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Summary. Regional geoid undulations are determined from CHAMP data using various 
locally supported basis functions to assess their respective efficiency, accuracy and multi-
resolution representation properties. These functions include (biharmonic) B-spline tensor 
wavelets (with or without compression), multiquadrics (with or without flexible centering 
and predetermined smoothing) and radially symmetric truncated polynomials. 
It is concluded that the B-spline wavelet model is the computationally most efficient 
approach. The non-periodic variation of the B-spline wavelets allows one to handle data on 
a bounded domain with small edge effects, and the piecewise linear version allows one to 
model the geoid using a patch-wise approach. The use of multiquadrics without centering in 
the data points and predetermined smoothing constant allows handling of heterogeneously 
distributed data using global optimization. The linear multiquadrics model fits the data best 
when comparing the residuals of different models with a fixed number of unknowns. For an 
efficient data synthesis the nonlinear models are best suited due to their far smaller number 
of basis functions. The smoothest surface was obtained using the nonlinear polynomial 
approach, whereas the multiquadrics show peaks and the wavelet models show horizontal 
and vertical edges in their representations. The linear B-spline wavelets are biharmonic, and 
the approach is capable of an efficient multi-resolution representation of regional gravity 
field models combining satellite (CHAMP, GRACE, GOCE) and in-situ data. 
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1  Introduction 
Recent global gravity models are based on spherical harmonic functions which are 
excellent for representing the geopotential up to a certain degree of detail or reso-
lution. Even though the global spherical harmonic representation is adequate for 
low degree global gravity modeling using satellite data (e.g. CHAMP), but for a 
detailed regional representation of the earth gravity field determined by satellite as 
well as terrestrial observations, spherical harmonics may not be the best basis 
functions. In this context, see Schmidt et al. (2002) who have been using spherical 
wavelets to represent the finer details of the gravity field. 

Our goal is to use harmonic or biharmonic locally supported basis functions in 
order to construct patch-wise models to enhance the high frequency parts of the 
signals on the sphere leading to a multi-resolution representation of the gravity 
field. Towards selecting the most suitable functional model, some approaches are 
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compared numerically using regional undulations derived from CHAMP disturb-
ing potential data.  For more details regarding CHAMP data processing, we refer 
to Han et al. (2002; 2003). 

The first functional model in this investigation is the B-spline wavelet; see Chui 
and Quak (1992). These wavelets have become well known due to their useful 
properties such as compact support, semi-orthogonality and simplicity. Algorithms 
and applications for computer graphics can be found in Stollnitz et al. (1996). 

The second model is based on the multiquadric method which fits a set of quad-
ric (e.g., hyperbolic or conical) functions to the observations. It was introduced by 
Hardy (1971) and further developed by Hardy and Göpfert (1975) in order to in-
terpolate gravity anomalies. 

The comparison also includes polynomial radial symmetric basis functions with 
local support, which have been used successfully in Mautz et al. (2003).  

Furthermore, the linear models described above are compared with their 
nonlinear counterparts having flexible positioning. Geodetic global models have 
been studied by Mautz (2001; 2002) while nonlinear models for surface data were 
discussed by Kaschenz (2002; 2003).  

For a comparison of different surface representations on a large scale, see 
Franke (1982). Here, we focus on the data-fit, the computational effort, the num-
ber of basis functions and the smoothness/roughness of the surface as criteria. 

2  Functional Models 

The models discussed here can be classified as linear or nonlinear. The systems 
for solving the unknowns in capital letters (e.g., the amplitudes A, B) are linear if 
these are the only parameters. In this case the estimated parameters, the residuals, 
and the estimated variance component can be obtained using BLUUE (Best Linear 
Uniformly Unbiased Estimate) and BIQUUE (Best Invariant Quadratic Uniformly 
Unbiased Estimate). A detailed discussion of linear models is provided by Gra-
farend and Schaffrin (1993). 

Less common are models where the positions or scaling coefficients are con-
sidered as unknown. With the models becoming nonlinear due to the flexible cen-
tering and scaling, the solving techniques require global optimization methods. 
Gradient methods like the Gauss-Newton iteration are not applicable as reliable 
starting values cannot usually be provided. Thus, we stick to global optimization 
techniques such as heuristic methods, interval strategies or genetic algorithms. The 
idea of optimized centering dates back to Barthelmes (1986). 

