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Abstract. GOCE will be the first sateUite ever to 
measure the second derivatives of the Earth's gravi­
tational potential in space. It will be possible to de­
rive a high accuracy and high resolution model of the 
gravitational field if systematic errors and/or outliers 
have been removed from the data. It is necessary to 
detect outliers in the data pre-processing because un­
detected outliers may lead to erroneous results when 
the data are further processed, for example in the re­
covery of a gravity field model. Outliers in the GOCE 
gravity gradients will be searched for and detected in 
the gravity field analysis pre-processing step. 

In this paper, a number of algorithms are discussed 
that detect outliers in the diagonal gravity gradients. 
One of them combines wavelets with either a statis­
tical method or filtered gradients with an identifica­
tion rate of about 90% or more. Another high per­
forming algorithm is the combination of three meth­
ods, that is, the tracelessness condition (a physical 
property of the diagonal gradients), comparison with 
model or filtered gradients, and along-track interpo­
lation of gradient anomalies. Using two sets of simu­
lated gravity gradients, the algorithms are compared 
in terms of their identification rate and number of fal-
sly detected outliers. In addition, it is shown that the 
quality of the gravity field solution is very much af­
fected by outliers. Undetected outliers can degrade 
the gravity field solution by up to twenty times as 
compared with a solution without outliers. 
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1 Introduction 

The main goal of the GOCE mission (expected launch 
in August 2006) is to provide unique models of the 
Earth's gravity field and of its equipotential surface, 
as represented by the geoid, on a global scale with 
an accuracy of 1 cm at 100 km resolution (ESA 

1999). To this end, GOCE will be equipped with a 
GPS receiver for high-low satellite-to-satellite track­
ing (SST-hl), and with a gradiometer for observation 
of the gravity gradients (GG). Only the latter will be 
considered in this paper. 

Even after the in-flight calibration, the observa­
tions will be contaminated with stochastic and sys­
tematic errors. Systematic errors include GG scale 
factor errors and biases (Cesare 2002) which are cor­
rected for in the external calibration step (see e.g. 
Arabelos and Tscheming 1998; Bouman et al. 2004). 
In addition, outliers in the GOCE gravity gradients 
are searched for and detected in the gravity field anal­
ysis (GFA) pre-processing step. If some remain unde­
tected, they may seriously affect the accuracy of the 
final GOCE gravity field model (Kern et al. 2004). 

A vast number of outlier detection methods exists 
and a selection is discussed in this paper. Outliers 
are searched for in simulated gravity gradient time 
series contaminated with noise and outliers. The per­
formance of the methods is evaluated with respect 
to the detection rate and the type I error (rejecting 
correct data). Section 2 details several outlier detec­
tion methods and section 3 shows numerical exam­
ples. One alternative for the time-wise methods stud­
ied here, is presented by (Tscheming 1991). 

2 Outlier detection methods 

2.1 TSOFT outlier detection algorithm 

The TSOFT outlier detection algorithm is based on 
the algorithm presented by Vauterin and Van Camp 
(2004). The idea is to low-pass filter the gravity gra­
dient time series which tends to reduce the outliers. If 
for certain points the difference between the filtered 
and unfiltered time series is above a certain threshold, 
thri, then these points are likely to be outliers. The 
effect of the low-pass filter is not only a reduction 
of the size of the outliers, but also a redistribution of 
the power over neighbouring points. In addition, an 
outlier that is close to another outlier may mask that 
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outlier. Therefore, iteration is necessary, replacing 
the detected outliers in the original time series by the 
filtered values. This updated time series is then again 
low-pass filtered and again outliers can be searched 
for, etc. The final low-pass filtered time series, with 
most outliers removed, is tested against the original 
time series with outliers. If the difference is above a 
threshold, thr2 < thri, then an outlier is detected. 
The second threshold can be smaller than the first 
one since the final low-pass filtered time series is af­
fected less by outliers than the filtered times series in 
the iteration. The thresholds themselves have to be 
determined using simulated data or by trial and error. 

