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Abstract. Until now, methods of gravity field de­
termination using satellite data have virtually ex­
cluded robust estimators despite the potentially 
disastrous effect of outliers. This paper presents 
computationally-feasible algorithms for Ruber's M-
estimator (a classic robust estimator) as well as for 
the class of R-estimators which have not tradition­
ally been considered for geodetic applications. It 
is shown that the computational time required for 
the proposed algorithms is comparable to the direct 
method of least squares. Furthermore, a study with 
simulated GOCE satellite gradiometry data demon­
strates that the robust gravity field solution remains 
almost unaffected by additive outliers. In addition, 
using robustly-estimated residuals proves to be more 
efficient at detecting outliers than using residuals re­
sulting firom least squares estimation. Finally, the 
non-parametric R-estimators make less assumptions 
about the measurement errors and produce similar 
results to Huber's M-estimator, making that class a 
viable robust alternative. 

Keywords. GOCE, satellite gradiometry, robust pa­
rameter estimation, rank norm, outlier diagnostics 

1 Introduction 

The GOCE satellite mission, currently under prepa­
ration for its launch in 2006, will provide tens of 
millions of satellite gradiometry (SGG) observations 
used to recover the detailed structures of the Earth's 
gravity field. The global gravity field will be resolved 
up to degree and order 250 resulting in more than 
60,000 estimated spherical harmonic coefficents. To 
tackle this huge adjustment problem the method of 
least squares has been accepted as the traditional es­
timator to be used. In addition to its computational 
feasibility, the least squares estimator produces unbi­
ased estimates with minimal variances under certain 
assumptions, and comprises a unified theory includ­
ing consistent variance-covariance information of the 
estimates, tests of model adequacy, parameter tests, 

and outlier tests. 
However, the usual assumptions underlying the 

least squares procedure such as normality and 
outlier-freeness of the observations cannot be ac­
cepted at face value (even though the term outlier 
usually implies the association with a visibly extreme 
observation, it is, in the context of the current pa­
per, understood to be any observation stemming firom 
some contaminating distribution different from the 
main distribution of the errors, and could thus com­
prise the case of a blunder). Outliers, even in low 
numbers, are known for distorting parameter and ac­
curacy estimates, rendering them potentially useless. 
The common practice of detecting outliers from least 
squares residuals may be fruitless due to the tendency 
of the estimated trend to be drawn towards extreme 
data values and the masking effect of multiple out­
liers (see for instance Rousseeuw and Leroy, 2003, 
p. 226 and p. 234, respectively). The traditional ap­
proach to dealing with outliers was pioneered by the 
work of Baarda (1968) and is based on an iterative 
elimination of the most prominent outlier candidates 
("data snooping"). With each iteration the partially 
cleaned data set is readjusted, which, however, may 
become computationally very expensive when a huge 
amount of observations and a large number of poten­
tial outliers are involved. 

As a remedy to this problem, the current paper in­
vestigates in robust estimators, which potentially be­
come less affected by extreme values and are able 
to highlight outliers in the residuals by unmasking 
them. Despite such benefits, these methods appar­
ently have been ignored in the field of gravity field 
determination from satellite data, mainly because of 
the high computational effort usually associated with 
robust techniques. The main purpose of this paper is 
to show that in fact estimates with good robustness 
properties may be obtained in a computational time 
comparable to the least squares approach. Huber's 
classical M-estimator using metrically Winsorized 
residuals (Huber, 1981, p. 179ff.) and i?-estimators 
based on rank statistics, also mentioned by Huber 
(1981, p. 163) and worked out for the linear model 
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by Hettmansperger (1984) and Hettmansperger and 
McKean (1998), are considered, because they are 
found to be particularly suitable for the huge adjust­
ment problem encountered in the GOCE mission. As 
it appears that i^-estimators have not been used for 
geodetic applications, a more detailed review of the 
underlying theoretical ideas is given in Sect. 2. 

