
6 TRANSITIONAL REGIME

6.1 GENERAL OVERVIEW

In section 0.4 the transitional regime is defined as the scope of Kn number

(XIL) between 0.1 and 10 (see Eq. (0.8)), i.e., the molecular mean free path A

is not too large, nor too small in comparison with the typical flow size L . In such

case the collisions between molecules and the collisions of molecules with the

surface must be taken into account simultaneously, both the comparatively simple

free molecular flow theory and the mature continuum method are not appropriate,

one has to solve the Boltzmann equation or to evoke equivalent to it

physic-mathematical handling. To solve the integral-differential Boltzmann equa-

tion with the collision term and an unknown function having as many as seven

arguments is so difficult that many researchers envisaged various methods to solve

the problems in transitional regime, some of these methods seemed to carry the

implication of roundabout tactics, but could lessen the difficulty and make the

problems readily tackled.

The methods of solution of the transitional regime problems can be distin-

guished into two categories: the analytic and numerical methods. The analytic

methods without exception start from the Boltzmann equation, but owing to the

complexity of this equation they often adopt the small disturbance or linearization

assumption (the linearized Boltzmann equation method), or make some assump-

tion relative to the form of the distribution function (for example the moment

method), or make some simplification even of the collision term itself (the model

equation method), these constitute the contents of the sections 6.2-6.4. These

methods of solution despite their belonging to the analytical category seldom at-

tain the analytical solutions, to obtain the final results certain numerical calcula-

tions are required. It is noted that except the solutions of the linearized Boltzman

equation in the scope of small disturbances these solutions can hardly be called
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exact solutions. This is especially true for the model equation method, this is a

modification of the Boltzmann equation proper and replacement of it by a simpli-

fied equation, showing how difficult is the direct solution of the Boltzmann equa-

tion. The moment method owing to the arbitrariness and un-uniqueness of the

form of the distribution function does not possess either the merit of exact solu-

tion.

Two kinds of the numerical methods can be distinguished: the direct numerical

solution of the Boltzmann equation and the direct simulation of the flow physics

itself, even though the line of demarcation between them becomes not so absolute

because the direct simulation method can be proved to be consistent with the

Boltzmann equation. Among the methods of direct numerical solution of the

Boltzmann equation there is the method (finite difference method) which uses spe-

cific algorithm (the Monte Carlo method of quadrature) to calculate the collision

integral and uses the mature finite different method of the computational fluid

dynamics (CFD) to solve the Boltzmann equation, the method (discrete ordinate

or discrete velocity method) which assumes that the velocity space only has finite

number of discrete values thus significantly simplifying the calculation of the col-

lision integral, and the method fAe integral method) that writes the Boltzman

equation in the integral from and solves it, they are introduced in sections 6.5-6.7.

These methods attempt to base the formulation on the exact Boltzmann equation

and have the property of exact solution in the limits of errors (of course, provided

the calculation method is correct).

With the development of the electronic computers a kind of methods staring

directly from the simulation of physics of the flows appears, including the method

of deterministic simulation —the molecular dynamics (MC) method and the prob-

ability simulation method which can be distinguished further into the test particle

Monte-Carlo method and the direct simulation Monte-Carlo (DSMC) method .

The direct simulation Monte-Carlo method deserves separate discussion owing to

its success in solving rarefied gas flow problems, especially the non-equilibrium

flow problems in the transitional regime. The DSMC method possesses the same

physical basis and assumptions (the molecular chaos and dilute gas assumption).

But DSMC method is different in some aspects from the Boltzmann equation. The

latter depends on the assumption of the reverse collisions so could not treat the
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three body collision problem, but the DSMC method can be applied to complex

problems such as with recombination chemical reactions where three-body colli-

sions are involved. In treating the problems of molecular models and mole-

cule-surface hteraction when introducing physical models the DSMC method

because of its nature of physical simulation can naturally and easily htroduce

more complicated and more close to reality models. But it is quite difficult to in-

troduce the real and complex models into the mathematical formulation of the

Boltzmann equation. For the gas flow cases accompanied by the chemical reac-

tions and radiation the mathematical formulation in the framework of the Boltz-

mann equation is difficult to accomplish for practical application, but it is easy for

the DSMC method to implement the simulation of these flows. Even for flow

cases without such processes as chemical reactions and radiation to solve directly

the Boltzmann equation is rather difficult and sometimes is limited to simple ge-

ometry and sometimes to low speed. Thus, the deep rooted view point, i.e., the

view point that a simulation process can be accepted only if it is strictly derived

from the Boltzmann equation, seems to be antiquated and non-practical. The

DSMC method has been verified experimentally both in the aspect of global flow

characteristics and in the aspect of micro-level characteristics such as the velocity

distribution function. It is safe to say that the DSMC method is a method that

solves successfully various practical flow problems in the transitional flow E-

gime, its meaning and role has been recognized by the scientific community. Ow-

ing to the important meaning of the DSMC method in the transitional regime

Chapter 7 will be devoted specially to the discussion of this method. And this

Chapter will give an overall outline of various methods in the transitional regime

including a section 6.8 giving a parallel overview of the direct simulation method.

6.2 LINEARIZED BOLTZMANN EQUATION

It has been stated above that due to the complicated non-linearity of the collision

integral of the Boltzmann equation the direct solution of it is very difficult. The

existence of the solution of the Boltzmann equation under equilibrium of the gas,

the Maxwellian distribution (see section 2.10), allows us to suppose to find the
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solution of the linearized problem near this solution, this limits the solution to low

speed flow problems, i.e., the small disturbance solution about the quiescent gas.

For the slowly moving gas flow slightly deviated from the stationary state the

difference of its distribution function f(r,c,t) from the Maxwellian distribution

is small, and it can be written in the following form

[ c,t)], (6.1)

where

(/fc)\(C2), (6.2)

C=cß=-
' ' (6.3)

Substituting Eq. (6.1) into the Boltzmann equation (Eq. (2.152) in section 5.2)

and retaining only the first order of (p yields

dm da , s

i r + c ' -är y ( < p ) ' (6-4)
where J((p) is a collision operator linear relative to (p which can be written as

. (6.5)

In obtaining Eq. (6.4) the fact, that /„*/„*= fafol and /(c ') can be taken out of

the integration, has been taken into account.

The linearized Boltzmann equation (6.4) is still a complicated inte-

gral-differential equation, but as it is linear, in comparison with the Boltzmann

equation it is much simpler. Many authors discussed in detail this equation, see

Cercignani [1,2]. These small disturbance solutions provide with important data

having value of reference when they are obtained without the assistance of arbi-

trary assumptions about the relevant parameters or the modification of the equa-

tion, they can serve as merits for other numerical methods and have practical ap-

plication value in the aspects of gas flow problems in MEMS. Even though the
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equation is linearized, the available solutions are limited mainly to certain class of

relative simple boundary conditions. Sometimes some works are discussing not

the linearized Boltzmann equation but the linearized model equation, one should

be careful when applying such results.

In the following the equation (6.4) will be written for the case when the space

variation occurs only in the y direction and the gas molecules are hard spheres,

and the formulation of the boundary conditions for the linearized Bolzmann equa-

tion will be discussed for the plane boundary case [3, 4]. When y is the only space

coordinate by using the dimensionless molecular velocity C (see Eq. (6.3)) Eq.

