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Abstract. Improving the accuracy of the spherical 
harmonic coefficients of the Earth's gravity field and 
its temporal variations at long and medium spatial-
scales with unprecedented accuracy is the primary 
science objective of the GRACE mission. The line 
of sight (LOS) acceleration difference between the 
satellite pair is the most frequently utilized form of 
the observable. It is the simplest form of the observ­
able which can be easily employed. Nevertheless, the 
observable is a two-point function and has no direct 
relationship with the field geometry at the evaluation 
point. 
In this paper, as the alternative, gradiometry ap­
proach is proposed. Being a one-point function and 
having a direct relation with the field geometry (cur­
vature of the field at the point) are two noteworthy 
achievements of the alternative formulation. Besides, 
using an observation quantity that is related to the 
second instead of the first-order derivatives of the 
gravitational potential amplifies the high-frequency 
part of the signal. 
Complexity of the derived mathematical model and 
its proper treatment is the severe problem for the 
gradiometry approach. Herein, mixed gravitational 
acceleration-gradient model and also use of the avail­
able Earth' gravity model as a priori information on 
the low-degree harmonics are addressed. 
The first recently released EIGEN2 CHAMP-only 
Earth's gravity model was employed for numerical 
analysis. Error analysis showed that the residuals of 
the estimated degree variances were of about 10~^ 
for n< 90. Also, the gravity anomaly residuals were 
less than 5 mGal for most points on the Earth. 
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1 Introduction 

The line of sight (LOS) acceleration difference be­
tween a satellite pair has been frequently used for 
mapping the field globally (e.g. Hajela , 1974; Rum-
mel , 1980; Garcia , 2002; Han et al. , 2003). The 
idea can also be applied to the GRACE observable as 
the first realization of the LL-SST mode. 
Moreover, the GRACE configuration can be viewed 

as a huge one-component gradiometer with an arm 
length of 250 km. Rummel (2003) showed that 
the accuracy of this virtual one-dimensional gra­
diometer is about 10~^ E / v S z . Consequently, the 
GRACE configuration can be considered as poten­
tially a precise one-dimensional virtual gradiometer. 
The advantage of looking GRACE observations as 
gradiometer data over looking at them as satellite-to 
satellite tracking data is that in the gradiometry mode 
the gravity field recovery can be done in a space-
wise approach. The space-wise approach leads to an 
inversion-free recovery algorithm, which makes all 
the measures obsolete, which have to be taken to sta­
bilize the linear system of equations in the satellite to 
satellite mode. 
The paper starts with the mathematical description 
of gravitational field recovery by satellite-to-satellite 
tracking in the low-low mode as it has already been 
worked out in the contribution Rummel et al. (1978) 
and Rummel (1980) . This traditional approach re­
lates the observation to a two-point function of the 
potential namely the gravitational acceleration differ­
ence of the satellites, projected onto the inter-satellite 
unit vector. The gravitational acceleration is propor­
tional to the first-order derivative of the potential. 
For a high-resolution determination of the gravita­
tional potential, an observation would be desirable 
which is a one-point function and relates to higher or­
der derivatives of the potential, since for a one-point 
functional of the gravity field recovery in the space-
wise model becomes possible. 
Hence, we consider the GRACE mission as a one-
axis gradiometer and formulate the problem in terms 
of the gravitational acceleration tensor components. 
Besides some remainder terms which can be mod­
elled with sufficient accuracy, the gravitational accel­
eration gradient is related to the second order deriva­
tives of the gravitational potential at the mid-point 
of the satellites configuration. In this way, the two-
point first order problem is replaced by a one-point 
second order problem, promising a higher resolution 
of gravitational potential recovery. 
Due to the complexity, the developed mathematical 
model can not be fully coded. Therefore, for ease of 
computation, we have to approximate the model with 
numerically applicable forms. Including the higher 
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order terms beyond the linear term of the Taylor ex­
pansion makes the numerical computation very com­
plicated. From the numerical point of view, the only 
possible form would be the linear approximation of 
the equation. On the other hand, excluding the higher 
order terms of the expansion results in truncation er­
ror whose contribution to the observation equation 
is considerable. Hence, using either a higher order 
approximation of the equation or modified linear ap­
proximation is inevitable. 
Herein, we introduce two modified gradiometry algo­
rithms which result in simple practical mathematical 
models. Mixed gravitational acceleration-gradient 
model and use of the available Earth' gravity model 
as a priori information on the low-degree harmonics 
are formulated. In both cases, increment to the low-
degree harmonics and the higher degree coefficients 
are simultaneously estimated. 
The final part of the paper is dedicated to recovery of 
the gravitational field and the analysis of the results. 
As a priori information, we will employ the first re­
cently released EIGEN2 CHAMP-only Earth's grav­
ity model to show the practical performance of the 
modified formulation. The article will end in some 
conclusions and recommendations. 