Two essential factors, computation time and qual­
ity of estimates, were compared between a robust 
estimation approach and a dtect approach to grav­
ity field determination from SGG data (see for in­
stance Pail and Plank, 2002; Schuh, 1996). The out­
lier study investigating these factors and the corre­
sponding results are presented in Sect. 3. 

It should be noted that the intention of this paper is 
not to discredit the least squares approach, but to pro­
mote the use of robust estimates in a complementary 
way as a reference to check least squares residuals for 
abnormal behaviour possibly caused by undetected, 
masked outliers. 

2 Theory and implementation 

The proposed robust estimators are derived in the 
context of a linear model of the form 

y = X/3 + e (1) 

where y is an n x 1 random vector of observations, 
e is an n X 1 random vector of unobservable distur­
bances, X is an n X tfc matrix of fixed coefficients, and 
(3 isau X 1 vector of unknown parameters. For now 
let the disturbances ei, 62 , . . . , e^ be independently, 
identically, but not necessarily normally distributed 
random variables. The parameters are estimated by 
minimizing some function of the residuals. In robust 
estimation "less rapidly increasing functions" (Ru­
ber, 1981, p. 162) are used instead of the quadratic 
function in least squares. Therefore, differences be­
tween M- and i?-estimators are mainly determined 
by the choice of this function with all arising techni­
cal implications. However, it is seen in the follow­
ing subsections that in practice the implementation 
of these two classes of estimators is very similar. 

2.1 Huber's M-estimator 

M-estimates are obtained by minimizing 

Q(e) = f^p(ei) (2) 
i=l 

where p is a symmetric function of the residuals 
^i = Vi — 3cf/3 with xf the i — th row of X. The 
gradient of Q with respect to ^ is given by 

V(3(e) = -X^V-Ce). (3) 

M-estimates are not automatically scale invariant so 
that e must be divided by some scale factor a. Con­
sequently, (3) becomes 

V Q ( e , a ) - - X ^ ' 0 ( e / a - ) . 

For Huber's M-estimator '0(-) is defined as 

il){ei/a) := 
Ci/a 

c sign(ei) 
if \ei\ < ca 
if leA > ca 

(4) 

(5) 

where c is a constant whose value depends on the 
percentage of outliers in the observations (see Huber, 
1981, p. 87). The values for 1% and 5% are c ^ 2.0 
and c ^ 1.4, respectively. Note that the least squares 
estimates are obtained by setting '^(e^) := ei (cf. for 
instance Koch, 1999, Chaps. 3 and 4, as a reference 
of the method of least squares in linear models). With 
(5) the Winsorized residuals are defined as 

e* := ip{ei/a) a. (6) 

The estimates $ are obtained from the Newton step 

(7) ^ ( ^ + i ) ^ ^ W ^ ( X T x ) - i x T e * 

where the relaxation factor was set equal to 1. The 
scale factor may be computed from the residuals af­
ter each step by a = 1.483med^{|e||}. 

2.2 Construction of i?-estimators 

In this section only the most basic results from the 
work of Jaeckel (1972), Hettmansperger (1984), and 
Hettmansperger and McKean (1998) are stated in or­
der to develop a practical and intuitive approach to 
the material. Attention is focussed on demonstrat­
ing the similarities and differences of i?-estimators 
to Huber's M-estimator and the method of least 
squares. 

The goal of the commonly-used least squares es­
timator is to minimize the variance of the residuals 
y — X/3. Since few extreme values may cause an un­
reasonable increase in variance, Jaeckel (1972) dis­
cussed an alternative measure of variability which is 
less sensitive to outliers. This measure of dispersion 
D(-) is defined as 

^ W = Xl^(^)^o (8) 
i=l 

where a(l) < . . . < a(n) is a nonconstant set of 
scores satisfying YH=I ^(^) = 0? z is any realvalued 
n X 1 vector, and 2:(̂ ) are the ordered, non-decreasing 
elements of z. Now, values 1 , . . . , n, which are de­
noted as the ranks R{') of the elements of z are 
assigned to the ordered Z(^i^,..., Z(^n)- Then (8) is 
equivalent to 
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D{z) = J2^(R(Hi)))Hi)' (9) 