(6.4) can be written

+ C y m . ( 6 . 6 )

at ay

For hard sphere molecule it is easy to obtain

J{(p)=-rrw-\d£\smede\Ge-c> {cp' +(£- (p-(px}dC^ (6.7)

where G = ßcr ^cJ^lkT/m , the definitions of £,8,cr see Chapter 2,

qf =(p\C},q>\ =q>\C\*); C',C* are the velocities after collision of molecules

whose velocities before collision are C,Ct. The relations between C*,C* and

C,C^ can be found in Chapter 2 Eq. (2.59)*, Eq. (2.59)**, for example in the

direction of x

s 2 |C;=Q+(C 1 ; [ -C , ) cos 2 |

sinjcose,

(6.8)

We discuss the case of the Maxwellian type boundary conditions, i.e., after inci-

dence onto the surface a portion of the molecules reflects diffusely and the

other (1-CT) portion reflects specularly. Obviously, when cr /O, the incident
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molecules and the reflected molecules have different distribution functions. For

the case of a plane surface perpendicular to the y axis the distribution function is

non-continuous with respect to the normal to the surface velocity component Cy.

Then two distribution functions which are continuous by themselves are to be in-

troduced, they are defined each only in the half velocity space [3, 4]

j/=ruc,),c,>o,
\f-/-{y,C,l),Cr<0.

Correspondingly, different disturbance distribution functions (p\(p~ are intro-

duced

r=fJ\+(p+(y,C,t)lCy>0,

\ + <p-{y,C,t)],Cy<O.

For the case when there is a velocity u0 of the plane boundary, at plane y =yg

the boundary condition is (denote Sg = ßu0 = u0 l^

an, (ß/JFj exp{-[(Cv - So)
2 + C\ + C2

Z]}

Neglecting the second order of So, it can be written as

f±{y0,C,t)=(l-a)r(y0,C1,-Cy,C:,t) +

(6.11)

Substituting Eq. (6.10) into Eq. (6.11) and taking into account Eq. (6.2), one ob-

tains

(P
±{yü,C„Cy,C:,t)=(\-o)(p

:f(y{),Cx-Cy,Cz,t)+2oCxS0. (6.12)
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The basic equation (6.6) and boundary condition Eq. (6.12) are applicable for

cases when the flow varies only in the direction normal to the plane boundary and

the boundary conditions are of the Maxwellian type.

After finding q> the physical macroscopic quantities interesting us are easily

obtained, e.g., the macroscopic velocity c0 and the stress P:j

„ = — f c,/0(\ + <p)dc = ß-'ln*- \c,<pe-ddC (6.13)

Pv = mj(q -cOi)(c rc0j)f0{\+(p)dC ^^^jCCjCpe'2 dC (6.14)

With the help of the linearized Boltzmann equation Gross and Ziering [3] solved

the problem of stress flow between two plates, i.e., the Couette flow problem,

Gross and Jackson [4] solved the problem of unsteady flow caused by the instant

motion of the plane plate, i.e., the Rayleigh problem. They suggested to express

qr as

<f = al (y, t) Cx +a f (y,t)CxCy . (6.15)

Such form of the dependence on the velocity originated from Chapman-Enskog

expansion, but as the discontinuous (p relative to Cv is introduced, so

a+
0 * al,a* * a~. Substituting the function <p defined in the whole velocity space

f\+signCr) (\-signCv\
\ ^ \ + <P\ z—t-l, (6.16)

where

signCy = 1, C„ >0,signCy = ~\,Cy < 0, (6.17)

into the basic equation (6.6), and multiplying both sides of the equation on Cv

and CxCy and searching the moments separately in the upper half velocity space

and the lower half velocity space, the simultaneous equations relative to

a*,a~, a*, a," are obtained, the right hand sides are the integral terms including the
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collision term Eq. (6.7). For the hard sphere molecule the integral terms can be

evaluated. The boundary conditions after substitution of Eq. (6.15) can be trans-

formed into the boundary conditions relative to a*,a~,af, a^ . So the whole prob-

lem can be solved. In searching the solution of the linearized Boltzmann equation

the moment method (see section 6.3) has been employed. These were the early

attempts of the solution of the transitional regime.

Grad [5] and Cercignani [6] investigated the problem of further transformation

of the linearized collision operator J((p), the htegration for £ is expressed

through zero order Bessel function of the first kind Ia (Eq. (3.43)), and for the

hard sphere model the integration relative to 9 can also be accomplished. Thus

the linearized Boltzmann equation in the one-dimensional steady case is written as

where

(6.20)

| p ( ) (6.21)

In the above expressions | is the integration variable corresponding to C ,

d^ = d^ld^2d^}, Cxi; is the vector production of C and £, the integration

domain of Lx and L2 is the whole space of the molecular velocity C (or | ) .

Sone, Owwada and Aoki et al. developed efficient numerical methods of em-

ploying the above linearized Boltzmann equations (6.18)~(6.21) in solving some

half space boundary problems - the temperature jump and Knudsen layer problem

[7], the problem of evaporation and condensation [8], the problem of shear and
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thermal creep [9] and some problems of flow between two plates - the Poiseuille

flow and thermal transpiration problem [10] and the Couette flow problem [11].

The solutions of these steady boundary value problems are obtained as the stabi-

lized solutions of the initial and boundary-value problems of the unsteady equa-

tion obtained from Eq. (6.18) by adding the term dcpldt to its left hand side. The

unsteady problems are solved by the standard implicit finite difference scheme.

The key question is the calculation of the collision term. The distribution function

(or the reduced distribution function) is expanded by a set of the basis functions in

analogue with the basis functions in the finite element method. Thus, the collision

integral can be written as the matrix product of the collision integral kernel and the

values of distribution function on lattice points. The collision integral kernel is the

collision integral of the basis functions at the lattice points and thus can be evalu-

ated universally. As the computation of the collision integral is most

time-consuming, the method of computation of the collision integrals of a current

problem by using the prepared universal collision integral kernels demonstrates

the high efficiency advantage of the method.

6.3 THE MOMENT METHOD

The practice of the so called moment method is not to solve the Boltzmann equa-

tion itself but to solve its moment equation. The latter is obtained by multiplying

the Boltzmann equation by some molecular quantity Q and integrating over the

entire velocity space (i.e., the so called finding moment). For arbitrary form of Q

we have obtained the general form of the moment equation (section 2.9, Eq.

(2.183))

J^ «F-|£=A[ß]. (6.22)

The macroscopic characteristics that interest us are the average values of some

microscopic molecular quantities, i.e., the moments of the distribution functions

(see the expressbns of the macroscopic properties in section 22). For example,

the density is the zero order moment, the velocity is the first order moment, />. is
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the second order moment, p is the contraction of the second moment, Eq. (2.25),

q. is the contraction of the third moment, Eq. (2.27)), etc. Substitution of differ-

ent quantities Q into Eq. (6.22) yields the system of equations for the macro-

scopic quantities. In particular, when Q are the collision invariants m , me and

(l/2) me2, we have A[£>]= 0, and obtain the conservation equations of the mac-

roscopic quantities. When Q is certain power of c , as there is the term cQ on

the left hand side of Eq. (6.22), this causes the appearance of a moment of order

one order higher than before. When turning to the moment equation in expectation

to obtain equation for higher order moment, this term of higher order leads to even

higher order moment, and eventually to infinite equations and moments. The mo-

ment method assumes that the distribution function can be expressed as function

of certain moments (and the molecular velocity c , the space coordinate x and

time t), with specific forms of expression through the moments and c , but the

variation with the space coordinates is to be determined. The noment equation

thus obtained would have higher order of c, but for some flow cases and with

some specific treatment, it can be expressed through moments of lower orders, and

one attains closed system of equations characterizing the variation in physical

space.

