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Abstract A meshfree projection method for compressible as well as incompressible
flows and the coupling of two phase flows with high density and viscosity ratios is
presented. The Navier-Stokes equations are considered as the basic mathematical
model and are solved by the implicit projection method. The implicit projection
method yields the linear second order partial differential equations. These equations
are solved by the weighted least squares method and are compared with the exact
solutions. A one dimensional shock tube problem is exhibited for compressible flows.
Finally, two phase incompressible and quasi compressible flows are used to simulate
a two phase cavity filling problem.

1 Introduction

The Finite Pointset Method (FPM) is a meshfree method to solve partial dif-
ferential equations. The computational domain is represented by a finite num-
ber of particles (pointset), also referred to as numerical points. These points
can be arbitrarily distributed, however they have to provide a neighborhood
relationship governed by the smoothing length, i.e. each point needs to find
sufficiently many neighbor points within a ball of certain radius. Considering
the equation of fluid dynamics, the numerical points move with fluid velocity
and carry all information which completely describes the flow problem con-
cerned. Of course, this is a fully Lagrangian method being appropriate for flow
simulations with complicated as well as rapidly changing geometry [KTU00],
involving free surfaces [TK202, TK03] or phase boundaries [HJKT03].

The classical meshfree Lagrangian method to handle problems in fluid dy-
namics is the Smoothed Particle Hydrodynamics (SPH). SPH was initially
developed to study phenomena in astrophysics [GM97, 15]. Later, it was ex-
tended to flow cases even on earth [CR99, 16, Mor00, MFZ97]. Unfortunately,
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SPH has poor approximation properties, especially of the second order deriva-
tives, required to model the Navier-Stokes equations. Moreover, it is difficult
to incorporate boundary conditions of certain types. In SPH, incompressible
flows are approximated by using the compressible approach together with a
very stiff equation of state.

The FPM is based on least squares approximations, where the higher order
derivatives can be approximated very accurately and the boundary conditions
can be treated in a classical sense [Ku99]. Several computations of flow prob-
lems using the method of least squares or moving least squares are reported
by different authors, see [Dil96, Ku99, Ku02, TK01, TK102, TK202, TK03,
TM03, Tiw00] and other references therein.

The numerical scheme for incompressible and slightly compressible flow
phenomena, presented in this article, is based on the classical projection idea
of Chorin [Cho68, TK102]. Due to that, the solutions of Poisson as well as
Helmholtz differential equations, in particular, form a central task of FPM.
These equations can be solved directly in the given meshfree structure with
Dirichlet, Neumann or Cauchy boundary conditions in a very accurate way
[TK01]. Also, see section 3.1 and 3.2. Moreover, free surfaces can be incorpo-
rated very efficiently [TK202].

For some industrial applications, such as simulations of car tank refueling,
several fluid phases like fuel, air and foam might be involved. Not all phases
can be assumed to be incompressible, as for instance the air inside of the tank
might be compressed during the filling process. This is a rather slow compres-
sion, with the Mach number tending to zero. However, the compression plays a
big role as it partially governs the filling process. Thus, we would like to incor-
porate compressibility effects into the classical re-projection idea and finally
come up with an implicit scheme for compressible as well as incompressible
flows.

Therefore, we are going to present an idea to simulate low Mach number
and incompressible flows with exactly the same procedure, i.e. the incom-
pressible case turns out to be a special case of the compressible regime. We
consider the Navier-Stokes equations as the mathematical model. We solve
these equations by the projection method implicitly. The implicit scheme re-
sults in linear second order partial differential equations (Poisson, Helmholtz).
We solve them using the constraint least squares method suggested in [TK01],
see also section 4.

Most of the methods for solving multi phase flows are based on meshgrid
techniques [BKZ92, GW01, HW65, HN81, KP97], where additional compu-
tational effort has to be put in order to model the dynamics of interphase
boundaries. The advantage of using the particle method is that phases can
be distinguished by simply assigning flags to the fluid particles which identify
their proper phase. The phase-flags are carried in the same fashion as all other
physical data.

Since the particles move with fluid velocity, they may scatter or accumu-
late together. If they scatter and create holes in the computational domain,
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singularities may arise. Hence, holes have to be detected and new particles
have to be added. Similarly, any two particles being too close to each other,
have to be replaced by a single one.

