of molecules, and are used only

for summation to obtain the macroscopic velocities, the primitive information is

taken from the oncoming flow and the body surface. When the molecules reflect

from the surface, collide with each other, experience force action and enter from

boundary, the IP velocities attain new values [30-33, 17]:

1. For simulated molecules diffusely reflected from a wall, the reflected IP veloc-

ity H,. has the same velocity as the wall. If the wall has a tangential momentum

accommodation coefficient of value a the reflected molecule with a probabil-
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ity of o" has an IP velocity the same as the wall, and with a probability

(l - a) retains its tangential velocity before incidence.

2. For two simulated molecules colliding each other, the post-collision IP veloci-

ties satisfy the momentum conservation

m1ui, + m2uj 2

''2 m, + m2

where superscript * denotes post-collision quantities.

3. If there are external forces acting on a cell, acceleration a = F/pAV will con-

tribute an velocity increment aAV to each simulated molecule during a time

step At, where F is the sum of the external forces, p and AV are the

density and volume of the cell, respectively.

4. For simulated molecules entering the computational domain from boundaries,

H; is set to satisfy the boundary condition.

5. In general under the isothermal assumption (which is valid for slow subsonic

micro flows without heating) the IP velocity ut of the simulated molecule and

the IP velocity U and IP density p (or n ) of the cell are introduced which

obey the mass conservation and momentum conservation equations

dS , (8.2)

where the integrals are taken on the volume and surfaces of a cell, / is the exter-

nal normal vector of the surface. It is noted that in the right hand side of the mo-

mentum equation only a non-viscous term is retained. In fact the IP quantities are

governed by a general momentum equation

= - \\aldS = - \\pldS + \\rldS , (8.4)

where cr is the pressure stress tensor and r is the viscous stress tensor. But as

the IP quantities are carried along by the simulated molecules of the DSMC proc-

ess which migrate across the cell surface in the positive and negative direction and
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implement the action of viscous transport, so although the IP quantities are written

formally as governed by an inviscid momentum equation, but as the IP process is

embedded in the DSMC process, the IP quantities are factually governed by a

more complete conservation law including the viscous transport. After a time step

At the cell IP density attains increment according to Eq. (8.2)

dS, (8.5)

from where the density and pressure are also renewed : p = nkT . The increment

of the IP velocity of the cell is, according to Eq. (8.3),

and is added to the IP velocity of the simulated molecules in the cell. The renewed

quantities are used for the next step calculation. This step of the renewal of the IP

quantities is conducted after 'calculation of collisions corresponding to time At'

(see Fig.7.2 Flow Chart of program of the DSMC-IP method). The calculation of

the macroscopic quantities should employ the information velocities introduced,

for example, the macroscopic velocity of a cell is obtained from the averaging of

the IP velocities of molecules in the cell

1 /V'M o = TrZ M a (8-7)

where Nc is the number of simulated molecules in the cell; k is the index of

the molecules in a cell. The shear stress on a surface element with area AAW is

given by

Z m(u\ , -«,',)

where TV, is the total number of molecules incident to the element during the

sampling time /(, subscript t denotes the tangential direction of the element,

and superscripts / and r denote the incident and reflecting values of the IP

velocities, respectively.
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8.3.2 THE VALIDATION OF THE METHOD

Now we validate the reflection rule of the IP procedure [34]. For simplicity we

validate the case of diffuse reflection, namely, the statement 'for simulated mole-

cules diffusely reflected from a wall, the reflected IP velocity «, has the same

velocity as the wall' in step 1). The extension to the case of incomplete diffuse

reflection does not pose any principle difficulty. As a simulated molecule repre-

sents an enormous number of real molecules, we trace the velocities of the nu-

merous real reflected molecules and obtain the IP value by averaging. An individ-

ual molecule after diffuse reflection from a stationary surface would have velocity

with the components

u=-{\n{ranf)f2lß, (8.9)

v = Fcos/9, (8.10)

w = Fsin0, (8.11)

where

yff = ( 2 - r j - " 2 , (8.12)
m

F = -(ln(ra«/))"2//?, (8.13)

e = 2nranf , (8.14)

and ranf is a random fraction uniformly distributed between 0 and 1 (see Eqs

(3.20), (3.15), (3.12), (3.18) and (3.19) of section 3.2). In the DSMC procedure

one records these individual components (with concrete values of ranf ) and then

uses them to obtain the macroscopic quantities only in the step 'sampling of the

flow properties'. In the IP procedure we record the averaged values of u, v and

w already at this stage of reflection. From the derivation of Eq. (3.20) (Eq. (8.9))

and the practice of the DSMC procedure, one sees that thus sampled velocity

components u in the whole guarantees the correct value of the mass flux of dif-
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fusely reflected molecules and yields no macroscopic velocity in the normal to

surface direction. So after averaging all u , the zero macroscopic velocity com-

ponent is obtained:

« = 0. (8.15)

The averaging of v yields:

0 , (8.16)

as v and cos 9 are independent variates and

according to Eq. (8.14). Similarly one has

w = 0. (8.17)

If the surface is not stationary but has certain velocity, the velocity components

would have been added to u,v,w, and after averaging this velocity would be ob-

tained as the IP velocity after diffuse reflection. So the statement 'for simulated

molecules diffusely reflected from a wall, the reflected IP velocity ut has the

same velocity as the wall' is verified.

Next we validate the collision rule of the IP procedure [34, 35]. The compo-

nents of the post-collision velocities of the two collision partners (with velocity

components uj,vl,wl and u2,v2,w2 before collision) have been found already in

section 2.4.5 (see Eq. (2.112)):

" l

V-, —

w, -

w, -

m i

m]Ml

m,

w,v,

m,

m,

m

m,w

+ m2u2

+ m2u2

+ m2

+ m2v2

+ m2

+ m2v2

+ m2

i +m2w2

1 + / W 2

', +OT2W2

1 +ftl2

m,
m,+m2

m,

OT,+m2

OT, + O T 2

m,

m] +m2

m2

m^+m

m,

m,+m

sin (9 cos ̂ c',

sinöcos^c*,

S m

S m

-cosöc',
2

-cosöc*.
(8.18)
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where 0 is a variate uniformly distributed between 0 and In, and cos# is a

variate uniformly distributed between -1 and 1. Here we understand

KpV̂ vv, ,u2,v2,w2 as one set of the velocity components of many individual real

molecules the two colliding simulated molecule represent. In the IP procedure we

are not interested in recording the individual u*,v",w" ,u'2,v"2,w*2 but are intending

to record (preserve) the averages of velocity components of the enormous number

of molecules. For example, we have from the first equation of Eqs. (8.18)

+ m2u2 m2u* = —— —- H — sin 9 cos (f>c\

-sinöcos^c*
t+m2 ml+m2 ' (8-19)

x +m2u2

ml +m2

as the sin6> and cos^t are independent variates and (j> is uniformly distributed

between 0 and 2K . Analogously we have

. m,ux+m2u2
u2 =«, = — , (ö.2U)

m, + m2

m, +m2

l +m2

(8.21)

(8.22)

Thus, the IP collision rule, Eq. (8.1) of step 2), has been validated. As the IP

procedure uses the already averaged values to obtain the macroscopic quantities

(see Eq. (8.7)), it is natural that the sample size needed for convergent IP averag-

ing is much less than that needed in the DSMC procedure.