In discussing the basic equations of the continuum media (section 5.2 in Chap-

ter 5) we considered the Chapman-Enskog solution of the Boltzmann equation,

this is the expansion of the distribution function into the series of terms propor-

tional to the powers of Kn number

/*"' is the Maxwellian distribution, the corresponding zero order moment equa-

tion is the Euler equation (5.2) (with tiJ = Q,g,=0), the unknown functions are

p, u0 and T. The first order distribution function of this expansion is the

Chapman-Enskog distribution function Eq. (5.8), yielding the expression of stress

and heat flux in the ordinary fluid mechanics. Substituting them into the corre-
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sponding conservation equations or the moment equations, one obtains the con-

tinuum Navier-Stokes equations (5.14), (5.15). The second order distribution

function of this expansion yields the expressions of the stress xv and heat flux

qi, different from the ordinary continuum media mechanics, and gives the Burnett

equations. They have been listed in Chapter 2 as the basic equations of the con-

tinuum media, but they are applicable to larger scope of Kn, where the Na-

vier-Stokes equations become invalid. For their nature of the expansion into the

positive powers of the Kn number, they could not yield good results when Kn

is much larger than 0.1, but they can provide results more close to the exact solu-

tions than the ordinary slip flow solutions. How deep they can allow the contin-

uum equations method to penetrate into the transitional regime and to what extent

they can provide more exact solution depends on the method of solution and the

comparison with experiments and solutions having the merits of verifying stan-

dard. The development of effective solution methods for Burnett equations is still

an issue needing continuous efforts. The thirteen moment equations of Grad Eq.

(5.2), Eq. (5.29) and Eq. (5.30) havep, ug, T, T^and q. as the basic argu-

ments and possess the character of general basic equations, but application of

them to the solution of peculiar problems didn't lead to credible results, the possi-

ble reason for this has been discussed in section 5.2 of Chapter 5.

Except those above mentioned methods leading to basic equations possessing

general meaning, individual moment methods have been developed for different

problems and boundary geometries. Aiming at the physical feathers of different

problems the expressions of the distribution functions are proposed and useful

solutions have been obtained.

Among this kind of the moment methods the early and the most famous one is

certainly the method of binomial distribution function developed by Mott-Smith

for dealing with the problem of shock wave structure [12]. The distribution func-

tion / in the shock wave transition zone is expressed as the combination of the

upstream and downstream uniform distribution functions
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f^ch(x)fl+a2{x)f2^M){x)Fl(c)+N2{x)F2(c), (6.23)

where

F{)j(ß/^)\\ß^[()2 ' ^ (6.24)

(6.25)

in which fx , f2 are the upstream and downstream equilibrium distribution

functions (see Eq. (2.196)), «,, «2 are the upstream and downstream uniform

number densities, uoi, U02 are the upstream and downstream uniform velocities,

a,(x) = A^x)/«, and a2(x)= N2(x)/n2 represent the proportions the two

known upstream and downstream distribution functions occupy at different posi-

tions of x . Obviously
N, = w,, N2=0, when

2

iV, = 0, N2=n2, when x —> °° .
The mass, mon-entum and energy across the shock wave are conserved

\ufxdc =m\uf2dc , i.e. ptum = p2M(E = j , (6.26)

^ juO2+kn2T2, (6.27)

and

i.e.

r J / ,6.28,
2 m J ( ^ 2 2m j

These are the well known Rankine-Hugonio relations. To find the distribution

function, the mass conservation is applied to some upstream point and some point

inside the shock wave to yield
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m^ufdc =m]ufdc ,

i.e.,

«,«„,=««„• (6.29)

From Eq. (6.23) and the definition of density (see Eq. (2.5)) one has

=n{x) = N,{x)+N2(x). (6.30)

And according to Eq. (6.23) and the definition of the macroscopic velocity (see

Eq. (2.8))

nu0\ufdc = N{ (x)um + N2(x)u02 . (6.31)

Thus from Eq. (6.29) one has

«oiNl{x}+ u02N2(x) = «,«„,. (6.32)

To determine three unknown functions n(x),Nl(x),N2(x), except Eq. (6.30)

and Eq. (6.32) one extra moment equation must be employed. Take Q = u1, for

the one-dimensional steady problem under discussbn, this equation is

(6.33)

Discuss at first the right hand side of this equation with the purpose to express

it through the unknown functions n, Nt, N2. The expression A[M2] is a colli-

sion term, this integral has been evaluated for Maxwellian molecules and VHS

molecules with £, = 112 (see Eq. (2.175) and Eq. (2.175)')

A[V ] = £*=-.
L J m pi

For both these molecular models one has fi = CT (see Eq. (2.93) and Eq.

(2.96)'), and with the employment of the expression of their mean free path Eq.

(2.217)', the viscosity ß can be written
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2 UT;

thus, one has

L J (6.34)

According to the definition of Txv (Eq. (2.24) and Eq. (2.25)), one has

( c2 — | \u'2 + v2 + w2 — I 2 /— — \
Tr=mn\ u = mm u \=—mn\v -it . (6.35)

When writing the last expression, the equality v'2 = w'2 has been used, for the

problem is symmetric with the* axis. Obviously, u'2 can be written

u2 = (w -M0) =« 2 -2MM0 + ifi = u2 -ul.

According to the definition

/ = \u2fdc = Nx\u
2F,dc+ N2\u

2F2dc,nu

where the first term is

exp | -ß2 \{u - M01 ) + v2 + w2 dudvdw =

N,Ä
V2

Analogously, the second term is
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N2 {u2
2 + RT2).

And nv'2 can be written as

+N2\v
1F1dc =Nfi Tx + N2RT2.nv2 = i

Substituting the expressions of ua and v1 into Eq. (6.35), one obtains

Substitution of Eq. (6.30) and Eq. (6.31) enable the above equation to be written

as

- ^ =^\{NlUm +N2uJ -#,(#, +N2)ulx-N2 (Nl+N2)ul] =
m 3 L J

--N\Ni{ua\ -"o2)2=-r^i("i-^i)—(«,., -"()2)2- (6.36)

In writing the last equality Eq.(6.32) has been employed.

Now discuss the left hand side term of Eq. (6.33). Similarly with the evaluation

of nu2 , according to the definition

MM3 = N} $ u'F.dc +N2 J uiF2dc =

yV,«(H(4 +3RTl -u\2 -3RT2) + nlum(4 + 3RT2).

With the help of Eq. (6.28) the expression ((«„, + 3Ä77, - u\2 -3RT2)) can be written

as (2/5)(u2 -u2), and the latter is independent of x , so one has

dx 5 "' ° dx
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Substituting Eq. (6.36) (through Eq. (6.34)) and Eq. (6.37) into the moment equa-

tion (6.33) yields the equation relative to .