(a) 2-dimensional B-spline wavelets: If the 2-D signal is given by f(x, y) the 
model function reads 

(1) 

where φ(x, y) is the 2-D scaling function, φ (x, y) its dual; ψ(x, y) are the 2-D 
wavelet functions, and ψ (x, y) their duals. Their polynomial degree is expressed 
by g. The different levels of detail are denoted by the index j. Wavelet coefficients 
with a larger j indicate higher detail levels, essentially representing the high-
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frequency part. The index η denotes the three directional components (horizontal, 
vertical and diagonal), and the indices kx, ky ∈ 0 denote the shift of the wavelets 
to different locations on the (x, y)-patch. The variables A and B denote the un-
known coefficients for the scaling function and the wavelet functions. The prob-
lem of estimating A and B is linear; due to orthogonal subspaces, it is not ne-
cessary to solve one big system with linear equations of problem-size, but a 
sequence of smaller systems. This model has been discussed in more detail by 
Mautz et al. (2002) and Schaffrin et al. (2003). 

(b) Compressed 2-D B-spline wavelets: In contrast to model (a), the hierarchi-
cal structure is now developed to the maximum level Jmax, fulfilling the condition 

(2) 

where n is the number of data points. The number of coefficients is then reduced 
by neglecting terms with coefficient values smaller than a predetermined bound. 
Figure 1 shows the shape of a linear B-wavelet according to model (a) and (b). 

(c) Multiquadric basis functions: The multiquadric functional model, resp. its 
inverse, reads 

(3) 

where the kernel functions K(rk) are given by 
(4) 

with typically t = ½, resp. t = -½ for the inverse case. The radial distances rk be-
tween the evaluation point (x, y) and a fixed center position (xk, yk), which could 
be chosen from the locations of the observations, are given by 

(5) 

The planar distance rk may be replaced with the spherical distance k using the 
spherical coordinates φ and , along with the relation 

(6) 

Ak are the unknown parameters and c ∈  is a predefined constant. The unknown 
parameters Ak are estimated by solving a linear system. See Figure 1 for a graph of 
the radial multiquadric function according to model (c) and (d). 

(d) Multiquadric basis functions, with flexible positioning: We now introduce 
xk ∈  and yk ∈  as unknowns for every k ∈ {1, 2, ..., n}. The resulting model be-
comes nonlinear, and the solving technique requires global optimization. 

(e) Locally supported radial functions, linear model: Local support allows 
function values other than zero only within a certain distance from the center point 
location. Thus, the continuous model function needs to be truncated. The model 

(7) 

avoids a discontinuity in the function and in its first derivative at the cut-off loca-
tion. With fixed center positions (xk, yk) and parameters ck, the model is linear. 
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Fig. 1. Left panel: Diagonal linear B-spline wavelet of level 0. Mid left: Multiquadric func-
tion with c = 2. Mid right: polynomial function with c = 2. Right panel: Geoid undulations 
in [m] from CHAMP only solution, between [100°; 122.5°] longitude and [-11.25º; 
+11.25º] latitude; sampled onto a 65 × 65 grid. The range of the data values is [–29.0 m; 
+67.8 m]. 

(f) Locally supported radial functions, nonlinear model: Introducing the center 
positions (xk, yk) as unknowns for every k ∈ {1, 2,..., n} the model becomes 
nonlinear. In addition to flexible centering, the parameters ck, serving as scaling 
parameters, are also considered as unknown. Figure 1 shows a graph for c = 2. 

3  Model Comparison Based on CHAMP Geoid 

In order to make proper comparisons the models’ special requirements have to be 
taken into account. The multiresolution representations (a) and (b) necessitate ob-
servations in form of a 2j by 2j, (j ∈ ) grid for efficient handling. Their applica-
tion requires a prior adjustment to the grid. The compressed wavelet model (b) 
needs extra memory for storing the locations of the remaining terms. All compari-
sons are based on the specific dataset shown in Figure 1.  

