
9

Integration and retrieval systems

Summary. The goal of this chapter is to give evidence for the
practical applicability of the models and methods presented. Af-
ter having proposed a logical framework and an architecture for
representing information semantics as well as the possibility to
generate metadata based on this framework and methods to reason
about information contents, we now present existing systems that
implement some of the methods discussed. We focus on these meth-
ods and explain the specific implementation using a common example.

In this section we will discuss some existing systems for retrieving and
integrating information on the Web. Rather than giving an overview of
the variety of systems available, we select three systems that address the
issues discussed in the last chapters. We start our discussion with the
OntoBroker system, which implements the basic functionality of a single
ontology information integration and retrieval system. Further OntoBroker
provides support for rule-based context transformation. As a second system,
we look at OBSERVER, a multiple-ontology system. We will focus on the
use of more than one ontology in the system and describe how ontologies
are integrated in OBSERVER. Further, OBSERVER uses a query re-writing
technique to translate between different ontologies that is based on the same
ideas as the approach discussed in Chap. 6. Finally, we turn our attention to
the BUSTER system, which uses the hybrid approach. Here we focus on the
use of the shared terminology in query formulation and processing. Further,
the BUSTER system implements functionality for querying spatially related
information similar to the ideas described in Sect. 8.3. We describe these
techniques and their use in information retrieval.

In order to give a better impression of the systems, their differences and
similarities, we use a simple example from the travel domain and describe how
the systems solve this specific integration problem. The task of the example

186 9 Integration and retrieval systems

is to retrieve hotels with a room rate that is under a certain threshold from
different information sources with accommodations. Table 9.1 shows the part
of the available information we will focus on.

Table 9.1. Data from the example problem

Name Location Category Price

Radisson Copenhagen Congress Hotel 580

Mercure Hamburg Four star 190

Ritz London First Class 130

...

This small set of information already contains a number of very relevant
integration problems that arise in many practical applications. First of all,
we have to decide, whether all of information items are actually representing
hotels. This is a problem in particular if the categories mentioned in the table
are defined in different ontologies. As the hotels are in different countries,
the room rates are given in different currencies that have to be normalized
and finally the questions of spatial relevance with respect to the users needs
arises. In the following we will see that the different systems differ in the way
they focus on a specific problem.

In the following, we first discuss the use of the Ontobroker system that uses
a global ontology and flexible transformation functions for comparing hotel
types and prices. In the following session, the use of multiple ontologies in the
OBSERVER system is presented. We show how OBSERVER uses semantic
relationships between classes from different ontologies to compare data in the
different sources and to select an optimal translation. Finally, we discuss the
BUSTER system and explain the use of a shared vocabulary for describing
features of accommodations as well as the determination of spatial relevance
as a part of the information sharing process.

9.1 OntoBroker

The OntoBroker system [Decker et al., 1999] has been developed for support-
ing the access to distributed sources of digital information such as document
repositories or Web sites. OntoBroker mediates between the different formats
and structures that might be present in these sources by encoding the avail-
able information in a pivot format and relating it to a domain ontology that
is shared across all sources. Consequently, the domain ontology is the central
part of the OntoBroker architecture. As a successful use of OntoBroker relies
on the existence of the shared ontology, OntoBroker comes with an editor

9.1 OntoBroker 187

that supports the creation of domain-specific ontologies [Sure et al., 2002].
In order to link information to the ontology, available information items have
to be modelled as instances of the ontology. In the case of well-structured in-
formation sources such as databases and spreadsheets, this step is done using
specialized wrappers that extract information from the sources and assign it
to classes and relations in the ontology. For less structured information like
text documents and web pages, OntoBroker relies on an annotation tool that
supports the user in adding special markup to the available information,
thereby explicitly linking it to the ontology [Staab et al., 2001].

Fig. 9.1. The general architecture of the OntoBroker system

The ontology together with the instance information extracted from the differ-
ent information sources behave like a deductive database. The actual broker
system provides the corresponding reasoning facilities in terms of providing
answers to complex queries concerning information items, their properties
and relations. The broker makes this query-answering functionality available
to client applications which may be rather generic query interfaces for ar-
bitrary information or specialized applications relying on a specific domain
ontology and a fixed set of information sources. Fig. 9.1 gives an overview of
the OntoBroker architecture and its different components. In the following,
we will have a closer look at the way OntoBroker represents information and
ontologies and the use of rules for implementing functional context transfor-
mation.

