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Summary. We compare selected techniques for recovering the global gravity field from pre-
cisely determined kinematic CHAMP orbits. The first method derives the second derivatives
by use of an interpolation polynomial. The second procedure is based on Newton’s equa-
tion of motion, formulated and solved as a boundary value problem in time equivalent to a
corresponding integral equation of Fredholm type. It is applied to short arcs of the CHAMP
orbits. The third method is based on the energy balance principle. We implement the analysis
of in-situ potential differences following Jekeli’s formulation. The normal equations from the
three approaches are solved using Tikhonov–type regularization, where the regularization pa-
rameter is computed according to a variance component estimation procedure. The results are
compared with the recent satellite-only model EIGEN2 and the first GRACE model GGM01s.
All methods provide solutions of the gravity field which represent significant improvements
with respect to the reference model EGM96 below degree 50. The quality of the solutions
differs only slightly.
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1 Introduction

Various groups have introduced different approaches to determine the global grav-
ity field from precisely determined kinematic CHAMP orbits. We compare three
of those techniques. The first method derives the second derivatives by use of an
interpolation polynomial. The second procedure is formulated as a boundary value
problem in time. It is applied to short arcs of the CHAMP orbits. The third method
is based on the energy balance principle. Apart from the different observation mod-
els the same procedure has been used for the calculation of all three methods. This
includes the same data set and the same way of solving the normal equations us-
ing Tikhonov–type regularization, where the regularization parameter is computed
according to a variance component estimation procedure.

2 Data settings

The global gravity field recovery presented here is based on kinematic orbits
of CHAMP with a sampling rate of 30 seconds provided by M. Rothacher and
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D. Svehla from the FESG of the Technical University Munich. The orbits cover
a time period of approximately 100 days. These orbits are processed following the
zero-differencing strategy, see (Svehla D, Rothacher M, 2003) and were provided
with variance-covariance information per data point. In a preprocessing step we have
removed all kinematic positions to which sigma’s larger than 5cm in either x, y or z
were assigned. Furthermore, only data segments of at leat 2.5h have been selected.
After this, the used data corresponds to about 52 days.

EGM96 has been used as a reference field in the following denoted by V . The
disturbing potential T is modelled by a spherical harmonics expansion up to degree
and order L = 75. The unknown coefficients ∆cnm, ∆snm can be estimated in an
least squares adjustment.

The satellite’s motion is also influenced by disturbing forces f . We model the
direct attraction by sun and moon from JPL DE ephemeris, the solid earth tides fol-
lowing the IERS conventions, and we implement an ocean tide model. CHAMP’s
STAR accelerometer measures the non-conservative forces like air drag and solar ra-
diation pressure. Due to the spurious behavior of the accelerometer, bias parameters
are estimated in all three models.

3 Observation equations

3.1 Polynomial differentiation

The functional model of the observations is based on Newton’s equation of motion

r̈(t) = ∇V + ∇T + f . (1)

The idea of this method is to approximate the orbit by an interpolation polynomial,
in this case a Gregory-Newton n-point scheme (Austen et al., 2002)

r(t) ≈ rA +
n−1∑
i=1

i∑
k=0

(−1)i+k

(
q

i

)
rk+1 (2)

with
q = (t − t1)/(t2 − t1).

To obtain the accelerations, we have to differentiate the interpolation scheme twice
with respect to time t

r̈(t) ≈ rA +
n−1∑
i=1

i∑
k=0

(−1)i+k

(
q

i

)′′
rk+1 (3)

The accelerations are computed at the centre of the n-point scheme to get the small-
est interpolation error. These approximated accelerations are used as pseudo obser-
vations for model (1). As they are linear combinations of positions, a full apriori
variance-covariance matrix can be computed by linear error-propagation from given
covariances per position.
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3.2 Solving a boundary value problem in the time domain