Substituting the arbitrary z by the residuals from (1) 
yields a rank estimate of/3 that minimizes 

D ( e ) - ^ a ( i ? ( e O ) e ^ (10) 
i=l 

where ê  = yi — xff3 with a:f being the i-th row of 
X. It is remarkable that (10) could have been defined 
in terms of the R pseudo norm 

\R = Y^a{R{ei))ei (11) 

which substitutes 'one half of the residuals fi*om the 
L2 norm 

n 

11̂11̂2 =X^e^ei (12) 

by rank-transformed and re-weighted residuals 

e** :=a(i?(e,)). (13) 

Jaeckel (1972) shows that D{e) is a nonnegative, 
continuous, and convex function of jS which at­
tains its minimum with bounded /3 if X has full 
rank, which are also familiar properties of the Gauss-
Markov model of full rank. However, in contrast to 
the latter, the measure of dispersion D{e) is not a 
quadratic function of the residuals, but rather linear, 
potentially reducing the effect of outliers on the esti­
mates (Hettmansperger, 1984, p. 233). 

The partial derivatives of Z^(y - X/3) with respect 
to /3 exist almost everywhere with gradient 

VZ?(y-X/3) = - S ( y - X ^ ) (14) 

where 

S ( y - X / 3 ) - X ^ a ( i ? ( y - X / 3 ) ) . (15) 

Setting the gradient to approximately zero yields the 
R normal equations 

X ^ a ( i ? ( y - X / 3 ) ) « 0 , (16) 

which are solved by ^. Note that the gradient need 
not necessarily attain exactly zero due to its non-
continuous range. The normal equations (16) can­
not be solved directly, and furthermore, the disper­
sion function, being essentially a decreasing step 
function, is not ideally suited for gradient meth­
ods. Therefore, Hettmansperger and McKean (1998, 
p. 184) suggest constructing a Newton-type algo­
rithm in analogy to Huber's M-estimator, based on 
linearization of S(y - X/3). Let /3o denote the true 
parameters and the scale factor r^ = 1/ / f'^{x)dx 
where / is the density function of the disturbances. 
Then, according to Hettmansperger and McKean 
(1998, p. 162) the linearization is given by 

S ( y - X ^ ) = S ( y - X / 3 o ) 

- - X ^ X ( / 3 - / 3 o ) + Op(l) 

from which a quadratic function Q{') approximating 
the dispersion function D{-) is constructed by inte­
gration as 

TvT-0(y-X/3) = —if3-f3oyX'Xi0-f3o) 

-(/3-/3o)^S(y-X/3o) 
+D{y-Xf3o). 

Jaeckel (1972; Lemma 1) proved that Q{-) is indeed 
a good local approximation. The estimate 

/3 = ^o + r^(X^X)-^X^a( i^(y-X/3o)) (17) 

minimizes the quadratic approximation Q{-) and 
solves the linearization. 

Turning attention to the practical implementation 
of this rank-based estimator, (17) would be computed 
as the first Newton step by substituting initial para­
meter values for the true parameters. Consequently, 
(17) becomes 

(̂̂ +̂ ) ^ ^^'^ + f(^)(X^X)-iX^e**(^) ^ (18) 
~(/c) 

The scale factor f!p ^ can be estimated from the resid­
uals of each preceeding step. A computationally 
feasible estimator is derived in Hettmansperger and 
McKean (1998, pp. 181-184), which was used for 
the following simulations. The final estimate of T^ 
is used for the computation of the covariance matrix 
of the estimated parameters T>0} = f^(X^X)~^. 