2.2 Wavelet outlier detection algorithm 

Single and higher level Haar wavelet can be used to 
detect outliers. The wavelet outlier detection is ex-
pHcitely explained in the paper by Kern et al. (2004). 
It searches for discontinuities in the signal. A single 
level outlier detection algorithm may be formulated 
as follows. 
[1] Compute detailed and smoothed wavelet coeffi­
cients using the forward wavelet transformation {k = 
l , . . . , m / 2 - l ) 

di^k = {^2k - a?2fe+i)/\/2j 
(1) 

with data vector Xi = {xi.. .Xm}-
[2] Threshold the detailed coefficients by setting a 
threshold td 

^hk = I di^k 
0 

for |di,fc| < td, 
otherwise. 

[3] Reconstruct the signal 

(2) 

(3) 

[4] Compute the residual signal using the recon­
structed signal !C™ 

T^ — X^ X^ , * — i , . . . J 7/6 (4) 

[5] Apply a pattern recognition program on the resid­
uals to identify the position of the outliers. 

2.3 Dixon test 

The Dixon test is a hypothesis test that uses the ra­
tio of differences between a possible outlier and its 
nearest or next-nearest neighbour (data excess) to the 
range. The data have to be normally distributed. Let 

the data vector xi = {xi.. .Xm} ^^ sorted in as­
cending order and let ti-c^ (m — 1) be the Student's t-
distribution, which depends on the significance level 
a € (0,1) and the number of observations m. An 
a-outher region for upper outliers is defined as 

out(a,m) := {TJ > ti-a{m - 1)'J = 1,2} (5) 

where the test functions are given as (Bamett and 
Lewis 1994) 

ri = , r2 
X2 ^m ^3 

(6) 

If one of the test functions Vj exceeds the critical 
value ^i_a(m — 1), the largest observation is an out­
lier or the distribution is not normal. The test statis­
tic ri does not contain the smallest value a:i to avoid 
masking effects (large denominator). Similarly, the 
test statistic r2 can be used to avoid masking effects 
from the smallest two values {xi and X2). Because 
the Dixon test is a very robust method, one may ex­
pect that it also works in the presence of data gaps. 
This was, however, not investigated in this paper. 

2.4 Traoelessness condition 

The sum of the diagonal gravity gradients, also called 
Laplace's equation or tracelessness condition, has to 
be zero, which is a physical property of the gravity 
gradients. The gravitational potential is a harmonic 
function outside the attracting masses (Heiskanen 
and Moritz 1967). However, before external calibra­
tion, the gradients suffer from systematic errors of 
which a bias and scale factor errors are the most im­
portant. The effect of a scale factor error is the largest 
at a frequency of 0 Hz or the mean value. Of course, 
also the bias is manifest at this frequency. Therefore, 
the following condition equation is considered 

^ { K ^ + Vyy + V; J - median = 0 (7) 

where E is the expectation operator and the median 
is the median of the point-wise Laplace's equation of 
the time series considered. Note that in the GOCE 
case the rotational terms, caused by rotation of the 
satellite, have been removed as good as possible from 
the gradients using the differential accelerations (Ce-
sare 2002). The w-test is used, i.e., if the traceless­
ness condition is violated then an outlier is detected. 
The trace is weighted with the a priori error of the 
GOCE gravity gradients neglecting along-track error 
correlations (Bouman 2004). The major drawback of 
the tracelessness condition is that the outlier detec­
tion is ambiguous, i.e., one cannot discriminate be­
tween outliers on V^x ? Vyy and Vzz • The advantage 
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is that it is a sensitive method. The smaller the signal-
to-noise-ratio (SNR), the easier it is to detect outliers. 
In fact, the SNR can not be smaller since the sum of 
the diagonal gradients should be zero. 