9.1.1 F-Logic and its relation to OWL

The representation formalism for ontologies and information used in OntoBro-
ker is F-Logic. Unlike the Web Ontology Language that us based on Descrip-

188 9 Integration and retrieval systems

tion Logics, F-logic has its foundation in logic programming languages. More
specifically, F-logic extends horn-logic language with constructs of frame lan-
guages supporting the straightforward representation of class-based knowledge
representation. The OntoBroker inference engine translates these constructs
back into horn logic and uses standard logic programming techniques for an-
swering queries. The use of horn logic has some implications for the expressive
power of F-logic as compared to OWL that we will briefly summarize in the
following.

Correspondences with OWL

Focusing on a frame-based representation of knowledge, F-logic has a number
of commonalities with OWL, in particular with OWL Lite. We summarize
these common features in the following.

• Classes. F-logic can be used to express class membership and subclassing.
Assigning an instance I to a class C is denoted as I:C, which corresponds
to the OWL expression Instance(I type(C)). Further, a class C can be
declared to be a subclass of another class D using the axiom C::D. This
corresponds to the OWL expression SubClassOf(C D).

• Range Restrictions. F-Logic can express a special type of property
restriction. In particular, we can restrict the types of values that are
allowed to be in the range of an attribute A that is assigned to a particular
class C to some other class D. The corresponding F-Logic expression
C[A =>> D] has the same effect as the OWL statement SubClassOf(C
restriction(A allValuesFrom(D))).

• Facts. Finally, we can express information about actual instances of an
ontology in a frame-like fashion. For stating that an object O is of type
C and shows a value V in the attribute A we write O:C[A->V]. In OWL
we would express the same information using the following statement:
Instance(O type(C) value(A V)).

We see that the direct overlap between F-Logic and OWL is a fragment
of OWL that allows us to state simple schema information. In particular, the
fragment always exactly corresponds to the OWL part of RDF Schema. We
will see, however, that F-logic offers other means for defining the meaning
of information mainly in terms of its rule language. In contrast to the origi-
nal proposal , the variant on F-Logic implemented in Ontobroker is based on
a semantics that borrows from logic programming rather than the standard
semantics of first order logic. In fact, the DLP fragment discussed briefly in
Chap. 3 also corresponds to the largest segment on which the different seman-
tics of OWL and F-Logic intersect, adding further interest to this fragment.

9.1 OntoBroker 189

Differences from OWL

Being based on logic programming rather than description logics, F-Logic
offers some features that go beyond the expressive power of OWL. These
additional features can be used to capture some of the build in modelling
primitives of OWL using special axioms.

• General relations. An often criticized limitation of OWL is the restriction
to binary relations between objects. F-logic does not have this restriction
and is able of representing predicates of arbitrary arity for capturing com-
plex relations between multiple objects.

• Parameterized attributes. A special case of the use of general relations in
F-Logic is the ability to parameterize the attributes of a class. We denote
that V is the value of an attribute A of object O with respect to a certain
parameter P (e.g. the length in inches) as O[A@(P) ->> V]. This feature
is useful for describing different scales and measures.

• Rules and queries. The main difference between OWL and F-Logic is the
axiom and rule language. F-Logic offers the possibility to state general
implication axioms that act as rules and queries. The general form of a
rule is FORALL V, H <- B, where V is a list of goal variables, H is the head
and B the body of the rule. The body of a rule consists of an arbitrary
F-Logic formula containing the operators AND, OR, NOT, <-, -> or <-> and
quantifiers FORALL and EXISTS. Queries are rules with an empty head.

F-Logic rules can be used to model OWL features like the disjointness of
classes, transitivity and inverses of relations and others. Beyond that, rules
provide a powerful mechanism for encoding other features such as relational
algebra and domain-specific knowledge about relations. In the following we
will see how this can be used to mediate between different information sources
in our example problem.

