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Summary. 3D meshes are widely used in graphical and simulation applications
for approximating 3D objects. When representing complex shapes in raw data for-
mat, meshes consume a large amount of space. Applications calling for compact
storage and fast transmission of 3D meshes have motivated the multitude of al-
gorithms developed to compress these datasets efficiently. In this paper we survey
recent developments in compression of 3D surface meshes. We survey the main ideas
and intuition behind techniques for single-rate and progressive mesh coding. Where
possible, we discuss the theoretical results obtained for asymptotic behaviour or op-
timality of the approach. We also list some open questions and directions for future
research.

1 Introduction

The emerging demand for visualising and simulating 3D geometric data in
networked environments has motivated research on representations for such
data. Slow networks require data compression to reduce the latency, and pro-
gressive representations to transform 3D objects into streams manageable by
the networks. We distinguish between single-rate and progressive compres-
sion techniques depending on whether the model is decoded during, or only
after, the transmission. In the case of single-rate lossless coding, the goal is
to remove the redundancy present in the original description of the data. In
the case of progressive compression the problem is more challenging, aiming
for the best trade-off between data size and approximation accuracy (the so-
called rate-distortion trade-off). Lossy single-rate coding may also be achieved
by modifying the data set, making it more amenable to coding, without losing
too much information. These techniques are called remeshing.

Sect. 2 gives some basic definitions for surface meshes. Sect. 3 surveys
recent algorithms for single-rate compression, and Sect. 4 surveys recent tech-
niques for progressive compression.
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2 Basic Definitions

The specification of a polygon surface mesh consists of combinatorial enti-
ties: vertices, edges, and faces, and numerical quantities: attributes such as
vertex positions, normals, texture coordinates, colours, etc. The connectivity
describes the incidences between elements and is implied by the topology of
the mesh. For example, two vertices or two faces are adjacent if there exists
an edge incident to both. The valence of a vertex is the number of edges inci-
dent to it, and the degree of a face is the number of edges incident to it (see
Fig. 1). The ring of a vertex is the ordered list of all its incident faces. The
total number of vertices, edges, and faces of a mesh will be denoted V , E, and
F respectively.

Fig. 1. Examples of polygon meshes. Left: Beethoven mesh (2812 polygons, 2655
vertices). Middle: Galleon mesh (2384 polygons, 2372 vertices). Right: close-up of
a polygon mesh – the valence of a vertex is the number of edges incident to this
vertex, while the degree of a face is the number of edges enclosing it.

3 Single-rate Compression

We classify the techniques into two classes:

• Techniques aiming at coding the original mesh without making any as-
sumption about its complexity, regularity or uniformity. This also includes
techniques specialised for massive datasets, which cannot fit entirely into
main memory. Here we aim at restoring the original model after decoding
(for carefully designed models or applications where lossy compression is
intolerable).

• Techniques which remesh the model before compression. The original mesh
is considered as just one instance of the shape geometry.
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3.1 Triangle Meshes

The triangle is the basic geometric primitive for standard graphics render-
ing hardware and for many simulation algorithms. This partially explains
why much of the work in the area of mesh compression prior to 2000 has
been concerned with triangle meshes only. The Edgebreaker coder [52] gives a
worst-case bound on the connectivity compression bit rate of 4 bits per ver-
tex. Besides the popular Edgebreaker and its derivatives [39, 17, 59, 30], two
techniques transform the connectivity of a triangle mesh into a sequence of
valence codes [62, 28], which can automatically benefit from the low statistical
dispersion around the average valency of 6 when using entropy encoding. This
is achieved either through a deterministic conquest [62] or by a sequence of
half edge collapses [28]. In [62], Touma and Gotsman proposed the conquest
approach and compress the connectivity down to less than 0.2 bit per ver-
tex (b/v) for very regular meshes, and between 2 and 3.5 b/v otherwise, in
practice. The so-called conquest consists of conquering the edges of succes-
sive pivot vertices in an orientation-consistent manner and generating valence
codes for traversed vertices. Three additional codes: dummy, merge and split
are required in order to encode boundaries, handles and conquest incidents
respectively. The dummy code occurs each time a boundary is encountered
during the conquest; the number of merge codes is equal to the genus of
the mesh being encoded. The split code frequency is linked mainly to the
mesh irregularity. Intuitively, if one looks at the coding process as a conquest
along a spiralling vertex tree, the split codes thus indicate the presence of its
branching nodes. The Mesh Collapse Compression scheme by Isenburg and
Snoeyink [28] performs a sequence of edge contractions until a single vertex
remains in order to obtain bit rates of 1 to 4 b/v. For a complete survey of
these approaches, we refer the reader to [14].

One interesting variant on the Edgebreaker technique is the Cut-Border
Machine (CBM) of Gumhold and Strasser [18]. The main difference is that the
CBM encodes the split values as a parameter like the valence based schemes.
This makes an upper bound on the resulting code more difficult to establish
(although there is a bound of 5 b/v in [17]), but on the other hand allows
for single pass coding and decoding. This difference is significant for coding
massive data sets.

3.2 Non-triangle Meshes

Compared with triangle meshes, little work has been dedicated to the harder
problem of connectivity coding of 2-manifold graphs with arbitrary face de-
grees and vertex valences. There are a significant number of non-triangular
meshes in use, in particular those carefully designed, e.g. the high-quality 3D
models of the Viewpoint library [65] contain a surprisingly small proportion
of triangles. Likewise, few triangles are generated by tessellation routines in
existing modelling software. The dominant element in these meshes is the
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quadrilateral, but pentagons, hexagons and higher degree faces are also com-
mon.