2.5 Gravity gradient anomalies 

The GOCE gravity gradients could be confronted 
with gravity gradients generated from a global Earth 
gravity field model. If the difference between the 
two, weighted with the sum of the respective errors, 
is above a certain threshold, then an outlier is de­
tected (the median of differences is subtracted to ac­
count for the GOCE gravity gradient bias and scale 
factor error). More details on this w-test are given in 
Bouman (2004). The advantage of this method with 
gravity gradient anomalies is that all gradients can 
be tested separately and point-wise. A disadvantage 
is that the accuracy of the model gradients may be 
low compared to the GOCE gradients, which makes 
this a less sensitive method. In addition, the two sets 
of gradients have different measurement bandwiths, 
which may restrict the test. 

Alternatively, one could consider the along-track 
interpolation of GG anomalies. An anomaly at time 
t = ti is compared with the predicted anomaly at 
time t = ti, where the prediction is based on anoma­
lies at t = tj,j ^ i. Many interpolation methods 
could be used; splines are used here since they are 
simple and fast and the interpolation errors are small 
(Bouman 2004). The advantage of the along-track 
interpolation is that the gradients can be tested sep­
arately, but several points are combined which may 
lead to masking effects, that is, outliers close to each 
other can not be well separated. 

2.6 Combination solutions 

One possibility to improve the results is to combine 
two or more of the methods described above. The 
combination of the TSOFT algorithm and the wavelet 
method are considered, while the latter is also com­
bined with the Dixon test. A data point is flagged as 
an outlier if it is detected in both methods. 

Also considered is the combination of the trace-
lessness condition, gravity gradient differences and 
the interpolation of these differences. Since the 
tracelessness condition is a sensitive but ambiguous 
method, the other two methods are used to confirm 
a detected outlier by the tracelessness condition. In 
other words, if an outlier on Vxx, Vyy and Vzz is de­
tected by the tracelessness condition and this outlier 
is confirmed by either the gradient differences or the 
interpolation, a data point is flagged as an outlier. 

2.7 Other methods 

Besides the above methods, the so-called m-
estimator (Mayer 2003) and two thresholding meth­
ods (Kern et al. 2004) were studied. The m-estimator 
has a high outlier detection rate, but it also has a large 
type I error, that is, up to one out of five observa­
tions is erroneously detected as an outlier in the tests 
made. This method will therefore not be discussed. 
The threshold methods detect an outlier if the differ­
ence between the value at a given data point and the 
mean or median is above a certain threshold. The 
threshold may be linked to the standard deviation of 
the data or to some fixed value. These methods, how­
ever, suffer from a relatively large type I error while 
the number of detected outliers is relatively small. 
Therefore, these methods are not considered here. 

3 Numerical results 

Two data sets with different characteristics were 
studied. One is a small data set with a length of 1 day 
which contains various types of outliers. The second 
data set has a length of 59 days and contains single 
and bulk outliers. This set allows for gravity field 
analysis. 

3.1 Small data set with various outliers 

The first data set used in this study consists of the 
diagonal gravity gradients Vxx^ Vyy and Vzz which 
were simulated using EGM96 (Lemoine et al. 1998) 
for a 1 day orbit with a sampling rate of 1 s. Simu­
lated, correlated noise was added to the signals, the 
data statistics are given in Table 1. The model gradi­
ents which are required for some methods were gen­
erated using 0SU91A (Rapp et al. 1991). A first test 
was done that used the noisy gradients without any 
outliers (case la). The type I error is (close to) zero 
as one would hope. However, this is not to be ex­
pected for the tracelessness condition, model gradi­
ents and spline interpolation. These all use the w-test 
with a critical value ofk = 2, which would mean that 
approximately 4.6% of the observations is rejected 
although they are correct. For the tracelessness con­
dition and spline interpolation, however, the type I 
error is 0%. This may be due to the error correlation 
between the simulated gradients which is neglected. 
The model gradients have a larger type I error but 
this is dominated by the model error, that is, the dif­
ference between EGM96 and 0SU91 A. The type I er­
ror is probably larger than expected because we have 
used a simple scale unit matrix as error covariance 
matrix. 
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Table 1 Noise, outlier and anomaly properties, values in [mE]. 