The optimal method of generating the scores 
a(i) = (f>[i/{n + 1)) through some score func­
tion Lp{u) depends on the distribution of the distur­
bances, which in the linear model (1) was not nec­
essarily assumed to be Gaussian. In the current pa­
per the score functions Lp{u) = \/T2(n — 1/2) and 
(p(^u) = sign(n — 1/2) generating the Wilcoxon and 
the sign pseudo-norm are considered for the follow­
ing reasons. Hettmansperger and McKean (1998) 
show in theory that the Wilcoxon pseudo-norm ex­
ploits the information contained in the observations 
almost as efficiently as least squares when the er­
rors are Gaussian and outlier-free, and have good 
robustness when outlying observations are present. 
The sign pseudo norm is used, because it is equiv­
alent to the well-known Li norm. However, while 
the estimates generated by the sign pseudo-norm can 
be easily computed by means of a block algorithm 
(see Sect. 2.3), the evaluation of the Li norm, usu­
ally based on a simplex-type algorithm, would not be 
possible for the given problem as it requires that X 
be stored as one piece in the working memory. 
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»(^) ^(k) (k) (k) 

k=k+l 

j--l 

Assemble X-

Update 

Update 
n = n + X]4'' 

Compute 

N^ (if k ^ 0), ^ 

j=j+l 

Assemble X; 

j-'=l 

Compute 

Final Estimates 

p,o,r 

Compute 

J=J+1 

Fig. 1 Flowchart of the proposed robust gravity field solver. Input are SGG observations yi of the three diagonal tensor components, 
spherical positions {ri,9i, Xi), and start values of the parameters /3, the scale factor a, and the (modified) residuals generated by 
/3Q. X j denotes the j - th block (j = 1 , . . . , M) of the design matrix, which is used to compute the normal equation matrix N and 
the right hand side n of the system N/3 = n. r^^ is the vector of residuals modified by a weight function W{') according to (6) or 
(13). If the parameter update exceeds e, the next Newton step (k + 1) is performed, otherwise the algorithm terminates with final 
estimates. The final residuals r are studentized and used for outlier detection. 

2.3 Implementation of the robust gravity 
field solver 

The functional model for the adjustment of GOCE 
SGG observations is obtained by taking the second 
derivatives of the mathematical representation of the 
Earth's gravitational potential 

I i=2 m=0 

X Pim (cos 6) [Cirn COS mX + S^rn sm mX) > 

where G denotes the geocentric gravitational con­
stant, M the Earth's mass, and a the semi-major 
axis. The triple (r, (9, A) represents the spherical co­
ordinates of a point, £ and m the degree and order, 
^max the maximum degree of the expansion, and P^rn 
the fully normalized associated Legendre functions. 
The model as linear functions of the desired parame­
ters Cirn^ Sim (the fully normalized harmonic coef­
ficients) can be expressed as the linear model (1). 

As the design matrix X eventually contains mil­
lions of observations, it becomes far too large to be 
processed in one piece. Consequently, it is not pos­
sible to compute the Newton steps (see Fig. 1 for 
the processing flow chart) as in (7) or (17). There­
fore, X is assembled in parts, with each part Xj 
(j = 1 , . . . , M) containing 750 rows. The normal 
equation matrix is computed within the first Newton 
step by N := X ^ X = J^f^i ^ j ^ X j , and after in­
version, N"-"- is stored for the following steps. This 

procedure works for, say imax = 90, as shown in the 
performed simulation study (see Sect. 3). To reach 
the GOCE mission goal of a resolution of imax = 
250, the algorithm must be modified, as N would 
also exceed the working memory (see Outlook). 

The residuals generated by the parameter start val­
ues ^0 ^̂ ^ modified to vw according to (6) or (13). 
Using n := X'^vw = Z^j=i Xj^i*w,j and set­
ting the relaxation parameter q := 1 for Ruber's M-
estimator, ov q := r^, respectively, for one of the 
/^-estimators, the parameter update dp = gN~-^ n 
is computed. The new residuals are obtained piece 
by piece by assembling X block-wise again. In case 
the parameter update exceeds a prescribed s the next 
Newton step is performed with updated start values. 
Otherwise, the current estimates are saved as the final 
solution. The residuals are then used for subsequent 
outlier analysis. 