In this paper we have excluded surface tension effects. The CSF model
[BKZ92] can easily be extended by using the approach proposed in [Mor00].
The work is in progress.

We have obtained results from convergence studies for general second order
linear partial differential equations. If the coefficients are constant, the scheme
has second order convergence. If the coefficients are discontinuous, which occur
for solving multi phase flows, the proposed scheme is of first order convergence.
The implicit projection method is tested for compressible flows by solving a
1D shock tube problem and the results are compared with the exact solutions.
Finally, we present a two phase flow case for cavity filling, where the air is
considered to be compressible.

The paper is organized as follows. In section 2, we introduce the mathe-
matical model and the numerical scheme. In section 3, we present the FPM
for solving general elliptic partial differential equations. The numerical results
are presented in section 4.

2 Governing Equations

We consider two immiscible fluids, for example, liquid and gas. We distin-
guish the liquid and gas particles by assigning appropriate flags on them. We
assume that the viscosity μ and the density ρ jump are discontinuous in the
phase boundary. These discontinuities can cause numerical instabilities around
the interfaces. To avoid them, in every time step we consider the smoothed
densities and viscosities on and around the interface. This means for the dis-
cretization of the momentum equations, we consider the smooth density and
viscosity and then reassign these values to the original (non smoothed) ones.
The interface region can be detected by checking the flags of particles in the
neighborhood. We update the smoothed density ρ̃ and the smoothed viscosity
μ̃ in each time step at each particle position x near the interface by using the
Shepard interpolation

ρ̃(x) =

∑m
i=1 wiρi∑m
i=1 wi

, μ̃(x) =

∑m
i=1 wiμi∑m
i=1 wi

, (2.1)

where m is the total number of neighbor particles related to x (i.e. all numer-
ical points being within a circle of radius h around x, h is called smoothing
length). The neighbor particles in the interface region are taken from the liq-
uid as well as from the gas phases. Far from the interface we have ρ̃ = ρ and
μ̃ = μ. We consider a truncated Gaussian as weight function, in general this
can be any compactly supported smooth function.
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2.1 Navier–Stokes Equations

Let Ω be an open bounded domain in R
d (d = 1, 2, 3) with boundary Γ . Let

v, T and p be the velocity, temperature and pressure fields representing the
state variables. The compressible Navier-Stokes equations in the Lagrangian
form can be written as

Dρ

Dt
= −ρ∇ · v (2.2)

ρ
Dv

Dt
= −∇p + ∇ · σ(v) + ρg (2.3)

ρcv
DT

Dt
= −p∇ · v + (σ · ∇) · v + ∇ · (κ∇T ). (2.4)

Here, κ denotes the heat conduction coefficient, g the body force, cv the
specific heat capacity. By D/Dt we denote the Lagrangian derivative. The
stress tensor is

σij(v) = μ

(
∂vi
∂xj

+
∂vj
∂xi

− 2

3
∇ · vδij

)
,

where δij = 0 is the Kronecker delta. We close the system (2.2-2.4) by the
equation of state

ρ = ρ(p, T ). (2.5)

Then, from the continuity equation (2.2) we obtain

∇ · v = −1

ρ

Dρ

Dt
= −1

ρ
(
∂ρ

∂p

Dp

Dt
+

∂ρ

∂T

DT

Dt
). (2.6)

Equation (2.6) is a very important relation which later allows us to derive a
projection idea for compressible flow phenomena.

Since the density and the viscosity are smoothed according to (2.1) near
the interface, we can rewrite the momentum equations (2.3) whose spatial
components are given by

Dv

Dt
=g− 1

ρ̃

[
∇p +(∇μ̃ · ∇)v + μ̃Δv + ∇v · ∇μ̃ − 2

3
∇μ̃(∇ · v) +

1

3
μ̃∇(∇ · v)

]

The above presented equations are to be solved with appropriate initial
and boundary conditions which are specified in the section where numerical
tests are performed.