(6.38)

where

5 (2kTl/mf

The solution of Eq. (6.38) is

( 6 ' 4 0 )

Substituting this expression of Nt(x) and that of N2(x) (obtained from Eq.

(6.32)) into Eq. (6.23), one obtains the distribution function of the entire shock

wave transition zone. The density across the shock transition zone (with the em-

ployment of Eq. (6.30) and Eq. (6.32)) is

i.e.,

Substituting Eq. (6.40) into it yields

p ( A )
n _ «| (6.41)
«, 1 + exp (ax/ A,)

The post and pre shock density ratio «2/«, can be expressed through the Ma

number in front of the shock (see for example [13]), e.g., for monatomic mole-

cules the specific heat ratio y = 5/3 , one has

4Ma2

1 + exp(ax/A,)
(6.42)
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The solution of Mott-Smith is extended by Muckenfus [14] to other inverse

power law molecular models. When the power is chosen by fitting the viscosity

law, the Mott-Smith method under relatively strong Ma number can predict

fairly well the shock structure. The result of the method is dependent on the choice

of u2 as the object of averaging in the moment method [15]. Despande and Na-

rasimha [16] pointed out that the employment of u3 should be better than the

employment of u2. However, the main problem of the Mott-Smith method is it

could not provide the correct description of the distribution function (see section

7.1).

The moment methods are mostly applied to steady one-dimensional problems,

for example the heat transfer problem between two plates [17] and the problem of

evaporation of the plane condensed phase [18], and others. Gross and others em-

ployed also the moment method in solving the Couette flow [3] and Rayleigh

problem [4] staring from the linearised Boltzmann equation. For the

two-dimensional and axi-symmetric flows it is difficult to construct distribution

function suitable for the flow field.

6.4 MODEL EQUATIOINS

The Boltzmann equation (Eq. (2.152))

causes so tremendous difficulties to the mathematical solution for the complexity

of the right hand side collision term, that many researchers proposed the employ-

ment of simplified collision term or collision model to replace it. The most famous

model equation was put forward by Bhatnagar, Gross and Krook [19] and is called

the BGK equation (also was called Krook equation). This equation has the fol-

lowing form

dJ.+ c.K+F.M.=v{fe.fh (6.44)
at or dc
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where fe = fe(c0,T) is the local equilibrium distribution or Maxwellian distribu-

tion and is the function of the density p, the flow velocity cQ and the tempera-

ture T, and they are obtained by integration of / (see Eq. (2.5), Eq. (2.8) and

Eq.(2.31))

2n-T
m

2-T
(6.45)

n=jfdc, (6.46)

cOi=-\cfdc, (6.47)

(cl-c0i)
2fdc

So the equation (6.44) is still a non-linear integral-differential equation, v is the

collision frequency, it is proportional to the density and is related to the tempera-

ture but is not dependent on the molecular velocity. Welander [20] almost simu 1-

taneously independently proposed the same model equation, so this equation

sometimes is also called Boltzmann-Krook-Welander equation (for short BKW

equation).

It is evident that BGK equation gives the correct solution f = f0 at equilib-

rium It also provides the correct collision-less and free molecular solution, for

here the collision term is irrelevant. Employing the Chapman-Enskog method to

the BGK equation yields the conservation equations having the form of Na-

vier-Stoke equations (for detail see Vincenti and Kruger [21]), unfortunately, the

transport coefficients thus obtained, i.e. the viscosity and the heat conductivity, do

not possess the correct values.

The collision integral of the Boltzmann equation is the sum of two terms : one

term involves - / ( c ) / ( c , ) , meaning the depletion of the molecules of class c
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caused by collisions, the other involves f(c*)f\c*tj, meaning the increase of the

number of molecules of this class caused by collisions.

In the model equation (6.44) the term -vf is used to replace the collision term

in the Boltzmann equation causing the depletion of the c molecules. This can have

some explanation for a peculiar but not realistic molecular model, i.e., the Max-

wallian molecules. The function / ( c ) in the second term at the right hand side

of Eq. (6.43) is independent of c,, and can be taken out of the symbol of integra-

tion, and the remaining expression

J j fxcrodQdcx (6.49)

in general is dependent on c , for cr=c-c{, but in the specific case of Maxwell

molecules it is independent of c , and is the collision frequency v '. So this term

of the BGK equation gained some kind of proof for the Maxwell molecules.

Replacement of the first term on the right hand side of the Boltzmann equation

(6.43) by vfe does not have such a kind of proof. We only can understand it as

an assumption, i.e., the number of molecules scattered out of the c class in colli-

sions is assumed to be equal to the number of molecules scattered out of the c

class by the molecules in local equilibrium with a collision frequency independent

of the molecular velocity.

Employing the Chapman-Enskog method to the BGK equation yields the con-

servation equations in the form of Navier-Stoke equations with the transport coef-

ficients ([21], p.384, Eq. (3.13))

nkT
, (6.50)

v

m I v

The expression of the collision frequency v is Eq. (2.206), when aTcr is independent

1 '"

n •
of c , it can be written as the product of Eq. (6.49) and — | fdc = 1.
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At the same time for the Boltzmann equation Chapman-Enskog method yields the

following values of \i and K ([22],p.226, p.247)

H =0.499 pcA, (6.52)

A>——(0.499peA). (6.53)
4 m

For ensuring a reasonable expression for jj. one can adopt an expedient meas-

ure, i.e., instead of v-clX the following expression is used for the collision

frequency

v=(«/3.992)(c/A). (6.54)

Thus the viscosity coefficient obtained from the BGK equation would have the

correct expression equal to Eq. (6.52). This is beneficial for solving the flow

problem with momentum exchange as the dominant effect, for it can lead to cor-

rect reference parameters. But for flow problems with dominant energy exchanges

to ensure a reasonable expression for K the following expression for the collision

frequency should be adopted

v=(7r/5.988)(-/A). (6.55)

Thus the conductivity coefficient KgCK (Eq. (6.51)) obtained from the BGK

equation would have the correct expression Eq. (6.53). Unfortunately, it is impos-

sible to ensure jx and K to have the correct expressions simultaneously. From

Eq. (6.50) and Eq. (6.51) it is seen, that for the BGK model the Prandtl number

PrBGK - CptJ-BGK IKBGK = 1 does n o t have the correct value of 2/3. This is already an

indication of the limitation of this expedient measure, it is powerless in solving

problems involving momentum and energy exchanges of equal importance.

The BGK model equation is widely used in the transitional regime for its sim-

plicity. For problems of small disturbance deviated not far from the equilibrium,

the shortcoming of the approximation of the BGK equation becomes not so re-

markable. For the Maxwellian molecules it has been proved that the linear form of

the BGK equation is the first term of a model-series approximating the Boltzmann



6.4 MODEL EQUATIOINS 251

equation with arbitrary accuracy. There is a number of small disturbance problems

with practical meaning that are solved using the BGK model but not the Boltz-

mann equation. Some methods of statistical models for constructing the collision

term has been put forward which can provide with correct Prandtl number (see

e.g. [24]). For the system of Boltzmann equations of multi-component gas the

right hand sides involve the self-collision operator for molecules of one compo-

nent and cross-collision operators for molecules from various components. For the

self-collision operator the BGK model is applicable, for the cross-collision opera-

tors Boley and Yip [25] put forward the theory of obtaining the model equation

basing on the eigenfunction theory and obtained the system of model equations for

multi-component gas. There have been many works devoted to the research and

the application of the model equations on solving small disturbance problems of

simple geometry.