9.1.2 Ontologies, sources and queries

The OntoBroker strategy of using F-logic as a uniform language for informa-
tion items and ontological background knowledge leads to a very flexible way
of managing knowledge and information sources in the system. In particular,
arbitrary F-logic files can be loaded into the OntoBroker system regardless
of whether they contain information, ontological information or both. The
corresponding interface of the standard client is shown in Fig. 9.2a. Here the
user can also choose to compile out the rule base in order to increase run-time
performance. The specifications in the different files loaded to the system are
treated as one big knowledge base that can be used to answer queries about
information and background knowledge. In particular, all schema information
is considered as representing one ontology common to all information sources.
Fig. 9.2b shows the ontology interface of the OntoBroker client that allows

190 9 Integration and retrieval systems

(a) Source management (b) Ontology browser

Fig. 9.2. The OntoBroker client

the user to browse the ontological knowledge of the system.

Applying OntoBroker to our example problem first of all requires us to wrap
the different information sources into a common F-logic representation and
load the corresponding knowledge to the system. Each row in Table 9.1 is
translated into an object with certain values for the relevant attributes corre-
sponding to the columns of the table. The F-logic representations of the three
example entries in the table are the following:

radisson:congresshotel[location->denmark; price->580].

mercure:four-star[location->germany; price->210].

ritz:first-class[location->england; price->130].

The first heterogeneity problem mentioned in the problem statement is the
use of different categories of hotels. This problem can be addressed by a com-
mon ontology that relates the different types mentioned in the data to the
more general concept hotel that can be used to query objects belonging to
the different special types of hotels. The corresponding part of the F-logic
definition is the following:

congresshotel::hotel

four-star::hotel

first-class::hotel

Using this ontology, we can query the system for all hotels that have a price
of less than 200 using the following query:

FORALL Y,X <- Y:hotel[price->X] AND lessorequal(X,200).

The system returns the ritz as the answers to the query, because it can be
shown to belong to the class of hotels and to have a price of less that 200.
Fig. 9.3 summarizes the situation.

9.1 OntoBroker 191

Fig. 9.3. Example of ontology-based retrieval

Using the rule language allows us to retrieve objects and their values based
on complex criteria and background knowledge. In that OntoBroker behaves
like a knowledge-based system capable of deriving new facts from given ones.

9.1.3 Context transformation

The use of an ontology of different types of hotels helps us to cope with the
different hotel categories mentioned in the information sources. It cannot,
however, solve the problem of differences in units and scales used in the de-
scription of attribute values. In our example, the prices for a room are given
in different local currencies, which are Euros, UK Pounds and Danish Crowns.
In order to make these prices comparable to each other and to the criteria
given in the query, we have to normalize them to a common currency, say
US Dollars. This problem corresponds to the notion of context transforma-
tion used before. In order to be able to transform from one context (in this
case currency) to another, we first have to make the context of a piece of
information explicit. Parameterized attributes are an elegant and flexible way
of doing this. We therefore extend the description of information items by a
currency parameter for the price attribute:

radisson:congresshotel[price@(dkcrowns)->580].

mercure:four-star[price@(euro)->210].

ritz:first-class[price@(ukpounds)->130].

The actual transformation between different contexts can be specified using
complex F-logic rules that specify the value of an attribute in one context
in terms of its value in other contexts. The translation can either be point-
wise, from one specific context to another, or general. In the case of different

192 9 Integration and retrieval systems

currencies, we can formulate a general rule for currency conversion that refers
to an exchange rate.

FORALL X,Y,Z,A,B,C X[price@(A)->Y] <-

X[price@(B)->Z] AND

(Y is (Z*C)/100) AND

A[exchangerate@(B)->C].

The rule above specifies a general transformation rule between arbitrary cur-
rencies by referring to currency objects that have the exchange rate to different
other currencies as a parameterized attribute. When performing the transfor-
mation, the inference engine binds the object representing the goal currency
to the variable in the rule, reads its exchange rate with respect to the currency
mentioned in the description of the hotel and calculates the price in the goal
currency, which is returned as the result. For the case of US Dollars, we use
the following definitions of the currency object usdollar.

usdollar[exchangerate@(euro)->90].

usdollar[exchangerate@(ukpounds)->173].

usdollar[exchangerate@(dkcrowns)->27].