332 8 MICROSCALE SLOW GAS FLOWS, IP METHOD

8.3.3 PROGRAM DEMONSTRATING THE METHOD

In section 7.3 a FORTRAN program is given to demonstrate the solution of Cou-

ette problem by the DSMC method (see Appendix IV), it is also used to demon-

strate the IP method. In this program VMEAN(I, NO-MOLECULE), 7 = 1,2,3,

are introduced to denote IP velocities. The statements in the program used to im-

plement the changes in the IP method are marked with * and " , the statement

marked with * signify that it is used to replace the statement before it, those

statements marked with " signify that they are the statements needed to be

added anew. The above described cases of changes of the IP velocities and the

procedure of obtaining the macroscopic quantities from the IP velocities are

shown in the program (see section 7.3 and the statements in the program in Ap-

pendix IV marked with * and " ) .

When employing the IP method, another change should be introduced as well.

This is the change in the collision cross sections of the molecules. In section 2.4

the expression of viscosity coefficient /u for various molecular models has been

given according to the Chapman-Enskog transport theory in the kinetic theory (see

Eq. (2.71)), and the diameters of molecules have been determined (for HS model,

see Eq. (2.77), for VHS and VSS models, see Eq. (2.234), where the reference

diameter of molecules is given by Eq. (2.235)). In the IP method, when assigning

the IP velocities after collision, we stipulate they follow the macroscopic momen-

tum conservation law, Eq. (8.1), but in the DSMC method the velocities after col-

lision are assigned according to the momentum conservation in each collision (the

detailed conservation), and this is the condition implied in obtaining the expres-

sions of d for various models. The difference in the assignment of the post

-collision velocities leads to the necessity of modification of the collision cross

section in the IP method to obtain the correct value of viscosity /j . The concrete

method is to obtain the correct experimental value of // by varying d , in em-

ploying the IP method to solve the Couette problem under small Kn number (see

[31]). Take the HS model as example. The collision diameter (see Eq. (2.77))

d , 5 m c „ , y/2 .
( ' ( 8 - 2 3 )
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is used as the initial value of the collision diameter in the IP method, the shear

stress r of each cell can be calculated according a formula analogous to Eq.

(8.8), from where the value of / / , p = rxyAy/Au , of the cell is obtained, the vis-

cosity ju is obtained as the average of the p. values in various cells (except the

cells in the Knudsen layer). The diameter of HS model is modified according to

the difference between this value and the experimental /i value (the increase of

dHS makes // decreasing), until the correct experimental // value is obtained.

The dHS thus fixed is the value to be used in the IP method. The reference di-

ameters of the VHS model can be obtained by analogous method [31]. Some val-

ues of dHS and reference diameters dref of the VHS model are listed in Table 3

of Appendix I. In the example program demonstrating the IP method, the collision

diameter of the Ar molecule, when employing the IP method , is replaced by

dHS =3.963xlO~'°m (see the first statement with * in subroutine subcl in the

program).

8.4 UNIDIRECTIONAL FLOWS

The Couette flow is a steady flow of gas occurred between two parallel plates

moving with velocity Uw in opposite directions along their own planes. The ve-

locity profiles and the shear stress profile obtained by using the IP method in

simulating the Couette flow [30, 31] are given in Fig. 8.4 and Fig. 8.5. The veloc-

ity profiles are given under three Knudsen numbers, AT« = 0.1128 , £« = 1.128

and £« = 11.28, and are compared with the solutions of the linearized Boltzmann

equation [36], of the moment method [37] and of the Navier-Stokes equation plus

the slip boundary condition (see section 5.4.1, Eq. (5.65)). The velocity profiles of

the IP method under the small, medium and large Kn numbers are all in good

agreement with the solution of the linearized Boltzmann equation of Sone et al,

but the agreement between the moment method of the second order approximation

by Gross and Ziering and the result of the linearized Boltzmann equation (and the

IP method) is not so good, especially for medium Knudsen number. The solution

of the Navier-Stokes equation plus the slip boundary condition yields relatively
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Fig. 8.4 Velocity profiles of the Couette flow for ^ . = 0 . 1 1 2 8 , AT«m =1.128 and
Kri[ =11.28. Comparison of the IP method [30], the linearized Boltzmann equation [36],
the moment method [37] and the Navier-Stokes equation plus slip boundary condition
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Fig. 8.5 Variation of the shear stress with Kn in the Couette flow. Comparison of the IP
method [30], the linearized Boltzmann equation [36], the moment method [37], the Na-
vier-Stokes equation plus slip boundary condition and the free molecular flow theory
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good result only for small Knudsen numbers. The shear stress in the Couette

problem solved by the Navier-Stokes plus slip boundary condition (see Eq. (5.64)

in Chapter 5) is a case incidentally appropriate for the entire transitional regime.

The solutions of the IP method, of the linearized Boltzmann equation, of the mo-

ment method and of the Navier-Stokes equation plus slip boundary condition are

in good agreement in the whole transitional regime (see Fig. 8.5, in which

TFM = pcJU\j4rc , see Eq. (4.54), note, the wall velocity [7vw here constitutes

only half of the velocity U in section 4. 5). It is noted that the IP method is in

exact agreement with the solution of the linearized Boltzmann equation, and si-

multaneously agrees with the theoretical solution of the free molecular flow in the

collisionless limit.

In section 7.3 it has been mentioned that the DSMC program aimed at the Cou-

ette flow problem can be amended to be used in solving the Poiseuille flow and

the Rayleigh problem, the same is true for the IP method. The results of solution

of the planar Poiseuille flow and the Rayleigh problem by the IP method were

presented in detail in [30, 31], here only the mass flow rate of the Poiseuille flow

and the velocity profile and the shear stress in the Raylegh problem will be dis-

cussed.

The mass flow rate of the Poiseuille flow has been calculated by the Na-

vier-Stokes equation with slip condition on the boundary in section 5.4.2 (see Eq.