The performance of compression algorithms is traditionally measured in
bits per vertex (b/v) or bits per edge (b/e). Some early attempts to code
general graphs [63, 34], which are the connectivity component of a geometric
mesh, led to rates of around 9 b/v. These methods are based on building inter-
locking spanning trees for vertices and faces. Chuang et al. [7] later described
a more compact code using canonical ordering and multiple parentheses. They
state that any simple 3-connected planar graph can be encoded using at most
1.5 log2(3)E + 3 � 2.377 bits per edge. Li and Kuo [48] proposed a so-called
“dual” approach that traverses the edges of the dual mesh3 and outputs a
variable length sequence of symbols based on the type of a visited edge. The
final sequence is then coded using a context based entropy coder. Isenburg and
Snoeyink coded the connectivity of polygon meshes along with their proper-
ties in a method called Face Fixer [29]. This algorithm is gate-based, the
gate designating an oriented edge incident to a facet that is about to be tra-
versed. A complete traversal of the mesh is organised through successive gate
labelling along an active boundary loop. As in [62, 52], both the encoder and
decoder need a stack of boundary loops. Seven distinct labels Fn, R, L, S, E,
Hn and Mi,k,l are used in order to describe the way to fix faces or holes to-
gether while traversing the current active gate. King et al. [40], Kronrod and
Gotsman [42] and Lee et al. [46] also generalised existing methods to quad, ar-
bitrary polygon and hybrid triangle-quad meshes respectively. However, none
of these polygon mesh coders come close to the bit rates of any of the best,
specialised coders [62, 3] when applied to the special case of a triangle mesh.
At the intuitive level, given that a polygon mesh with the same number of
vertices contains fewer edges than a triangle mesh, it should be possible to
encode it with fewer bits. These observations motivated the design of a better
approach to code the connectivity of polygonal meshes.

The Degree/Valence Approach

Since the Touma-Gotsman (TG) valence coder [62] is generally considered to
have the best performance, it seems natural to try to generalise it to arbitrary
polygon meshes. This was done independently by Khodakovsky et al. [35] and
Isenburg [23]. The generalisation relies on the key concept of duality. Consider
an arbitrary 2-manifold triangle graph M. Its dual graph M̃, in which faces
are represented as dual vertices and vertices become dual faces (see Fig. 2),
should have the same connectivity information since dualisation neither adds
nor removes information. The valences of M̃ are now all equal to 3, while the
face degrees take on the same values as the vertex valences of M. Since a
list of all 3s has zero entropy, coding just the list of degrees of M̃ would lead
to the same bit rate as found for the valences of M. Conversely, if a poly-
gon mesh has only valence-3 vertices, then its dual would be a triangle mesh.
3 See Fig. 2 for an illustration of a dual mesh.
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Hence, its entropy should be equal to the entropy of the list of its degrees.
This observation leads to the key idea of the degree/valence approach: the
compression algorithm should be self-dual, in the sense that both a mesh and
its dual are coded with the same number of bits. A direct consequence of this
is that the coding process should be symmetric in the coding of valences and
degrees. A second direct consequence is that the bit rate of a mesh should be
measured in bits per edge (b/e), since the number of edges is the only vari-
able not changing during a graph dualisation. This contrasts with the former
practice of measuring the coding efficiency for triangle meshes in bits/vertex.

3

5

3

5

Primal mesh Dualization Dual mesh

Fig. 2. Left: a polygon mesh with highlighted faces of degree 3 and 5. Middle: the
dual mesh is built by placing one node in each original face and connecting them
through each edge incident to two original faces. Right: the dual mesh now contains
corresponding vertices of valence 3 and 5.

The core technique underlying the algorithm described in [23, 35] is similar
to most connectivity compression methods: a seed element is chosen and all
its neighbours are traversed recursively until all elements of the correspond-
ing connected component are “conquered”. A new seed element of the next
connected component is then chosen and the process continues. Every time
the encoder conquers the next element of the mesh, it outputs some symbol
which uniquely identifies a new state. From this stream of symbols, the de-
coder can reconstruct the mesh. Various coding algorithms differ in the way
they traverse the mesh and in the sets of symbols used for identifying the
encoder state. During the mesh traversal of [23, 35], two sets of symbols are
generated to code vertex valences and face degrees using an entropy encoder.
At any given moment in time, both encoder and decoder know with which
type of symbol (face or vertex) they are dealing.

While the valence and degree sequences of a mesh dominate the mesh
code, they are not sufficient to uniquely characterise it. As in [62], some ex-
tra “split”, and possibly other symbols may be required during the mesh
conquest. To minimise the occurrence of such symbols – hence improve the
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compression ratios – both techniques [23, 35] drive the traversal by various
heuristics inspired from the valence-driven approach [3]. To better exploit
correlation between streams and between symbols within each stream, it is
possible to use a context-based arithmetic coder.