The currency transformation is now triggered by explicitly mentioning a goal
currency in the query. In our case, we now look for hotels that have a price of
less than 200 US Dollars:

FORALL Y,X <- Y:hotel[price@(usdollar)->X] AND lessorequal(X,200).

As summarized in Fig. 9.4, the result is no longer the ritz, but the two other
hotels, because the price of 130 UK pounds corresponds a a much higher
price in US Dollar while the prices denoted in Euro and Danish Crowns are
actually lower than 200 if measured in Dollars.

The application of this kind of context transformation is of course not limited
to measures and scales. We can also formulate rules that establish between
different classes of hotels (for example first class and four star hotels). These
rules, however, will always depend on the specific domain. We will turn our at-
tention to systems that offer generic solutions for translating between different
classifications in the following section.

9.2 OBSERVER

The OntoBroker approach described above can be seen as a good example
of the core functionality an ontology-based information-integration system
provides. In practice, however, some of the design decisions made for
OntoBroker turn out to be unrealistic. The first is the restriction to a single
ontology that covers all sources of data. As mentioned before, the restriction
to a single ontology leads to significant maintenance problems when new

9.2 OBSERVER 193

Fig. 9.4. Example context transformation

information sources are added. The other problematic aspect is the need
to create and maintain a logical representation of information items as
instances of the ontology. In the presence of large information sources the
logical representation becomes the bottleneck of the system. In this section
we will discuss the OBSERVER system, which provides solutions for the
two problems mentioned above: the system allows the existence of multiple
ontologies, including the use of different ontologies to represent different
views on the same domain, and provides and uses the semantic information
to generate plans of how to query the different sources rather than including
individual information items into the reasoning process.

In the following, we describe how OBSERVER addresses the example integra-
tion problem focusing on these two aspects.

9.2.1 Query Processing in OBSERVER

The OBSERVER system implements a special query-processing strategy
for dealing with multiple information sources that are based on different
ontologies. This strategy consists of three basic steps shown in Fig. 9.5. The
strategy is incremental in the sense that the system first tries to answer a
query only using data that is linked to the user’s ontology and establishes
connection to other information sources one by one in case the user is not
satisfied with the result so far. In the following, we briefly discuss the different
steps shown in Fig. 9.5.

• Query Formulation. in the first step the user selects one of the existing on-
tologies in the system as source for the query vocabulary. In the following,

194 9 Integration and retrieval systems

Fig. 9.5. Incremental query extension in OBSERVER

we call this ontology the user ontology. After having decided on a partic-
ular ontology, a query to the system can be formulated using the terms
of the ontology that can be combined using operators of the CLASSIC
description logic [Borgida et al., 1989].

• Data access. in OBSERVER an ontology is associated with a number of
information sources. In this step, the system retrieves answers to the user
query from the data sources associated with the ontology chosen in the
first step. The user query is processed by expanding the query into an
extended relational algebra expression. This expression is evaluated on
the information source using special wrappers and the results are passed
to the user as a partial answer to the query.

• Query expansion. if the user is not satisfied with the answer given by the
system, the user query is incrementally expanded to other information
sources. As these sources use different ontologies, the user query has to
be re-written into the terminology used by the additional source (target
ontology). For this purpose, OBSERVER uses semantic relations between
the different ontologies in the system. These semantic relations include
synonym, hypernym and hyponym relations as well as overlap, disjointness
and coverage. These relations that are stored in a central repository can be
interpreted as equivalence and subsumption in the description logic used
to represent knowledge in the system. When re-formulating the query,
OBSERVER distinguishes two cases:
– In some cases, all terms in the query can be replaced by synonym terms

in the target ontology. In this case, the re-formulated query is equiv-
alent to the original one and there is no loss of information resulting
from the translation (referred to as full translation).

9.2 OBSERVER 195

– Often, not all the terms in a user query have synonym terms in the
target ontology. In this case, OBSERVER performs a partial transla-
tion of these terms using a similar approach to the one described in
Sect. 6.2. In particular, the terms are replaced by unions of hyponym
or intersections of hyperym terms and the corresponding query is used
to retrieve data accepting a certain loss of information. This case is
referred to as partial translation.

In the case of a partial translation, there are different possibilities of com-
bining replacements of terms in the query. For each of these possible trans-
lations, OBSERVER estimates the loss of information and selects the ap-
proach that can be assumed to have the smallest loss.