The BGK equation after all is an approximation using a simplified term to re-

place the exact term basing on solid physical reality. Its applicability scope must

be tested and verified by the experiments or exact computations. The DSMC

method has stood the strict test of the experiment (see next Chapter) and has the

merit of verified solution to test various approximation models. We simulated the

problem of the gas flow caused by the sudden wall temperature change and the

Rayleigh problem using the DSMC method with the employment of Maxwellian

molecular model [26, 27] and compared the results with the exact numerical re-

sults of solution of the BGK equation [28]. Fig.6.1 shows this comparison. From

this figure it is seen that near equilibrium (in 1-2 collision times) the BGK equa-

tion yields correct results (in agreement with the DSMC result), but when far from

equilibrium (after 5 or more collision times from the starting of the flow) the BGK

model equation is inexact (deviated from the correct DSMC simulation result).

The idea of the BGK equation considering the transition of a gas from its pre-

sent state to equilibrium as a simple relaxation process is applied to the solution of

the Euler equation and the Navier-Stokes equations. In section 5.2 we have seen

that the zero order approximation of the Chapman-Enskog expansion in the solu-

tion of the Boltzmann equation gives the Euler equation, the first order approxi-

mation gives the Navier-Stokes equations. Employment of the Chapman-Enskog
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DSMC t/tc - 2.15, 4.3, 8.6, 17.21, 43.0
BGKt28! t/to - 1.0 , 2.0, 4.0, 8.0 , 20.0

x stretched 1.91 times

Fig. 6.1 Transients of temperature in the sudden temperature change problem. Comparison

of DSMC simulation [26] and BGK calculation [28]. In BGK the expedience of modifying

collision frequency is made

method to the BGK equation yields the same result. This leads Xu et al. to put

forward the gas kinetic scheme for solving the fluid mechanics equations [29].

For the two-dimensional flows the BGK equation in the x direction can be

written as

f | u?
dt dx

(6.56)

where for convenience the symbol is changed into g to denote the equilibrium

state the distribution function / approaches, r is the reciprocal of the collision

frequency v or the collision time of the particles. The equilibrium Maxwell dis-

tribution, when the thermal motion in the third dimension is considered as the in-

ternal energy, can be written as

= J£\ 2 exP[-i32((tt-Mo)2
+(v-v())

2
+^)],

where E, is the variable of internal degree of freedom and includes the internal

energy of the gas and the thermal motion in the z direction. The total number of

freedom of t, is N =(5-3y)/(y-l) + l , (5-3y)/(y-l) is the number of free-

dom of the internal energy (see Eq. (4.40)).
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The BGK kinetic scheme starts from the solution of the BGK equation (6.56) at

xj+\ a °f t n e 8r'd boundary surface

{ ^ \ ( \ \ ) [ ' ' ) h l i X (6.57)

where x' = xM/2-it(t-t') is the trajectory of the motion of the particle, and f0

is the initial distribution function at the star of every time step ( t = 0). For obtain-

ing / the unknown functions g and fa in Eq. (6.57) should be determined.

For the sake of simplifying the notation in the following * / + l / 2 = 0 is used to

represent the position of x;+1, 2.

In the early BGK scheme f0 is supposed to be

\g'(\ + a'x),x<0

\g{\ + ax),x>Q
<- V ' (6.58)

g' and gr are the Maxwell distributions on the left hand side and the right hand

side of the cell boundary. The slopes a1 and a' are obtained from the space

derivatives of the Maxwell distribution, the latter has the unique relation of corre-

spondence with the slopes of the conservation variables. The basic assumption

here is, even when there is discontinuity on the cell boundary, the gas on both

sides of the discontinuity is assumed to be in equilibrium states. Such an assump-

tion is suitable for the case when the cell size Ax is large in comparison with the

thickness of the shock or the case of Euler equation. For the case when Ax is

small and the shock structure can be distinguished, i.e., when deal with the Na-

vier-Stokes equations, the initial distribution fit should present the deviation

from the equilibrium Maxwell distribution and describe the interior structure of

the shock transition zone. So in the recent gas kinetic BGK scheme method aiming

at the application on equation solution the initial distribution function / 0 is as-

sumed to be

fa ~
a'X-T(CI'U + A')~^,x <0

gr[\+a'x-r(aru + Ar)\x>0
(6.59)
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The additional terms -r(du+ A')g', -v{aru+ Ar)gr are the deviations of the

non-equilibrium state obtained from the Chapman-Enskog expansion of the BGK

equation from the Maxwell distribution.

The equilibrium state g to which the initial distribution fQ approaches in

the recent version [30] is supposed to have two slopes at the two sides of the cell

boundary and have time derivative

(6.60)

where H(x) is the Heaviside function defined as

0,x<0

\,x>0

and g0 is the local Maxwell distribution at x = 0 .

It is noted, fB is discontinuous at the boundary surface x = 0, on each side of

the boundary it is the non-equilibrium distribution function in local cell, g is

continuous at x = 0 , but has different slopes at x<0 and at x>0 .

a',a',A1,Ä, a1, a' and A characterize the deviations from the equilibrium

Maxwell state in space and time. Their determination see reference [30].

Substituting thus obtained f0 and g into Eq. (6.57) yields the distribution

function f(xJ+l/2,t ^i,v^) of the gas at the cell boundary. The fluxes ofthemass,

momentum and energy across the cell boundary can be obtained by searching the

moments relative to / . The technical details in the application of the gas kinetic

BGK scheme can not be explained here thoroughly (see [29, 30]). Here only con-

fine to noting that as the distribution function is introduced in the method, at the

wall the reflection model of the molecule surface interaction can be applied to

obtain the changes of the mass, momentum and energy of the molecules on the

boundary (suitable for the entire transitional regime) This under small Kn

number corresponds to the introduction of the slip boundary condition. Besides,

after ensuring the correct viscosity coefficient \i through the modification of the

computation result of the heat flux the method can guarantee also the correct con-

ductivity coefficient K , so the correct Pr number is assured.
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The method has been applied to the Couette flow with temperature gradient, the

shock wave structure, the two-dimensional Mach=3 step flow, the interaction of

the laminar boundary layer with shock wave etc. (see reference [30]. As the effi-

ciency of the gas kinetic scheme is higher than that of the DSMC method, valida-

tion of the accuracy of the scheme by the DSMC or experimental results in its

applications to the near continuum and transitional regime is an interesting issue

having practical meaning.