3 Numerical Scheme

We consider Chorin’s projection method [Cho68] implicitly for both compress-
ible as well as incompressible flows. It consists of two fractional steps. We first
compute the new particle positions at time level tn+1 by
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xn+1 = xn + Δtvn. (3.1)

Then, for each particle, we compute the smoothed density ρ̃n+1 and viscosity
μ̃n+1 according to (2.1) and then compute the intermediate velocity v∗ by

v∗ +
Δt

ρ̃
[(∇μ̃ · ∇)v∗ + μ̃Δv∗] =

vn − Δt

ρ̃

[
∇vn · ∇μ̃ − 2

3
∇μ̃(∇ · vn) +

1

3
μ̃∇(∇ · vn)

]
+ Δtg. (3.2)

Here, Δt represents the time step, Δv is the Laplacian of v, ρ̃ = ρ̃n+1 and
μ̃ = μ̃n+1.

The second step consists in establishing the new velocity vn+1 by correct-
ing the intermediate velocity v∗. For this, we need to solve the equation

vn+1 = v∗ − Δt

ρ̃
∇pn+1 (3.3)

with the constraints

∇ · vn+1 = −1

ρ̃

Dρ̃

Dt
(3.4)

with respect to pn+1. By applying the divergence operator to equation (3.3),
and using the relation (2.6), we obtain

−1

ρ̃
(
∂ρ̃

∂p

Dp

Dt
+

∂ρ̃

∂T

DT

Dt
) = ∇ · v∗ − Δt∇ ·

(∇pn+1

ρ̃

)
. (3.5)

Now, using Dp
Dt = pn+1−pn

Δt , equation (3.5) can be expressed in the form

−1

ρ̃Δt2
∂ρ̃

∂p
pn+1 + ∇ ·

(∇pn+1

ρ̃

)
=

1

Δt

(−1

ρ̃

∂ρ̃

∂p
pn +

∂ρ̃n

∂T n
DT n

Dt
+ ∇ · v∗

)
.

(3.6)
Using the quotient rule for the second term on the left hand side of (3.6), we
obtain

−1

Δt2
∂ρ̃

∂p
pn+1 − 1

ρ̃
∇ρ̃ ·∇pn+1 +Δpn+1 =

ρ̃

Δt

(−1

ρ̃

∂ρ̃

∂p
pn +

∂ρ̃n

∂T n
DT

Dt
+ ∇ · v∗

)
.

(3.7)
On the right hand side of (3.7), it is obvious to replace DT

Dt by equation (2.4).
The boundary condition for pn+1 is obtained by projecting the equation

(3.3) on the unit normal vector n to the boundary Γ . Thus, we obtain the
Neumann boundary condition

∂pn+1

∂n
= − 1

Δt
(vn+1
Γ − v∗

Γ ) · n, (3.8)

where vΓ is the value of v on Γ . Assuming that v · n = 0 on Γ , we obtain
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∂pn+1

∂n
= 0 (3.9)

on Γ . If no boundary velocity vΓ is known a priori (i.e. if the velocity at
the boundary is a result of the computations itself, such as for free surfaces
or outflow boundaries), the Dirichlet boundary conditions are appropriate for
pn+1.

In the case of incompressible flow, the first term on the left hand side and
the first and second terms of the right hand side of equations (3.7) vanish,
which results in the classical projection idea of Chorin.

Furthermore, for the temperature we have to solve the following equation

T n+1− Δt

cvρn
∇·(κ∇T n+1

)
= T n+

Δt

cvρn
[−pn∇ · vn + (σ(vn) · ∇)vn] . (3.10)

Finally, we update the density for the compressible flow by

ρn+1 = ρ(pn+1, T n+1). (3.11)

The remaining task is the discretization and solution of the equations (3.2,
3.7, 3.10) on the given (meshfree) point cloud. For this, we establish big linear
systems of equations, where the matrix represents the discrete approximation
of the differential operators involved, and the right hand side reflects the source
terms. In order to establish the mentioned discrete operators with respect to
the point cloud, we employ the weighted least squares method, presented in
section 3.1.

3.1 Least Squares Method for Approximation of Derivatives

Let ψ : Ω −→ R be a scalar function and ψi its discrete values at the particle
positions xi for i = 1, 2, . . . , N . Consider the problem to approximate spatial
derivatives of that particular function ψ(x) at some particle position x based
on the discrete function values of its neighbor points. In order to restrict the
number of points we introduce a weight function w = w(xi−x; h) with small
compact support, where h determines the size of the support.