As shown in Fig. 9.5 steps two and three are repeated iteratively incorporating
more and more information sources until the user is satisfied with the result.
After the first iteration, the second step also includes a re-formulation of the
retrieved information into the user ontology.

9.2.2 Vocabulary integration

We consider an extension of our example integration problem, where the
information shown in Table 9.1 is taken from two different sources of
information. Each of these information sources uses a different ontology that
provides the terms used to describe the category of the accommodation. We
assume that the information sources use the ontologies shown in Fig. 9.6. The
hierarchy on the left-hand side is the user ontology that is used to formulate
the query.

Fig. 9.6. The ontology integration problem

Using this ontology the user states the query for hotels with a price of less
than 200. In the following, we focus our attention on the type information

196 9 Integration and retrieval systems

contained in the query. The restriction on the price and the necessary cur-
rency conversion are assumed to be handled by information-source wrappers.

Looking at the information in Table 9.1, we see that consulting the in-
formation source associated with the user ontology will only produce the
first item in the table as a result. The other two information items are
classified according to the ontology on the right-hand side of Fig. 9.6. In
order to decide whether this information is an answer to the query for hotels,
the user ontology has to be integrated with this ontology using informa-
tion about semantic relations between terms in the two models. We use
the set of semantic relations shown in Table 9.2 to combine the two ontologies.

Table 9.2. Data from the example problem

IAO.APARTMENT is a synonym of SAO.apartment

IAO.HOTEL is a hyponym of SAO.hotel

IAO.HOTEL is a hypernym of SAO.4StarHotel

IAO.HOTEL is a hypernym of SAO.5StarsHotel

<IAO.HOTEL,80% > overlaps <SAO.Hotel,50%>

IAO.PRICE is a synonym of SAO.price

The semantic relations in Table 9.2 indicate that the terms apartment, hotel
and price used in both models are synonyms. Further, we find the information
that 4StarHotel and 5StarHotel are hyponyms of hotel and that the term
hotel in the user ontology refers to a more specific concept than the term
accommodation in the ontology of the additional information. In addition to
the semantic relations, the system uses semantic descriptions of the different
concepts in the ontologies. Consider the following definition of the term first
class hotel in the user ontology:

(define-concept FirstClassHotel

(AND Hotel

(ALL Stars (> 3)))

It defines a first-class hotel to be a hotel with at least 4 stars. Using the seman-
tic relations and the semantics of the description language, we can determine
the relation of the term first class hotel to the terms 4 star hotel and 5 star
hotel from the target ontology that have the following definition:

(define-concept 4StarHotel

(AND Hotel

(ALL Stars (= 4))))

(define-concept 5StarHotel

9.2 OBSERVER 197

(AND Hotel

(ALL Stars (= 5))))

Using a description-logic reasoner we can compute semantic relations between
all the terms in the user and the target ontology. The resulting integrated
model (Fig. 9.7) provides the basis for re-formulating user queries that do not
have a full translation.

Fig. 9.7. Combined view on the ontologies

9.2.3 Query plan generation and selection

The integrated ontology now provides a basis for re-formulating queries across
the different ontologies present in the system. While terms that have a direct
synonym in the target ontology are just replaced by this synonym, terms
without a direct correspondence have to be approximated by a combination
of similar terms. This can be done in different ways, leading to a situation
where one query can be translated in different ways. We will illustrate this
using our example problem.

In order to answer our example query we will state a query in terms of a
concept expression describing hotels with a price of less than 200. Using the
logic provided in OBSERVER, this concept expression is the following:

(AND Hotel (ALL price (<200)))

Here, the terms Hotel and price are both taken from the user ontology. As we
can see from the semantic relations, the term price has a corresponding term
in the target ontology and can therefore be directly replaced. Although there is
also a term “hotel” in the target ontology, it is not a synonym. We therefore

198 9 Integration and retrieval systems

have to consider different approximation of this term. The approximation
approach taken in OBSERVER is similar to the one described in Sect. 6.2.
In particular, each term that does not have a synonym is either replaced by
the conjunction of its parents or the union of its children in the integrated
concept hierarchy. In our example this results in two possible translations of
the query:

1. (AND Hotel (ALL price (<200))
2. (AND (OR 4StarHotel 5StarHotel) (ALL price (<200)))

The first alternative corresponds to using the upper, the second to using the
lower approximation.