3.3 Connectivity: Entropy and Optimality

The entropy is a measure of the information content of a set of symbols,
equipped with a probability distribution. It is thus the minimal average num-
ber of bits per symbol required for lossless encoding of a sequence of symbols
from the set, each appearing with frequency given by its probability:

entropy =
N∑

i=1

pi log2

1
pi
. (1)

When the probability is not specified, this means that all symbols are
equiprobable. When coding the connectivity of a mesh using entropy coding
of its valences as introduced by Touma and Gotsman [62] for the case of tri-
angular meshes, the bit-rates obtained are mostly dictated by the distribution
of the valences. This automatically benefits from the regularity in the mesh.
A triangle mesh is perfectly regular when the valence of all vertices is 6. The
vertex valence distribution then has an entropy of zero. Later work, mainly
generalisations of the Edgebreaker technique, developed methods to take ex-
plicit advantage of mesh regularity, and their performance has been shown
to scale with this measure [39, 16, 59]. In [35], Khodakovsky et al. discuss
the optimality of their valence/degree approach and show that the entropy
of both the valence and degree sequences is no more than the entropy of the
class of planar graphs as established by Tutte in the sixties [64]. Gotsman [13]
later showed that the precise entropy of the valence and degree sequences is
actually strictly less, but not by much, than the Tutte entropy, and the differ-
ence is made up by the split commands. Hence the number of split commands,
albeit very small, is not negligible.
Entropy and constructive enumeration. Given a finite class of discrete ele-
ments, all equally probable, the entropy e of the class is the logarithm of the
number of elements in the class. Obviously, the best possible performance of
any algorithm coding this class of elements is to use at most e bits to encode
one arbitrary element in the class. Hence, the issue of optimal coding of a class
is equivalent to the one of constructive enumeration [41]. Poulalhon and Scha-
effer [51] have described a provably optimal coder for connectivity of meshes
homeomorphic to a sphere, using a bijection between a triangulation and a
Schnyder tree decomposition (i.e. a constructive enumeration of the connec-
tivity graph). Although effective bounds are obtained, the code lengths do not
adapt to the mesh regularity (every mesh consumes the same number of bits,
whatever the distribution of valences). An objective of theoretical interest is
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to add flexibility to these methods in order to benefit from mesh regular-
ity. Another obvious extension is to obtain similar results for high genus and
non-triangular graphs.

3.4 Geometry Compression

Although the geometry data is often given in precise floating point represen-
tation for representing vertex positions, some applications may tolerate the
reduction of this precision in order to achieve higher compression rates. The
reduction of the precision involves quantisation. The resulting values are then
typically compressed by entropy coding after prediction relying on some data
smoothness assumptions.
Quantisation. The early works usually quantise the vertex positions uniformly
for each coordinate separately in Cartesian space [10, 61, 62], and a more so-
phisticated vector quantisation has also been proposed by Lee and Ko [45].
Karni and Gotsman [33] have also demonstrated the relevance of applying
quantisation in the space of spectral coefficients (see [14] for more details on
this approach). In their elegant work, Sorkine et al. [57] address the issue of
reducing the visual effect of quantisation errors. Building on the fact that the
human visual system is more sensitive to normal than to geometric distortion,
they propose to apply quantisation not in the coordinate space as usual, but
rather in a transformed coordinate space obtained by applying a so-called
“k-anchor invertible Laplacian transformation” over the original vertex coor-
dinates. This concentrates the quantisation error at the low-frequency end of
the spectrum, thus preserving the fine normal variations over the surface, even
after aggressive quantisation (see Fig. 3). To avoid significant low-frequency
errors, a set of anchor vertex positions are also selected to “nail down” the
geometry at a select number of vertex locations.
Prediction. The early work employed simple delta coding [10] or linear predic-
tion along a vertex ordering dictated by the coding of the connectivity [61, 62].
The approach proposed by Lee et al. [46] consists of quantising in the angle
space after prediction. By applying different levels of precision while quan-
tising the dihedral or the internal angles between or inside each facet, this
method achieves better visual appearance by allocating more precision to the
dihedral angles since they are more related to the geometry and normals.
Inspired by the Touma-Gotsman (TG) parallelogram prediction scheme [62],
Isenburg and Alliez [25] complete the techniques described in [23, 35] by gen-
eralising it to polygon mesh geometry compression. The polygon information
dictates where to apply the parallelogram rule used to predict the vertex po-
sitions. Since polygons tend to be fairly planar and fairly convex, it is more
appropriate to predict within polygons rather than across them. Intuitively,
this idea avoids poor predictions resulting from a crease angle between poly-
gons.

Despite the effectiveness of the published predictive geometry schemes,
they are not optimal because the mesh traversal is dictated by the connec-
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Fig. 3. [Reproduced in colour in Plate 1.] The delta-coordinate quantisation to
5 bits/coordinate (left) introduces low-frequency errors to the geometry, whereas
Cartesian coordinate quantisation to 11 bits/coordinate (right) introduces noticeable
high-frequency errors. The upper rows shows the quantised model and the bottom
figures use colour to visualise corresponding quantisation errors. Data courtesy O.
Sorkine.

tivity scheme. Since this traversal order is independent of the geometry, and
prediction from one polygon to the next is performed along this, it cannot be
expected to do the best job possible. A first approach to improve the prediction
was the prediction trees [43], where the geometry drives the traversal instead
of the connectivity as before. This is based on the solution of an optimisation
problem. In some case it results in an decrease of up to 50% in the geometry
code entropy, in particular in meshes with significant creases and corners, such
as CAD models. Cohen-Or et al. [9] suggest a multi-way prediction technique,
where each vertex position is predicted from all its neighbouring vertices, as
opposed to the one-way parallelogram prediction. An extreme approach to
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prediction is the feature discovery approach by Shikhare et al. [56], which re-
moves the redundancy by detecting similar geometric patterns. However, this
technique works well only for a certain class of models and involves expensive
matching computations.