2 Mathematical Formulation 

The key observables of the GRACE mission are the 
inter-satellite distance p, and its first and second time 
derivatives p and p. These principal scalar quantities 
measured by the K-band Ranging system (KBR) are 
considered as the LL-SST information. They can be 
related to the Earth's gravitational field if the absolute 
positions of the spacecrafts, i.e. r i and r2 are known. 
Therefore, the two satellites have been equipped with 
dual-fi:equency Blackjack GPS receivers to provide 
the HL-SST information. Eq. (1) connects the LL-
SST observations to those of the HL-SST at each 
evaluation point (Rummel et al. , 1978): 

A i ^ e p + p-\p^-\\^vf) (1) 

where, e = P~^{Y2 - ^i) is the unit vector along 
the LOS. Ar = 1-2 - r i and Ar = 1̂2 - ^i are the 
difference of the velocities and accelerations of the 
two satellites here expressed in an inertial frame. We 
consider Eq. (1) as the basic equation of the HL-\-LL 
combination observable and modify it in each case 
accordingly. 

2.1 Gravitational Acceleration Difference 

In the absence of non-gravitational forces, the left-
hand-side of Eq. (1) can be considered as the 

Earth's gravitational acceleration difference along 
LOS, Ar^os . 

A r ^ o s ^ p - El 
p 

lArll 
(2) 

The left-hand-side of Eq. (2) is a function of the grav­
itational potential partial derivatives and the inter-
satellite unit vector e, whereas the right-hand-side is 
the observational quantity. Using a sequence with an 
adequate number of observations, we set up the lin­
ear system of observation equations and recover the 
spherical harmonic coefficients. More details can be 
found in Keller and Sharifi (2004) and the references 
cited therein. 

2.2 Gravitational Acceleration Gradient 

As mentioned earlier, combining the two SST con­
cepts, as shown in Fig. 1, makes the twin satellites 
to appear as a very accurate one-component gra-
diometer. Rummel (2003) showed that the accuracy 
of this virtual one-dimensional gradiometer is about 
10"^ E/\/1!z. This unique characteristic of GRACE 
is a motivation to switch from the first derivatives of 
the gravitational potential to the second derivatives 
of the field. In other words, we write the observation 
equation (Eq. 2) as a function of the gravitational ac­
celeration gradient components instead of the gravi­
tational potential gradient. 
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Fig. 1. Gradiometry with the GRACE twin satellites (from 
Rummel etal. (2002)) 

To derive the respective mathematical formulae, we 
expand the gravitational acceleration at the two satel­
lites' respective positions around the mid-point using 
Taylor expansion. Subtracting the resultant expres­
sion yields (Keller and Sharifi , 2004): 

Ar = E 
j=l:2:oo 

2i-i 
(V^ '0r^ , , ) .Ar^ (3) 
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where, 0 is Kronecker product symbol and Fmid is 
the gravitational acceleration at the mid-point of the 
satellites configuration. The left-hand-side of Eq. (3) 
is a two-point first order quantity, whereas the right-
hand-side is a one-point higher order (at least sec­
ond order) one. Consequently, inserting Eq. (3) into 
Eq. (2) results in the sought-after formulation. 
Obviously, the expansion (Eq. 3) contains par­
tial derivatives of the Earth's gravitational potential 
higher than the second order. Including the partial 
derivatives beyond the linear term makes the math­
ematical model rather complicated. Therefore, we 
will consider the linear term of the expansion and 
modify the equations to minimize the linearization 
error. Herein, we also assume the Earth's gravita­
tional force as the only governing force field. 