As OBSERVER allows us to use both kinds of approximations and even to
mix them in cases where more than one term has to be approximated, we
need a criterion to choose the best combination of these approximations. In
OBSERVER this is done by estimating the loss of information for each possi-
ble translation based on statistics about the information sources. The notion
of loss of information is based on upper and lower bounds on the expected
precision and recall of a query, where precision and recall are defined in the
usual way [Mena et al., 2000b]. As the following example shows, the estima-
tion of loss of information is also useful in cases where we only replace one
term as in the example above, as it helps us to choose between the upper and
the lower approximations. Using the measures defined in [Mena et al., 2000b]
we get the following figures:

Replacement Hotel (OR 4StarHotel 5StarHotel)

Precision (23%, 30%) (100%, 100%)

Recall (100%, 100%) (22%, 50%)

Loss (53%, 62%) (33%, 63%)

As the figures show, in contrast to our expectation, replacing the term hotel
from the user ontology by the term hotel from the target ontology is not
the best choice in our case. While it has about the same maximal possible
loss of information, replacing the term by its lower approximation leads to
a better lower bound in the loss (one-third as opposed to one-half of the
information). In our example, OBSERVER will therefore decide to use the
lower approximation for the term hotel and return all four and five star hotels
from the information sources classified by the target ontology.

9.3 The BUSTER system

While the OBSERVER approach to information integration is quite similar
to the techniques described in this part of the book (in particular Chap.

9.3 The BUSTER system 199

6), the need to create and maintain sematic relations between multiple
ontologies in the system is a drawback. In order to cope with this problem
OBSERVER is able to deduce new semantic relations from combinations
of existing ones using canonical terms. This can be seen as a step in the
direction of the hybrid integration approach mentioned in Chap. 2. The
BUSTER system [Visser and Schuster, 2002], developed at the University
of Bremen, is an example of a system that more explicitly uses the hybrid
approach, implementing the methods described in this book. In the following
we will briefly describe the BUSTER system focusing on those features dis-
tinguishing it from systems like OBSERVER, in particular the extensive use
of a shared base vocabulary and methods for retrieval based on spatial criteria.

Fig. 9.8. BUSTER – Intelligent middleware for information sharing

BUSTER is meant to provide an intelligent middleware for information
sharing. We envision that the BUSTER system is used by many different
applications like search engines, e-commerce platforms or corporate memories
in order to access heterogeneous and distributed information resources.
For this purpose, the BUSTER system provides two subsystems, one for

200 9 Integration and retrieval systems

information filtering and one for information integration. These subsystems
are mainly independent of each other and can be accessed by clients over the
World Wide Web (compare Fig. 9.8).

Fig. 9.9 shows the interaction of the two subsystems in a typical integration
scenario. In a first step, relevant information sources are selected based on the
user’s information need. This is done by a broker component were information
sources register and provide access information. The decision whether a source
is relevant is based on source metadata provided by a metadata server. A user
request is matched against the metadata of an information source that, same
as the user query, is based on a shared vocabulary. The actual decision step
uses an external OWL reasoner for deductive matching.

Fig. 9.9. Information Filtering and Integration in BUSTER [Neumann et al., 2001]

After an information source has been chosen, its content is translated into
the user’s format by the integration component. This structural and syn-
tactic integration is performed by a classical mediator–wrapper architecture.
The core of this part is the MECOTA system, a rule based mediator that
uses abductive reasoning to translate between different information contexts
[Wache, 1999, Wache, 2003].

9.3.1 The use of shared vocabularies

In principle, the query processing in BUSTER works quite similarly to the
OBSERVER system: user queries are translated into the vocabulary provided
by the ontologies assigned to different sources. The main difference lies in
the fact that the user does not commit to a user ontology representing his

9.3 The BUSTER system 201

personal view of the domain but rather to a basic vocabulary that is used to
define concepts in all the source ontologies (compare Sect. 2.4.2).