As shown in Table 1, the residual information is used to rate the models nu-
merically. The criteria are the standard variation, the maximum deviation, the 
squared sum of the residuals and the average deviation. The number of unknowns 
is kept fixed. 

Generally, linear models involve a normal equations system of problem size. 
Setting up the system requires a complexity of (n m2) and its inversion (m3), 
where n is the number of observations and m the number of parameters. However, 
properties like semi-orthogonality and local support causing banded matrix struc- 
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(a) Wavelet, 4 levels 289 289 0.08 0.41 31 0.06 1s
(b) Wavelet, compression 289 289 0.06 0.26 12 0.04 1s
(c) Multiquadric (linear) 289 289 0.05 0.36 9 0.03 3 min 
(d) Multiquadric (nonlin.) 288 96 0.09 0.58 34 0.07 10 h 
(e) Local radial fct. (linear) 289 289 0.12 0.56 61 0.12 3 min 
(f) Local radial fct. (nonlin.) 288 72 0.07 0.25 19 0.05 10 h 

Table 1. Comparison of various surface representation models with a constant number of 
unknowns resp. 93% redundancy; units: [m] or [m2]. The models fulfilling a criterion best 
are highlighted in bold. 
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(d) Nonlinear multiquadrics (e) Linear polynomials (f) Nonlinear polynomials

Fig. 2. Residuals [m] of 6 different models. All models have 288 or 289 parameters. The 
number of basis functions is 289 for the linear and 72 for the nonlinear models. The unit 
for the colorbar is [m] and for the axes it is [º] latitude and longitude. 

tures as it is the case for the B-spline wavelet model. The astonishing result in Ta-
ble 2 for the wavelet model is due to a reduction of a factor m1/2 by usage of the 
tensor product. The multiquadrics, having global support are of complexity (n m2).
If a hierarchical data thinning algorithm is used according to Hales and Levesley 
(2000), the algorithm may be of linear complexity, but only if the data are spaced 
equidistantly. However, the computational burden decreases drastically for locally 
supported functions when handling very large m and n, assuming that an opti-
mized algorithm is implemented. 

The computing time for nonlinear models may be higher in general, since a se-
quential series of inversions has to be performed.   Nevertheless, making use of 
heuristic strategies and adaptation of the algorithm to the problem at hand, the 
computational effort can be reduced drastically.  

The behavior of the six different models (a)-(f) is visualized in Figure 2, for a 
patch between 100° and 122.5° longitude and -11.25º to +11.25º latitude respec-
tively.  All  models  have  288  (or  289)  parameters.  The  wavelet  model  shows  

complexity B-splines multiquadrics locally supported fcts. nonlinear models 
linear system: (n m1/2) (n m2) < (n m2)
inversion: < (m3/2) (m3) < (m3)

involve solutions of 
many linear systems 

Table 2. Computational effort of surface models with the number of observations n and the 
number of parameters m.
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(a) B-spline wavelet b) Compressed wavelet (c) Linear multiquadrics
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distinct horizontal features in the residual plot. At the center point locations of the 
multiquadric models, some peaks can be seen. The locally supported radial basis 
functions show a smooth surface throughout, particularly in the nonlinear case. 

4  Conclusions 

Due to unequal premises and different rating at various criteria, a strict ranking of 
the models is not feasible. Nevertheless, it has been verified, that the B-spline 
wavelet model is computationally the most efficient approach. The linear multi-
quadrics model fits the data best when comparing the residuals of different models 
with a fixed number of unknowns. For an efficient data synthesis the nonlinear 
models are best suited due to their far smaller number of basis functions. The 
smoothest surface was obtained using the nonlinear polynomial approach, whereas 
the multiquadrics show peaks and the wavelet models show horizontal and vertical 
edges in their representations. 

Towards modeling the geopotential it can be outlined that the B-spline wavelets 
are biharmonic for the linear case and the multiquadric functions fulfill conditions 
for a harmonic upwards continuation in the case c = 0 and exponent t = -0.5. 

The CHAMP only data do not have significant detail information for the multi-
resolution analysis discussed here. Nevertheless, this approach could be quite use-
ful for the determination of a regional high-resolution gravity field model by com-
bining CHAMP, GRACE, GOCE (Nmax= 300) and in-situ terrestrial gravity data. 
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