This functional model is based on Newton’s equation of motion as well, but formu-
lated as a boundary value problem (Schneider, 1967),

r(τ) − (1 − τ)rA − τrB = −(tB − tA)2
∫ 1

0

K(τ, τ ′)g(τ ′, r, ṙ) dτ ′, (4)

with the integral kernel

K(τ, τ ′) =

{
τ ′(1 − τ) for 0 ≤ τ ′ ≤ τ

τ(1 − τ ′) for τ ≤ τ ′ ≤ 1

satisfying the boundary values

rA := r(tA), rB := r(tB). (5)

The function g contains all forces acting on the satellite’s acceleration:

g = ∇V + ∇T + f . (6)

Equation (4) is applied to short arcs after discretization in time (Ilk et al., 2003) and
(P. Ditmer and A. van Eck van der Sluis, 2003). The linear combinations of three
positions are used as pseudo observations. A full apriori variance-covariance matrix
per arc is computed by linear error-propagation from given covariances per position.

3.3 Energy balance approach

The theory of the energy balance approach has been applied frequently, e.g. (Jekeli,
1999), (Gerlach et al., 2003), (Howe et al., 2003) or (Ilk and Loecher, 2003). We use
the following formulation, which is based on expressing all quantities of interest in
an inertial coordinate system:

Ekin(t) + V (t) + T (t) − R(t) −
∫ t

t0

f · ṙ dτ = E0 = const (7)

with the kinetic energy

Ekin =
1
2
|ṙ|2, (8)

and the potential rotation term

R(t) =
∫ t

t0

∂(V + T )
∂t

dt ≈ −ωe(r1ṙ2 − r2ṙ1), (9)

which approximates the potential contribution of the rotating earth in inertial space.
The satellite’s velocity ṙ(t) needed for the kinetic energy is computed similar to
equation (3). As the energy does not depend linearly on velocities and positions,
error propagation is more difficult and not implemented yet.
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4 Robust parameter estimation

For all three techniques normal equations were computed per arc and accumulated.
To make the solution robust against less accurate periods of the orbit, a variance
component estimation (VCE) procedure is used. This can be done efficiently by
re–weighting every orbital arc individually in an iterative Monte Carlo approach
(MCVCE), see (Kusche 2003).

It is known that gravity field determination from satellite data poses an ill-posed
problem. Downward continuation generally amplifies the measurement noise. To
stabilize the systems of normal equations and overcome the ill-posedness of the
problem a Kaula regularisation starting from degree L = 40 is applied, which re-
quires a properly selected regularization parameter. Linking the regularization pa-
rameter to the variance of the gravity field parameters offers the possibility to deter-
mine it efficiently by means of MCVCE as well.

5 Results

All three methods were applied to kinematic CHAMP data of altogether about 51
days, and provide gravity solutions which we believe represent significant improve-
ments with respect to the reference model EGM96 below degree 50. Above degree
50, these solutions are mainly determined by regularization and therefore biased
towards the reference model. The time–wise BVP method and the polynomial dif-
ferentiation appear as slightly superior to the energy balance method, which we
believe is due to the neglected apriori variance information. Generally our solutions
are almost free of spurious ‘stripe patterns’, due to the apparently high homogeneity
of the data quality in combination with the MCVCE statistical technique.

6 Conclusions and Outlook

We have applied three non-conventional methods for recovering the Earth’s gravity
field from kinematic CHAMP orbits. All three methods can improve our knowledge
of the gravity field from a very short time period, which is undoubtedly due to the
high quality of the kinematic orbits. There are only slight differences between the
three solutions. It remains to investigate whether these methods can supersede the
traditional method of integrating the variational equations associated to the satel-
lite’s motion. A final statement cannot be given, as research in this matter has not
been completed yet. There are possible improvements in methodology especially
concerning the energy balance approach. First of all we plan to implement correct
error propagation. In addition to this, other differentiation procedures like spline
smoothing might improve the crucial velocity derivation step.
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Fig. 1. Solution computed with BVP method.
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Fig. 2. Solution computed with polynom method.
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Fig. 3. Solution computed with energy method.
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