Small set 

noise 

outliers 

anomalies 

Large set 

noise 

outliers 

anomalies 

(86,351 pts) 

mean 
rms 
mean 
rms 
number 
mean 
rms 

(5,097,835 pts) 

mean 
rms 
mean 
rms 
number 
mean 
rms 

yxx 

1443.7 
2.2 
0.5 
58.9 
3,891 
0.0 
36.4 

vxx 

0.0 
10.1 
0.0 
78.5 

83,153 
0.0 
37.2 

Vyy 

-805.2 
4.4 
0.3 
27.9 
420 
1.5 

35.3 

Vyy 

0.0 
2.7 
0.0 

78.5 
83,153 

-0.4 
35.3 

V,, 

2248.9 
5.7 
0.0 
52.7 
1,988 
-1.5 
58.9 

Vzz 

0.0 
10.0 
0.0 
78.5 

83,153 
0.4 
60.0 

Table 2 Type I error for case la (no outliers, small data set); 
TS - TSOFT algorithm, W - wavelet detection, TSW -
TSOFT -I- wavelet, TR - tracelessness condition, M - model 
gradients, SP - spline interpolation, TMS - TR + M + SP. 

Method 

TS 
W 
TSW 

TR 
M 
SP 
TMS 

Vxx 

0.1% 
0.0% 
0.2% 

0.0% 
6.2% 
0% 
0% 

Vyy 

0.1% 
0% 

0.1% 

0.0% 
6.0% 
0% 
0% 

Vzz 

0.1% 
0.2% 
0.4% 

0.0% 
5.9% 
0% 
0% 

A second test was done with outliers on all three 
gradients with an absolute size varying between 0.07 
E and 0.1 E (case lb). The outliers on Vxx are ran­
domly distributed single outliers. The outliers on the 
Vyy component are an offset of 0.5 E during one 
minute (t = 20 — 79 s) and a bulk of outliers dur­
ing six minutes (t = 5000 - 50359 s). Finally, the 
outliers on the Vzz component consist of randomly 
distributed 'twangs', i.e., outliers si t = t that are 
followed by an other outlier of opposite sign and of 
the same size at t = t + 1. In total there are 3891, 
420 and 1988 outliers on the Vxx^ Vyy and Vzz com­
ponent respectively, see also Table 1. 

Outlier detection results are shown in Table 3. 
Rows 1-3 show the TSOFT algorithm (TS), wavelets 
(W) and their combination (TSW) respectively. Rows 
4 and 5 show the tracelessness condition (TR) and 
the model gradients (M). Row 6, TSl, shows the re­
sults for filtered gradients, that is, the GG with out­
liers were filtered and these were used as model gra­
dients to compute GG anomalies. A 2nd order low-
pass Butterworth filter with a cut-off frequency of 0.2 

Hz was used. The acronym TS 1 is used because this 
method is similar to one step of the TSOFT algorithm, 
although the low-pass filter is different. The last three 
rows show respectively the results for spline interpo­
lation (SP), the combination of the tracelessness con­
dition, model gradients, spHnes (TMS) and the com­
bination of the tracelessness condition, filtered gradi­
ents and splines (TFS). 