Fig. 9.10. The role of shared vocabularies in BUSTER

By formulating the user query in terms of this basic vocabulary we ensure
that the query can interpreted with respect to all source ontologies in
the system. In particular, we can determine these concepts in a source
ontology that are most similar to the concept we asked for. Here, being
similar means the direct parents and children of the query concept after we
have classified it into the source ontology. After translating the query into
the terminology provided by a source ontology – this is done as described
in Sect. 6.2, we can match the query against metadata provided for the
information source. The metadata for an information source is comparable to
the descriptions used in the OntoBroker system. In particular, information
items contained in the source and their properties are described using terms
from the shared vocabulary. This again guarantees that we can determine
those items that are an answer to the translated query by logical deduction.
Finally, the descriptions of matching information items are returned to
the user and a short explanation is given why the item has been matched
– currently this explanation points to the concept in the source ontology
that has been used for matching. Fig. 9.10 provides an overview of the process.

9.3.2 Retrieving accommodation information

For our example problem we use a shared vocabulary containing basic
relations and terms from the accommodation domain that can be used
to specify different types of accommodations as well as to describe actual
accommodations. In the initial interaction with the system the user will be

202 9 Integration and retrieval systems

asked to select a domain and the corresponding vocabulary (see Fig. 9.11).

Fig. 9.11. Selection of shared models

After having selected a query the user is asked to formulate a query us-
ing the shared vocabulary. The query formulation is supported by a query-
construction interface which is dynamically generated from the chosen vocab-
ulary. As shown in Fig. 9.12 the vocabulary for the accommodation domain
specifies five properties for the concept accommodation that can be further
specified:

• Meals. Information about available meals for example used to distinguish
full-pension, half-pension and bed and breakfast.

• Facilities. Information about available facilities including fixed installation
such as TV-sets as well as services offered.

• Stars. Number of stars assigned to the accommodation. This can also be
used describe other kinds of distinctions received by the accommodation.

• Building. Information about the type of building, e.g. apartments vs. one
single complex.

For each of these properties, the vocabulary also defines a set or even a
hierarchy of possible values. In Fig. 9.12 we see parts of the fillers for the
facility property.

Units: the size of the accommodation in terms of number of units.

9.3 The BUSTER system 203

Fig. 9.12. Query construction based on shared terminology

Based on the query formulated by the user the system now searches the dif-
ferent information sources and returns relevant results. Fig. 9.13 shows a sit-
uation where the user is looking for a sports hotel. The results are shown
as a list on the left-hand side of the screen. The right-hand side contains an
explanation for the currently selected result. The explanation consists of the
actual query being asked by the user, the matching concept from the source
ontology – in this case “golf hotel” – and the metadata describing the result.

9.3.3 Spatial and temporal information

The systems we have discussed so far – and this observation also holds for
information integration systems in general – are mainly focusing on the inte-
gration of conceptual information. We have seen how the systems deal with
different classifications of information items and differences in underlying mea-
sures and scales. If we look at our example problem, however, it is quite obvi-
ous that there is not only a conceptual side to the integration problem. When
looking for a certain accommodation, we also have to take care of spatial and
temporal aspects of the information:

• Is the accommodation close enough to the place we really want to go to,
e.g. the location of a conference?

• Is the accommodation available at the respective time we need to be at
the place, e.g. the duration of the conference?

204 9 Integration and retrieval systems

Fig. 9.13. Presentation and Explanation of the Result Set

Currently, these aspects are not well supported by many systems, because
they require different kinds of reasoning mechanisms. While many systems
rely on reasoning about class hierarchies, in particular about the subclass
relation, reasoning about spatial relevance of a piece of information needs
inferences over part-of hierarchies and neighborhood graphs. The BUSTER
system tries to close this gap by distinguishing between conceptual, spatial
and temporal aspects of an information request. Each of these components
is evaluated separately and only information meeting all of the criteria is
returned. In the following, we briefly describe the processing of spatial queries
in the BUSTER system.

The idea behind processing spatial queries in BUSTER is the use of names of
spatial locations. These names can include the names of cities and countries,
but also less well-defined locations such as regions or landscapes. A problem
that arises with the use of place names is the fact that different information
sources will often use different place names. This might be due to the
fact that the same place has different names (e.g. Chemnitz vs. Karl-Marx
Stadt), to differences in the granularity of the information (countries vs.
federal states) or the use of special names that do not have a counterpart
in other terminologies (sales regions of a certain company). Fig. 9.14 shows
the query interface of the system that allows the user to specify spatial criteria.