(5.74)). This QPSL is a monotonically descending function of Kn. But at the

beginning of the 20th century Knudsen [1] discovered through experiments that

there appears a minimum of the mass flow rate in transitional regime, this is the so

called Knudsen minimum or the Knudsen paradox. This result was confirmed in

the later experiments [38] for many gases (air, helium, hydrogen, carbon dioxide

and Freon-12). Fig. 8.6 shows the comparison of various methods and the experi-

ment ( u = acm , a is a pressure gradient factor, see Eq. (7.11)). The result of the

IP method agrees with Eq. (5.74) (for a = \) under small Kn numbers, yields

the Knudsen minimum under medium Kn numbers and agrees with the numeri-

cal solution of the linearized Boltzmann equation [39] and the experimental

data, demonstrating the ability of the IP method in predicting the fine flow char-

acteristics in the transitional regime.
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Fig. 8.6 The variation of the dimensionless mass flux in the Poiseuille flow with Kn
number (comparison of IP [30] and linearized Boltzmann equation [39] with the experi-
mental data [38].)

The velocity profiles in the Rayleigh problem obtained by the IP method in the

initial stage of motion / = 0.01rc (rc collision time) agrees well with the result

of free molecular flow (see Eq. (4.99) in Chapter 4), and after many collision

times (/ = 100rc) agrees well with the solution of the slip Navier-Stokes equation

(Eq. (5.88) in Chapter 5) (for detailed account see [30, 31]). In the transitional

regime ; = 5rc, as there is no numerical solution of the Rayleigh problem by the

linearized Boltzmann equation, the calculation by the DSMC method has to be

employed to check the result of the IP method (see Fig. 8.7)). From the compari-

son it is seen that the agreement is excellent. But for the case of Uw=lm/s , the

DSMC method has to employ enormous sampling size 2xlO8 to reduce the sta-

tistical scatter, in the result the computational time spent is 3 x 104 times of the IP

method. In Fig. 8.8 the comparison of the results of various methods of the shear

stress (normalized by the value in free molecular flow rFM = pcJJ^IiJjz , see Eq.

(4.101)) of the Rayleigh problem is given. Except the results of the IP method, the

DSMC method [31], the slip Navier-Stokes equation and the FM theory, also

shown is the result of the moment method [40]. The agreement of the IP method

with the collisionless solution in the free molecular flow limit ( l « r j , with the
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DSMC result in the transitional regime (t~rc) and with the Navier-Stokes slip

solution in the slip flow regime ( t : » rr ) is uniformly good.
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Fig. 8.7 The velocity profiles in the Rayleigh problem at t = 5rr obtained by the IP method,
the DSMC method [30, 31] and the moment method [40]. The sample size of the IP method
is 6 x 103, of the DSMC method is 2 x 108
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8.5 THE MICROCHANNEL FLOW PROBLEM

In treating the unidirectional motions utilization of the steps 1), 2), 3) and 4) given

in section 8.3 was sufficient for renewal of the IP velocities. Only when treat the

Poiseuille flow the expression of the IP velocity increment (Eq. (8.6) of step 5)

was used. When the pressure variation is expressed as

p = po(\ + ax/h), (8.24)

the velocity increment can be found from Eq. (8.6) as

&u = -(apo/ph)At. (8.25)

In fact, Eq. (7.11) in section 7.3 has been obtained in this way. In the

two-dimensional and three-dimensional cases the method of renewal of the cell IP

velocities U, the IP density p and the molecular IP velocities u described in

step 5) should be used systematically.

Various two-dimensional problems have been solved by the IP method, includ-

ing the microchannel flow [41, 42 , 43, 17], the flow around the plane plate [44,

45, 47], the flow around the airfoil [46, 48], the cavity flow [49], non-circular

Poiseuille flow [50], the flow in membrane filter [51], etc.

MicroChannel is the basic constituent of the MEMS devices, the geometric

form is regular and simple (see Fig. 8.9), but can reveal the specific features of the

low speed micro internal flows, i. e., the issue of the mutual influence of the

boundary conditions at the inlet and the outlet caused by the elliptic nature of the

problem. For the DSMC-IP procedure it is necessary to prescribe the values of the

pressure p and the velocity distribution U over the cross sections at the inlet

and the outlet of the channel to start any simulation. But fixing all p and U at

the inlet and the outlet simultaneously would over determine the boundary condi-

tions: The arbitrarily chosen p and U would be contradictory to each other.

The correct values of p and U at inlet and outlet must be obtained in the

process of solution of the problem. A method of fixing p as the same of the

prescribed (experimental) condition and allowing U change continuously and

finally reach the steady solution is adopted here [41]. Thus the process of the

DSMC-IP solution is always one of gradual adjustment towards a steady state. It is

very critical that the conservative form of the mass conservation equation must be

employed
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Fig. 89 Computational domain of gas flow in a microchannel

dpU

at ox ay

its second order central difference scheme yields the density increment

2Ax 2 Ay

(8-26)

( 8 2 7 )

This density increment expression can be obtained from the integral form mass

conservation equation (8.5) directly by using an integration domain ABCD

(2Axx2Ay) with point (i,j) in the center (see Fig. 8.10). The adoption of the

conservative form of the continuum equation or the integral form of conservation

equation guarantees that the mass flux flown from the adjacent domain of area

ABCD will flow without any numerical error into the integral area and vice versa

tJM

A AfcJ

i+ij

Fig. 8.10 The control surface ABCD of the conservation equation and the cell central points

(i,j) in the IP method
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and avoids the accumulation of numerical errors from the non-conservative

scheme. This is an issue that must be taken into account whenever solving a slow

rarefied channel flow or any other slow internal rarefied gas flows.

The increments Ap and AM from Eq. (8.27) and Eq. (8.6) allow one to ob-

tain the renewed fields of pu and pv which are unfortunately with large fluc-

tuations and are smoothened by a averaging technique to avoid the amplification

of the errors which would influence the stability of the calculation. The increment

Ap obtained from Eq. (8.27) is only of the order of 10~9 of p with time step

At being of the collision time for slow gas motion in long micro-channels

[10-14]. For all simulations in such channel flows At has been taken as 1/2 av-

erage collision time at the inlet. Direct employment of this Ap to achieve the

steady (convergent) state is too time-consuming. A super-relaxation technique is

employed to speed up the convergence process

p\*f =pli + a>Ap'iJ, (8.28)

where co is a super relaxation factor. In practical calculations co is taken to be

between 100 and 2000 and trends to 1 when convergence is achieved1.

The necessity of using the conservative form of the mass conservation is illus-

trated on one of the flow cases under the experimental conditions considered [12].