3.5 Optimality of Spectral Coding

Karni and Gotsman [33] showed that the eigenvectors of the Laplacian ma-
trix derived from the mesh connectivity graph may be used to transform code
the three Cartesian geometry n-vectors (x, y, z). The eigenvectors are ranked
according to their respective eigenvalues, which are analogous to the notion
of frequency in Fourier analysis. Smaller eigenvalues correspond to lower fre-
quencies. Karni and Gotsman showed empirically that when projected on
these basis vectors, the resulting projection coefficients decrease rapidly as
the frequency increases. Hence, similarly to traditional transform coding, a
good approximation to the geometry vectors may be obtained by using just a
linear combination of a small number of basis vectors. The code for the geom-
etry is then just this small number of coefficients (quantised appropriately).
While this method seems to work quite well, and intuitively it seems that
the Laplacian is a linear operator which captures well the smoothness of the
mesh geometry relative to the mesh neighbour structure, there was no proof
that this is the optimal basis for this purpose. The only indication that this
might be the case is that in the case of a regular mesh, the eigenvectors of the
Laplacian are the well-known 2D Fourier basis, which is known to be optimal
for common classes of signals [20].

Ben-Chen and Gotsman [5] have imposed a very natural probability dis-
tribution on the class of meshes with a given connectivity, and then used
principal component analysis (also known as the Karhunen-Loève transform)
to derive the optimal basis for that class. A series of statistical derivations then
shows that this basis is identical to the eigenvectors of the symmetric Lapla-
cian of the given connectivity (the sparse matrix whose diagonal is the vertex
valence sequence, a negative unit entry for an edge, and zero otherwise). While
this is a very interesting result, it remains theoretical, since computation of
the Laplacian eigenvectors is still considered too expensive to be practical.

3.6 Coding Massive Data Sets

Due to their size and complexity, massive datasets [47] require dedicated algo-
rithms since existing mesh compression are effective only if the representation
of the mesh connectivity and geometry is small enough to fit “in-core”. For
large polygonal models that do not fit into main memory, Ho et al. [21] propose
cutting meshes into smaller pieces that can be encoded in-core. They process
each piece separately, coding the connectivity using the Edgebreaker coder,
and the vertex positions using the TG parallelogram linear predictor. Addi-
tional information required to stitch the pieces back together after decoding
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is also recorded, leading to bit-rates 25% higher than the in-core version of
the same compression algorithm. A recent out-of-core technique introduced by
Isenburg and Gumhold [27] makes several improvements upon [21] by (i) avoid-
ing the need to break the model explicitly into several pieces, (ii) decoding
the entire model in a single pass without any restarts, and (iii) streaming the
entire mesh through main memory with a small memory footprint. The key
technique underlying this compression method consists of building a new ex-
ternal memory data structure – the out-of-core mesh – in several stages, all of
them being restricted to clusters and active traversal fronts which fit in-core.
The latter traversal order, consisting of a reordering of the mesh primitives, is
computed in order to minimise the number of memory cache misses, similar
in spirit to the notion of a “rendering sequence” [6] developed for improving
performance of modern graphics cards, but at a much larger scale. The re-
sulting compressed mesh format can stream very large meshes through the
main memory by providing the compressor transparent access to a so-called
processing sequence that represents a mesh as a fixed, yet seamless interleaved
ordering of indexed triangles and vertices. At any point in time, the remaining
part of the mesh data is kept on disk.

3.7 Remeshing for Single-rate Geometry Compression

The majority of mesh coders adapt to the regularity and the uniformity of
the meshes (with the noticeable exception of [12] that adapts to the non-
uniformity). Therefore, if the application allows lossy compression, it is pru-
dent to exploit the existing degrees of freedom in the meshing process to
transform the input into a mesh with high regularity and uniformity. Re-
cent work produces either (i) piecewise regular meshes by using the subdivi-
sion paradigm, or (ii) highly regular remeshing by local mesh adaptation, or
(iii) perfectly regular remeshing by surface cutting and global parameteriza-
tion.

Szymczak et al. [60] first split the mesh into relatively flat patches with
smooth boundaries. Six axis-aligned vectors (so-called defining vectors) first
determine some reference directions. From these vectors a partition of the
mesh is built with a set of patches whose normals do not deviate more than a
prescribed threshold. An approximation of the geodesic distance using Dijk-
stra’s algorithm is then used in combination with a variant of the farthest
point Voronoi diagram to smooth the patch boundaries. Each patch is then
resampled by mutual tessellation over a regular hexagonal grid, and all the
original vertices, but the boundary ones, are removed by half edge collapses
(see Fig. 4). The connectivity of the resulting mesh is encoded using a ver-
sion of Edgebreaker optimised for regular meshes, and vertex positions are
compressed using differential coding and separation of tangential and normal
components.

Attene et al. [4] tile the input mesh using isosceles “triangloids”. From
each boundary edge of the tiling process, they compute a circle centred on
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Fig. 4. [Reproduced in colour in Plate 2.] Piecewise regular remeshing (data courtesy
A. Szymczak).

the edge mid-point and lying in the bisecting plane between the two edge
vertices. The location where the circle pierces the original mesh determines
the tip vertex of the newly created triangloid tile. The original mesh is this
way wrapped, the regions already discovered being identified as the triangles
lying inside the regions bounded by geodesic paths between the three vertices
of the new tile. Connectivity of the new mesh is compressed by Edgebreaker,
while geometry is compressed by entropy coding one dihedral angle per vertex,
after quantisation.