2.2.1 Linear Approximation 

Assuming j = lin Eq. (3) dismisses the summation 
out and makes the equation as simple as possible: 

A r = (V 0 r ^ ) • Ar = GAr, (4) 

where, G is the Earth's gravitational gradient tensor. 
Inserting Eq. (4) into Eq. (2) and dividing both sides 
of the equation by p results in Eq. (5), which is called 
linear gradiometry equation: 

^Ge=^^^- lArll 
(5) p p- p-

Right-hand-side of Eq. (5) is a linear fianction of the 
Earth's gravitational gradient tensor elements. Com­
paring Eqs. (2) and (5), leads to a criteria for evalua­
tion of the linearization error: 

3^Ge- - A r L o s | < ^ 

The linear approximation is valid as long as the lin­
earization error is negligible. Otherwise, the error 
degrades the model and the linear approximation of 
the grtadiometry equation will collapse. 
Keller and Sharifi (2004) investigated the lineariza­
tion error for the GRACE configuration and showed 
that the error is at the level of 0.55 E(1E = 
1 Eotvos Unit = 10~^ s~^), which can not be ne­
glected. Thus, we should either include at least the 
cubic term or modify the model to lower the lin­
earization error. Due to the complexity of the cubic 
approximation, we prefer to retain the linear approxi­
mation and apply the remove-restore technique to re­
duce influence of the cubic term. 

2.2.2 Mixed Mathematical Model 

The largest orbit perturbation for all satellite orbits 
is the so-called J2-effect caused by the flattening of 

the Earth; and the effect of the next three zonal har­
monics in the expansion of the Earth's gravitational 
field is about two orders of magnitude smaller than 
the perturbation from J2. 
Keller and HeB (1998) and Keller and Sharifi (2004) 
showed that the linearization error reduced to few 
ten mE by introducing an ellipsoidal reference field. 
Nevertheless, the estimation process leads to unac­
ceptable solution at the presence of the linearization 
error residual corresponding to the gravitational dis­
turbing potential. Thus, instead of introducing an 
ellipsoidal reference field, we split the gravitational 
potential (V) into a low-degree spheroidal reference 
field (Vi) and an incremental one (V^). Accordingly, 
we consider observation equation of Eqs. (2) and (5) 
types for the first / and the higher degree (> I) terms 
of the gravitational potential harmonic expansion re­
spectively. Therefore, Eq. (5) can be recast into: 

- A r p o s + e ^ . e = ^ + IIArll 
(7) 

where, G^ stands for the gradient tensor correspond­
ing to the higher degree harmonics of the gravita­
tional potential expansion. Analogously, we redefine 
the linearization error criteria: 

le^G^e-
1 
-AF 

LOS, 
< e . (8) 

An appropriate choice of I leads to some negligible 
linearization error residual. For instance, for / = 10, 
it is at the level of few mE (Keller and Sharifi, 2004). 
Consequently, all the spherical harmonic coefficients 
are estimated all together in a linear system of equa­
tions with reasonable accuracy. 
Compared with Eq. (5), Eq. (7) contains less system­
atic error. In contrast, it is partially a two-point first 
order problem. In the following subsection, we im­
prove this deficiency by introducing the sequential 
solution. 

