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From Natural System to Numerical Model

Natural geological systems are generally highly complex, both as far as the
geological structure and the physical processes occurring within them are
concerned. In order to investigate such systems, it is necessary to understand
the natural processes, their interaction with the geological structure and their
relative importance on different problem scales.

Due to the geometrical complexity of the natural system and the large
number of physical processes involved, it is not feisable to describe the ex-
act system in great detail. The system structure and the processes occurring
within it are therefore represented by conceptual models, designed to meet
the requirements of certain types of problems on a given scale. This implies,
for example, the introduction of parameters representing the material prop-
erties and of physical descriptions of the relevant flow and transport pro-
cesses.

In order to solve a problem, a mathematical description of the model con-
cept is required. Due to the degree of complexity of this type of problem,
analytical solutions are not an option. The numerical solution involves the
spatial and the temporal discretization of the problem and the use of effi-
cient and stable numerical algorithms.
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Fig. 2.1. Transformation from a complex natural system to a simplified numerical
model (Suf3, 2004).
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The transformation of a natural system to a model inevitably leads to sim-
plifications of the real system as visualized in Fig. 2.1. When model results
are being interpreted, it is therefore essential to keep in mind that a model
is merely an approximation of nature. One must always be aware of the as-
sumptions and the concepts used for a specific model in order to assess its
results correctly.

This chapter describes the transformation from nature to model of sat-
urated fractured porous systems as well as the flow and the transport pro-
cesses that are relevant for the investigations discussed in this book. The first
part (Sect. 2.1) deals with the characteristics of natural fractured porous sys-
tems. This is followed by a discussion of different model concepts used on
different scales and for different problem types (Sect. 2.2). Finally, the gov-
erning equations of the pertinent physical processes and the mathematical
implementation of the discussed model concepts are presented (Sects. 2.3 —
2.5). It should be underlined that this chapter does not provide a complete
overview of physical processes, theories, concepts and models. It is restricted
to the scope of the research work presented in this book. For a more detailed
discussion of the topic, we refer to the literature references given in the vari-
ous sections.

2.1 Natural Fractured Porous Systems

A. Silberhorn-Hemminger, M. Siif3, R. Helmig

Solid rock can be classified according to its diagenetic characteristics (Kolditz,
1997). Consolidated sedimentary rock evolves from the cementation of min-
eral grains, metamorphic rock is the result of recrystallization under high
temperature and stress whereas igneous rock forms by the direct crystalliza-
tion of minerals from magmaic melt.

In direct response to the stress applied, which may be lithostatic, tectonic,
thermal or the result of high fluid pressures, joints, faults and systems of
such discontinuities occur on different scales and with different geometries.
Tectonic fractures tend to be oriented along stress fields on a regional scale,
whereas the other types of stresses give rise to local fractures that vary more
greatly in orientation. Apart from stress-induced fractures, joints may also
occur at the boundaries of sedimentary layers consisting of deposits of dif-
ferent properties. The properties of existing fractures can be altered by local
physical and chemical processes. In hydrogeology, the term fractures is often
used for all the different types of discontinuities (e.g. faults or fissures) in the
rock matrix.

Figure 2.2 shows an exposed vertical wall of fractured sandstone contain-
ing both vertical and horizontal fractures. In this case, the horizontal frac-
tures are separation planes between different sedimentary layers, whereas
the vertical fractures are the result of mechanical stress.
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Fig. 2.2. Vertical exposed wall of fractured sandstone at the field site (Sect. 5).

The hydraulic properties of hard rock are to a large extent determined
by the porosity of the rock. Table 2.1 presents typical ranges of porosity for
different types of hard rock, considering the rock as a whole, including both
fractures and matrix (see below). Depending on the type of rock, the contri-
bution of these two components to the porosity varies. For example for gran-
ite, the porosity is almost exclusively determined by the fractures, whereas
for sandstone, the matrix porosity is considerable. Table 2.1 shows that there
is a large difference between the total n and the effective porosity 7. The total
porosity includes all the pores of the system whereas, for the effective poros-
ity, only connected pores that are available to fluid flow are considered. It
is important to point out that the effective porosity is not directly correlated
with the hydraulic conductivity of the system. The hydraulic conductivity
varies over a wide range for different rock types as well as for one single
rock type.

This book is concerned with fractured porous rock, in which the rock matrix
is considered to be permeable to flow. Fractured porous rock is generally
divided into three different components:

e A fracture network is a system of partially intersecting single fractures.
Its hydraulic properties are typically characterized by the distribution of
fracture size, fracture permeability, fracture orientation, fracture distance,
and fracture density. Due to its small volume relative to the volume of the
total domain, the storage capacity of the fracture system is small.

e Within the fractures, filling material consisting of mineral deposits can be
found. Open fractures can channel and speed up the transport of pollu-
tants from disposal sites, e.g. leading to a locally high concentration of a
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Table 2.1. Total porosity, effective porosity and hydraulic conductivity of selected
hard rocks (Domenico and Schwartz (1990); Matthess and Ubell (1983)).

Rock Total Effective Hydpraulic

porosity 1 (%) porosity ne (%) conductivity K (m s71)
Granite 0.1 0.0005 0.5-10712-2.0-10712
Limestone 5-15 0.10-5 1.0-107%9-6.0-1079
Chalk 5—44 0.05-2 6.0-10799-1.4.10797
Sandstone 5-20 0.5-10 3.0-10710-6.0-10-06
Shale 1-10 05-5 1.0-107183-2.0-107%

pollutant at a great distance from the source, whereas filled fractures may
inhibit the flow in otherwise highly permeable aquifers (Odling, 1995).

e The matrix blocks between the fractures have a spatially varying texture
and porosity. The permeability contrast between fractures and matrix is
decisive for the importance of the matrix for flow and transport processes.
As opposed to the fracture system, the storage capacity of the matrix is
often significant as a result of its large volume relative to the total domain.

The research results discussed in this book are obtained from flow and
transport experiments in fractured porous systems on different scales. This
means that the matrix is permeable to flow and plays a significant role for
both flow and transport within the experimental domains. Open as well as
filled fractures occur, in most cases acting as preferential flow paths. In some
cases, however, the filling material inhibits the flow.

In order to characterize a fractured system, criteria and properties must
be defined that can be qualitatively or quantitatively determined directly in
the field or in laboratory investigations. Since the evaluation of fracture ge-
ometry and the generation of fracture systems for modeling are discussed in
this book, some frequently used properties are now briefly presented.

Fracture Size

The fracture size, i.e. the lateral limitations of a fracture, can in most cases
not be recorded and determined directly. Usually, fracture traces are detected
at exposed walls (e.g. outcrops, quarries, tunnels). The fracture trace is the
intersection line of a fracture with the exposed wall. In the field, the actual
fracture sides are therefore often not determined, but the fracture traces are
recorded and evaluated further using statistical methods. These difficulties
are demonstrated in Fig. 2.3. The vertical two-dimensional section, showing
the fracture intersection lines with the x-y-plane at y = 1m, is only a limited
representation of the actual three-dimensional system.

The approximation of the empirical fracture trace length distribution can
be accomplished using different theoretical distribution functions, e.g. power
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Fig. 2.3. Artificial three-dimensional fracture system (left) and a vertical two-
dimensional section showing the fracture traces at y = 1 m (right).

law, log-normal, hyperbolic or gamma-1 distributions. References for these
distributions are given by Dershowitz and Einstein (1988). They explain the
diversity of possible distributions by the fact that fracture traces and not
the actual fracture sides are detected, and by the processes that cause the
formation of fractures. An interesting aspect is whether it is possible to re-
construct the actual three-dimensional fracture system based on the deter-
mined fracture-trace distribution. Considering fractures with circular shape,
Baecher et al. (1977) show that a power law and a log-normal distribution of
the fracture radii both lead to a log-normal distribution of the fracture traces.
Hence, a unique reconstruction of the fracture system is not possible.

Fracture Distance

The fracture distance is defined as the distance measured between two di-
rectly neighboring fractures along a straight line. The fracture distance, or the
distribution of the fractures distance controls the geometrical arrangement of
the fractures. According to Meier and Kronberg (1989), the principle of the
fracture distance is based on the idea that the formation of a fracture causes
a tension decrease in the vicinity of the fracture. The next fracture can only
be formed if the critical regional tension occurs again, causing the genesis
of another fracture. In sedimentary rock, the fracture distance depends, for
example, on the elastic properties of the individual layers of a sedimentary
sequence, the thickness of the layers, the permeabilities and the deformation
intensity.

According to Priest (1993), three different definitions of fracture spacing
can be distinguished:

o Total spacing: Distance between two directly neighboring fractures with
different orientation measured along a straight line.

e Set spacing: Distance between two directly neighboring fractures with
equal orientation measured along a straight line.
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e Normal set spacing: Distance between two directly neighboring fractures
with equal orientation measured along a straight line that is parallel to
the mean normal direction of the fractures.