Surazhsky and Gotsman [58] generate a triangle mesh with user-controlled
sample distribution and high regularity through a series of atomic Euler oper-
ators and vertex relocations applied locally. A density function is first specified
by the user as a function of the curvature onto the original mesh. This mesh is
kept for later reference to the original surface geometry, and the mesh adapta-
tion process starts on a second mesh, initialised to a copy of the original mesh.
The vertex density approaches the prescribed ideal density by local decima-
tion or refinement. A new area-based smoothing technique is then performed
to isotropically repartition the density function among the mesh vertices. A
novel component of the remeshing scheme is a surprisingly efficient algorithm
to improve the mesh regularity. The high level of regularity is obtained by
performing a series of local edge-flip operations as well as some edge-collapses
and edge-splits. The vertices are first classified as black, regular or white ac-
cording to their valence deficit or excess (respectively < 6, = 6 and > 6). The
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edges are then classified as regular, long, short, or drifting according to their
vertex colours (regular if both vertices are regular, long if both are white,
short if both are black and drifting if bi-coloured). Long edges are refined by
edge-split, and short edges are removed by edge-collapse until only drifting
edges remain. The drifting edges have the nice property that they can migrate
through regular regions of the mesh by edge-flips without changing the repar-
tition of the vertex valences. Improving the mesh regularity thus amounts to
applying a sequence of drifting-edge migrations until they meet irregular ver-
tices, and then have a chance to generate short or long edges whose removal
becomes trivial. As a result the models are better compressed using the TG
coder which benefits from the regularity in mesh connectivity and geometry.

Fig. 5. Highly regular remeshing (data courtesy V. Surazhsky and C. Gotsman).

Gu et al. [15] propose a technique for completely regular remeshing of sur-
face meshes using a rectangular grid. Surfaces of arbitrary genus must be cut
to reduce them to a surface which is homeomorphic to a disc, then parameter-
ized by minimising a geometric-stretch measure [53], and finally represented
as a so-called geometry image that stores the geometry, the normals and any
attributes required for visualisation purposes. Such a regular grid structure
is compact and drastically simplifies the rendering pipeline since all cache
indirections found in usual irregular mesh rendering are eliminated. Besides
its appealing properties for efficient rendering, the regular structure allows
direct application of “pixel-based” image-compression methods. The authors
apply wavelet-based coding techniques and compress separately the topolog-
ical sideband due to the cutting. After decoding, the topological sideband is
used to fuse the cut and ensure a proper welding of the surface throughout
the cuts. Despite its obvious importance for efficient rendering, this technique
reveals a few drawbacks due to the inevitable surface cutting: each geometry
image has to be homeomorphic to a disk, therefore closed or genus> 0 models
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have to be cut along a cut graph to extract either a polygonal schema [15] or
an atlas [54]. Finding a “smart” cut graph (i.e. minimising a notion of dis-
tortion) is a delicate issue and introduces a set of artificial boundary curves,
associated pairwise. These boundaries are later sampled as a set of curves (i.e.
1-manifolds) and therefore generate a visually displeasing seam tree. Another
drawback comes from the fact that the triangle or the quad primitives of the
newly generated meshes have neither orientation nor shape consistent with
approximation theory, which makes this representation not fully optimised
for efficient geometry compression as reflected in the rate-distortion trade-off.

Fig. 6. [Reproduced in colour in Plate 3.] Geometry image (data courtesy X. Gu).

3.8 Comparison and Discussion

A recent trend in mesh connectivity compression is generalisation from trian-
gle meshes to general polygon meshes, with arbitrary genus and boundaries.
Adapting to the regularity of the mesh, i.e. the dispersion in the distribution of
valences or degrees, is usually reflected in the coding schemes. Semi-regularity
being a common property of “real-world” meshes, this is a very convenient
feature.

On the theoretical side, the bit-rates achievable by degree/valence connec-
tivity coders have been shown to approach the Tutte entropy lower bound.
Because of some remaining “split” symbols, whose number has not been
bounded, some additional work has to be done in order to design truly optimal
polygon mesh coders which also adapt to regularity. In particular, the con-
nectivity coder of Poulalhon and Schaeffer [51] for triangle meshes offers some
promise for extension to polygonal models. As for volume meshes, although
some recent work has demonstrated a generalisation of the valence coder to
hexahedral meshes [24], nothing has been proven concerning the optimality of
this approach.
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Most of the previous work has studied the coding of geometry as dictated
by the connectivity code, the vertex positions being predicted in an order
dictated by the connectivity coder. This happens even though the geometry
component dominates the code sizes, so the result will tend to be suboptimal.
One attempt to change this was to make the coding of the geometry cooperate
with the coding of the connectivity, using prediction trees [43] or multi-way
prediction techniques [9]. Other work [57] compresses the geometry globally,
showing that applying quantisation in the space of Laplacian transformed
coefficients, instead of in the usual space of Cartesian coordinates, is very
useful. In a way, the latter is an extension of the multi-way approach since it
amounts to predicting each vertex as the barycentre of its neighbours. More
recent work [5] aims to find an optimal basis best suited to decorrelate the
geometric signal.