2.2.3 Sequential Estimation 

Up to now, different global gravity models of the 
Earth have been released to public and many more 
may be developed later on. Combining the existing 
models with any new set of observations, carried out 
on the Earth's gravity field, is of particular interest to 
geoscientists. In other words, hybrid solution would 
be without doubt one of the most interesting chal­
lenges of the coming years. 
As already discussed, the linearization error is the 
greatest single obstacle to the linear gradiometry 
equation. On the other hand, the low-degree harmon­
ics' contribution is the most dominant one. There-
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fore, we consider one of the available Earth's grav­
ity models and utilize the low-degree coefficients of 
the model as a priori information. Accordingly, any 
quantity corresponding to the low-degree harmonics 
can be split into the approximate value plus the re­
spective correction. The first term on the left-hand-
side of Eq. (7), for instance, can be written as: 

-AT-LOS 1 A-p LOS 

p 

1 
- ( 
p 

+ -SAVf^^. (9) 

approximate value correction 

Replacing the correction term by the corresponding 
expression of the gradiometry type yields: 

-ArLOS^e^(5GzeH- iAro^o^ (10) 

Inserting Eq. (10) into Eq. (7) results in Eq. (11), 
which is called sequential gradiometry observation 
equation: 

e^((5Q + G 0 e = ^ + ^ - IIArf l _ L O S 

(11) 
Eq. (11) results firom appHcation of standard sequen­
tial adjustment to Eq. (7). The linearization error cri­
teria is modified as: 

|e^(^Gz+GOe--(Ar^oS-Aro[^oS) | < 6 . (12) 

We implemented the idea based on some simulated 
data and the achieved results will be presented in sec­
tion. (3). So, in brief: 

• the two-point first order problem is replaced by 
a one-point second order problem, 

• the linearization error reduces to an acceptable 
level, 

• both the low- and the high-degree harmonic co­
efficients are estimated. 

3 Numerical Analysis 

Numerical studies are based on the lAG simulated 
data of the Earth's gravity field dedicated satellite 
missions (Ilk et al. , 2003). As the pseudo-real grav­
ity field of the Earth, EGM96 (Lemoine et al. , 1998) 
complete to degree 300, has been considered. More­
over, we utilize EIGEN2 CHAMP-only (Reigber et 
al. , 2003) as a priori information. 
First, the sequential gradiometry equation's trun­
cation error and random error of the approximate 
value are evaluated. Finally, we will recover some 
low-degree coefficients of the gravitational potential 
based on the sequential gradiometry approach. In 
both cases, a one-month span of the GRACE obser­
vations is considered. 

3.1 Evaluation of the Truncation Error and 
Random error of the Approximate Value 

Using Eq. (12), we can determine the truncation error 
of the sequential observation equation. The evalua­
tion was done for a few low degrees of the spherical 
harmonics and the results of a one-day span of the 
mission were shown in Fig. (2). As shown in Fig. (2), 

g 0 #|jtiil# 
y linearization error {EIGEN2 upto 30) 

' l i liiiiii«ili^"'iililiiiiilii 
linearization error -100 {EIGEN2 upto 20) 

12 
time [liour] 

18 

Fig. 2. Linearization error of the sequential gradiometry 
equation, Eq. 12, (EGM96 upto 90 as the pseudo-real field) 

Eventually, It should be noted that the first two terms 
of the right-hand-side of Eqs. (2), (5), (7) and (11) are 
computed by means of the GRACE ranging data. For 
the third term, GPS and Doppler observations have 
to be used. The modelling of this term from GPS 
and Doppler observations was investigated by Keller 
and HeB (1998). They showed that this term can be 
modelled with an accuracy of about 10~^^s~^ un­
der realistic assumptions, which is sufficient for the 
purpose of the presented study. 

increasing the degree I decreases the linearization er­
ror. On the other hand, stepping the degree up in­
creases random error of the approximate value. As 
a representative example, using the variance compo­
nents provided in EIGEN2 data file, the error was es­
timated and the results were depicted for one revolu­
tion of the mission for I = 30 and / = 50 in Figs. (3) 
and (4) respectively. The variance-covariance ma­
trix has a dominant block diagonal structure in both 
cases. However, the diagonal elements correspond-
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Fig. 3. Variance-covariance matrix structure of the approx­
imate value corresponding to one revolution of the GRACE 
mission (pseudo-real field: EIGEN2 upto I = 30). 