Extensive field investigations have shown that a POISSON distribution,
describing the arrangement of the fractures in space, corresponds to a power-
law distribution of the fracture distances. Sachs (1997) circumscribes the
POI1SSON distribution as follows: ”"The POISSON distribution is valid, if the
average number of events is the result of a large number of event possibili-
ties and a very small event probability. The POISSON distribution is used to
solve problems that occur when counting relatively rare random and inde-
pendent events in time, length, area or space domains”.

The determination of the fracture distance is schematically represented in
Fig. 2.4.

Scanline

Length | of the / Fracture trace

scanline

n = Number of fractures

Angle of incidence ®

Normal direction of the fractures

Fig. 2.4. Determination of fracture distances.

The mean fracture distance can be determined from the length [ of the
scanline, the number of fractures n and the angle of incidence 6 between the
scanline and the normal direction of the fractures:

)
mean distance = " -cosf. (2.1)

Fracture Density

The fracture density is determined on the basis of core samples and scanline
measurements. Scanlines are observation lines, positioned on an exposed
wall. Along the scanline, the number of intersections with fractures, the an-
gle of incidence etc. can be determined.

The one- and two-dimensional fracture density d; and d; (see below) are,
except for isotropic systems, dependent on the orientation of the scanline and
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the exposed wall. The volumetric fracture density d3, i.e. the mean fracture
area per unit volume, is, according to Chiles and de Marsily (1993), deter-
mined by:

1

, 2.2
sin Qi ( )

1 n
3 = )
! i=1
where ; is the angle of incidence of the fracture, / is the length of the scanline
and 7 is the number of fractures per scanline.

For randomly distributed fracture orientations, the following two rela-
tionships between the volumetric fracture density d3 and the linear fracture
density d; and the area-related fracture density d;, respectively, are obtained.
The linear fracture density d; describes the average number of fractures per
unit length along a line:

di = _ds. (2.3)

The area-related fracture density d, defines the average fracture length per

unit area:
¢ 7T

d =,

ds. (2.4)

Fracture Aperture

The fracture aperture is defined as the perpendicular distance between two
directly neighboring fracture walls. The aperture can be increased by, for
example, dissolution and erosion processes. This is mainly observed in the
weathered zones close to the ground surface. Another reason for an increase
in aperture is displacement due to external forces or subsidence. The aperture
generally decreases with increasing depth due to the increasing thickness of
the overlying rock.

Figure 2.5 shows two sides of a fracture. The roughness of the two sur-
faces can be clearly seen. If the two pieces are put together, the actual fracture
is obtained as the space between the two surfaces. The aperture varies sig-
nificantly throughout a fracture. It is therefore not possible to characterize
the fracture aperture by a single measurement. In the case of single fractures,
one possibility is to assume a heterogeneous fracture-aperture distribution;
however, for the consideration of multiple fractures or fracture systems, this
approach is made impossible by the degree of detail required.

In general, for the discrete representation of fractures in models, the frac-
ture aperture is described using the parallel-plate concept. This concept is
explained in detail in Sect. 2.4.1.

The fracture aperture has an essential influence on the flow and transport
processes in a fractured system. However, the determination of the aperture
is not trivial (Chiles and de Marsily, 1993):

¢ Innature, there is no constant aperture throughout a fracture plane. There
are closed and open regions.
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Fig. 2.5. Image of the two opposite walls of a single fracture from a sandstone core
sample with a diameter of approximately 20 cm (created in cooperation with the In-
stitute for Robotics and Process Control, Technical University of Braunschweig, Ger-
many).

e The flow between two parallel plates (parallel-plate concept), separated
by a constant aperture, has little in common with the actual flow through
a natural fracture.

e Due to the pressure release that a sample experiences during sample ex-
traction, the measured aperture deviates from the aperture that would be
measured in situ.

Fracture Orientation

The orientation of geological formations in space is uniquely determined by
the strike angle S; or the azimuth A, and the dip D;. According to Murawski
(1998), the strike is the section boundary of a natural surface (e.g. layer or
fracture) at an imaginary horizontal plane. The strike angle S; is defined as
the angle between the northerly direction and the section boundary. The pro-
jection of the line of greatest slope onto the horizontal plane is the dip direc-
tion and is always perpendicular to the strike. The inclination angle between
the line of greatest slope and the dip direction is the dip D;. The angle be-
tween the northerly direction and the dip direction is defined as the azimuth
A. It is connected to the strike angle through the equation A, = S; +90°.
Figure 2.6 summarizes the relationship between strike, dip and azimuth.

If fractures or layers occur in a preferred direction, the statistical distri-
bution of the orientation is often described by the FISHER distribution, also
called the spherical normal distribution. The FISHER distribution is charac-
terized by the fact that orientations are distributed around a certain main
orientation with rotational symmetry. In Wallbrecher (1986) and Fisher et al.
(1993), the distribution is discussed in detail. The probability density func-
tion of the FISHER distribution has the following form:
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Fracture plane

Horizontal plane

Section boundary

Fig. 2.6. Determination of the location of a geological surface: strike, dip, azimuth.
The dip direction is the projection of the line of greatest slope onto the horizontal
plane.

f(e,¢) = -explk (sin® sina cos(¢p — B)

K
47 - sinhk (2.5)

+ cosO cosa)]-sin® .

Here, « is the ©-pole coordinate (latitude) of the main direction, 3 is the ¢-
pole coordinate (longitude) of the main direction and « is the concentration
parameter. The concentration parameter « is a measure of the distribution of
the orientations around the main orientation. For k = 0, the orientations are
uniformly distributed. The larger « is, the stronger the concentration around
the main orientation. The cone of confidence is used to quantify the signifi-
cance of the distribution. The cone of confidence yields a small circle around
the main orientation R;. The calculation of the cone of confidence is only per-
missible for k > 4. For k < 4, there is no spherical normal distribution or
the sample size is too small. The measures for the cone of confidence are the
spherical variance

n— [Ry

n

S* = (2.6)

and the spherical aperture

w = arcsin \/21 —Kl/n . (2.7)

Here, R; is the main orientation and # is the sample size. Figure 2.7 shows the
relationship between the main direction R; and the spherical aperture w. The
spherical aperture for the FISHER distribution corresponds to the standard
deviation of the GAUSSIAN normal distribution.
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Main Orientation R ;

Fig. 2.7. Sketch of the cone of confidence with the spherical aperture w.

Orientation data are represented graphically in pole diagrams. The inter-
section points of the normal vectors of the planes with one half of a globe
are projected onto a circular area. Examples of such diagrams are shown and
discussed in Sect. 5.3.

2.2 Model Concepts in Fractured Porous Systems

M. Siifs, R. Helmig

As discussed in the introduction to this chapter, it is not possible to set up
a model that is an exact representation of reality, but conceptual models are
developed that are able to describe the relevant structures and physical pro-
cesses of a problem. The choice of a model concept for the description of
fractured media strongly depends on the scale of the problem, the geological
characteristics of the area of investigation, and the purpose of the simula-
tion. Bear (1993) classifies various problems of flow and transport in frac-
tured porous media according to their scale. On these scales, different types
and extensions of heterogeneities occur (Rats and Chernyashov, 1967).

e Zone1: The very near field. Interest is focused on flow and transport pro-
cesses within small-scale fractures (fissures) and the pore space. Single,
well-defined fractures and the surrounding porous rock, which is possi-
bly accessible to transport, are considered.

e Zone 2: The near field. The flow and transport processes are considered
in a relatively small domain, which contains a small number of well-
defined small and intermediate fractures. The location and shape of the
individual fractures are either deterministically defined or can be gener-
ated stochastically, based on statistical information from the real system.

e Zone 3: The far field. On this scale, the flow and transport processes are
regarded as taking place, simultaneously, in at least two continua. One
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continuum is composed by the network of large scale fractures and the
other one by the porous rock. Mass of the fluid phase and its components
may be exchanged between the two continua.

e Zone 4: The very far field. The entire fractured medium is considered as
one single continuum, possibly heterogeneous and anisotropic in order
to account for large scale geological layers and fault zones.

In order to set up models of systems with such varying characteristics,
different model concepts are necessary. These concepts are discussed on the
basis of Fig. 2.8. Two principal approaches are possible (Helmig, 1993):

1. Assuming that the concept of the representative elementary volume (REV)
(see Sect. 2.3.1) is valid and that the scale of the investigation area is suffi-
ciently large, it is possible to describe the model area as a heterogeneous,
anisotropic continuum. According to Bear (1993), this is possible on the
very far scale. Krohn (1991) also considers this to be a feasible approach
for describing poorly fractured rock (type I) and rock with a very high
fracture density (type II) on a smaller scale.

2. If the flow and transport processes in the fractured media are dominated
by shear zones (spatially concentrated small-scale fractures) or fracture
systems, it is feasible to describe these features specifically, neglecting
the rock matrix, using a discrete fracture network model (consideration of
each single fracture) (type III).

However, the rock matrix, filling the space between the fractures, is often
not negligible, but plays an essential role in flow and transport processes. If
the porous rock matrix can be idealized as a continuum with averaged mate-
rial properties, a model can be set up where a continuum model, accounting
for the matrix, is coupled with a discrete model considering the fractures
(Fig. 2.8, type IV). This type of model is further discussed in Sect. 2.4.