The weight function can be quite arbitrary, however it makes sense to
choose a Gaussian weight function of the form

w(xi − x; h) =

{
exp(−α‖xi−x‖2

h2 ), if ‖xi−x‖
h ≤ 1

0, else,

where α is a positive constant and is considered to be in the range of 6. So far,
in our implementation, we allow user given h as a function in space and time.
However, no adaptive choice of h is realized yet. Working with user given h
implies that new particles will have to be brought into play as the particle
distribution becomes too sparse or, logically, particles will have to be removed
from the computation as they become too dense.
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Let P (x, h) = {xi : i = 1, 2, . . . , m} be the set of m neighbor points
of x = (x, y, z) in a ball of radius h. We note that the central particle x is
one element of the neighbor set P (x, h). For consistency reasons, some obvious
restrictions are required, for example, in 3D there should be at least 9 particles
in addition to the central point and they should neither be on the same line
nor on the same circle. In the following, we derive the Least Squares Method
for three dimensional problems.

We determine the derivatives of a function by using the Taylor series ex-
pansion and the least squares approximation. Hence, consider m Taylor ex-
pansions of ψ(xi) about x

ψ(xi) = ψ(x)+

m∑
j=1

∂ψ|j|

∂xj1∂yj2∂zj3
1

j!
(xi−x)j1(yi−y)j2(zi−z)j3 +ei, (3.12)

for i = 1, . . . , m, where ei is the error in Taylor’s expansion at the point xi.
Denote the coefficients

a1 = ∂ψ
∂x , a2 = ∂ψ

∂y , a3 = ∂ψ
∂z , a4 = ∂2ψ

∂x2 , a5 = ∂2ψ
∂x∂y ,

a6 = ∂2ψ
∂x∂z , a7 = ∂2ψ

∂y2 , a8 = ∂2ψ
∂y∂z , a9 = ∂2ψ

∂z2 .

Let us assume that ψ(x) = ψ is the known discrete function value at the
particle position x. For m > 9, this system is overdetermined with respect to
the unknowns ai and can be rewritten as

e = Ma − b, (3.13)

where

M =

⎛
⎜⎝ dx1 dy1 dz1

1
2dx2

1 dx1dy1 dx1dz1
1
2dy2

1 dy1dz1
1
2dz2

1
...

...
...

...
...

...
...

...
...

dxm dym dzm
1
2dx2

m dxmdym dxmdzm
1
2dy2

m dymdzm
1
2dz2

m

⎞
⎟⎠ ,

a = (a1, a2, . . . a9)
T

, b = (ψ1 − ψ, . . . , ψm − ψ)
T

, e = (e1, . . . , em)
T

and
dxi = xi − x, dyi = yi − y, dzi = zi − z.

The unknowns ai are computed by minimizing a weighted error over the
neighboring points. Thus, we have to minimize the following quadratic form

J =

m∑
i=1

wie
2
i = (Ma − b)TW (Ma − b) (3.14)

with W = diag (w1, . . . , wm), where wi = w(xi − x; h). The minimization of
J with respect to a formally yields ( if MTWM is nonsingular)

a = (MTWM)−1(MTW )b. (3.15)
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3.2 Least Squares Method for Solving Elliptic Equations

We now consider the following linear second order differential model equation,
which represents all equations in the above presented projection scheme

Aψ + B · ∇ψ + CΔψ = f, (3.16)

where the coefficients A, B, C are given and real and f = f(x) is a given real
valued function. We solve this equation with Dirichlet ψ = φ or Neumann
boundary conditions

∂ψ

∂n
= φ on Γ. (3.17)

In the following, we demonstrate the method to solve (3.16-3.17). To our
knowledge, there are two types of methods of directly solving elliptic equations
in a given meshfree configuration. The first one is presented in [LO80], which
can be directly derived from the equation (3.15). The second one is presented
in [TK01], where equations (3.16) and (3.17) are added as constraints in the
least squares approximation. The comparisons of both methods are presented
in [IT02]. It is found that the method presented in [TK01] is more stable and
the Neumann boundary condition can be easily included in the approximation.
In this paper, we give a short overview about the method presented in [TK01].