Helium flows through a 1.2 x 40 x 4000//m3 micro-channel with an inlet pressure of

19.0 psig into the atmosphere (outlet pressure Opsig). Fig. 8.11 and Fig. 8.12

show the evolution of mass fluxes at all cross sections along the channel by the IP

calculation. The slip Navier-Stokes solution is adopted as the initial pressure dis-

tribution. It is different from the real distribution since the flow is in the transi-

tional regime. This resulted in a non-uniform mass flux distribution along the

channel length at the initial stage of simulation (at 1 ~ 2xl03A;, the black trian-

gles in Fig. 8.11 and Fig. 8.12). By using the conservative scheme, Eq. (8.27),

and the super-relaxation technique, Eq. (8.28), a steady state is approached after

about 2xlO5 time steps (the hollow spheres in Fig. 8.11). And the averag-

For short channels and not slow flow speed, Ap-; might be the same order of p\., and

an a> less than 1 is suggested to be used to stabilize the convergence process.
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ing-smoothing process gives a relatively smooth and almost uniform mass flux

distribution (solid line in Fig. 8.11). If the non-conservative scheme were used, the

mass flux would remain non-uniform. Fig. 8.12 shows the mass flux distribution

after 2xlO5 time steps (the hollow spheres, the solid line being the averaged

smoothened data) by using the non-conservative form of the continuity equation.

The mass fluxes at various cross sections have not been regulated by the simula-
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Fig. 8.11 Evolution of mass flux distribution in IP simulation of the micro-channel gas flow
of [12], while the conservative form of the mass conservation equation is used
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Fig. 8.12 Evolution of mass flux distribution in IP simulation of the micro-channel gas flow
of [12], while a non-conservative form of the mass conservation equation is used
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tion relaxation process, for the adjusting act of the mutual influence of the inlet

and outlet boundaries have been damped by the numerical errors inherent in the

non-conservative scheme.

The effect of the acceleration action of the super-relaxation technique is illus-

trated on another experimental case [11] of nitrogen flowing in a

1.2x3Ox3OOO//m3 channel with inlet pressure of \5psig into the atmosphere.

Figure 8.13 shows the evolution of the density p at the center of the cross sec-

tion located at 2500/«w from the inlet in the IP calculation by using a su-

per-relaxation factor co of 1, 100 and 1000, respectively. While p approaches

the steady value of \39kg/m^ in about 6xlO4 time steps with a relaxation fac-

tor co of 1000, the evolution for <a = 100 is further than halfway apart from the

steady state after 6xlO4 time steps, and the value of p remains almost the

same when no super-relaxation is employed (with co = 1). The maximum value of

co allowed in simulation is dependent on the smoothing technique of mass fluxes

in the whole flow field: the smoother the mass flux, the larger value co is al-

lowed. But exaggerated smoothing would distort the flow field. A simple averag-

ing from adjacent three points,

1.4

1.39

"^1.38
O)

| 1 . 3 7

o 1 .3 6

1.35

0

- /

L-T

20000
time

• ^ - "

(0

_ — —

40000
steps

= 1000

= 100
= 1

' — •

60000

Fig. 8.13 The evolution processes of density p at a point located at 2500/.im apart
from the inlet under experimental conditions of [11] with different super-relaxation factors
co = 1, co = 100, co = 1000 , respectively
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where n is the number of iterations, is used. The iterated averaging for » = 15

has the desirable effect of smoothing, and retains the local trend of mass flux evo-

lution. Then the value co = 2000 can be employed and the calculation remains

stable. It is noted that when the steady value of p is being approached the value

of co and the smoothing procedure has little consequence on the final evolution

result, so after having experience one can prescribe co a varying process from

say 2000 to 1 to reach the steady state, and the final result is entirely not effected

by the varying process. This is satisfactory for the purpose of the calculation, for it

is the final result but not the evolution process that is concerned.

In the practice of general IP method the DSMC simulated molecules move and

carry the IP quantities, the DSMC process determines the IP process and the IP

process has no reverse influence on the DSMC process. In the solution of channel

flow and other internal flow cases, where the macroscopic quantities on the

boundaries are to be regulated during the simulation, there is another specific fea-

ture, that is, the varying IP velocities on the boundaries are used to continuously

adjust the boundary conditions of the DSMC-IP procedure. This influences the

DSMC simulation and enables the DSMC finally to have the correct value on the

boundaries. Pure DSMC process is carried out by individual molecules and the

adjustment of boundary conditions is very slow and DSMC needs sufficient sam-

ple size to allow definite boundary values of U to emerge, while the IP process

is a global one: the changes of IP values happen simultaneously over the whole

domain of calculation and the adjustment is quick and not limited to the boundary

but spreads over all the channel length. Although the approach to the steady state

requires quite a long time in the example calculation under condition [11] (120

hours CPU time on a Pentium III 450, or 98.7% of the entire computation time),

but during this time the global DSMC quantities are also regulated. After arriving

at the steady state the sampling time required for yielding the final IP convergent

data is quite short (1.6 hour CPU time, or 1.3% of the computation time).

In micro-channel experiments [10-14] the width (40-50/««) is much larger

than the height (1.2 ~ 1.33/«« ). This made the span-wise influence negligible, and

the flows can be simplified as two-dimensional (the midline velocity profile and

the maximum velocity remains almost the same for rectangular cross section

channels with a width to height ratio larger than 5, but the flow rate is influenced
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in some minor degree by the slow down of the flow near the side wall even for

large width to height ratio, see [50]). As we have seen in section 8.1, the experi-

mental conditions [10-14] are in the slip and transition regimes.

An orthogonal coordinate system is employed with the origin located at point

O, and x and y axes along 00' and OA, respectively (see Fig. 8.9). Since

the flows are symmetric about 00', a computational domain of OO'BA is con-

sidered only. Each of the uniform rectangular cells is sub-divided into a set of

uniform rectangular sub-cells within which collision pairs are selected. The num-

ber of cells is around 400x15 to 700x30and there are 5x2 sub-cells in each

cell. The cell size is much smaller in the cross sectional direction than in the

stream-wise direction, so is the sub-cell size. As shown by Nance et al. [28], the

flow field is insensitive to the stream-wise cell size because of a relatively small

velocity gradient in this direction. The test calculations observe that the smaller

stream-wise cell and sub-cell sizes provide the same results as the present sizes

being employed. For all cases the molecular interaction is described by the VHS

model. The reference collision diameter in VHS appropriate to the IP method has

been determined for common gases [31].