Another widely used possibility for describing areas of type II (system
with high fracture density) and IV (dominant single fractures + rock ma-
trix) (Fig. 2.8) is to transform the matrix and the fracture systems on differ-
ent scales into separate homogeneous equivalent continua. This approach
is mainly applied on large scales. With the concept originally presented by
Barenblatt et al. (1960), the flow and the transport processes between the con-
tinua can be represented by coupling them via exchange terms and in this
way setting up a so-called double-continuum model. It is essential to the
principle of homogenization for heterogeneous media to define equivalent
model parameters and to find appropriate expressions for the interaction of
the hydraulic components which are capable of describing the correct phys-
ical system behavior. Extending this model allows the consideration of more
than two continua, a multi-continuum model, if required by the geological
characteristics of the investigation area and by the nature of the problem.
This type of model concept is further described in Sect. 2.5.
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Fig. 2.8. Model concepts for the description of fractured porous media (based on
Krohn (1991) and Helmig (1993)).

2.3 Governing Equations of Flow and Transport in Porous
Media
M. Siifi, A. Silberhorn-Hemminger, R. Helmig

In this section, the mathematical description and the governing equations of
flow and transport processes in porous media in general, i.e. without the con-
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sideration of fractures, are presented. The discussion focuses on the processes
which are relevant to the research work presented in this book. The imple-
mentation of the discrete and the multi-continuum concepts for considering
the fractures is discussed in Sects. 2.4 and 2.5 respectively.

2.3.1 Representative Elementary Volume

The concept of the representative elementary volume (REV) as defined by Bear
(1972) is fundamental to the mathematical description of fluid flow and
transport in porous media. By means of volume averaging, the micro-scale
properties of the porous medium (grain-size and pore-space geometry) are
represented by an equivalent continuum on a larger scale described by new
properties. On the one hand, the REV must be large enough to avoid undesir-
able fluctuations of the averaged properties, and on the other hand, it must
be small enough to render the spatial dependency of these properties. In Fig.
2.9, the definition of a suitable extent of the REV is visualized. The appli-
cation of the REV approach in different model concepts for fractured porous
media is discussed in Sects. 2.2, 2.4 and 2.5.

2 | Effects on the ™~ ~™ Consideration as
“é_ micro—scale ! a porous medium
a possible
Heterogeneous medium
Homogeneous medium
Lower Upper Volume
limit REV limit

Fig. 2.9. Representative elementary volume (REV) (modified from Bear (1972)).

2.3.2 Flow Processes
2.3.2.1 DARcCY Equation

The DARCY equation for laminar flow in porous media was defined by
HENRY DARCY in 1856. In one-dimensional column experiments, DARCY
found that the volume discharge Q is proportional to the hydraulic gradi-
ent Ah/Al as described by the following equation:

Ah

Q=-AK . (2.8)
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Here, A is the cross-sectional area of the column, K is the hydraulic conduc-
tivity, Ah is the difference in hydraulic head and Al is the distance between
the measurement points. From (2.8) and the relationship

Q=4q4, 2.9
the three-dimensional DARCY velocity g; is determined:
oh
qi = _Ki‘ . (210)
! aX]

The hydraulic conductivity tensor K;; depends on the properties of the
porous medium as well as of the fluid:

K ngij,

i} (2.11)

ij =
where p is the fluid density, g is the gravitational acceleration, k;; is the per-
meability tensor and p is the dynamic viscosity. The permeability tensor k;;
represents the directional resistance of a porous medium and is independent
of the fluid properties. Expressing the piezometric head / as a pressure p and

inserting the permeability k;; instead of the hydraulic conductivity K;;, yields
the following expression for the DARCY velocity g;:
kij ( op 0z
P = — . 2.12
qi i ( ax, +pg ax;; (2.12)

In the case of gas flow, the gravity effect is often neglected. This is legiti-
mate if the gravity effect, due to low density, is small compared to the effect
of the pressure gradient. Neglecting the gravity effect, the equation can be
simplified to

kij op

. (2.13)
H axi]’

qi = —
This form of the equation may be applied for two-dimensional horizontal
calculations as well.
The range of validity of the DARCY equation is expressed in terms of the
REYNOLDS number Re. According to Bear (1972), the upper limit of the va-
lidity of the DARCY equation is at a value of Re between 1 and 10.

2.3.2.2 Continuity Equation

The continuity equation is based on the principle of conservation of mass,
and states that the temporal change of mass in a control volume is the sum
of the mass flux across the volume boundaries and the mass flux due to
sources and sinks. The temporal change of the mass in the control volume
is described as follows:
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d(np) d(pq;:)
a T o +qs - (2.14)
Here, g5 is the source and sink term, e.g. describing well withdrawal or in-
jection, and n represents the total porosity, also including the pores through
which there is no flow. The porosity is slightly pressure-dependent (Kinzel-
bach, 1992). However, this aspect is neglected here, i.e. the matrix is consid-
ered as inelastic. From this, the continuity equation is obtained in the follow-

ing form:
dp d(pq;)
=— ) 2.15
"o ox, T 219
If we introduce the piezometric head / as the independent variable instead
of the DARCY velocity g;, we may express the continuity equation as

dp 0 ( , kij oh
n o = o <p g 0o ) (2.16)

The source and sink term g is omitted for simplicity’s sake. This general
expression is valid for heterogeneous, anisotropic and compressible media.
Bear (1972) rewrites (2.16) for the independent variable pressure p using the
relationship
oh 1 dp

g ox; gex,Z + b Ax; (2.17)
where ey, is the unit vector in z-direction. Assuming that k;; = 0 for i # j,
this results in the expression

oo 0 ki dp 0 ky dp 0 ks [ op
"ot T oxq (p“ 8x1> +8x2 pu dxy +8x3 ‘Ou ox3 +eg| ). (218)

In (2.18), the term pg, expresses the gravity effect. In many cases, this effect is
much smaller than the pressure gradient dp/dx3, and is therefore neglected
(Bear, 1972).

Depending on the fluid, the pressure dependency of the fluid density p
is more or less significant, e.g. water is generally assumed to be incompress-
ible whereas gas is highly compressible. The experiments and the numerical
simulations discussed in this book are mainly concerned with gas-saturated
media. Assuming an ideal gas, the relationship between the density and the
pressure is described by the ideal gas law:

_r
P = Rr (2.19)

Here, R; is the individual gas constant and T is the temperature.
Introducing (2.19) into (2.18) and neglecting the gravity term, the follow-
ing diction of the continuity equation is obtained:

dp 0 [kij 9p?
"ot T ox <2u axi) ' (2.20)
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2.3.3 Transport Processes

Assuming a conservative tracer, i.e. no adsorption and no reactions, in an
isothermal system, three mechanisms determine the transport process, name-
ly advection, dispersion and diffusion.

2.3.3.1 Advection

Advective transport comprises the movement of the tracer in the direction
and with the average fluid velocity of a control volume (Kinzelbach, 1992).
Here, the determining velocity is the seepage velocity v; defined as:

qi
v = e (2.21)
Dividing by the effective porosity ne, and not by the total porosity n, takes
into account that the fluid can only flow through the connected pore space
of the control volume, i.e. not through the dead-end pores. The seepage ve-
locity v; is a bulk property and is therefore only indirectly measurable. The
advective mass flux is expressed as

Jaj = cvi, (2.22)

where c is the solute concentration of the transported substance.

2.3.3.2 Hydrodynamic Dispersion

Dispersion describes the mixing of two miscible fluids due to fluctuations
around the average velocity, caused by the morphology of the medium, the
fluid flow condition and chemical or physical interaction with the solid sur-
face of the medium (Sahimi, 1995). The concept generally used to describe
this mixing process is based on FICK’s law, assuming that there is a com-
pensation of the concentration in the direction of the negative concentration
gradient. The dispersive mass flux is expressed as

Jc
Jai = — Dd,ij~_ » (2.23)
1 l] ax]

where Dy ;; is the dispersion tensor. Dispersive mixing is assumed to take
place in two principal directions, longitudinal and transversal to the direc-
tion of the seepage-velocity vector v;. The dispersion tensor Dy ;; is not con-
stant, but depends on the seepage-velocity v;. Provided that the system of
coordinates is aligned with the direction of flow, the dispersion tensor Dy ;;
is diagonal:

D] 00 X101 0 0

Dd,ij =|10D: 0| = 0 vy O . (2.24)
00 Dt 0 0 03
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Here, D) and D are the longitudinal and the transversal dispersion coeffi-
cients respectively, assuming that the vertical and the horizontal transversal
dispersivity is equal. &1 and «; are the longitudinal and the transversal dis-
persion lengths. The ratio between o and «; is generally larger than 1.