We consider x as a central particle and its set of neighbors P (x, h) =
{xi : i = 1, 2, . . . , m}. Furthermore, we consider the above Taylor’s expansions
(3.12). In (3.12) we have assumed that ψ(x) = ψ is a known discrete function
value at x. Now, let us assume that ψ is not known and denote it by a0.

We add equations (3.16) and (3.17) as constraints into the m Taylor’s
expansions (3.12) . These two additional equations is rewritten in the following
forms

Aa0 + B1a1 + B2a2 + B3a3 + C(a4 + a7 + a9) = f (3.18)

n1a1 + n2a2 + n3a3 = φ, (3.19)

where B = (B1, B2, B3), n = (n1, n2, n3). Note that, for the Dirichlet bound-
ary condition, we have only the m + 1 equations, where we directly prescribe
the boundary conditions on the boundary particles. The matrix M and vectors
a, b, e are slightly different from above. They are given by

M̃ =

⎛
⎜⎜⎜⎜⎜⎝

1 dx1 dy1 dz1
1
2dx2

1 dx1dy1 dx1dz1
1
2dy2

1 dy1dz1
1
2dz2

1
...

...
...

...
...

...
...

...
...

...
1 dxm dym dzm

1
2dx2

m dxmdym dxmdzm
1
2dy2

m dymdzm
1
2dz2

m

A B1 B2 B3 C 0 0 C 0 C
0 n1 n2 n3 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

and by

ã=(a0, a1, a2, . . . , a9)
T

, b̃=(ψ1, . . . , ψm, f, φ)
T

,

and ẽ=(e1, . . . , em, em+1, em+2)
T

.
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Now, we minimize the functional

J̃ =

m+2∑
i=1

wie
2
i , (3.20)

where em+1 = (Aψ + B · ∇ψ + CΔψ − f), em+2 =
(
∂ψ
∂n

− φ
)

and wm+1 =

wm+2 = 1.
Similarly, the minimization of J̃ yields

ã = (M̃T W̃M̃)−1(M̃T W̃ )b̃ (3.21)

with W̃ = diag (w1, . . . , wm, 1, 1).
The vector (M̃T W̃ )b̃ is explicitely given by

(M̃T W̃ )b̃ =

(
m∑
i=1

wiψi + Af,

m∑
i=1

widxiψi + B1f + n1φ,

m∑
i=1

widyiψi + B2f + n2φ,

m∑
i=1

widziψi + B3f + n3φ,

1

2

m∑
i=1

widx2
iψi + Cf,

m∑
i=1

widxidyiψi,

m∑
i=1

widxidziψi,

1

2

m∑
i=1

widy2
i ψi + Cf,

m∑
i=1

widyidziψi,
1

2

m∑
i=1

widz2
i ψi + Cf

)T
.

Let β0, β1, . . . , β9 be the first row of the matrix (M̃T W̃M̃)−1. We are
looking for the function ψ = a0, therefore, equating the first components of
vectors on both sides of (3.21), we obtain

ψ = β0

(
m∑
i=1

wiψi + Af

)
+ β1

(
m∑
i=1

widxiψi + B1f + n1φ

)
+

β2

(
m∑
i=1

widyiψi + B2f + n2φ

)
+ β3

(
m∑
i=1

widziψi + B3f + n3φ

)
+

β4

(
1

2

m∑
i=1

widx2
iψi + Cf

)
+ β5

(
m∑
i=1

widxidyiψi

)
+

β6

(
m∑
i=1

widxidziψi

)
+ β7

(
1

2

m∑
i=1

widy2
i ψi + Cf

)
+

β8

(
m∑
i=1

widyidziψi

)
+ β9

(
1

2

m∑
i=1

widz2
i ψi + Cf

)
.

Rearranging the terms, we have
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ψ −
m∑
i=1

wi

(
β0 + β1dxi + β2dyi + β3dzi + β4

dx2
i

2
+ β5dxidyi+

+β6dxidzi + β7
dy2
i

2
+ β8dyidzi + β9

dz2
i

2

)
ψi =

(β0A + β1B1 + β2B2 + β3B3 + β4C + β7C + β9C) f+
+ (β1n1 + β2n2 + β3n3)φ.