Most of the single outliers Vxx are detected by all 
methods (we consider percentages above 95% to be 
good). The type I error is large for filtered gradients 
and spHnes because outliers are spread out over sev­
eral data points in both methods (we consider type I 
errors above 5% to be too large). The 'twangs' on 
Vzz are also detected by most methods. The wavelet 
detection algorithm has problems because it takes the 
difference between two consecutive data points. The 
detection rate for model gradients is somewhat low 
due to the larger GOCE GG error and the larger dif­
ference between the 'true' GG and the model GG 
(OSU91A and EGM96). The offset on Vyy causes 
problems for many methods. The filter methods, TS 
and TSl, as well as spline interpolation fail to detect 
the offset. An offset tends to cancel in these methods. 
The wavelet outlier detection rate is low as it not only 
fails to identify the offset, but it also has problems 
with the bulk outliers. In general, the combination 
of different outlier detection methods gives a higher 
detection rate and a low type I error. The detection 
of the offset remains a problem, also in the combina­
tion solutions, with the exception of the combination 
with model gradients which detects most of the Vyy 
outliers. 

3.2 Large data set and gravity field retrieval 

The second data set used in this study also consists 
of the diagonal gravity gradients Vxx^ Vyy and Vzz 
which were simulated using 0SU91A for a 59 day 
orbit with a sampling rate of 1 s (over half a million 
data points). Simulated, correlated noise was added 
to the signals. (A test with no outliers gives roughly 
the same percentage of type I errors as for the small 
data set except for the tracelessness condition which 
has a type I error of 4.7%. The simulated GG errors 
for the large data set show no correlation between 
the different GG.) In addition, outliers were added 
to all three gradients with an absolute size varying 
between 0.05 E and 1.8051 E (case 2). The outliers 
were randomly distributed single outliers as well as 
bulk outliers, see Table 1 for data statistics. 

Besides the detection methods discussed before, 
the combination of wavelets and the Dixon test was 
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Table 3 Detected outliers for case lb (outliers on all three diagonal gradients, small data set); TS - TSOFT algorithm, W - wavelet 
detection, TSW - TSOFT + wavelet, TR - tracelessness condition, M - model gradients, TSl - filtered gradients, SP - spline 
interpolation, TMS - TR + M + SP, TFS - TR + TSl + SP. 

Method 

TS 
W 
TSW 

TR 
M 
TSl 
SP 
TMS 
TFS 

vxx 

correct 

99.9% 
95.8% 
100% 

99.9% 
93.6% 
99.8% 
98.9% 
99.8% 
99.9% 

type I 

1.3% 
0.1% 
3.0% 

2.6% 
5.9% 
23.5% 
11.6% 
0.5% 
0.7% 

Vyy 
correct 

83.6% 
46.9% 
87.6% 

99.8% 
92.6% 
84.5% 
77.6% 
98.6% 
87.1% 

type I 

0.1% 
0.0% 
0.1% 

6.7% 
6.0% 
0.0% 
0.0% 
0.4% 
0% 

V,, 
correct 

100% 
62.8% 
100% 

99.9% 
76.9% 
100% 
99.5% 
99.7% 
99.9% 

:: 
type I 

0.1% 
0.7% 
0.9% 

4.8% 
5.8% 
2.2% 
2.0% 
0.4% 
0.1% 

Table 4 Detected outliers for case 2 (outliers on all three diagonal gradients, large data set); TS - TSOFT algorithm, W - wavelet 
detection, TSW - TSOFT + wavelet, WD - wavelet + Dixon test, WDQL - wavelet + Dixon + QL-GFA, TR - tracelessness 
condition, M - model gradients, TSl - filtered gradients, SP - spline interpolation, TMS - TR + M + SP, TFS - TR + TSl + SP. 