A specular reflection is used along the symmetrical boundary OO'. The chan-

nel surfaces are assumed to be diffusely reflecting with a tangential momentum

accommodation coefficient a (see Eq. (3.23)). Arkilic et al. [13, 14] developed a

modified accumulation technique to measure the mass flux through mi-

cro-channels. Comparing the measured mass flow rate with the slip Navier-Stokes

solution, they extracted a for the micro-channel surfaces of single-crystal sili-

con in their system. The values appeared to be 0.80 ±0.01 for argon and

0.88 + 0.01 for nitrogen. The same means was also utilized by Shih et al. [11] to

extract a for their micro-channel surfaces, yielding 0.9905 for nitrogen and

1.1620 for helium. However, as we have seen in section 8.1, the microchannel

helium flow has a Knudsen number of 0.16 at the outlet and is in the transitional

regime. So extracting a from the slip Navier-Stokes solution became improper.

And the value 1.162 is beyond the physically realistic range of a. In contrast, the

nitrogen flow is in the slip regime and the value of <x = 0.9905 is reasonable.

This shows that the micro-channel surfaces in the UCLA system is close to the full

diffuse reflection. The values of a used in simulation for nitrogen and helium

flows of [11, 12] are both 1.0 and for argon flow of [13] is 0.8 (the Knudsen
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number at the exit of the argon channel flow is 0.05, and the a value extracted

from the slip Navier-Stokes solution is valid).

In the case of the channel flow of nitrogen [12] the density increment obtained

by the conservative form of mass equation (8.27) and the super-relaxation method

Eq. (8.28) make the mass fluxes at various sections tend to be the same (see the

hollow spheres in Fig 8.11), at the same time the pressure distribution is adjusted

to the actual configuration. For the inlet pressure of 19.Opsig the mass fluxes at

various cross sections are all equal to about 4.\x\0~'2kg/s . This result is in good

agreement with the experimental result in [12].

Figure 8.14 compares the stream-wise pressure distributions given by the IP

method with experimental data of [11] with nitrogen as the working media for the

inlet pressures of 5, 10, 15, 20 and 25 psig , with the error bars showing the

measured confidence limits. Because of the small height of \.2/um, the velocity

gradient in the normal direction is quite large that leads to a strong viscous effect

which is clearly demonstrated by the non-linearity of the pressure profiles. The

pressure loss is subject to the local shear stress of the micro-channel surfaces that

becomes sensitive to the Knudsen number as Kn> 0.01. For the same outlet

pressure of the atmosphere, the increase of the inlet pressure results in a more sig-

nificant stream-wise variation of Kn and therefore corresponds to a more obvi-

ous non-linear pressure profile. Fig. 8.15 shows the stream-wise pressure distribu-

tions at three different inlet pressures of 8.7, 13.6 and 19.0 psig given by IP and

3000

Fig. 8.14 Comparison of stream-wise pressure distributions of nitrogen flow given by IP
with experimental data of [11]. Kno =0.055 .The pressure values indicated are the inlet
pressures.
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experiment for helium with an exit Knudsen number of 0.16, which also agree

with each other.

In Fig. 8.16 the simulated mass flux by the IP method at inlet pressures of 9.5,

15, 20, 26, 30 psig is compared against measured data of Shih et al. for nitrogen

[12]. Fig 8.17 shows the mass flux calculated by the IP method and measured by

Arkilic for argon [13]. The flows are in the slip flow regime and one can see, there

is a remarkable agreement between the IP and the experimental results.

Arkilic [14] has undertaken experiments under "extreme" flow conditions to

investigated flows in the transition regime. The inlet pressures of helium range

from WikPa to 4\3kPa (with Kn, between 0.117 and 0.04), while the helium

exhausts to a low pressure of 6.5kPa that results in an outlet Knudsen number of

2.5. Therefore, a significant portion of the channel lied well beyond the slip flow

regime. Arkilic defined the flow conductance as the ratio C = Q/Ap of mass

flow to the differential pressure across the channel length and used it to check the

validity of the slip Navier-Stokes model. Arkilic obtained the slope of the meas-

ured flow conductance was approximately 11% greater than the slip Navier-Stokes

prediction [14] showing an obvious breakdown of the slip flow model. The data of

the flow conductance has been used in [17] to check the performance of the IP

method in the transitional flow regime. The value of flow conductance versus

mean pressure, P = (PI+PO )/2, given by the IP method and the experimental data

of [14], except at the largest mean pressure range, where a difference of about 5%

20
IP

19.0 psig
13.6 psig
8.7 psig

1000 2000
x(nm)

3000 4000

Fig. 8.15 Comparison of stream-wise pressure distributions of helium flow given by IP
with experimental data of [12]. Kno = 0.16 . The pressure values indicated are the inlet
pressures
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Fig. 8.16 Relation of mass flux versus the inlet pressure for the helium flow. Comparison of

the IP simulation with the experimental data [12]. Kno =0.16

Fig. 8.17 Relation of mass flux versus the inlet pressure for the argon flow. Comparison of

the IP simulation with the experimental data [13]. Kno = 0.055

appears, are generally in good agreement (see Fig.8.18). This is the first time that

the result of a method appropriate for the entire transitional flow regime is com-

pared with the experimental results of long microcharmel (1.33 x 52.3 x 7490//m3)

flow at rather large Knudsen numbers (Kno » 2.5 ).
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Fig. 8.18 Relation of flow conductance to mean pressure for helium flow in the transition
regime. Kno = 2.5 , a = 0.85 . Comparison of the IP simulation with the experimental data
of [14]

8.6 THIN FILM AIR BEARING PROBLEM

The general dimensional and flow characteristics of the modern Winchester-type

hard disc drive were described in section 8.1. The squeezed air bearing problem

may be schematically modeled as a lower plate (the surface of the spinning plat-

ter) moving in its own plane with a velocity of U under the upper stationary

tilted plate (the read/write head, see Fig. 8.19). The thin film air flow between the

plates is most appropriately described by the Reynolds equation, which is a dif-

ferential equation relating the pressure p , density p, platter velocity U and the

height h of the gap, firstly developed by Reynolds for continuum fluid [52]. The

Fig. 8.19 A schematic model of the thin film air bearing flow
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equation has been modified to include a number of rarefied gas dynamics effects

but is still called Reynolds equation. It is essentially a mass conservation relation

applied not to a fluid element but to the cross sections of the squeezed air flow and

is obtained from the continuity equation by integrating it over the vertical direc-

tion with the employment of the momentum equation. Burgdorfer [53] introduced

the velocity slip correction to the Reynolds equation, Fukui and Kaneko [54] de-

veloped a generalization of the equation suitable for the transitional regime.

The derivation of the Reynolds equation in the continuum regime is enlighten-

ing and can be easily extended to the slip flow and transitional flow cases so is

given here. For simplicity the two-dimensional assumption is made, as the head

width W is much large than the height ha so the span wise motion can be ne-

glected.