3 Simulation Study 

The goal of the current simulation study is, firstly, to 
investigate the convergence rate of the robust estima­
tors, because the computation time of each Newton 
step corresponds approximately to the entire com­
putation time of the least squares estimation (about 
4 hours on a single 3.06 GHz processor with 1 GB 
RAM). Secondly, the quality of the robust gravity 
field solutions is compared to the least squares solu­
tion. Finally, the success of outlier detection is eval­
uated by analyzing studentized residuals. 
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3.1 The Test Data 

The observation functionals were computed on a sun-
synchronous orbit of 23 days with an initial altitude 
of 250 km and an inclination of 96.6°. They were 
sampled equally at a rate of 4 s yielding altogether 
496,430 positions and 1,489,290 values of the three 
main diagonal elements of the gradient tensor. The 
trend, computed from EGM96 coefficients up to de­
gree and order 90, was superimposed by white noise 
with standard deviation a = 1 mE. From these ob­
servations two data sets containing additional out­
liers (generated as realizations of uniformly distrib­
uted random variables between 3 and 50 mE) were 
deduced. The first set contains 1% additive outliers 
and the second 5%, distributed randomly over the 
zz-component. The observations of the xx- and the 
yy-component were not altered. Since the true out­
lier distribution will be unknown, a rather pessimistic 
measurement scenario was simulated by selecting the 
outlier ratio and bandwidth as specified above. 

3.2 Results 

The absolute differences between the estimated and 
the reference solution (least squares parameters esti­
mated from the observations containing no outHers) 
were computed. Fig. 2 shows that the mean and me­
dian values over all orders of the same degree are 
ten times larger for the least squares estimates (LSE) 
than for the three robust solutions. Ruber's M-
estimates (HME) are equal to the Wilcoxon norm es­
timates (WNE), while the sign norm estimates (SNE) 
performs slightly worse than the WME. 

Table 1 summarizes the geoid height differences 
between the reference solution and the estimated so­
lutions. The differences between the reference so­
lution and the geoid heights computed from the true 
EGM96 model are also given. It is seen that the ro­
bust solutions are already as close as a few milHme-
ters to the reference values after one Newton itera­

tion, and they converge fiilly after the second itera­
tion. The least squares geoid heights differ signifi­
cantly from the reference heights, and they explode 
for the second data set containing 5% outliers (lower 
part of Table 1). Using the worsened least squares es­
timates as start values, the robust estimates converge 
only after five iterations. In comparison to LSE the 
robustly estimated geoid heights were considerably 
less affected by the outliers. 

Table 2 gives a summary of the performance of 
outlier detection by means of internally studentized 
residuals, defined as rsi = ri/{ay/l — hi) for the 
least squares residuals and rsi = Tij(a^J\ — Khi) 
for the residuals of the i?-estimates. The latter 
are modified by K, as /^-estimators do not project 
y orthogonally into the column space of X (see 
Hettmansperger and McKean, 1998, p. 197ff.). hi 
denotes the z-th diagonal element of the orthogonal 
projector X(X^X)~-^X^. All robust estimators de­
tect 99.8% of the outliers (indicating a very high 
test power), especially 'unmasking' all outliers larger 
than 5 mE. The undetected, small outliers are located 
in the range of the measurement noise, which makes 
them hard to identify. By contrast, the least squares 
studentized residuals are much smaller (because the 
estimated standard deviation is inflated by the out­
liers), leaving even a high number of large outliers 
undetected. 