Diffusion induces a mass flux between regions of different concentration.
Mass flux occurs in the direction of the negative concentration gradient and
is described by FICK's law:

ac
Jmei = — Dme ox; (2.25)

Here, Dn e is the effective diffusion coefficient which takes into account that
the diffusion process is dependent not only on the combination of fluids, on
the temperature and the pressure (Reid et al., 1987) but also on the porous
medium (Grathwohl, 1998). The diffusion coefficient for gases is higher than
for liquids. Since the diffusion process is slow, the significance of this mass
flux depends on its relative importance compared to the advective and the
dispersive fluxes. In regions of high velocities, it may be neglected, whereas
for low velocities, it is one of the essential processes that determine the shape
of the tracer-breakthrough curve. Since, in this book, first, most of the cases
discussed involve gas flow and, second, the investigations are concerned
with flow in fractured low-permeable porous media, the diffusive processes
may not be neglected.

From the above discussion, it is obvious that dispersive as well as dif-
fusive processes are implemented according to the same concept, i.e. FICK’s
law. Consequently, these transport flux terms may be combined in one term,
generally defined as the hydrodynamic-dispersion term, where Dy ;j and Dm e
are summarized in the hydrodynamic-dispersion tensor D;; (Scheidegger,
1961):

Dm,e + xvq 0 0
Dij = 0 Dm,e + o102 0 . (2.26)
0 0 Dme+ s

The mass flux due to hydrodynamic dispersion is expressed by:

dc

Jhai = = Dij5 - (2.27)
j

The concept of hydrodynamic dispersion accounts for the spreading of
the tracer due to the irregular pore space. On a larger scale, the concept of
macro-dispersion accounts for dispersion due to heterogeneities of the porous
medium. In continuum models, a FICKIAN approach is often chosen for
the macro-dispersion. In, for example, Cirpka (1997), the concept of macro-
dispersion as well as different model approaches are discussed in detail.
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2.3.3.3 Transport Equation

Following the same principle as for the continuity equation (2.14), the trans-
port equation is derived by balancing all mass fluxes across the boundaries
of a control volume:

0
it 5. (Jai + Jnai) = 0. (2.28)
Xi
If J; is expressed as
ac
Ji = 5 T Am (2.29)
where g, is the tracer mass source/sink term, (2.28) can be written as
ac 0 0 ac
ic) — i =0. 2.
o + o1, (vic) o, (Dl] ax]-> + gm 0 (2.30)

A measure of the relative importance of advective and dispersive/diffu-
sive transport is the PECLET number Pe. It is defined as

_ lolL

Pe = ,
|Dy|

(2.31)

where v is the average seepage velocity in flow direction, L is a typical length
scale of the problem and D; is the hydrodynamic dispersion coefficient in the
flow direction. Large PECLET numbers indicate that advection dominates the
transport process.

2.4 The Discrete Model Concept

A. Silberhorn-Hemminger, M. Siif$, R. Helmig

As discussed above, in situations where the fractures as well as the matrix
play a significant role for the flow and transport processes, the model do-
main cannot be homogenized but a model concept that includes fractures as
well as matrix is required. One approach is to use the discrete model con-
cept, where the matrix and the fractures are locally idealized as continua and
the fractures are implemented discretely at their actual location within the
domain. It is obvious that the amount of data required to set up a discrete
model of the actual domain is very large and to some extent not measurable.
Consequently, the discrete model concept is preferably used for relatively
small domains and is a suitable tool for principle studies of flow and trans-
port processes.

In the previous sections (2.3), the physical-mathematical description of
the flow and transport processes in porous media, i.e. in the porous matrix,
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Fig. 2.10. Discrete modeling of flow and transport processes in fractured porous me-
dia - necessary steps.

is presented. This section deals with the model concept specific to the frac-
tures and the mathematical description of the flow within a fracture as well
as of its location and geometry. The stochastic fracture generator FRAC3D is
presented and the implementation of the discrete model concept in the nu-
merical model is briefly discussed. Figure 2.10 shows the steps from a natural
system to a discrete process model.

2.4.1 Parallel-Plate Concept

A natural fracture is bounded on both sides by the rock surface (Fig. 2.5). The
rough fracture walls do not have an identical profile and the normal tension
is carried by contact zones between the walls. A model concept frequently
used for a fracture consists of two plane parallel plates, representing the frac-
ture walls. As illustrated in Fig. 2.11, it can be applied locally, maintaining a
variation in fracture aperture throughout the fracture, or globally, assuming
one constant aperture for the total fracture. It is a well-known fact that espe-
cially the latter approach is a strong simplification of nature. However, other
methods proposed in the literature have not yet found general acceptance
(Berkowitz, 2002).

Tsang and Tsang (1987) showed that preferential flow paths exist, hence
channeling effects may have significant influence on the flow and therefore
also on the transport processes. For multi-phase flow, the variation in entry
pressure is strongly related to the distribution of the aperture; therefore chan-
neling effects are particularly important for simulations including more than
one fluid phase.
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Natural single fracture D{> Local parallel plates D{> Parallel plates

Fracture
aperture
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Fig. 2.11. From nature to parallel-plate concept.

For the numerical studies presented in this book, the parallel-plate con-
cept is applied. The decision to use this simplified concept is justified by the
fact that the simulations are concerned with single-phase flow only and that,
for the principle character of the investigations, this approximation of nature
is sufficient.

When the parallel-plate concept is applied, it is assumed that the length
scale I of the plates is much larger than the distance between them b (I > b).
Furthermore, hydraulically smooth walls and laminar flow are assumed,
corresponding to the POISEUILLE fluid model (Wollrath, 1990) . Figure 2.12
shows the two parallel plates and the parabola-shaped velocity profile, indi-
cating laminar flow. The NAVIER-STOKES equation for the laminar single-

Fig. 2.12. Laminar flow between two parallel plates: parabola-shaped velocity profile.

phase flow of an incompressible NEWTONIAN fluid yields the following
equation for the velocity profile between two parallel plates (Snow (1969);
White (1999)):

_pg | d(p 2 2
v(z) = o [ i (pg + z)} (H z7) . (2.32)
The maximum velocity vmax is reached at z = 0:
N N _ P8 i d p
Umax = 0(z=0) = o H i <pg> . (2.33)
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For a parabola-shaped profile, the mean velocity v is derived from the maxi-
mum velocity Umax:

2 _pgHX _d[p
v = 3Umax T4 3 dx \pg) (2.34)

From (2.34) and under consideration of the distance between the plates b
(b = 2H), the mean three-dimensional velocity v; can be written as:

2
b"pg Oh _ ok (2.35)

v = _12 n axi N axi

Here, the hydraulic conductivity K and the permeability k have the following
relationship (see (2.11)):

2
K = kP with k=" (2.36)
u 12

From this, it can be concluded that the permeability of a fracture, approxi-
mated by the parallel plate concept, is proportional to the square of the frac-
ture aperture b. The volume discharge Q is derived by integrating the veloc-

ity over the distance between the plates (assuming a constant depth [ parallel
to the y-axis):

+H
Q= / v(z) ldz. (2.37)
“H
Including (2.32) yields:
__pg b on
Q = 512 l o, (2.38)

Due to the proportionality of Q to the third power of the aperture b, (2.38) is
referred to as the cubic law (Romm, 1966).

2.4.2 Generation of Fracture Structural Models - FRAC3D

The use of the discrete modeling approach for simulating flow and transport
processes in fractured porous media requires the discrete description of the
fractures in space. Here, the fracture generator provides the geometrical de-
scription and the structural properties of the fracture system. The fracture
generator represents a link between the natural and the numerical model.
The generating algorithm requires information on the geometrical char-
acteristics of the fractures. This is obtained by investigating core samples
or outcrop sites. The information gained from these samples and locations
is of one- or two-dimensional character. Here, one problem of generating a
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stochastic fracture field, particularly a three-dimensional fracture field, be-
comes obvious: the information content of the data does not account for the
clearly three-dimensional characteristics of fractured porous systems. The re-
liability of such stochastically generated geometric models depends strongly
on the qualitative and quantitative description of the aquifer system: are
there main fracture orientations, is the fracture density high or low, is there
a single dominating fracture or fault zone, are the fractures open, are they
filled, how wide and rough are the fractures? These questions are just a selec-
tion of many more that have to be answered or at least to be considered dur-
ing the process of generating stochastic fracture systems. Additionally, we as-
sume that the selected real aquifer from which the field data is obtained can
be considered representative of the ensemble of all possible realizations. The
stochastic properties of the ensemble are given by adapted theoretical distri-
butions. Consequently, a stochastically generated fracture network based on
the field data can be regarded as one possible realization out of the ensemble.
The fracture-generating algorithm makes it possible to combine the available
field information adequately in order to obtain structural geometric fracture
models which are realizations of the real aquifer system.

In structural models, the natural fractures are represented by discrete el-
ements. In a two-dimensional model, the fractures are one-dimensional ele-
ments. In a three-dimensional model, the fracture planes are two-dimensional
elements. Additionally, distinctive flow channels may be represented by one-
dimensional elements in the three-dimensional model. Figure 2.13 shows a
two- and a three-dimensional stochastic structural fracture model.

Fig. 2.13. Stochastically generated two- and three-dimensional fracture models.