Writing the continuity equation

dp dpu dpi

a
 + i r ~ + ~ r ~ = 0 (8-29)

dt dx dy v '
in the form

dpv dpu dp
dy dx dt

and integrating it over y across the whole flow region yields

di)dy- (831)

The left hand side of Eq. (8.31) vanishes, as there is no fluid flown into or out of

the walls. Interchanging the integration and differentiation gives

r) * r)

— \pudy + —(ph) = 0. (8.32)
ax $ dt

For thin film flow with the inertial terms neglected the steady momentum Na-

vier-Stokes equation has the form

dp d du

dx dy dy
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Integration across the gap with the non-slip boundary conditions

u\y=0=U, « | ^ = 0 (8.34)

yields the solution of the stream wise velocity component u

M = C / ( l - f ) - ^ y ( l - f ) . (8.35)
h Ijj. h

Substituting Eq. (8.35) into Eq. (8.32) and accomplishing integration overy, the

following equation is attained

| ( ^ )4 (p*£) ] . (8.36)
at ox J

This is the general form of the Reynolds equation for the two-dimensional case.

By introducing X = xlL,H = hlho,P = pipo and the bearing number

A = 6/uUL/poho
2, (8.37)

Eq. (8.36) for steady and two-dimensional case can be written in the normalized

form [18]

—(H'P—) = A—(PH). (8.38)
dX dX dX

The first term of Eq. (8.35) is the slip-less solution of the velocity in the Cou-

ette flow when the upper plate is stationary and the lower plate moves towards the

right with velocity U (see section 5.4.1, compare with Eq. (5.63) with ^ = 0),

the second term is the slip-less solution of the velocity in the Poiseuille flow when

the axis x is aligned along the lower plate (see section 5.4.2, the second term of

Eq. (8.35) can be obtained from Eq. (5.69) by a simple translation of the ordinate

y). The equation (8.38) shows that the flow rate across any cross section is the

sum of the flow rate of the Couette flow and the Poiseuille flow and this rate does

not change from one cross section to another in steady flow.

In section 5.4.2 we have seen that the flow rate of the Poiseuille flow with slip

boundary condition surpasses that of the slip-less case by a factor



8.6 THIN FILM AIR BEARING PROBLEM 351

QP
(8.39)

see Eq. (5.73). As for the Couette flow the flow rates have a specific feature and

are identical in slip-less case and the slip case (and even in the transitional flow

case) and have the following value independent of the Knudsen number owing to

the symmetry of the flow (see Fig.8.20):

Qc=pUhl2. (8.40)

From the flow rate expressions (8.39) and (8.40) for Poiseuille and Couette

flows in the slip flow case one can conclude, that in the slip flow regime the fol-

lowing Reynolds equation is obtained in place of Eq. (8.38)

5.41)
a dX\ dy

where Kn = A/h is local Knudsen number.

When the slip boundary conditions

0=S"
du_

~dy~

_ du r_2-cx
dy a

I AT)

instead of the non-slip boundary condition (8.34) is employed in solving the mo-

mentum equation (8.33), and the resulted velocity profile is substituted into the

mass conservation relation (8.32), one would arrive at the same slip corrected

Reynolds equation (8.41) [53, 18].

Fig. 8.20 Velocity profiles and the flow rates of the slip-less and slip Couette flow, the

transitional flow is not shown but it has the same flow rate owing to the symmetry of flow
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Fukui and Kaneko [19] showed that the solution of the linearized Boltzmann

equation for the thin film bearing problem can be decomposed into the solutions

of the plane Couette flow and the plane Poiseuille flow [55]. On this basis they

derived the generalized Reynolds equation for the thin film air bearing problem by

employing the flow rates of the fundamental Poiseuille and Couette flows solved

by the linearized Boltzman equation. This generalized Reynolds equation in the

isothermal case can be written as [19]

f] ^ (8.43)

where QPTR(Kn) is the flow rate in transitional regime (normalized by the

slip-less value Qp c) calculated from the linearized Boltzmann equation for

Poiseuille flow and is shown to be the same as solved by Cernignani and Daneri

[55]. A tabled database of the calculated values of QPTR{Kn) for <r = l ,

a = 0.9 , a = 0.8 and a = 0.7 is provided in [56], and a fitted formula approxi-

mation for diffuse reflection ( a = 1) by Robert is recorded in [18] (there the sec-

ond term on the right hand side is misprinted as 6AyprKn )

QP TR(Kn) = 1 + 6AKn + — Kn\og(l + BKn) , (8.44)
n

where 4̂ = 1.318889 and B = 0.387361. Alexander, Garcia and Alder [18] used

the DSMC method to simulate the short head length air bearing problem

( L = 5jum , ho=50nm = 0.05/Mi , U = 25m/s , cr = l ), and found excellent

agreement of the DSMC simulation with the generalized Reynolds equation (8.43)

and Eq. (8.44). Note, their description of the latter as continuum hydrodynamic

Reynolds equation corrected for slip is misleading. As we have shown, the gener-

alized Reynolds equation is a global mass conservation relation applied to the

cross section of the air bearing flow with the flow rate calculated by the Boltz-

mann equation which is appropriate for transitional regime. The comparison made

in [18] for the cases (the ratio of the inlet to outlet heights is kept as 2:1)

ho=l5nm = 0.0l5/.im, U = l53.9m/s, <r = 1.0;

ho=50nm = 0.05/urn, U = 25m/s, cr = 0.7;
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L = 5pm, ho = 50nm = 0.05pm , t / = 3 0 7 . 8 m / s , cr = 1.0;

showed good agreement of the generalized Reynolds equation with the results of

DSMC simulation, this just confirms that the generalized Reynolds can be used to

solve the air bearing problem in the entire transitional flow regime and can be

used to test other methods intended to solve the problem, say for longer bearing

head length (the authentic length of the Winchester disc drive read/write head is

~ 1000 pm , but the DSMC method was able to solve only short length (~5pm)

problems).

The thin film air bearing problem is solved by the IP method in [57]. The rec-

tangular area (from x = 0 to x = L , and from y = 0 to y = h (x = 0 )) is di-

vided into 200 x 10 uniform cells for short (L = 5 ~ 25pm ) length write/read head

and into 1000x10 cells for long (L = \mm~\000pm) head. Some of them are

incised by upper surface into two parts, only the one under the upper surface is

within the computational domain. The cell of this part is called incomplete cell.