Isenburg et al. provide an on-line implementation of the degree/valence
coder for bench marking purposes [26]. Isenburg also demonstrates an ASCII-
based compression format for web applications able to achieve bit-rates within
1 to 2 percent of those of the binary benchmark code [31].

In order to benefit most from the adaptation of a coding scheme to regu-
larity or uniformity in the input mesh, recent work advocates highly (or even
completely) regular remeshing without distorting the geometry too much. In
particular, the geometry images [15] technique demonstrates the efficiency of
modern image compression techniques when applied to geometry which has
been remeshed in a completely regular manner.

A more recent trend takes the remeshing paradigm further, with the design
of efficient meshes for approximation of surfaces [1]. This leads to anisotropic
polygon meshes, that “look like” carefully designed meshes. The efficiency
of such a scheme is expressed in terms of error per number of geometric
primitives. The question that now naturally arises is whether the remeshing
process should be influenced by the mesh compression scheme used, namely,
should it remesh in a manner that suits the coder best. Since rapid progress
in the direction of efficient surface meshing is emerging, it seems that it will
certainly motivate new approaches for dedicated single-rate mesh compression
schemes.

4 Progressive Compression

Progressive compression of 3D meshes uses the notion of refinement: the origi-
nal mesh is transformed into a sequence (or a hierarchy) of refinements applied
to a simple, coarse mesh. During decoding the connectivity and the geome-
try are reconstructed incrementally from this stream. The main advantage of
progressive compression is that it provides access to intermediate states of the
object during its transmission through the network (see Fig. 7). The challenge
then consists of rebuilding a least distorted object at all points in time during
the transmission (i.e. optimisation of rate-distortion trade-off).
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Fig. 7. [Reproduced in colour in Plate 4.] Intermediate stages during the decoding
of a mesh using a single-rate (top) or a progressive technique (bottom).

4.1 General Techniques

We call lossless the methods that restore the original mesh connectivity and
geometry once the transmission is complete. This is even though intermediate
stages are obviously lossy. These techniques mostly proceed by decimating
the mesh while recording the (minimally redundant) information required to
reverse this process. The basic ingredients behind most of progressive mesh
compression techniques are (i) the choice of an atomic mesh decimation oper-
ator, (ii) the choice of a geometric distance metric to determine the elements
to be decimated, and (iii) an efficient coding of the information required to re-
verse the decimation process (i.e. to refine the mesh). At the intuitive level, one
has to encode for the decoder both the location of the refinement (“where” to
refine) and the parameters to perform the refinement itself (“how” to refine).

The progressive mesh technique introduced by Hoppe [22] transforms a
triangle surface mesh into a stream of refinements. During encoding the input
mesh undergoes a sequence of edge collapses, reversed during decoding as a
sequence of vertex splits. The symbols generated provide the explicit location
of each vertex being split and a designation of two edges incident to this
vertex. This is a very flexible, but rather expensive code. In order to reduce
the bit consumption due to the explicit vertex location, several researchers
have proposed to specify these locations implicitly, using independent sets
defined on the mesh. This approach improves the compression ratios, at the
price of additional constraints during decimation (the decimation sequence
cannot be arbitrary). Pajarola and Rossignac [49] group some edge collapses
into a series of independent sets, each of them corresponding to a level of



18 Pierre Alliez and Craig Gotsman

detail. The location of each vertex to decimate is done by a 2-colouring of the
mesh vertices, leading to 1 bit per vertex, for each set. Experimental results
show an amortised cost of 3 bits per vertex for vertex location for all sets, plus
the cost of local refinements inverting the edge collapses, leading to 7.2 bits
per vertex. Cohen-Or et al. [8] define an alternation of 4- and 2-colouring over
the triangles in order to locate an independent set of vertices to decimate.
A local, deterministic retriangulation then fills the holes generated by vertex
removal at no cost, leading to 6 bits per vertex.

Observing the local change of repartition of valences when removing a
vertex, Alliez and Desbrun [2] improved the previous approaches by generating
an alternation of independent sets composed of patches centred on the vertices
to be removed. Each independent set thus corresponds to one decimation
pass. The even decimation passes remove valence ≤ 6 vertices, while the odd
ones remove only valence 3 vertices. Such a selection of valences reduces the
dispersion of valences during decimation, the latter dispersion being further
reduced by a deterministic patch retriangulation designed to generate valence-
3 vertices, later removed by odd decimation passes. This way the decimation
is coordinated with the coding, and for “progressively regular” meshes the
decimation generates a regular inverse

√
3-subdivision, and coding one valence

per vertex is sufficient to rebuild the connectivity. For more general meshes
some additional symbols are necessary. The latter approach can be seen as a
progressive version of the TG coder [62].

Using the edge collapse as the atomic mesh decimation operator, Karni et
al. [32] build a sequence of edge collapses arranged along a so called “vertex
sequence” that traverses all the mesh vertices. The mesh traversal is optimised
so that the number of jumps between two non-incident vertices is minimised.
The decoding process is this way provided with an access to the mesh triangles
optimised for efficient rendering using the modern vertex buffers. Compression
rates are similar to the progressive valence approach [2], with the additional
benefit of fast rendering.