Approximately 4% of the "good" observations 
were wrongly marked as outliers when using one of 
the robust estimators. This number could be im­
proved only at cost of the test power, i.e. a larger 
number of outliers would remain undiscovered. For 
example, if one decreased the error number from 4% 
down to 0.2% by raising the threshold, one would di­
minish the performance rate by approximately 1%. 
However, for the robust estimators the choice of the 
actual test power is not a crucial point, because none 
of the observations are deleated, but their residuals 
downweighted. 
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Fig. 2 Median, mean and maximum values of absolute differences between estimated (with 5% outliers) and reference 
(without outliers) coefficients over all orders of the same degree. From left to right: Least squares (LSE), Wilcoxon norm 
(WNE), and sign norm estimates (SNE) (the figure for Ruber's M-estimates is the same as for the WNE and was omitted). 
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Table 1. Reconstruction of second-level information on a 1° x 1° grid: differences between the geoid heights in meters computed 
from the true model (EGM96) and estimated solutions ("Reference": Least squares solution without outliers; "Least Squares": 
Least squares with outliers); upper part: 1% outliers, lower part: 5% outliers. 

1% o u t l i e r s 
R e f e r e n c e 

L e a s t S q u a r e s 
1 . i t e r a t i o n 

Wilcoxon 
S ign 

Huber 
2 . i t e r a t i o n 

Wilcoxon 
S ign 

H-uber 
5% o u t l i e r s 

R e f e r e n c e 
L e a s t S q u a r e s 

1 . i t e r a t i o n 
Wilcoxon 

S ign 
Hxiber 

5 . i t e r a t i o n 
W i l c o x o n 

S i g n 
H u b e r 

g l o b a l 
m m 

- 0 . 0 1 2 
- 0 . 0 5 5 

- 0 . 0 1 5 
- 0 . 0 1 7 
- 0 . 0 1 6 

- 0 . 0 1 5 
- 0 . 0 1 7 
- 0 . 0 1 4 

m i n 
- 0 . 0 1 2 
- 0 . 2 3 6 

- 0 . 0 2 7 
- 0 . 0 3 8 
- 0 . 0 6 0 

- 0 . 0 2 6 
- 0 . 0 2 3 
- 0 . 0 2 6 

max 
+ 0 . 0 1 3 
+ 0 . 0 8 2 

+ 0 . 0 1 5 
+ 0 . 0 1 7 
+ 0 . 0 1 5 

+ 0 . 0 1 5 
+ 0 . 0 1 8 
+ 0 . 0 1 4 

max 
+ 0 . 0 1 3 
+ 0 . 3 3 3 

+ 0 . 0 2 2 
+ 0 . 0 4 1 
+ 0 . 0 8 0 

+ 0 . 0 2 8 
+ 0 . 0 2 2 
+ 0 . 0 2 7 

- 8 0 " < 
m m 

- 0 . 0 1 2 
- 0 . 0 5 5 

- 0 . 0 1 5 
- 0 . 0 1 7 
- 0 . 0 1 6 

- 0 . 0 1 5 
- 0 . 0 1 7 
- 0 . 0 1 4 

m i n 
- 0 . 0 1 2 
- 0 . 2 3 6 

- 0 . 0 2 7 
- 0 . 0 3 8 
- 0 . 0 6 0 

- 0 . 0 2 6 
- 0 . 0 2 3 
- 0 . 0 2 6 

(p < 80" 
max 

+ 0 . 0 1 3 
+ 0 . 0 7 7 

+ 0 . 0 1 5 
+ 0 . 0 1 7 
+ 0 . 0 1 5 

+ 0 . 0 1 5 
+ 0 . 0 1 8 
+ 0 . 0 1 4 

max 

+ 0 . 0 1 3 
+ 0 . 3 3 3 

+ 0 . 0 2 2 
+ 0 . 0 4 1 
+ 0 . 0 8 0 

+ 0 . 0 2 8 
+ 0 . 0 2 1 
+ 0 . 0 2 7 

m m 
- 0 . 0 0 8 
- 0 . 0 3 1 

- 0 . 0 0 9 
- 0 . 0 1 4 
- 0 . 0 1 0 

- 0 . 0 1 0 
- 0 . 0 1 4 
- 0 . 0 0 9 

m i n 

- 0 . 0 0 8 
- 0 . 1 1 1 

- 0 . 0 0 9 