The smallest volume of the incomplete cells is only a very small portion of that of

the standard complete cell. During the process of the IP calculation, all the incom-

plete cells are combined with their lower adjacent complete cells. It is found that

the time step is better to be kept different for the DSMC part and the IP part of the

simulation process: for DSMC the usual size of the time step of the order of colli-

sion time is sufficient, but for the IP simulation a smaller time step would ensure

obtaining real macroscopic quantities of the solution without much increase of the

computation time. With the employment of appropriate super-relaxation factor

steady convergent results can be obtained. Fig.8.21, Fig.8.22 and Fig.8.23 show

the comparison of the pressure distributions for the cases of L = 5pm , L = 25pm

and L = 1000pm of the IP results and the results of the generalized Reynolds

equation. For L = 5pm the comparison with the DSMC simulation is given as

well. One can see the excellent agreement of the IP results with the generalized

Reynolds equation. This can be considered as a verification of the IP method by a

criterion with the merit of the strict kinetic theory. As the generalized Reynolds

equation is applicable only to a certain class of problems, where as the IP method

has the flexibility and the ability to treat problems with complex geometry, this
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verification encourages people to use IP method to treat various complicated flow

problems encountered in MEMS.

1.4

1.3

DSMC
D Alexander et at.
O Reynolds Equation

0.25 0.5

x/L
0.75

Fig. 8.21 Pressure distribution in the disc driver bearing for Kno = l.25,L = 5//m , com-
parison of IP, DSMC and the generalized Reynolds equation results [57], also shown is the
DSMC result of Alwxander et al. [18]

Fig. 8.22 Pressure distribution in the disc driver bearing for Kno =l.25,L = 25fin
parison of IP and the generalized Reynolds equation results [57]



8.7 USE OF DEGENERATED REYNOLDS EQUATION IN CHANNEL FLOW 355

Fig. 8.23 Pressure distribution in the disc driver bearing for Kno = \.25,L = 1000//m , com-
parison of IP and the generalized Reynolds equation results [57]

8.7 USE OF DEGENERATED REYNOLDS EQUATION IN
CHANNEL FLOW

The generalized Reynolds equation (8.43) originally is derived for application in

the thin film air bearing problem with the lower plate moving with a velocity

U and the upper plate tilted. Shen [58] suggests degenerate this Reynolds equation

and use it to solve the microchannel flow problem. In the microchannel the lower

plate is stationary and the upper plate is parallel to the lower one. Owing to the

steadiness of the lower plate the right hand side term vanishes, as U = 0 and

A = 0 , there is not any contribution of the Couette flow. Owing to the parallelity

of the two plates the value H is a constant and also can be dropped from the

equation. So the generalized Reynolds equation suggested for application to the

microchanel problems is degenerated to the form

—\QPTJKn)P—\ =
dX^- PJR dX '

(8.45)

The values of P on the inlet and outlet of the channel are to be specified to

make the microchannel problem solvable. This degenerated Reynolds equation is
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suggested be used to solve the microchannel flow in transitional flow regime pro-

vided the flow rate of the local Poiseuille flow QPTR(Kn) in transitional regime

(normalized by the slip-less value QPC) is known from the strict kinetic theory.

There are many works devoted to the solution of the Poiseuille flow providing the

database for the flow rates at different Knudsen numbers and for different bound-

ary conditions at the surface. With the database incorporated the degenerated

Reynolds equation is valid for any surface conditions of the plates and can be in-

tegrated numerically. For example, the incomplete diffuse reflection cases with

tangential accommodation coefficient cr = l , cr = 0.9 , cr = 0.8 and a = 0.1

were calculated in [56] with tabled database of the values of QPTR(Kn) provided

under these boundary conditions. If practice has the needs, even situation with two

plates having different accommodation coefficients could be considered. But for

the illustrative purpose only the case of complete diffuse reflection a = 1, is ex-

pounded here. For the case of diffuse reflection, the fitted formula approximation

of QPTR(Kn), Eq. (8.44), can be used, and the degenerated Reynolds equation

attains the form

d 12 dP

dX n dX

For the ease of integration the local Knudsen number Kn is most conveniently

expressed through P, e. g., for HS model it can be written as

Kn=- = —, (8.47)

where

C= 7A| 2 =1^o/h = Knml, (8.48)

for we have for hard sphere

// ITTRT

(8.49)

see Eq. (2.222). p0 is the pressure at the outlet, To is the temperature of the

gas, // is the viscosity of the gas at To. The constant C has the physical
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meaning of the Knudsen number at the outlet of the channel (see Eq. (8.47), at

outlet P = 1). Substituting Eq. (8.47) into Eq. (8.46), one arrives at

19 Rf^ riP
[P + 6AC +—C\og(\ + —)]— = D, (8.50)

where D is an unspecified constant to be determined from the integration and

has the physical meaning of the flow rate across the channel normalized by the

slip-less flow rate value.

To illustrate the use of the degenerated Reynolds equation in solving the mi-

crochanel problem we calculate the pressure distribution for nitrogen in the

1.2x40x3000/um3 channel [11] and helium in the 1.2 x 40 x 4000/ww channel

[12].

For T0=294K the value of C for helium is 0.15579, and for nitrogen is

0.052325. Equation (8.50) is integrated under the following boundary condition

P\x=0=P,JP,M > a i l d P\x^=Po,JPoU, = 1 ' (8.51)

with pin provided by the experimental data in [11, 12]. The results of integration

are presented in Fig. 8.24 and Fig. 8.25. It is seen from the figures that the results

of the degenerated Reynolds equation agree well with the experimental data, and

the IP simulation results have excellent agreement with those of the degenerated

Reynolds equation, especially for the pressure distribution in the microchannel

with dimension 1.2 x 40 x 4000//m3 for helium (the two curves almost coincide

with each other).

In section 8.2 we have shown the unfeasibility of using LBM in simulating

transitional flows in MEMS by comparison with the DSMC calculations [24, 25].

Here the LBM results [23] are compared (see [58]) with the calculations by using

the degenerated Reynolds equation to attain the same conclusions as in [24, 25],

but this time the conclusion is confirmed by a test stone with the merit of strict

kinetic theory. Equation (8.50) is integrated under the following conditions for a

short lxlOO/wi2 microchannel that have been considered by LBM in Nie,

Doolen and Chen [23]:
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Fig. 8.24 The pressure distribution in a l.2x40x3000/;m3 microchannel for nitrogen.
Comparison [58] of the degenerated Reynolds equation (8.50) (solid line), the IP method
(dashed line) and the experimental data [11]
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Fig. 8.25 The pressure distribution in a 1.2 x 40 x 4000/OT!3 microchannel for helium.
Comparison [58] of the degenerated Reynolds equation (8.50) (solid lines), the IP method
(dashed lines, note that the solid lines and the dashed lines almost coincide) and the ex-
perimental data [12]
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The results of comparison of the integration of the degenerated Reynolds equa-

tion (8.50) with the LBM, the DSMC and IP results are shown in Fig. 8.26 and

Fig. 8.27. It is seen that the degenerated Reynolds equation, the DSMC method

and the IP method are in excellent agreement with each other but they are in appa-