4.2 Geometry-driven Coding

For progressive compression of a discrete point set in arbitrary dimension,
Devillers and Gandoin [11] decompose the space into a kD-tree and transmit
only a set of point occurrences, i.e. the number of points located in each cell of
the kD-tree hierarchy (see Fig. 8). They demonstrate that transmitting only
occurrences of points during successive space subdivision is enough to recon-
struct in a progressive manner – and lossless in the end – a discrete point set.
The compression achieved by this is due to bit sharing intrinsic to the no-
tion of transmission of occurrences, rather than transmission of explicit point
locations. For example, transmitting the information “300 points” located in
one cell at the beginning of the transmission process is equivalent to sharing
the first high-level bits of 300 points, simultaneously. Some compression gain
due to the sharing is thus obtainable for all cells containing more than one
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point. More precisely, the more populated the cell, the higher the compression
gain due to the bit-sharing principle. When all points are separated – each
cell containing only one point – the bits subsequently used are equivalent to
bit-plane coding for progressively re ning the point locations in space.

Fig. 8. The geometry coder on a two-dimensional example. The number of points
located in each cell of the 2D-tree hierarchy is encoded (data courtesy P.-M. Gan-
doin).

During the decoding process, the only available information corresponds
to the number of occurrences in each cell, i.e. a progressively re ned location
of the positions. At the end of the transmission, and if one does not care
about any particular ordering of the original points, the original information
has been restored in a lossless manner since every point is correctly located
in a cell that corresponds to the initial precision over the points. Compared
to a plain enumeration of the point coordinates, the information of the order
over the points is lost. This is precisely what saves some bits for compression.
It is proven that these savings are never less than logn 2.402 bits per point.
Moreover, in this case – and contrary to other prediction-based methods that
bene t from a uniform sampling – the uniform distribution corresponds to
the worst-case scenario for compression since it minimises the possibility of
bit-sharing.

The approach described in [11] codes only a set of discrete points. The au-
thors have shown how a geometric triangulation (e.g. Delaunay) of the points
allows progressive transmission of a meshed surface. More recently, Devillers
and Gandoin [12] have adapted this technique for progressive coding of simpli-
cial complexes (possibly non-manifold) by using the edge collapse operator for
coding the connectivity. Contrary to other methods, the connectivity coding
process is driven by the geometry alone.

4.3 Remeshing for Progressive Geometry Compression

When the original mesh is considered as one instance of the surface geom-
etry that is to be compressed, geometry compression has to be considered
rather than mesh compression. To this end, geometry compression techniques
proceeding by semi-regular remeshing are among the best reported to date.

The main idea behind semi-regular remeshing techniques [38, 19, 36, 50]
is to consider a mesh representation as having three components: geometry,
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connectivity and parameterization, and assume that the last two components
(connectivity and parameterization) are not important for the representation
of the geometry. The common goal of these approaches is therefore to re-
duce these two components as much as possible. This is achieved through
semi-regular remeshing of an input irregular mesh, and efficient compression
of the newly generated model. The remesher proceeds by building a semi-
regular mesh hierarchy designed to best approximate the original geometry.
An irregular base mesh, homeomorphic (i.e. topologically equivalent) to the
original mesh, is first built by mesh simplification. This base mesh constitutes
the coarsest level in the semi-regular hierarchy. The hierarchy is then built
by regular or adaptive subdivision (typically by edge bisection) of the base
mesh. In the case of regular subdivision by edge bisection of a triangle base
mesh, all new vertices have valence 6. The finest level of the mesh hierarchy
is therefore built from patches of regular vertices, separated by (possibly ir-
regular) vertices from the base mesh. In the case of adapted subdivision, some
irregular vertices may be generated by adding a few conforming edges (note
that this choice can be decided on the decoder side, depending if it cares
about reconstructing the adaptivity pattern or not). We now describe how
the connectivity and the parametric components are reduced:

• Reducing the connectivity component. The regularity intrinsic to the sub-
division process deliberately removes almost all of the connectivity infor-
mation from the mesh since much of the resulting vertices have valence 6
for triangle meshes, and valence 4 for quad meshes.

• Reducing the parametric component. In a semi-regular mesh hierarchy gen-
erated by subdivision for purpose of geometric approximation, we use the
term detail to describe the differential vector component stored at each
newly inserted vertex during the construction of the mesh hierarchy. The
normal component of the detail coefficients stores the geometric informa-
tion, whereas the tangential component carries the parametric information.
Experiments show that by doing things right almost all of the paramet-
ric components can be “predicted”, i.e. removed from the representation.
Intuitively, this means that sliding a vertex in the tangent plane does not
modify the local geometry.

The way the parametric component is reduced is the main distinction
between the two compression methods described in this section. The first
method [38] uses local frames and different quantisation of normal/tangential
components, whereas the second normal mesh compression method [36] is
specifically designed to produce detail coefficients with no tangential compo-
nents. Normal meshes were introduced by Guskov et al. [19] as a new way to
represent geometry. A normal mesh is a multiresolution representation where
almost all the details lie in the local normal direction and hence the mesh ge-
ometry is described by a single scalar per vertex instead of three as usual (see
Fig. 9). Beyond the remeshing algorithm, both progressive geometry coding



Recent Advances in Compression of 3D Meshes 21

Fig. 9. [Reproduced in colour in Plate 5.] Adaptive normal mesh for the skull model
(data courtesy A.Khodakovsky).