- 0 . 0 2 7 
- 0 . 0 3 2 

- 0 . 0 1 5 
- 0 . 0 1 8 
- 0 . 0 1 5 

l o c a l 
max 

+ 0 . 0 0 8 
+ 0 . 0 3 3 

+ 0 . 0 1 1 
+ 0 . 0 1 3 
+ 0 . 0 1 1 

+ 0 . 0 1 0 
+ 0 . 0 1 5 
+ 0 . 0 1 0 

max 
+ 0 . 0 0 8 
+ 0 . 1 2 0 

+ 0 . 0 1 1 
+ 0 . 0 2 4 
+ 0 . 0 3 4 

+ 0 . 0 1 3 
+ 0 . 0 1 5 
+ 0 . 0 1 3 

m e a n 
- 0 . 0 0 0 
- 0 . 0 0 0 

- 0 . 0 0 0 
- 0 . 0 0 0 
- 0 . 0 0 0 

- 0 . 0 0 0 
- 0 . 0 0 0 
- 0 . 0 0 0 

m i n 

- 0 . 0 0 0 
- 0 . 0 0 2 

- 0 . 0 0 0 
- 0 . 0 0 0 
- 0 . 0 0 1 

- 0 . 0 0 0 
- 0 . 0 0 0 
- 0 . 0 0 0 

a 
0 . 0 0 3 
0 . 0 0 9 

0 . 0 0 3 
0 . 0 0 4 
0 . 0 0 3 

0 . 0 0 3 
0 . 0 0 4 
0 . 0 0 3 

a 
0 . 0 0 3 
0 . 0 3 5 

0 . 0 0 3 
0 . 0 0 7 
0 . 0 1 0 

0 . 0 0 4 
0 . 0 0 5 
0 . 0 0 4 

Table 2. Outlier detection for the second data set containing 5% outliers, perf: percentage of correctly identified outliers (second 
column), error: percentage of observations wrongly marked as outliers (third column); columns 4-7: numbers of unidentified 
outliers of given sizes. The last row contains the distribution of the implemented outliers. 

L e a s t S q u a r e s 
H i l b e r 

W i l c o x o n 
S i g n 

T o t a l o u t l i e r s 

p e r f 

8 9 . 3 % 
9 9 . 8 % 
9 9 . 8 % 
9 9 . 8 % 

-

e r r o r 

0 . 0 % 
4 . 1 % 
4 . 3 % 
4 . 3 % 

-

3 - 4 mE 

5 1 9 
5 1 
5 0 
52 

5 1 9 

4 - 5 mE 
5 2 3 

8 
5 
6 

5 2 5 

5 - 6 mE 
4 9 3 

0 
0 
0 

4 9 9 

>6mE 

1 , 1 2 3 
0 
0 
0 

2 3 , 2 7 9 

4 Discussion and Outlook 

It was seen that Ruber's M-estimator and the R-
estimators remain robust when a small percentage of 
the observations are contaminated by additive out­
liers. Robustly estimated spherical harmonics co­
efficients and derived second-level products such as 
geoid heights became far less affected than with 
the least squares approach. Consequently, the "un­
masked" outliers were detected almost perfectly by 
comparing the robustly estimated studentized residu­
als with a threshold value. Ruber's M-estimator and 
the Wilcoxon norm estimator produced very similar 
results, and were slightly superior to the less efficient 
sign norm estimates (which is equivalent to the Li 
norm). All robust estimates converged after a few 
iterations when heavily distorted least squares start 
values were used. When valid a priori information 
was used, they converged within one step, i.e. the 
computational effort was essentially the same as for 
computing the least squares solution, making robust 
procedures feasible. 

For the future it is intended to robustly estimate 
models up to degree and order 250 (the planned res­
olution of the GOCE mission). Since the proposed 
algorithm allows the block-wise processing of the 

normal equations, this can be easily accomplished by 
implementation on a parallel computer system. 
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