Method 

TS 
W 
TSW 
WD 
WDQL 

TR 
M 
TSl 
SP 
TMS 
TFS 

Yxx 

correct 

99.0% 
86.4% 
99.6% 
97.0% 
100.0% 

99.8% 
96.8% 
99.0% 
86.8% 
97.7% 
99.6% 

type I 

4.4% 
0.1% 
6.5% 
0.0% 
0.1% 

7.7% 
5.9% 
5.6% 
2.2% 
0.6% 
0.4% 

Vyy 
correct 

99.0% 
86.7% 
99.6% 
98.4% 
100.0% 

99.9% 
97.5% 
99.7% 
98.6% 
99.8% 
99.9% 

type I 

4.3% 
0.1% 
6.3% 
0.0% 
0.0% 

7.7% 
6.2% 
10.5% 
4.7% 
0.8% 
0.8% 

v.. 
correct 

99.0% 
85.6% 
99.6% 
96.2% 
100.0% 

99.9% 
92.3% 
98.9% 
86.8% 
94.6% 
99.6% 

type I 

4.4% 
0.3% 
6.7% 
0.1% 
0.1% 

7.7% 
5.9% 
5.6% 
2.2% 
0.6% 
0.4% 

added (WD). The cleaned GG from this method are 
used in Quick-Look Gravity Field Analysis (QL-
GFA) to compute a global gravity field model (Pail 
and Preimesberger 2003). This gravity field model 
is used to compute GG along the orbit. Then, an 
additional search in the residuals between these GG 
and the observed GG is done in an iterative manner 
(WDQL). 

As with the small data set, wavelets perform worse 
for bulk outliers (row W of Table 4). The detection 
rates for Vxx and Vzz are lower than for Vyy using 
splines because of the higher noise level of the for­
mer two. The combination algorithms detect almost 
all outliers while the type I error is small. One ex­
ception is the combination of TSOFT and wavelets, 
which has a large type I error. The best results are 
obtained by the wavelet-Dixon method in QL-GFA. 
Almost all outliers are detected, while the type I er­
ror is very small. The major advantage of the GFA is 
that the data are not only 'compared' along track or 
point-wise, which is the drawback of the other pre­

processing algorithms considered here, but that the 
least-squares adjustment combines all observations. 

The effect of undetected outliers can be disas­
trous, see Table 5. Although only 1.6% of the ob­
servations contain outliers, the gravity field solution 
has a very low accuracy if the outliers are not re­
moved. Shown are the gravity anomaly differences 
between OSU91A and a QL-GFA solution up to de­
gree and order 250. The error standard deviation is 
twenty times as high compared to a solution where 
no outliers are present (126.0 mGal and 6.7 mGal re­
spectively). The wavelet - Dixon combination gives 
a considerable improvement compared to no outlier 
detection, see Table 5 and Fig. 1. It does not, how­
ever, detect all bulk outliers, which cause a visible 
track (Fig. 1). The best combination solution that 
uses pre-processing only (TFS) gives a small gravity 
anomaly difference (9.8 mGal). Finally, the wavelet -
Dixon combination in the GFA (WDQL) gives a grav­
ity field anomaly error which is almost at the level of 
no outliers (7.0 mGal), see again Table 5. 
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Table 5 Gravity anomaly error for case 2 (large data set); dif­
ference between 0SU91A and QL-GFA up to degree and or­
der 250, excluding polar caps of 10°. 

Method 

no outliers 
all outliers 
WD 
TFS 
WDQL 

error rms [mGal] 

6.7 
126.0 
24.9 
9.8 
7.0 

100 101 102 103 

Fig. 1 Gravity anomaly differences OSU91A - QL-GFA (log 
scale), pre-processing outlier detection using WD. 

4 Conclusions and outlook 

Several outlier detection algorithms have been com­
pared. While single outliers and 'twangs' can be de­
tected at high rates, bulk outliers and offsets cause 
problems in almost all methods. Generally, a combi­
nation of methods improves the detection results. In 
particular, the combinations WD and TFS yield high­
est detection rates while having a small type I error. 
After applying the pre-processing methods, the over­
all rms of the gravity field solution can be reduced by 
an additional search inside the gravity field solver. 

The results for the model gradients may improve 
as more accurate gravity models become available. 
Especially at the time GOCE flies, preliminary GOCE 
gravity field models could be used. Future studies 
may include orbit errors, various GG error scenarios, 
uncertainties in the GG a priori error model, etc. 
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