9.3 The BUSTER system 205

Fig. 9.14. Query interface for conceptual, spatial and temporal criteria

Once such a name appears in a user query, the system has to determine
which part of the information that satisfies the conceptual part of the query
is also relevant with respect to the place name in the query. In order to deal
with this problem, the BUSTER system uses so called place-name structures
[Voegele et al., 2003]. Place-name structures consist of a combination of a
partonomy of spatial regions each connected with a name. In our example,
this partonomy would for example contain the path: Europe, Scandinavia,
Denmark. Depending on the spatial region chosen by the user, different
answers will be returned. If the user selects the name Europe, all three hotels
will be returned as they are all located in cities that are part of Europe. If the
user narrows down the requested region to Scandinavia, only the Radisson
in Copenhagen will be returned, because the other cities are not considered
to belong to Scandinavia. The upper-left part of Fig. 9.15 shows a similar
partonomy related to federal states in Germany.

Besides clearly defined regions such as countries, a place-name structure may
also contain names of less well-defined regions such as mountain ranges or
seas. The upper right part of Fig. 9.15 shows an example of a mountain
range (square box in the hierarchy) inserted into the partonomy by relating
its spatial extension to federal states. In the case of our example, the user
might ask for a hotel on the Baltic Sea. Clearly none of the hotels are part of
the Baltic Sea, making clear that a partonomy alone is not enough to process
spatial queries. For this purpose, BUSTER combines the partonomy with a

206 9 Integration and retrieval systems

Fig. 9.15. Representation of spatial knowledge (from [Voegele et al., 2003])

connection graph for an underlying tessellation of spatial regions with well
defined boundaries (compare the lower part of Fig. 9.15). In our example this
connection graph provides the knowledge that Denmark as well as Germany
are connected to the Baltic Sea and are therefore more relevant than the UK.
Therefore, the Radisson in Copenhagen and the Mercure in Hamburg are
returned as results.

Another function of the tessellations underlying the place-name structures
is the integration of spatial information during query answering. It allows
different information sources to use different partonomies of place names.

9.4 Conclusions 207

As long as they are based on the same underlying tessellation, the spatial
relevance can still be determined based on this shared model.

9.4 Conclusions

The systems discussed in this chapter address various aspects of identifying
and integrating heterogeneous and distributed information sources of related
topics. The integration problem is addressed on different levels including syn-
tax, structure and semantic integration. The systems have successfully been
applied in different domains such as database integration, experience man-
agement in large companies and geographic information processing. These
applications show that the models and methods described in this book are not
only of theoretical interest, but that they contribute to a practical solution for
information-sharing problems. Especially, we conclude that the general frame-
work described in this book can be put to work using existing Web technolo-
gies: shared ontologies can be encoded in RDF Schema, OWL can be used to
build source ontologies. Information sources in terms of collections of HTML
documents can be linked to these ontologies using specialized wrappers and
annotation tools. Finally, mapping and filtering methods can be implemented
on top of existing subsumption reasoners that can be accessed over the Web.
This tight coupling with existing technologies makes us optimistic about the
potential contribution of the framework to a more intelligent Semantic Web.
We also have to notice, however, that currently successful applications are
only reported in rather restricted application domains rather than an open
Semantic Web environment. Issues such as scalability and automatic gener-
ation of mappings still need investigation before systems are ready to move
out to the Web.

Further reading

The OntoBroker system is presented in [Decker et al., 1999] in more de-
tail. Frame-logic, the logical formalism used in OntoBroker is introduced in
[Kifer et al., 1995]. The most complete description of the OBSERVER system
is in [Mena and Illarramendi, 2001]. The methods for query planning based on
approximate re-writing is discussed in [Mena et al., 2000b]. A description of
the BUSTER system can be found in [Visser and Schuster, 2002]. The meth-
ods for determining spatial relevance in the BUSTER system are described in
[Schlieder et al., 2001] and [Voegele et al., 2003].

Part IV

Distributed ontologies