Hence, if we consider xj an arbitrary particle and xji its neighbors of
number m(j), then we have the following sparse system of equations for the
unknowns ψj , j = 1, . . . , N

ψj −
m(j)∑
i=1

wji

(
β0 + β1dxji + β2dyji + β3dzji + β4

dx2
ji

2
+ β5dxjidyji+

β6dxjidzji + β7

dy2
ji

2
+ β8dyjidzji + β9

dz2
ji

2

)
ψji =

[β0A + β1B1 + β2B2 + β3B3 + (β4 + β7 + β9)C] fj +

(β1n1 + β2n2 + β3n3)φj . (3.22)

We can represent the above sparse system in compact matrix-vector-form as

AΨ = b. (3.23)

Hence, (3.23) is a big sparse linear system of equations and can be solved
using iterative methods. In this paper we have used SOR method.

Now back to the projection method for the Navier-Stokes equations, we
have d + 2 such iterative systems, where d is the number of space dimension.
As an initial guess for the iterative solvers at time level n + 1, we assume the
corresponding value at the time level n. This saves a lot of iteration steps.

4 Numerical Tests

4.1 Solutions of Second Order Linear PDEs

Example 1

Consider the second order partial differential equation of the type

ψ + ψx + ψy + ψxx + ψyy = f in [0, 1] × [0, 1]. (4.1)

The exact solution is given by

ψ = (x − 1

2
)(y − 1

2
)(1 − x2

2
− y2

2
). (4.2)

We consider the Dirichlet boundary value problems, where the boundary con-
ditions can be directly obtained from the exact solution.

Table 4.1 shows the maximum error between the exact and the numerical
solutions and shows second order convergence.
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Table 4.1. Convergence results for Example 1.

N Smoothing length Maximum Error

676 0.1 0.00011
2601 0.05 2.7867e-5
10201 0.025 6.9778e-6

Example 2

Consider the following equation with discontinuous coefficient

ψ + ∇ · (k∇ψ) = f in [0, 1] × [0, 1], (4.3)

where

k =

{
1000, if y ≥ 0.5
1, else.

Consider the exact solution

ψ =
1

k
(x − 1

2
)(y − 1

2
)(1 − x2

2
− y2

2
). (4.4)

We again consider the Dirichlet boundary conditions. In this example, the
source is given by

f = −(3x − 1

2
)(y − 1

2
) − (x − 1

2
)(3y − 1

2
) (4.5)

and we have smoothed three times the coefficient k in the vicinity of the
interface y = 0.5. The smooth coefficient k is denoted by k̃. Hence the above
equation (4.3) is given by

ψ + ∇k̃ · ∇ψ + k̃Δψ = f. (4.6)

In Table 4.2 we have presented the maximum error between the exact
and numerical solutions and we see that the numerical solution converges
with of order one. If we use the interface conditions, we get the second order
convergence [IT02].

Table 4.2. Convergence results for Example 2.

N Smoothing length Maximum Error

676 0.1 0.0691
2601 0.05 0.0377
10201 0.025 0.0203
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4.2 Compressible Flows

Consider the 1d compressible flow. We note that, we do not consider smoothed
density ρ̃ here. The viscosity is considered to be a constant number. Suppose
the flow is ideal gas where the equation of state is given by

p = ρRT =
R

cv
ρe,

where R is the gas constant and e the internal energy. Hence, we have

∇ · v =
1

T

dT

dt
− 1

p

dp

dt
. (4.7)

We have further assumed the dynamic viscosity μ and the heat conductivity
coefficient κ to be constant. The scheme is tested by solving the Sod problem
[Sod78], where we let the heat conductivity and viscosity tend to zero such
that the solution of the Navier-Stokes equations converges to those of the
Euler equations.

In this case, equation (3.2) is given by

v∗ − Δt
4

3

μ

ρ

∂2v∗

∂x2
= vn (4.8)

with boundary condition v∗ = 0. Equation (3.7) is given by

− ρn

Δt2pn
pn+1− 1

ρn
∂ρn

∂x

∂pn+1

∂x
+

∂2pn+1

∂x2
= − ρn

Δt2
+ρn

∇ · v∗
Δt

− ρn

TΔt

dT

dt
, (4.9)

where dT
dt is replaced by the energy equation (2.4). Equation (4.9) is solved

together with the Neumann boundary condition (3.9). After obtaining the
pressure, we correct the velocity v∗ according to (3.3).