I 

Fig. 4. Variance-covariance matrix structure of the approx­
imate value corresponding to one revolution of the GRACE 
mission (pseudo-real field: EIGEN2 upto I = 50). 

ing to ^ = 30 are about 1 mE^, whereas they exceed 
40 mE^ for I = 50. Compared with the linearization 
error of the sequential gradiometry equation (Eq. 12), 
random error of the approximate value is negligible 
for / = 30. Nevertheless, subtracting the approxi­
mate value corresponding to ^ = 50 will double the 
diagonal elements of the variance-covariance matrix 
of the reduced observations. Hence, we employ the 
approximate value corresponding to I = 30 whose 
respective uncertainties are really negligible. 

3.2 Recovery of the Spherical Harmonic 
Coefficients 

In this subsection, we analyze the sequential gra­
diometry approach performance. We considered 

n = 90 as the maximum degree of the sought-after 
spherical harmonics. Therefore, to avoid the omis­
sion errors, the simulated observations only contain 
the respective signals (n, m upto 90). We plugged the 
sequence of the simulated observations in Eq. (11) 
to estimate the spherical harmonic coefficients. The 
achieved results, as well as the original coefficients 
(EGM96), were plotted in Fig. (5) in terms of de­
gree variances. Besides the degree variances, the fig­
ure shows estimation error of the coefficient . As 

10 20 30 40 50 60 70 80 90 
spherical harmonic degree 

Fig. 5. Estimated degree variances upto 90 based on 
EIGEN2 upto 30 as a priori information. 

seen in Fig. (5), estimation error is lower than 10 ^ 
for I < 30. The error steps up to lO"'^ for / > 30. 
This jump is in accordance with the split point of 
the Earth's gravitational potential in the sequential 
formulation. Therefore, it indicates that the higher 
value of ^ leads to a better accuracy, at least forn < L 
However, as mentioned earlier, the high-degree of I 
will dramatically increase uncertainty of the reduced 
observations. Then, a medium degree of / would be 
an optimal choice. 
Moveover, the gravity anomaly is computed on a 
regular 2° x 2° grid on the mean sphere using both 
the estimated coefficients and EGM96's. As we see 
in Fig. (6), the gravity anomaly errors are less than 
5 mGal for most points on the Earth. The error does 
not exceed 15 mGal. 

4 Conclusion 

The GRACE mission is the first mission that has 
realized satellite-to-satellite tracking concept in LL-
mode. Despite the mission realization, the idea has 
been investigated theoretically since 1970 (e.g. Wolff 
, 1969). Consequently, different approaches have 
been introduced by many authors and researchers. 
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Fig. 6. Gravity anomaly residuals (absolute values). 

Among them, LOS acceleration difference between 
the two satellites has been of particular interest. It is a 
two-point first-order problem. However, a one-point 
second-order formulation is far preferable to a two-
point first-order formulation. For instance, having di­
rect relationship with the gravity field geometry and 
promising improved gravitational field resolution are 
two noteworthy achievements of the sought-after for­
mulation. Moreover, a relatively long inter-satellite 
range is a motivation to consider the spacecrafts as 
one-dimensional virtual gradiometer. 
In this regards, we derived the desired formulation 
simply by expanding the LOS acceleration differ­
ences around the mid-point of the satellite configura­
tion. We utilized linear term of the expansion called 
linear gradiometry equation, because of its simplic­
ity. However, because of considerable lineariza­
tion error, we introduced the sequential gradiometry 
equation as an intermediate solution to lower the lin­
earization error. 
EGM96 upto 90 and EIGEN2 CHAMP-only model 
upto 30 were respectively employed as the pseudo-
real field and a priori information on the low-degree 
harmonics of the gravitational potential. The spheri­
cal harmonic degree variances estimated with an ac­
curacy of about 10~^. Also, Gravity anomaly resid­
uals were less than 5mGal for most points on the 
Earth's surface. To sum up, the estimated results 
indicate the high level performance of the proposed 
method. 
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