The three-dimensional fracture generator FRAC3D was developed on
the basis of the work of Long (1983), Long and Billaux (1987), and Wollrath
(1990) A flow chart of the program algorithm can be seen in Fig. 2.14. Beside
the fracture-generating routine itself, the program FRAC3D offers various
methods for analyzing the quality of the generated fields, and for optimizing
the generated fields. An interface for the mesh generation program ART and
the flow and transport simulation program MUFTE-UG (see Sect. 2.4.4) is
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included. A detailed description of the fracture generation program can be
found in Silberhorn-Hemminger (2002).

External way (in progress)
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Fig. 2.14. Program algorithm of the fracture generator FRAC3D.

2.4.2.1 Generation Routine

As can be seen in Fig. 2.14, the algorithm for structure models for generating
fractures is based on two different approaches: deterministic and stochastic.
The choice of approach depends on the quantity and the quality of the input
data available.

The deterministic approach requires exact information about a fracture
network or a single fault zone. One of its main problems is that one has to
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generate a three-dimensional system out of one- and two-dimensional infor-
mation. Often, this approach is not feasible due to lack of information.

The second basic approach is the stochastic one. A large sample of frac-
ture data (e.g. length, orientation) is required and a description of these field
data by parameterized theoretical distributions, such as the FISHER distri-
bution for the spherical orientation or the exponential distribution for the
fracture lengths, must be available. It is important to be aware of the fact
that these theoretical distributions are based on linear statistics. They do not
include any information about the spatial variability of the data.

The generating routine includes the following steps:

while (simulated_fracture_density < target_fracture_density)
{
step 1: Fracture location
Generation of the mid point of fracture [i]
step 2: Fracture orientation
Generation of the normal vector of fracture [i]
step 3: Fracture extension / length
Generation of the spatial extension of
fracture [i] and calculation of the four edge
points of the fracture [i]
step 4: Inclusion of the new generated fracture
element [i] into the global list of all
fracture elements
step 5: Calculation of the simulated_fracture_density

++i
total number of fractures: nfrac=i

}

An optional optimization routine for the parameter fracture distance com-
pletes the fracture generation.

The statistical characteristics of the newly generated fracture field are an-
alyzed. For this purpose, the distribution functions of several fracture param-
eters are calculated. The difference between the input distribution functions
and the distribution functions of the new field indicates the quality of the
new field. If the differences are too large, the newly generated field is either
rejected and the generation routine run again or the optimization routine
starts.

2.4.2.2 Optimization

As the optimization routine, a Simulated Annealing algorithm followed by a
Markov-Chain-Monte-Carlo algorithm is implemented in the fracture genera-
tor FRAC3D. The Simulated Annealing optimization step serves as a pre-
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conditioning of the starting field for the subsequent Markov-Chain-Monte-
Carlo optimization.

Because of the relatively smooth distributions of the fracture parameters
orientation and fracture length, a good agreement between the input distribu-
tions and the distributions of the generated fields is generally achieved.

However, for the fracture parameter fracture distance an optimization is
necessary since the information of the fracture distances cannot be taken into
account in the generating routine described above. In order to include this
important information in the generated fracture fields, a modified scanline
technique is applied. The scanline technique allows the calculation of the
fracture distance distribution and the optimization of the distribution.

2.4.2.3 Post-processing

In the next step, the intersection lines of the fracture planes and the intersec-
tion points of the intersection lines are determined (Fig. 2.15). Subsequently,
the investigation domain is extracted from the generated domain (Fig. 2.16).
Optionally, the inactive, disconnected fracture elements can be removed from
the fracture network.

Fig. 2.15. Fracture network (left) and intersection lines (right).

Finally, the xyz-coordinates of the investigation domain, the fracture
planes, the intersection lines, and the intersection points are converted into
the data format required for the following mesh generation. Figure 2.17
shows a stochastically generated three-dimensional fracture network and
two details of the finite element mesh of the fracture network. Fuchs (1999)
gives detailed information about the mesh-generation program ART (Al-
most Regular Triangulation).
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Fig. 2.16. Generated domain and extracted investigation domain.

2.4.2.4 Remarks

There is never a perfect match between a stochastic geometrical model and
the real system on which it is based. It is possible to generate different real-
izations which are similar in their statistical description. However, one sin-
gle realization can never exactly predict the behavior at a certain point of the
real system. Therefore, one has to consider a large number of realizations.
On the basis of these realizations, system properties such as the effective per-
meability and the effective dispersion of the system can be investigated and
calculated (see e.g. Sect. 4.3.3). Additionally, one has to be aware of the fact
that single fractures sometimes control the flow and transport processes in
a fracture network completely by connecting different independent fracture
clusters. If such dominating fractures are known and can be described by
their orientation and extension, a combination of the deterministic and the
stochastic approaches improves the reliability of the generated fracture net-
work.

The generation approach discussed above incorporates deterministic and
univariate stochastic information. A further improvement of the generation
process is the implementation of routines for considering geostatistical in-
formation as well. Such algorithms are being developed as this book is being
written. In Sect. 5.4, a geostatistical evaluation of the test site is discussed.
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Fig. 2.17. Three-dimensional fracture network and details of the finite element mesh.
Mesh generator ART (Almost Regular Triangulation) (Fuchs, 1999).
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2.4.3 Spatial and Temporal Discretization

Due to the large discrepancy between the properties of the matrix and the
fractures, large gradients occur in the vicinity of the fracture-matrix inter-
face. To achieve an acceptable numerical accuracy, the mesh of the numer-
ical model must have a high degree of refinement in these areas. Fractures
may either be discretized with one dimension less than the matrix, i.e. as
lines in a two-dimensional matrix or as a surface in a three-dimensional
matrix, or with the same dimension as the surrounding matrix elements,
i.e. equidimensionally (Fig. 2.18).

Q4

N N
1/{1/[

e vy

Qi

Qo

Fig. 2.18. Spatial discretization of a fracture embedded in a porous matrix in a
two-dimensional domain. Left: Lower-dimensional discretization. Right: Equidimen-
sional discretization. From Ochs et al. (2002).

For transport simulations, Neunhduserer (2003) showed that the equidi-
mensional approach yields a more accurate solution than the lower-dimen-
sional one. However, the differences in the global solution are only signifi-
cant if certain local effects accumulate in the system or if the processes are
slow so that a relevant amount of tracer mass exchange occurs between the
fracture and the matrix.

For time-dependent problems, sharp moving pressure and concentra-
tion fronts are obtained in the fractures, suggesting an adaptive refinement
method in order to save computing time, especially for highly complex sys-
tems. The temporal discretization required is in general finer in the vicinity
of the fractures, where very high flow velocities occur compared to the veloc-
ities in the surrounding matrix. An implicit temporal discretization is often
chosen in order to achieve a stable solution, despite the wide range of veloci-
ties. The disadvantage of this approach is a significant influence of numerical
dispersion.

Detailed discussions on spatial and temporal discretization methods can
be found in, for example, Neunhduserer (2003), Helmig (1997), Bastian et al.
(1999), Kinzelbach (1992), and Hirsch (1984).
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2.4.4 Applied Numerical Model - MUFTE-UG

The numerical model used for most discrete modeling investigation in this
book is MUFTE-UG. It consists of the two parts: MUFTE (Multiphase Flow,
Transport and Energy Model) and UG (Unstructured Grids). Figure 2.19
gives an overview of the features of the models. UG is a software toolbox
providing techniques for the numerical solution of partial differential equa-
tions (PDEs) on unstructured grids (Bastian, 1997). For solving linear and
nonlinear PDEs, several multi-grid solvers are available as well as adaptive
and parallel techniques. MUFTE contains numerous discretization meth-
ods and applications for modeling non-isothermal multi-phase processes in
porous and fractured media (Helmig (1997); Helmig et al. (1998)). Geomet-
rically complex structures, such as fractures systems, can be simulated with
MUFTE-UG due to the flexibility of the system and its compatibility with
the powerful mesh generator ART (Fuchs, 1999).
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Fig. 2.19. Overview of the model system MUFTE-UG.

2.4.5 Summary

This section provides a rough overview of the discrete model concept as it is
applied and implemented for the investigations within the framework of the
research work presented in this book. It gives a basis for a better understand-
ing of the simulation results presented and discussed later on.

Discrete modeling of fractured porous media requires not only an accu-
rate approximation of the flow and transport processes in the matrix, within
the fractures and at their interfaces but also the best possible description of
the geometrical properties of the system.
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The parallel-plate concept for the description of flow within the fractures
is explained and the fracture generator FRAC3D presented. Possible spatial
and temporal discretization methods are discussed briefly and the numerical
model MUFTE-UG is introduced.

Typical numerical difficulties are not included here. Detailed discussions
on this topic are given in, for example, Jakobs (2004), Reichenberger (2003),
Neunhduserer (2003) and Barlag (1997).