Li and Zhang attempted to find a gas kinetic unified algorithm to solve the

transitional flow bridging the free molecular flow to the continuum flow [31]. The

starting point is that the basic equation of the kinetic theory is replaced by the

model equation, the latter adopted the so called S-model equation [32] developed

by Shakhov from the BGK model. The authors introduced the discrete velocity

method, adapted the Gause-Hermite method of quadrature, applied and developed

the method of quadrature of Hua and Wang approximating multiple integral by

single sums, and employed the equally spaced three-point composite New-

ton-Cotes quadrature formula, and implemented the solution of the model equa-

tion successfully. The method was applied to one-dimensional shock-tube prob-

lems, the flows past two-dimensional circular cylinder, and the three-dimensional

flows around sphere and spacecraft with various Knudsen numbers. In the case

where the experimental data are available (the drags of the cylinder and sphere)

the agreement with experiment is fairly good. It is desirable to have more exact

quantitative comparison. The transplantation of the method to the solution of the

Boltzmann equation is of value.

6.5 THE FINITE DIFFERENCE METHOD

The most natural numerical method in solving the Boltzmann equation is analo-

gous to the finite difference method in the computational fluid dynamics (CFD).

The velocity distribution function is the unique dependent variable, but in general

(three-dimensional and unsteady flow) it is a function of seven independent argu-

ments, and it is a difficult task to solve it by the finite difference method. If allo-

cate in each dimension 100 cells, then for the 3-D unsteady flow 1014 cells is



256 6 TRANSITIONAL REGIME

required, and in addition the velocity space is infinite. The upper bound of the

finite velocity should be chosen reasonably to make the problem manageable. This

leads to even larger difficulty to the hypersonic flow, for in this case there are

some molecules having velocity much larger than that of most molecules, d-

though they constitute only a small portion of all the molecules, but have strong

influence on the whole macroscopic motion.

Except the above difficulty the peculiar trouble in solving the Boltzmann equa-

tion by CFD method is of course in the computation of the collision term. The

computation of the collision integral requires for each phase point the summation

over all points of the other velocity space, requires finding the contribution of the

reverse collision for each collision and each term should be summed over all im-

pact parameters of the collision. So the methods of the solution of the Boltzmann

equation are mainly embodied in the treatment of the computation of the collision

integral.

Nordsieck and Hicks [33] and Yen et al. [34] suggested a method of

Monte-Carlo quadrature of the collision term of the Boltzmann equation. Re-

placement of the direct numerical quadrature by this Monte-Carlo quadrature re-

duced the computation time by a factor of 10"4. The infinite velocity space was

firstly replaced by the finite velocity domain R, which was taken large enough to

involve all except 0.1% molecules. The Monte-Carlo quadrature is to replace the

integration over the domain R by the product of the mean of the values of the

under-integral expression at N randomly chosen points and the volume of R.

The error of this replacement is proportional to AT"2. The under-integral ex-

pression is the function of 8 arguments, i.e., c*, c and two impact parameters.

For the fluid dynamics terms on the left hand side of the equation the ordinary

finite difference method was employed. Here the usual problems of dependence

on the grid and the computational stability would be encountered. Nordsieck et al.

by using this method solved some one-dimensional problems including the struc-

ture of shock wave problem etc., satisfactory results were obtained

Tcheremissine, Aristov and others developed the algorithm to use the finite

difference method for solving the Boltzmann equation (for relatively recent refer-

ences see [36] and works cited there). In the computation of the collision integral

the Monte-Carlo quadrature method is still used, but some improvements are in-
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troduced. The symmetry of the binary collision is utilized to remarkably reduce

the arithmetic amount and a special projection technique is introduced for the cal-

culation of the collision integral to ensure the conservation of mass, momentum

and energy. These accelerated the solution process and enable to use the method to

solve some unsteady, 2-D and 3-D problems.

6.6 DISCRETE ORDINATE METHOD

In section 2.11 of Chapter 2 on the example of Couette flow we studied in detail

the 8 velocity gas model introduced by Broadwell [37], in which the velocities of

molecules can assume only 8 magnitudes cl,c2,---,ci (see Fig.2.9). Such an ap-

proach of using finite number of discrete velocities to replace the entire velocity

space is called the discrete ordinate or discrete velocity method. In an 8 velocity

gas the number density of the molecules having a certain velocity can be counted,

and corresponding to 8 velocities there are 8 number densities «,,n2,---,«g. The

velocity distribution function of the gas now is degenerated into the set of 8 num-

ber densities. For the molecules of class 1 Boltzmann equation is degenerated into

(seeEq. (2.141))

dn, dn, dn. , , ,
~T~q~^+q~r=W "2«3-«.«4)/«• (6.61)
at ax dy

Analogously, the equations for molecules of classes 2, 3, and 4 can be written

dn-, dn-, d n , „ _ , > /
—- + q—L + q~7-=26(ntn4-n2n})/n, (6.62)
at ax ay

dn, dn, dn, „ - , w

•3J--9-Ti-^TJ-=2ö(n1n4-«2«3)/»5 (6.63)
dt dx dy

dn, dn. dn, „ , N;

-r + q-r-q-r=^(n2ni-n{nA)ln, (6.64)
at Ox ay

where q is the magnitude of the projection of velocity on the rectangular coor-

dinate system, 6 is a magnitude proportional to the collision frequency and
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equals to 0.7v (see Eq. (2.142)), n is the number density of the gas, for the

case of low speed to be discussed here n~ const. In deriving the above equations

two-dimensional flow is assumed: the flow characteristics are not dependent on

z, hence the symmetry condition holds

«,=«5, n2 = n6, «,=«7, «4 = n8. (6.65)

Now we continue to examine with the help of the 8 velocity gas the problem of

shear flow between two plates or the Couette flow, i.e., two plates separated by a

distance d moving in the x , z plane in opposite directions, the velocity in the

y direction is 0:

Thus one has

«,/«+ «5/M+ r^l n + n6/n = «3 /n + n7/n+ n4 \n +ng/n = —.

From the symmetry condition Eq. (6.65) we have

nj n+ rijln=n1/n+n4/n=—. (6.66)

This condition makes the equations (6.62) and (6.64) out of the system

(6.61)~(6.64) superfluous, and Eq. (6.61) and Eq. (6.63) can be written as

dn, dn, 6, .

^ + < ? ä T i ( - " 1 + " 3 ) ' (6-67)

3«, dn, 6 , .

äf-'äT-T^1^ (6-68)

For the steady flow dldt = 0 , by introducing the dimensionless quantities

, a=dd/2q,

the equations (6.67) and (6.68) can be written as

-± = a(-nl+n2), (6.69)
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dn,

The boundary conditions for the Couette flow problem are

(6.70)

U - [ / ,U
2 »

, = - ( 7
, 4 2 »

The mean velocity in the x direction leaving the upper plate at r\ = 112 and the

mean velocity in the x direction leaving the lower plate at 77 = -1/2 are

-4)-

The solution of equations (6.69) and (6.70) satisfying Eq. (6.71) is

\\ a Uw 1 Uw

(a + 1) q 2(a + l) q

(6.71)

(6.72)

3/ o (6.73)

The velocity of the fluid in the direction of x is obtained from the above density

solution

(6.74)

The shear stress is
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+ni-n4]/n =

2(a+lp~l" • (6-75>

Expressing rtJ as fi(dU/dy), from Eq. (6.74) the expression of ß can be ob-

tained

H = pqd/2a=pq26 .