BL 1.5

degenerated Reynolds Eq.
DSMC method
IP method
LBM

Kn^O.194

0.25

Fig. 8.26 Pressure distribution in a microchannel with Kn = 0.194 at outlet (hiL = 100).
Comparison [58] of the degenerated Reynolds equation, DSMC, IP methods and the LBM
method

BL 15

degenerated Reynolds Eq.
A DSMC method
O IP method
a LBM

Kn=0.388

0.25

Fig. 8.27 Pressure distribution in a microchannel with Kn = 0.388 at outlet ( hiL = 100 ).
Comparison [58] of the degenerated Reynolds equation, DSMC, IP methods and the LBM
method
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rent disagreement with the LBM results. The LBM is shown to be unfeasible to

simulate the transitional flow again, but this time by a method having the merit of

kinetic theory

The generalized Reynolds equation (8.45) degenerated for application to the

micro-channel problems with the flow rate QPTR(Kn) provided by the linearized

Boltzmann equation is appropriate for solving the microchannel flow problems in

the entire transitional regime. It can provide the pressure distribution, the flow rate

but not the detailed flow field such as the velocity profiles. But its significance lies

in that it can be used as criterion of strict kinetic theoretical merit to test various

methods aimed to solve the microchannel problems in transitional regime.

From the degenerated Reynolds equation (8.50) for the specific case of diffuse

reflection it is seen that the microchannel rarefied gas flow is entirely specified by

the inlet and outlet pressure Pjn and POIU , and the Knudsen number at the outlet

C = Knml, the length of the channel does not enter as a determining factor.

Besides the air bearing problem and the microchannel flow problem the Rey-

nolds equation can also model the gas damping problem in micromechanical ac-

celerometers [59]. Database for the flow rates of the Poiseuille flow with various

combinations of possible surface properties calculated on the basis of linearized

Boltzmann equation or other rigorous kinetic theory is desirable for the solution of

microchannel flow, thin film air bearing problem and also the damping problem in

the micromechanical accelerometers, especially in the form of fitting formulas.

8.8 SOME ACTUAL PROBLEMS AND CONCLUDING
REMARKS

When there are temperature gradients along the MEMS or channel surfaces there

occur the phenomena of thermal creep, thermal transpiration, thermal stress slip

flow and the temperature stress convection etc. (see chapter 5). The Knudsen

compressor in use of MEMS is worked out on the basis of thermal transpiration

[60]. So it is of significance to extend the IP method to the case of temperature

variation. Some useful attempt and exploration have undertaken in this aspect [32,

35, 46]. The difficulty encountered in extending the IP method to the case of tem-

perature variation is that the average energy flux of monatomic molecules in a

static gas through a surface element is 2kTFn, where r„ is the molecule num-
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ber flux, but the average energy carried by a single molecule is(3/2)kT , the IP

process can not satisfy the global energy balance across an interface. Sun [46] put

forward a model of additional energy transfer and a method of assignment of the

post collision IP temperature by which the IP method was able to simulate the

flow between two plates with different temperatures and obtain temperature result

in agreement with that of the DSMC method. But the density distribution is in

some minor difference with the DSMC method. In [35] the temperature compo-

nents in three directions are introduced and new method of assignment of the post

collision temperature is adopted, the agreement of the temperature and density

distribution with the DSMC is obtained in the flow between two plates. But these

constitute only partial success for such models can not provide general method of

simulation of the rarefied gas motion caused by the temperature variation. It is a

challenge to modify and develop the present IP algorithm to adapt it for employ-

ment in the case of temperature variation.

The micro scale flow is usually a low speed flow as well and the flow problem

is of the elliptical nature. For the external flows the size of the flow field involved

in the simulation as a rule is much bigger than the body itself, thus most part of the

flow field can be described by the continuum equations. For internal flows the

region near the walls is described by the particle method, the region far from the

walls can be described by the continuum method. The hybrid continuum/particle

approach can make use of the advantages of both methods and can save enormous

computation time and thus has gained extensive attention. At the interface of the

continuum flow and the particle simulation boundaries (usually movable and

regulated unceasingly) information must be interchanged at each time step. For

ordinary particle methods owing to the huge statistical fluctuations, it is very

time-consuming to pose definite boundary conditions for the continuum flow. At

the same time, as the IP method preserves the macroscopic information, it is quite

easy to pose boundary conditions for the continuum flow. Sun et al. [61] used hy-

brid IP method with the Navier-Stokes equation plus slip boundary condition to

solve the flow around the plane plate and Couette flow problems and obtained

smooth solutions with enhanced efficiency.

Finally, we make some concluding remarks of this chapter.
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The linearized Boltzmann equation method and the DSMC method are appro-

priate for solving microscale rarefied gas flow problems and can be used as crite-

ria for testing various methods intending to solve the transitional flows, the latter

encounters the problem of huge statistical fluctuation for slow rarefied gas flows.

The IP method preserves the averaged information of the enormous number of

molecules that a simulation molecule represents, overcomes this difficulty and for

low speed cases saves the computation time by a factor of 102 -104 and can treat

more easily problem of complex configuration in comparison with the linearized

Boltzmann equation.

The difficulty of regulating the inlet ad outlet boundary conditions of the inter-

nal flow problem is overcome by the use of conservation scheme and sup-

per-relaxation method in the IP method. The method is validated, and on the ex-

amples of unidirectional flow, the channel flow and thin film bearing problems is

checked by comparison with the experimental results, the linearized Boltzmann

equation, DSMC method, the generalized Reynolds equation and the its degener-

ated version (with the flow rate of Poiseuille problem calculated by the Boltzmann

equation). In regulating of the inlet and outlet boundary conditions the effect of

super-relaxation is different from the amplification of the time interval, the re-

quirement of sufficient small time steps remains in force to guarantee through

DSMC process the true trend of the variation of the flow quantities. The su-

per-relaxation factor amplifies the true trend and accelerates the approaching of

the true solution. The regulated IP values are used as the current boundary condi-

tions at the inlet and outlet of the DSMC process so the entire process of conver-

gence is quickened.

The generalized Reynolds equation is appropriate to treat the thin film air bear-

ing problem in the entire transitional regime. Example calculations and compari-

son with DSMC, IP and experimental results show the success of the suggestion of

using the degenerated Reynolds equation to solve the transitional microchannel

flow problem. Degenerated Reynolds equation with the Poiseuille flow rate calcu-

lated by the linearized Bolktzmann equation can serve as a test stone of the merit

of strict kinetic theory, in particular it gives an undoubted confirmation of the un-

feasibility of LBM in simulating the transitional flows. On the example of micro-

channel flow it provides a solid verification of the IP method.
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