2.5 Implementation of the Multi-continuum Concept

T. Vogel, D. Jansen, |. Kongeter

The basic idea of multi-continuum modeling is to model separate, cou-
pled hydraulic components of a heterogeneous aquifer. This principle of the
multi-continuum model is illustrated in Fig. 2.20 for three identified con-
tinua. Itis assumed that each component is distributed continuously in space
and satisfies the conditions of a porous medium (Bear and Bachmat, 1990).
For fracture matrix systems, this could be two fracture continua, such as a
micro- and a macro-fracture system, and a matrix continuum with appropri-
ate equivalent parameters (cf. Sect. 2.5.5).

A detailed modeling of such systems by a discrete model approach re-
quires a high standard of modeling techniques and sufficient computer re-
sources, as well as very detailed experimental investigations of the aquifer
properties. Conversely, a representation of the aquifer by a single continuum
model neglects the interactions between the components, which may be sig-
nificant for the integral transport behavior of the aquifer. Multi-continuum
models offer an efficient solution for this conflict.

The scale of interest (cf. Sect. 2.2) is the third zone (the far-field scale),
where flow and transport may be considered to occur simultaneously, in
overlapping continua. Single fractures are not observed to be dominant, as
the mean length of the fractures is much smaller than the scale of interest.

It may seem that fewer input data are required for setting up a multi-
continuum model than for the discrete approach (cf. Sect. 2.4). However,
for high-quality multi-continuum modeling, a very good data basis is nec-
essary. Data are needed so that hydraulically effective components and their
interactions can be identified. An aquifer within fractured porous media with
two components could be identified as double-porous and single-permeable
(DPSP), double-porous and double-permeable (DPDP) or as single-porous
and single-permeable (SPSP).

2.5.1 Governing Equations

The governing equations concerning flow and transport are formulated in
the same way as for a porous medium (cf. Sect. 2.3) and are based on the
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Fig. 2.20. Principle of the multi-continuum approach for fractured permeable forma-
tions (Jansen, 1999).

principle of conservation of mass. The multi-continuum approach requires a
particular consideration of volume consistency and of exchange terms.

For the denomination of parameters and variables, the number of averag-
ing processes is taken into account. Parameters with a single bar are equiva-
lent continuum parameters and parameters with two bars are averaged over
certain areas of the continuum. Equivalent parameters such as porosity are
to be averaged once over the REV (cf. Sect. 2.3.1). An example of a second
averaging is the averaging of the concentration distribution in a matrix block
to obtain one equivalent mean value (cf. Fig. 2.21).

The equations for the continuum correspond to the equation for transient
flow and the advection-dispersion equation for conservative tracers. In ad-
dition to the familiar terms (storage, flow, source and sink term, advection
and dispersion terms), the exchange terms W, and the relative reference
volumes @4 have to be considered. The latter transform the governing equa-
tions for the continuum based on the natural volume of this component. The
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Determination of the equivalent porosity n in the fracture component
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Fig. 2.21. Determination of the first and second average of parameters over certain
areas of the continuum (Jansen, 1999).

following equations apply to the continuum «. The index 3 denotes the con-
tinuum coupled with «.

The equation for the flow field, formulated for the hydraulic head as vari-
able, is thus expressed for the permeable component as follows:

_ oh 9 _ oh )

Transport processes within a permeable component are modeled by solv-

ing the advection-dispersion equation (2.40):

0y . 00y 0 = Oy

O <ﬁe,oc ot + Jix dx; - x; Dij,oc ax]- + QQ,S,{X(CR - Eoc))
+ @{X(Dﬁwcraﬁ =0.

(2.40)

Within this formulation, 7, « is the equivalent porosity and §; , is the DARCY

velocity. D; jis the tensor of hydrodynamic dispersion (cf. Sect. 2.3.3.2) in this
context, written as

+ ﬁDm/i]‘ . (2.41)

= B} o i
Dij = (Xt(sijmi]" + ((Xl —(X[) |lq]
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Q0,s,a(crR — €x) is a source or sink term and W, is the exchange of mass be-
tween the coupled continua o and . If all exchange processes are taken into
account, W is given by equation (2.42):

Weap = Wolag + Watag + War,ap - (242)

Wpy is the diffusive solute exchange due to a concentration gradient between
the two components. Wy and Wy, are exchange masses due to local and
regional advection respectively. The local advection is caused by a fluid ex-
change resulting from a transient flow, where the tracer is transported advec-
tivly between the coupled continua. If the flow within the subordinate com-
ponent (e.g. matrix component) is not negligible, a mixing of the flows may
occur at the fracture-matrix interface, leading to an exchange of tracer mass.
This mixing is represented by the regional advection term (cf. Fig. 2.22).

2.5.2 Types of Coupling

The characteristics of a multi-continuum model are described by the number
of identified hydraulic components and the type of coupling and exchange
formulation between the continua (cf. Fig. 2.25). The different coupling meth-
ods are either parallel, serial or selective (cf. Fig. 2.23). A parallel coupling
means that all identified continua are coupled with each other directly, as
shown by Gwo et al. (1995). A serial coupling (e.g. Lee and Tan, 1987) implies
a coupling in the order of hydraulic conductivity (i.e. macro-fracture system,
micro-fracture system and matrix). The selective coupling (e.g. Closmann,
1975) would, for example, couple the macro-fracture system to the micro-
fracture system and to the matrix, but would not couple the micro-fracture
system and the matrix.

2.5.3 Exchange Formulation

Besides the coupling method of the total system, the exchange formulation
chosen for the single couplings is important (cf. Fig. 2.25). In the follow-
ing, double-continuum models are considered, representing two coupled
components of a multi-continuum model. The type of continuum model
(DPSP or DPDP) defines the appropriate exchange model. Transient ap-
proaches (Bertin and Panfiloy (2000), Moyne (1997), Zimmermann et al.
(1993), Pruess and Narasimhan (1985), among others) and quasi-steady for-
mulations (Quintard and Whitaker (1996), Kazemi (1969),Warren and Root
(1963), Barenblatt ef al. (1960), among others) can be distinguished.

2.5.3.1 DPSP Models with Transient Exchange Formulation

If DPSP models are considered, only molecular diffusion (matrix diffusion),
which is of a local nature and does not depend on regional processes, is mod-
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Fig. 2.22. Possible exchange processes for the components (Jansen, 1999).

eled for the matrix. Making use of the local nature of matrix diffusion, trans-
port in the matrix is described by the local one-dimensional diffusion equa-
tion (2.43)

aC/g 1 d aCﬁ .
e, 3 Aﬁ(s)ne’ﬁDm’ﬁ 3 (A/g(S) 3 >+Q/3(CR —cg)=0, (2.43)

where s is the distance from the exchange interface (the matrix block surface),
A(s) is the interface area for diffusive flux at this distance and Dy, is the
molecular diffusion coefficient. Formulations for A(s) are given by Pruess
and Karasaki (1982) and Jansen et al. (1996). Within the specific surface to
volume ratio of the porous blocks Qg, Wp is given by FICK’s law:



2.5 Implementation of the Multi-continuum Concept

(a) serial coupling

component 1 component 2 component 3
di . i .
bl Ll - Ll
global local local
(b) selective coupling
component 2 component 1 component 3
di . i .
bl Ll - Ll
local global local
component 1 component 3 component 2
d - d -
hal Ll o Ll
global local global
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(c) parallel coupling

component 1

global/local

N

component 2 component 3

d
w

\ 4

global/local global/local

Fig. 2.23. Serial (a), selective (b) and parallel (c) coupling of hydraulic components.

_ oc

Wo,ap = —Q0,67e,6Dm,p o (2.44)

5=0.0

2.5.3.2 DPDP Models with Quasi-Steady Exchange Formulation

If regional transport is considered in both coupled continua, exchange pro-
cesses are no longer only of a local nature. Therefore, equation (2.40) must be
solved for both continua.

The quasi-steady formulation describing the solute exchange W, can be
written for the fluid exchange as follows:

Warag = |Qw,ijap Ji,8 (2.45)
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WQLOCﬁ = O(iﬁacQ,ﬁ(fl“ — Eﬁ) (246)
and for the solute exchange as
Woiap = 05 e 5(Cx — ) (247)
WaLap = [Waiapl(Ca — Cp) (2.48)
WAI‘,(Xﬁ - ‘WQI',OC/.;‘ (E(X - Eﬁ) . (249)

In equation (2.48), W is the fluid exchange due to the local pressure gradi-
ent between continuum « and 3. In equation (2.49), W, is the fluid exchange
due to the mixing of fluxes. Procedures for determining Wq, are presented
in Jansen (1999). Qyy is the surface function that describes the relevant part
of the fracture for mixing. Figure 2.24 illustrates how exchange processes be-
tween two components depend on direction. The regional hydraulic gradient
induces a fluid flow in the fracture and the matrix system. The direction of
flow, egM, in the matrix system is in accordance with the conductivity char-
acteristics. Inside the fracture, flow is possible only in the direction of the
fracture axis. If the flow in the matrix system is perpendicular to a fracture,
the regional mass exchange is maximal. If the flow in the matrix system is
parallel to the direction of flow in the fracture, the two flows do not mix.
Thus, the intensity of mixing of the two flows depends on their relative ori-
entation and magnitude.