Equation (3.10) is given by

T n+1 − Δt

cv

κ

ρn
∂2T n+1

∂x2
= T n +

Δt

ρncv

(
−pn

∂vn

∂x
+

4

3
μ(

∂vn

∂x
)2
)

(4.10)

with boundary conditions T = T0 on Γ . Finally, we update the density ac-
cording to (2.5).

Let the domain Ω = (0, 1) with boundary points 0 and 1. We consider the
discretization over [0, 1] with N particles at xi for i = 1, 2, . . . , N and constant
time step Δt.

The initial conditions for Sod’s problem are [Sod78]

ρ0
i = 1, v0

i = 0, e0
i = 2.5 for 0 ≤ xi < 0.5

ρ0
i = 0.125, v0

i = 0, e0
i = 2.0 for 0.5 ≤ xi ≤ 1

completed by the following boundary conditions
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v(t) = 0, e(t) = 2.5 at x = 0 and v(t) = 0, e(t) = 2 at x = 1.

We note that the initial and boundary conditions for the temperature T
is obtained from the relation

T =
1

cv
e.

The initial spacing of the particles is given by dx = 1/N , where N is the
total number of particles considered and the size of the support h is equal to
3 times the initial spacing of the particles.

Since the scheme is of central difference type, there are some oscillations
for small viscosity. Therefore, we choose μ = μ(N), κ = κ(N). For example,
for N = 100, we considered μ = 0.001 and κ = 0.001 . The heat coefficient
does not play big role for the stability of the scheme. It can be set to zero.

Since we solve the conservation equations implicitly, we need the restriction
of time step only for the motion of the particles. The time step is should be
chosen such that the particles cannot move more than a partition of h in each
time step.

The numerical solutions are obtained for 100, 400 and 2000 particles and
are compared with the exact solutions of the compressible Euler equation at
the fixed time t = 0.2. The values for mu and kappa are for 400 and 2000
particles are four and twenty times smaller than thoose for 100 particles. The
time step for 100 particles is chosen 0.002. Similarly, for 400 and 2000 particles
the time smaller step is taken by corresponding factors.

In figures 4.1 we plot the exact and numerical results, like the density,
velocity and the pressure. It is clear that the scheme is stable and the solutions
of the Navier-Stokes equations tend to the Euler solutions when the number of
particles tends to infinity and the viscosity and the heat conduction coefficient
tend to zero.
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Figure 4.1. Density(left), Velocity(center) and Pressure (right) at t = 0.2. Solid
lines represent the exact solutions, dots represent the numerical solutions.
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Figure 4.2. Level of water at t = 0.0, 1.0, 2.0 (top row, left to write) and at t =
3.0, 4.0, 4.4 ( bottom row), star are water particles and dots are gas particles

4.3 Two Phase Flows

In this case we express all quantities in dimensionless form. So, they can be
interpreted as being in SI-units. Consider a cavity of [0, 1] × [0, 2] initially
filled with air. On the center of the lower boundary we place a hole as inflow
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boundary. Similarly, there is an outflow hole in the top boundary. The width
of the inflow and outflow holes is 0.2. The rest of the boundaries are solid
walls with no slip conditions. The inflow velocity is 2. There is gravity acting
downwards with g = 9.81. The densities of air and water are 1 and 1000
respectively. The dynamic viscosity of air is 1.81 ∗ 10−5 and 1.005 ∗ 10−3 for
water. We consider the air as compressible and the equation of state is given
by

ρ = ρ0 +
1

c2
(p − p0) (4.11)

with speed of sound c = 5 and the reference density ρ0 and reference pressure
p0 are initial density and pressure, equal to 1 and 0, respectively. The time
step Δt = 0.002 is considered. The theoretical fill time for this particular
cavity is 5. Since fill time for initially replaced liquid is 0.1, therefore, the fill
time for this case is 4.9.

In Figure 4.2 we have plotted the filling process for different times. At
time 4.4 we stopped the simulation since the liquid particles started to leave
the outflow boundary. The numerical result shows close approximation of the
theoretical fill time.
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