Substituting 6- 0.70c IX and q = cl"/3 yields

M=0.48pFA. (6.76)

Although this value is quite close to the viscosity expression Eq. (2.222) of the

Chapman-Enskog approximation for the hard sphere model, but if examine the

value of T,y in the entire transitional regime (when Kn=Xld is between 0.01

and 100) then the result of the discrete ordinate method of the 8 velocity approxi-

mation is not so good. This is undoubtedly the result of adopting a too simple dis-

crete velocity model to replace the continuous velocity space.

Broadwell in [37] investigated also the Rayleigh problem using the 8 velocity

model. He also tested the 6 velocity model (6 velocities with equal speed value

and pointed into the positive and negative directions of the x,y,z axes) applying

it to the study of shock wave structure [38]. Gatignol utilized the coplanar 6 veloc-

ity model [39] (pointed into the apexes of a right hexagon) to investigate the shock

wave structure and the Couette flow, and with help of the coplanar 4 velocity

model [40] discussed the boundary conditions and the H theorem in the discrete

velocity model. Cabannes [41 ] introduced the 14 velocity model (combined from

the Broadwell 8 velocity and 6 velocity models) and investigated the Couette flow

problem. A result of universal meaning is that when 4 velocities in the flow plane

is eliminated from the 14 velocities the result on the contrary is improved. The

reason for this is that the molecules moving along the direction of the surface do
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not collide with the surface, are isolated from the surface, the existence of such

parasitic molecules causes the errors at the wall. Gatignol [42] and Cabannes [43]

introduced in general form the discrete velocity model, utilizing the set of

ct,c2,---,cp to replace the entire velocity space and n. to represent the number

density in time t at position r having velocity c., and write the discrete

Boltzmann equation (compare Eqs. (6.61)~(6.64))

ot or ^i ( U )

where A" is the transition probability

no summation convention is implied in Eq. (6.78)

£ A? =1. valid for any / , j .

(6.77)

(6.78)

( 6 7 9 )

p~ is the probability the pair of molecules with velocities c., c] before collision

changes into pair of molecules with velocities ct, c] after collision. An often

used model is the one in which the ends of the velocity vectors are the uniformly

distributed grid points in the phase space [44, 45]. Fig 6.2 shows a peculiar exam-

ple of such model in planar case with the values of velocity components equal to

semi -integers

(6.80)v=| « + - |Av,-5 <«<4,

The semi -integer points are chosen because the molecules with velocities parallel

with the body surface would cause errors near the wall as indicated in reference
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Fig. 6.2 The model with the ends of the velocity vectors as uniformly distributed grid

points is shown in planar case. In the figure are shown c( (1.5,2.5) and its certain collision

partner c (-2.5,0.5) and the possible velocity pairs ck, c, after collision (shown by

small circles, altogether 4 of them)

[41]. For such a model Eq. (6.77) is written for each c,(u,v) (in Fig 6.2 the case

c =(1.5 A;,2.5Ax) is shown). The partner cj of molecule c. goes through the

whole p velocity set (in the present example p =10x10, the figure shows the

case of Cj = (-2.5Ax,0.5Ax)). The conservation of momentum and energy yields

the invariance of the value of the relative velocity ( c, - c ; , in the present example

= V20~Av) and the invariance of the velocity of the mass center. So all the after

collision velocity pairs lay on the circle with center at the end of the velocity vec-

tor of the mass center and diameter of the value of the relative velocity. In the fig-

ure the velocity pairs from set c^c2 ,---,cp satisfying such condition are shown by

the small circles connected by dashed lines (there are 4 pairs in the present exam-

ple). For hard sphere model the appearance of all after collision pairs are of equal

probability. The probability p" in Eq. (6.77) is easily calculated

pf. = ifNy , valid for any k, I, (6.81)

where /V, • is the number of all possible ct, c; pairs after collision resulted

from the pre-collision c., c; pairs. According to the discussion about the reverse
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collision in Chapter 2, the collision (ck,c,—>cj,cJ) is the reverse collision of

{cj,cj —>ct,C!). So we have p" = p']u = pfk, this result has been employed in writ-

ing Eq. (6.77).

The above expounding of the discrete velocity model and the discrete Bolt-

zamnn equation is only a kind of physical heuristic elucidation, the relationship of

them with the Boltzmann equation still requires strict mathematical proof. In 1994

Bobylev et al. [46] proved that the uniform grid discrete velocity model [44, 45,

47] converges to the Botzmann equation and gave an estimate of the error of the

quadrature by the discrete velocity method. This is an important development of

the discrete velocity method. From the heuristic explanation of the method for the

planar case where the ends of the velocity-vector pairs are situated on a circle and

at the same time are on the nodal points of a integer grid, it is understandable why

this mathematical proof is closely relevant to a congruence problem in number

theory related with the presentation of a integer number by the sum of three

squires. An assertion in number theory states: any number t which is not con-

gruent to 7 relative to 8 (t ̂  7(mod8)) can be represented as the sum of three

squires / =p2 + q2 +r2, and the number of ways of presentation grows suffi-

ciently fast with t.

Gatignol [48] discussed the boundary condition problem of the discrete velocity

model in detail. Despite the above progresses on the whole the problems solved by

the discrete velocity method are mainly of simple geometry and molecular models.

6.7 INTEGRAL METHODS

The Boltzmann equation (2.152) can be written in the following form

£-=Jx(t,r,c)-ß2(t,r,c), (6.82)

at

where

Wff gadQ.dc,, (6.83)
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J2=\ \fcrodQdcx. (6.84)

The differentiation is carried along a certain molecular trajectory. Equation

(6.82) can be considered as a ordinary differential equation relative to /

^-+fJ2(t,f)=J]{t,f). (6.85)
at

Suppose the / in Jl and J2 of Eq. (6.85) is known, the formal solution

of the first order linear ordinary differential equation can be written

f(t,r,c)=f(to,r-c(t-to),c)x

expj-J J2(s,r-c(t-s),c)ds l+j J, (r,r-c(t -T),C)X
[ /„ J u,

f / "I
exp j-J J2(s,r-c(t -s),c^ds \dx .

I r J (6.86)

The right hand side of Eq. (6.86) includes unknown function / and is a inte-

gral equation relative to / . This is the Boltzmann equation in the integral form.

Vallander [49] presented the direct physical derivation of the integral equation

(6.86) without citing on the Boltzmann equation, he initiated the method of solv-

ing the rarefied gas dynamics problems basing on the integral form of the basic

equation, i.e., the htegral method [50]. The most convenient approach of search-

ing solution of the integral equation is of course the method of iteration. The itera-

tion method of the integral equation is utilized to prove the existence theorem of

the solution of the Boltzmann equation.

6.8 DIRECT SIMULATION METHODS

These are the methods different from those of numerical solution of the Boltz-

mann equation but based directly on the simulation of the physics of the flow.
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They were born with the appearance of the electronic computers and are fully de-

veloped with the enhancement of the speed and the capacity of the computers.

Direct simulation methods distinguish deterministic simulation methods and

probabilistic simulation methods. Both categories of methods trace the motion of

enormous number of molecules, their encounter with the boundaries, the collisions

between themselves, the exchange of internal energies during the collisions and

chemical reactions, etc. The simulation should ensure that the processes traced in

the computer are able to reproduce the processes in the real flows. In the computer

a time (clock) is introduced synchronously with the physical time in the flows.