The specific fracture surface Qw (e ) is the measure for the surface of
interaction participating in the regional fluid exchange. It is defined as the

regional gradient

‘ Ireg <

X1 nF

qF X2
eqm

Fig. 2.24. Dependence of regional exchange processes on flow direction (Jansen, 1999).
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ratio of the sum of the perpendicular projections of all N fracture surfaces
AF to the direction of flow e,y in the matrix and the volume V) of the total
system under consideration:

N
Owlegu) = Vle): Ar(K)eqrnp (k) (2.50)
=1

QOyw can be obtained by a best-fit analysis. The exchange parameters &.
and &g have to be calibrated.

transient exchange formulation

_Cm(s)

quasi-steady exchange formulation

|
| frac

1

_ 1

M | }

'Y

|
|
|

I o

s=0 'S=Smax

[ U frac mat

|
|
! mat
I

Fig. 2.25. Transient and quasi-steady exchange formulations (Jansen ef al., 1998).

2.5.4 Numerical Model

The numerical model STRAFE was developed by the Institute of Hydraulic
Engineering and Water Resources Management, Aachen University. The fol-
lowing list provides an overview of the characteristics of the STRAFE multi-
continuum model used for the investigations in this book:

the number of components is theoretically infinite;

permeable components can only be modeled globally;

porous components can be modeled locally or globally;

two permeable components are coupled with the quasi-steady exchange
formulation;

e the coupling of a permeable and a porous component can be performed
with the quasi-steady exchange formulation or the transient formulation;
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e simultaneous coupling of several components can be done in a parallel,
serial or selective way;

e the numerical solution is achieved by the standard Galerkin Finite Ele-
ment method;

e acombination of one-, two- or three-dimensional finite elements is possi-
ble.

Birkholzer (1994b) and Jansen (1999) have presented very detailed descrip-
tions of the numerical model. For the evaluation of flow and transport pro-
cesses in the unsaturated zone, STRAFE has been further developed to han-
dle these processes in multi-continuum systems by taking the RICHARDS
equation into account (Lagendijk (1997) and Thielen (2002)).

2.5.5 Determination of Equivalent Parameters

In the following sections, methods for determining equivalent parameters
are presented. These methods are used to obtain parameter sets that are
necessary to set up a multi-continuum model as described in the previous
section. Applications of these methods are described later in this book (e.g.
Chapter 4).

2.5.5.1 Tensor of Equivalent Hydraulic Conductivity

The equivalent hydraulic conductivity tensor describes the flow properties
of a fractured and/or porous medium, determined by an averaging process
over the corresponding REV. The determination of the hydraulic conductiv-
ity tensor is performed according to Long (1983) and Wollrath (1990): a hy-
draulic gradient is imposed on the system under investigation with varying
angles and the corresponding discharge is established (Fig. 2.26, left). The
equivalent hydraulic conductivity for each direction is calculated as

_ Qy
Ky = A - grad(hy)’ (2.51)
where v is the direction, K is the equivalent hydraulic conductivity, Q is the
discharge, A is the area of the outflow boundary and grad(h,) is the im-
posed hydraulic gradient. With the least-square method, an ellipse is fitted
to the collection of directional values, representing the equivalent hydraulic
conductivity tensor of the system (Fig. 2.26, right).

K, = e'Ke with e = {“’”] (2.52)

The better the directional hydraulic conductivities fit the ellipse, the closer
the system is to an REV and the better its flow processes can be described by
a continuum with the properties of the determined equivalent tensor.
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fracture density : 100 [fractures/m?]

K, = .207e-08 [mis] o o~
K, = .121e-08 [mis]
alpha = 6.23°

R

Fig. 2.26. Fracture system and directional discharges (left). Calculated hydraulic con-
ductivities (right) for different fracture system realizations and fitted ellipse (Hem-
minger et al., 1998).

2.5.5.2 Equivalent Porosity

To describe the mean transport characteristics of a medium, the equivalent
porosity 7 is ascertained. The procedure is based on the same principle as
for the determination of the tensor of equivalent hydraulic conductivity (cf.
Sect. 2.5.5.1).

For each angle y in which a hydraulic gradient is applied to the system,
a transport calculation is performed (Fig. 2.26, left). At the input boundary, a
known quantity of an ideal tracer is introduced into the system. At the out-
put boundary, the breakthrough curve is determined and the corresponding
cumulative curve is calculated. The equivalent porosity n of the system is
obtained by:

Qytmedian

v . (2.53)
The parameter 7, is the directional equivalent porosity, Q, is the directional
discharge, and V is the volume of the total system.  ,¢4jan is the point in time
at which 50 % of the tracer mass are detected at the outflow boundary.

Here, only volumes are considered, since the ratio of the volume occupied
by flow processes to the total volume is calculated. Initially, the porosity is re-
garded as being directional, as it is determined on the basis of a breakthrough
curve corresponding to a certain direction. It goes without saying that for the
calculations, the porosity is considered to be independent of direction and is
thus a scalar quantity.

ny, =

2.5.5.3 Tensor of Equivalent Dispersivity

In order to derive the equivalent dispersion tensor Dy ;j, first the directional
dispersivity « , is determined for each of the tracer breakthrough curves.
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The determination is based on the one-dimensional transport equation for a
DIRAC impulse:

B 2
c(x,ta,) = AM - exp [— (x — o)

2neybm /Ot oy, dvte, 1 23
Here, c is the concentration, x is (in this case) the distance between the in- and
the outflow boundary, t is the time, A M is the injected tracer mass, 71¢ y is the
directional porosity, b the width of the area, m the thickness of the domain,
v is the mean seepage velocity and « ,, is the directional dispersivity to be
determined. With equation (2.54), the « ,, yielding the best reproduction of
each of the tracer breakthrough curves is iteratively obtained. For this pur-
pose, the equation is solved with gradually varying «; , and the deviation
from the simulated curve is derived using the least-square method, where N
is the number of time sampling points of the tracer breakthrough curve:

N 2
E = (Csim,i — C (x, ti/ “l,y)) . (255)
1

The error is plotted over & ,, and the minimum is established.

From the determined directional dispersion lengths, the directional dis-
persion coefficient D, can be ascertained using the corresponding seep-
age velocity. The dispersion tensor is established according to the same
procedure as for the determination of the hydraulic conductivity (cf. Fig.
2.26). From the principal axes of the tensor, the equivalent longitudinal and
transversal dispersion for the angle between the first principal axis and the
polar axis can be determined. This concept yields an approximated reference
value for the directional dispersivity. The disadvantage of this rather sim-
ple approach is that early concentration peaks and strong tailing, both very
typical characteristics of the tracer breakthrough curves of fractured porous
systems, are not satisfactorily reproduced.

2.5.6 Characteristic Values

Birkholzer (1994a) and Jansen (1999) develop characteristic values in order
to evaluate the importance of exchange processes and to assess the integral
transport behavior of the model. A good approximation of characteristic val-
ues is necessary to choose an appropriate type of exchange model and to
identify the relevant parameters of the aquifer.

As the multi-continuum model presented here allows for both a coupling
of fracture-matrix systems and fracture-fracture systems, two conceptual sys-
tems are investigated to identify the characteristic values.

Berkowitz et al. (1988) present an idealized model area that consists of a
regularly fractured fracture network and uniform matrix blocks. The model
area and boundary conditions are illustrated in Figure 2.27.
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Fig. 2.27. Idealized model area to identify the characteristic values (Jansen, 1999).

The superordinate component consists of two fracture sets that are in-
clined by 8; and —6; respectively. These matrix blocks are quadratic with a
side length of d; that are supposed to be isotropic and homogeneous. The
fracture spacing d; and the fracture aperture of by are assumed to be con-
stant. The subordinate fracture set of the fracture-fracture system consists of
horizontal fractures with a spacing of d, and an aperture of b,.

For the confined model area, steady-state flow conditions are assumed.
Continuous tracer injection is performed on the left model boundary.

A regional flow in the direction of the x-axis occurs due to the model area
and boundary conditions. This flow field does not cause a dispersive tracer
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flow at the fracture intersections. Thus, the model area may be reduced to a
strip of dicos 61 in height and a length x.

2.5.6.1 Mobility Number

The mobility number Ny is defined as the ratio of the equivalent DARCY ve-
locity of the subordinate component 3 and the superordinate component a:

Ny="1¢. (2.56)
Ju

It allows for a characterization of the coupled components with regard to
the mobility of the fluid in the subordinate component and is therefore a
significant criterion on for choosing between a storage or mobility approach.
In the case of isotropic flow conditions and a hydraulic gradient in the x-
direction considered here, the mobility number of the fracture-matrix system

is defined as

K

Ny = %2 — . J . (2.57)

2NN S ( dll) c0s20;

whereas, for the fracture-fracture system it is defined as:
- 3 )
Gxp 1/ by\ dicos0;

Ny = = _ . 2.58
M gx1 2 (bl) dyc0s26, (2.58)

In order to evaluate the mobility of the fluid in the subordinate component,
the relevant parameters for a fracture-matrix system are, according to equa-
tion (2.57), the equivalent hydraulic conductivity of the matrix, the fracture
width and fracture density of the superordinate component, as well as the
orientation of the fractures to the hydraulic gradient.