methods proposed by Khodakovsky et al. [38, 36] require a wavelet transform
and a zerotree coder that we now briefly describe.
Wavelet transform. A semi-regular surface representation is a sequence of ap-
proximations at different levels of resolution. The corresponding sequence of
nested refinements is transformed by the wavelet transform into a representa-
tion that consists of a base mesh and a sequence of wavelet coefficients that
express differences between successive levels of the mesh hierarchy. The art
of compression then consists of choosing appropriate wavelets to best model
the statistical distribution of the wavelet coefficients. “Best” means decor-
relating the geometry so as to obtain a distribution of wavelet coefficients
favourable to efficient compression. For subdivision schemes designed to pro-
duce C2-differentiable surfaces almost everywhere (e.g. Loop), it produces
excellent results for smooth surfaces since the geometric correlation can be
exploited through the prediction of finer level geometry based on the coarser
level geometry (by low-pass filtering intrinsic to the subdivision scheme). The
reconstruction artifacts at low bit-rates depend mainly on the shape of subdi-
vision basis functions. Hence a surface reconstructed from Loop wavelets has
a visually more pleasing shape compared to Butterfly whose basis functions
exhibit some “spikes” which look unnatural on a smooth surface.

The zerotree coder (a popular method for wavelet-based image coding [55])
extends also to geometric wavelets. It is shown in [38] that a semi-regular mesh
can be represented as a hierarchy over the edges since the wavelet coefficients
are attached to the edges (and not the faces). The wavelet coefficients are
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therefore naturally encoded in a forest of trees, where each wavelet coefficient
at the first level is the root of a tree. The branches of this tree may have
variable depth since all regions need not be subdivided to the finest level. For
the latter case the edges of the base mesh are subdivided in the tree until an
approximation quality is met during coding, and until an adaptive flatness
threshold is met during decoding (the subdivision scheme is prolongated to
produce a smooth surface even with null wavelet coefficients). Note that an
approximating wavelet scheme such as Loop requires uniform mesh subdivi-
sion. A zerotree coder is therefore used as a separate procedure to reflect this
adaptivity, a “zerotree” symbol coding at a given branching node in the tree
representing a sub-tree filled entirely with coefficients below the significance
threshold. It then remains to compress the zerotree symbols (significance bits,
sign bits and refinement bits), which is done using an arithmetic coder.

When using lossless compression, performance is measured by plotting
the rate-distortion curve. Measuring bits per vertex here would be irrelevant
since the initial mesh is not considered as optimal for approximation, and
the remeshing stage changes the number of vertices. The main observation
of [38] is that in many cases surface representation does not really matter for
geometry (i.e. there are many degrees of freedom in the meshing), but can lead
to high penalty for compression. Therefore, several degrees of sophistication
in the remeshing process can lead to significant gains for compression:

• semi-regular remeshing reduces the connectivity penalty.
• uniform remeshing reduces the parameterization penalty compared to non-

uniform meshes.
• uniform remeshing while considering local frames with different quantisa-

tion for different components reduces the influence of the parameterization
even further.

• normal remeshing, explicitly eliminating the tangential component by
building a normal mesh representation makes a significant improvement
for certain classes of wavelets (e.g. normal Butterfly is better than normal
Loop) [36].

Another observation of [36] is that normal Loop behaves better than [38]
because the normal parameterization is smoother than MAPS [44], which leads
to faster decaying wavelet coefficients and therefore more efficient compres-
sion. Moreover, recent experiments confirm the importance of the smoothness
of the parameterization for semi-regular remeshing and hence for geometry
compression [37]. Finally, a model-based bit-allocation technique has been
proposed by Payan and Antonini [50] to efficiently allocate the bits across
wavelet sub-bands according to their variance.

4.4 Comparison and Discussion

Most of the recent techniques for “lossless” progressive coding of carefully
designed meshes use the independent set concept to drive the mesh refinement
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operations, be they organised into a set of patches or along a chain of edges
optimised for efficient rendering. Vertex positions are coded using various
prediction schemes (barycentric, etc.) after uniform quantisation is applied in
vertex coordinate space. As already observed in Sect. 3, less work has been
done for geometry coding than for connectivity coding. There is even less work
on progressive coding techniques, since they are obviously lossy (at least at
intermediate stages), and the difficulty to objectively quantify the loss makes
it difficult to analyse their performance.

Although the successful single-rate valence-based approach generalises to
progressive coding of triangle meshes [2], nothing has been done for progressive
coding of polygonal meshes. The key problem here is to find a mesh decima-
tion scheme capable of transforming an arbitrary mesh into a polygon mesh
during decimation so that the so-called rate-distortion trade-off is optimised.
At the intuitive level, each bit transmitted during decoding should lead to the
largest decrease in geometric error. Although this problem is similar to that
encountered when designing a decimation scheme, the amount of information
represented by a given refinement operation has yet to be quantified.

Wavelet coding schemes, coupled with an initial semi-regular remeshing
stage to generate a good base mesh, have proven to be very successful for
shape compression [38]. One important question there is how to generate the
“best” base mesh, in the sense that it best reflects the mesh geometry and,
mainly, features. Another question is the choice of a wavelet scheme suited to
best decorrelate the geometric “signal” present in the mesh. Is it a subdivision-
related scheme or something more elaborate? The choice of an error metric for
driving both the approximation and the measurement of the rate-distortion
trade-off also plays a key rôle. The latter point has already proven to be of
crucial importance for applications related to visualisation (see the concept of
visual metric in [33, 57]). In fact, the optimisation of the rate-distortion trade-
off involves many challenging issues linked to sampling and approximation
theory, differential geometry, wavelets and information theory.
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