The positions, velocities and the internal energies of the molecules are recorded,

they change due to the motion of the molecules, their interaction with the wall

surfaces and the collisions between themselves. Obviously such simulation calcu-

lation is an unsteady process. The steady process is obtained as the stabilized state

of the unsteady process.

The deterministic direct simulation method is the most early suggested physical

simulation method put forward by Alder and Wainwright [51] in 1957, and is

called the molecular dynamics (MD) method. In this method the probabilistic

method is employed only when distribute the initial position and velocities, and

when compute the molecular motion, the interaction of molecules with the

boundaries and their collisions between themselves, the deterministic method is

used without exception. For example, when judge the occurrence of a certain col-

lision, the overlap of the collision cross sections of two mo lecules at the same time

is considered and the impact parameters of the collision are provided by the mu-

tual configuration of the molecules, and the velocities after the collision are de-

termined. Such a simulation method aims at the full reproduction of the physical

processes, so the size of the molecules, the number density of the molecules and

the flow geometry are to be simulated. Thus the number of simulated molecules in

a certain simulation region should keep entirely identical with actual situation of

the physical flow.

Such a requirement is more apt to be implemented for dense gas than for di-

lute gas. This point can be explained through the consideration of the number of

molecules in a cube with side of one mean free path
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N,A=nXl. (6.87)

As A is inversely proportional to the number density n of the molecules, so

Nx is inversely proportional to n2, with the help of Eq. (2.220) Nx can be

written

= «A3=-
2-Jl{nd2) n2

If introduce the number density «0 = 2.687xlO25rn~3 under the standard state

(p0 = 0.101325MPa, To = 273A:), the above equation can be written

For certain definite molecule rf is fixed, the expression before (no/ri)2 is a
-10constant, if take a typical value 6? = 4x10 m (the VHS model gives

</ = 4.17xlO~l()7w for nitrogen and d = 4.07x10~10/n for oxygen at 273A: ), the

required number of molecules is written

A =3856 -2- . (6.88)

Thus, if study a certain problem involving N2, C^or gas of alike size under stan-

dard density using the MD method, around 3856 molecules should be allocated in

a cube of mean free path, which will be difficult for a three-dimensional problem

with a space scope of many mean free paths. But if study the same problem under

a density 100 times higher than the standard state, only less than half (0.39) a

molecule is needed to be allocated in a volume of A3, or in a cube of side of 10A

allocate around 386 molecules. This is already a relatively easy task. Thus, the

molecular dynamics method is particularly suited for the simulation of dense gas

or liquid but not for simulating the dilute gas. At the same time the Boltzmann

equation is appropriate for the dilute gas where binary collision prevails but not

for the dense gas where some modifications are needed, e.g., the Enskog put for-
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ward the Enskog equation to take into account the influence of the dense gas. The

MD method supplement an additional computational means at the particle level in

the domain of dense gas and at the same time is a deterministic method, so it is

readily accepted by people working in this field.

The direct simulation Monte-Carlo (DSMC) method was put forward by G. A.

Bird and was first applied to the simulation of the relaxation in the uniform gas

[52] and the shock wave structure [53] problems, and then was developed to the

application in simulating two-dimensional, three-dimensional and problems with

complex geometry, including cases of flows with complex physic-chemical proc-

esses (see the monograph of Bird published in 1976 [54] and the new extended

edition 1994 [55]). The DSMC method as the MD method traces in the computer

the motion, the collisions and the change of internal energies etc. of enormous

number molecules, but its specific feature is the employment of the probability

processes. Not only the allocation of the initial positions and states of the mole-

cules, but also the judgment of the occurrence and the outcomes of the collisions

(including the change of the velocities and the internal energies of molecules), are

determined by the test (generation and transformation) of random functions. This

is just the origination of the name of Monte-Carlo method2. The DSMC method

traces the binary collisions in gas, and we see in the discussion at beginning of

section 2.3 that the binary collisions are prevailing over the three-body collisions

only for dilute gas. So the prerequisite of the probabilistic simulation of collisions

is the assumption of the dilute gas. This is entirely different from the MD method

suitable for simulation of dense gas. And it is not like the deterministic MD

method in which the equality of the number of simulated molecules in the simula-

tion region and the number of molecules in the actual flow is required, but rela-

tively few simulation molecules are used to represent the enormous number of real

molecules. This is another difference between the DSMC method and the MD

2 Monte-Carlo - a city in Monaco dukedom, the world famous gambling city. The
Monte-Carlo method is so called because the implementation of its process depends on
the generation and transformation of the uniform random number as the outcome in the
turntable gambling depends on where the arrow stops. Von Neumann and Ulam put for-
ward this method when studying the reactor in 1949. The method is also called method of
statistical test.
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method. In the early stage of the method the product of the number density and the

collision cross section is kept identical for the simulated molecules and in the real

flow (so the mean free path similarity is gained) to ensure the similarity law of

Kn number. This led to very huge molecular size but did not have any essential

influence on the simulation. The present approach is to fix the number of actual

molecules a simulated molecule represents and take this into account when calcu-

late the collision number and the macroscopic quantities. The key point of the

DSMC method is also in the decoupling of the molecular motion and collision in a

time stepAf. Each molecule moves a distance according to its velocity and At

(taking into account the interaction with the boundary and the motion after reflec-

tion) and then calculate the representative collisions corresponding to this time

interval At .The foundation of algorithm of choosing the representative collisions

to ensure the identity of the motion and collisions in the simulation and in the real

flow is the kinetic theory of gases. In fact the assumption of molecular chaos and

dilute gas is the prerequisite for both the Boltzmann equation and the DSMC

method. And Bird proved that following the procedures of the DSMC method the

Boltzmann equation can be derived [56]. Wagner et al. proved that the DSMC

method converges to the Boltzmann equation [57, 58].

The test molecule Monte-Carlo method put forward by Haviland and Levin [59]

was one of the probabilistic simulation methods developed the earliest. The

Monte-Carlo method developed by Kogan in the book [60] is also a test molecule

method. This kind of method requires the initial estimate of the distribution func-

tion over the grid of the flow field and the allocation of the so called target mole-

cules. Then the trajectories of numerous so called test molecules are calculated,

their collisions with the target molecules are considered and the new distribution

of the target molecules is established basing on the trajectories of the test mole-

cules. Iterate such processes until convergence is reached. This method was lim-

ited to the one dimensional steady flow owing to the necessity of starting the itera-

tion from the supposed known initial distribution and the proportionality of the

computation time to the number of trajectories of the test molecules.

Nanbu developed a version of DSMC method directly derived from the Boltz-

mann equation [61], the main feature of it is that only one of the two molecules

involved in each collision changes its velocity, this is consistent with the fact that
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the dependent variable of the Boltzmann equation is the single molecule distribu-

tion function. Thus, the momentum and energy conservation in each collision is

not satisfied. However, the Boltzmann equation does not require such conserva-

tion but requires the overall conservation of the physical space quantities, the

momentum and the energy, and this is satisfied in the simulation. The problem is:

when the molecular momentum and energy is not exactly conserved but is only

conserved in the average sense, the random walk is brought about, that is, the de-

viation from the mean value grows with the squire root of time. This must be

taken into account when dealing with small disturbance or low speed problems.

Babovsky gave the strict proof of the convergence of the method of Nanbu to the

Boltzmann equation [62].
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