The flow regime in fracture-fracture systems is determined according to
equation (2.58) by the ratio of the fracture width, the ratio of the fracture
densities and the ratio of the orientation to the hydraulic gradient.

The reciprocal value of the fracture distances is equal to the fracture den-
sity of parallel fractures which is defined as the number of fractures per unit
area (Long et al., 1982). Fracture densities are used here because they may
also be applied to irregular fracture networks.

2.5.6.2 Diffusion-Advection Number

The diffusion-advection number Npj is defined as the ratio of mass trans-
ferred in a diffusive and regional-advective way:

Mp

. 2.59
My, (2.59)

Npa =
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This parameter allows for the characterization of the importance of ex-
change processes. It is defined for steady-state flow conditions, where mass
transfer due to local advection does not occur.

The diffusive mass transport in the subordinate component results from
the spatial and temporal integration of the FICK’s second law:

oC 92C
3 = D, 32 (2.60)
leading to
Mp = Conp\/8Dm 2TdA , (2.61)

where the equivalent porosity of the subordinate fracture component is de-
fined as:

by
dy
Concerning the advective mass transport, only the perpendicular projection

sin 61d A in the direction of the flow g is relevant. The mass transferred ad-
vectively in the subordinate component during the time T thus results in:

ny = (2.62)

MAr = C0q2TSil’l QldA . (2.63)

Taking the flow velocities into account, the diffusion-advection number of
the fracture-matrix system is defined as

Mp 1y \/ 8D 2
N, T) = = ’ 2.64
palT) = pp,, Kilsing; ' T (2.64)
and, for the fracture-fracture system, one obtains:
Mp 12v \/ 8Dp 2
N T) = = _ - 2.65
pa(T) My, gb3cos?0;1sin 6, T (2.65)

Interpreting the importance of mass-exchange processes by the diffusion-
advection number leads to the same parameters of the discrete system as for
the mobility number (cf. Sect. 2.5.6.1). Additionally, the time scale is taken
into account. At early points in time, the gradient of concentration at the
block surface is very steep, resulting in a high diffusive mass exchange and
a maximum value for Np. Later, the concentration gradient decreases and
the diffusion-advection number exhibits a smaller value. As a characteristic
point in time, the loading time T* is suggested.
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2.5.6.3 Loading Time

The loading time T* is a characteristic time scale describing the period of in-
teraction between the components. In order to determine T*, both advective
and diffusive processes are considered. T* is defined to account for the time
a tracer particle takes to move the distance s,4x (penetration depth) from the
block surface to the middle of the block advectively during the time T’ and
diffusively during the time T} respectively:

—1
11
T = <T;3 + Tz’5> . (2.66)

The maximum advective transport distance from the block surface to the
center of the block is expressed by

Smax,A = dlcos O . (2.67)
The pore velocity within the matrix component is defined as
K¢l
va= 1, (2.68)

13

and, for the subordinate fracture component,
Uyo = 1 g b3cos?0s 1 , (2.69)
’ nt 12v

where nt is the porosity of the fracture filling. The advective loading time T
is therefore defined for the matrix component as

« _ nhodicosfq

T = K1, (2.70)

and as
n¢12vdycos 61

s = "l
gb3c0s26, 1,

2.71)

for the fracture component. The diffusive transport distance perpendicular
to the block surface is defined for a matrix component as

Smax,D = dlsin 91 . (2.72)

Within the subordinate fracture component, diffusive solute transport may
only occur in the direction of the fractures. The diffusive transport distance
to the center of the block may thus be determined as

Smax,D = d1¢0567 . (2.73)

Therefore, the diffusive loading time of a matrix component is
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5 = ( Ldysin20 o (2.74)
D=\ 2™ ') 2Dy, '
and
S|
T, = (dlcos 91> (2.75)
b 2Dmol,2

for a subordinate fracture component.

Comparing the loading times for a fracture-matrix system and a fracture-
fracture system, special attention has to be given to the equivalent porosity of
a matrix and a fracture component because of their different orders of mag-
nitude. The equivalent porosity of a matrix component is, in general, much
higher than for a fracture component. Therefore, the relevant time scales for
the exchange processes of fracture-matrix and fracture-fracture systems dif-
fer.

2.5.6.4 Loss of Identity Length

The loss of identity length L* is a characterisitic length scale. It is used to esti-
mate the transport distance within which a distinction between the two com-
ponents is necessary. It is defined by an empirical approach and specifies the
transport distance within which the concentration in the superordinate com-
ponent, introduced at the input boundary, is dissipated to 0.1 % of the initial
value, due to exchange processes with the subordinate component. There is a
distinction between the advective loss of identity length L% and the diffusive
loss of identity length L},, which are calculated as the loss of identity length
exclusively for regional advection and diffusive mass exchange respectively.
The loss of identity length is defined as:

-1
L*:<1+1> . (2.76)

Ly Ip

Birkholzer (1994a) expresses the term for the advective loss of identity
length by:

1n0.001
Nm

According to Tang et al. (1981) the diffusive loss of identity length L7, is
estimated by means of the analytical solution of the diffusion of a tracer from
a single fracture into an infinite half space. Making use of the simplification
that adsorption and degradation processes can be neglected, the following
equation is established:

Ly = — (2.77)
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c exp(vz) 7 B 2_0222 Y
. =2 i l/exp( 3 462 Jerfc oT dé (2.78)

with: -
"=, (2.79)
VB2, . , 4Dy b
Y = AA & with 7= 02 and A= 13/ Dy (2.80)
T Z 2.81
=/t — 4D1£ (2.81)
z 1
| = 2.82
2 /Dyt (2.82)
D1 = v+ Dy (2.83)
Dy = 7Dy, . (2.84)

z characterizes the transport distance, v; is the pore velocity and D; the
coefficient of dispersion in the fracture. The effective coefficient of molecular
diffusion in the matrix is described by D, and the tortuosity in the matrix is
defined as 7. The period of the observation is .

By means of equation (2.78), the concentration profiles along the fracture
axis are determined for specific points in time (Fig. 2.28). The transport length
for which the concentration is equal to 0.1 % of the concentration at the input
boundary can be deduced from these profiles. Birkholzer (1994a) proposes
a value of 0.2T}; as the period of observation. T}, is the diffusive loading
time of a component. A detailed derivation of this parameter can be found
in Birkholzer (1994a).

2.5.7 Summary

Whereas Sect. 2.4 presents the discrete model concept, this section gives an
overview of the alternative multi-continuum model concept. Additionally,
necessary equivalent parameters are defined and the determination of these
parameters is explained. Characteristic values quantifying the exchange pro-
cesses in hydraulic systems with more than one component are introduced
and their derivation is shown based on a idealized model area. This allows
for a better understanding of the numerical investigations presented and dis-
cussed within this book.
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Fig. 2.28. Typical concentration profiles along the fracture for different points in time
(Tang et al., 1981).

Multi-continuum models, as a compromise between a detailed discrete
approach and a simplified single-continuum approach, substitute the hetero-
geneous structure of an aquifer by overlaying, coupled homogeneous com-
ponents that are continuously distributed in the model domain. Special at-
tention has to be paid to the exchange processes and the related coupling
terms.

Even though a multi-continuum approach is more general than a discrete
model, a basis of solid and reliable experimental data is critical for the success
of the model.

2.6 Summary

Following the steps of the transformation from a complex natural system
to a simplified numerical model, general characteristics of fractured porous
systems, the basic theory and concepts of flow and transport processes in
such systems, and two different model approaches are presented.

The discussion has the objective of founding a basis for a better under-
standing of the research results presented in this book in later chapters.

The general properties of the components of fractured porous systems
and in particular the geometrical characterization, often based on statistical
approaches, are described.

A basic physical-mathematical description of single-phase flow and trans-

port processes in porous media is given, relevant to the issues discussed in
this book.
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Depending on the problem scale, the types of heterogeneities (e.g. faults,
fractures, fissures) and their frequencies, two different model approaches for
the consideration of fractures in porous domains are proposed.

In a discrete model, the matrix and the fractures are locally idealized as
continua and the fractures are implemented discretely at their actual location
within the domain. Due to the extensive property and geometrical data re-
quirements, as well as the high spatial and temporal resolution necessary to
obtain accurate results, discrete models are best suited for principal investi-
gations on a limited scale.

The second approach introduced is the multi-continuum model approach.
By transforming, for example, the matrix and the fractures on different scales
into separate equivalent continua, the domain is partly homogenized. The
exchange between the defined continua is realized by introducing exchange
terms for both flow and transport interaction processes. This approach is ap-
propriate for larger problem scales due to the requirement of averaging over
a representative elementary volume.

The amount and quality of available data is, for both model approaches,
an essential pre-requisite for reliable model results.
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