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Summary. Spherical wavelets have been developed by the Geomathematics Group Kaisers-
lautern for several years and have been successfully applied to georelevant problems.
Wavelets can be considered as consecutive band-pass filters and allow local approxima-
tions. The wavelet transform can also be applied to spherical harmonic models of the Earth’s
gravitational field like the most up-to-date EIGEN-1S, EIGEN-2, EIGEN-GRACE01S,
UCPH2002 0.5, and the well-known EGM96. Thereby, wavelet coefficients arise and these
shall be made available to other interested groups. These wavelet coefficients allow the recon-
struction of the wavelet approximations. Different types of wavelets are considered: bandlim-
ited wavelets (here: Shannon and Cubic Polynomial (CuP)) as well as non-bandlimited ones
(in our case: Abel-Poisson). For these types wavelet coefficients are computed and wavelet
variances are given. The data format of the wavelet coefficients is also included.
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1 Introduction

During the last years spherical wavelets have been brought into existence. (cf. e.g.
[3], [2], [4] and the references therein). It is time to apply them to well-known mod-
els in order to offer easy access to the multiscale methods. Therefore, the spher-
ical harmonics models EIGEN-1S, EIGEN-2, UCPH2002 0.5, EGM96 and also
EIGEN-GRACE01S are transformed into bilinear wavelet models (see [3] or [2])
and the coefficients of these models are available via the worldwide web.

2 Wavelet Models

Due to the structure of the gravitational field we leave the first degrees and orders
(up to n = 2) as an approximation by spherical harmonics which are denoted
by Yn,k. For the remaining parts of the models, a scaling function and its corre-
sponding wavelets are applied. Thus, we can write the J-level representation of
the geopotential V on the sphere ΩR in terms of a spherical harmonics part V0..2

(which we neglect from now on), a low-frequent band Vj0 and wavelet bands Wj

for x = Rξ ∈ ΩR:
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VJ(x) = Vj0(x) +
J−1∑
j=j0

Wj(x)

= (Φj0 ∗ (Φj0 ∗ V ))(x) +
J−1∑
j=j0

(Ψ̃j ∗ (Ψj ∗ V ))(x), (1)

where ∗ denotes the L2(ΩR)-convolution and lim
J→∞

VJ = V in the sense of

L2(ΩR).
The kernel can be expressed by a sum over Legendre polynomials (cf. [3] for
x, y ∈ ΩR:

Φj(x, y) =
∞∑

n=0

2n + 1
4πR2

ϕj(n)Pn

(
x

|x| ·
y

|y|

)
.

where ϕj(n) denotes its symbol. The kernels Ψj , Ψ̃j of the corresponding primal and
dual wavelets are constructed analogously with their symbols ψj(n), ψ̃j(n) given
by the refinement equation:

ψj(n)ψ̃j(n) = (ϕj+1(n))2 − (ϕj(n))2. (2)

Since the considered gravitational field models are provided in terms of spherical
harmonics, we may regard them to be bandlimited of degree M . For including the
maximal information of the models, we choose the highest scale J such that that
2J > M .
By using an equiangular grid we integrate exactly spherical harmonics up to the
degree of the integrand (if it is bandlimited, otherwise we obtain an approximation)
in (1). Thus, we write:

VJ (x) ≈
(Nj0+1)2∑

i=1

wj0
i

∫
ΩR

Φj0(z, yj0
i )V (z)dω(z)

︸ ︷︷ ︸
a

j0
i

Φj0(x, yj0
i )

+
J−1∑
j=j0

(Nj+1)2∑
i=1

wj
i

∫
ΩR

Ψj(z, yj
i )V (z)dω(z)

︸ ︷︷ ︸
cj

i

Ψ̃j(x, yj
i ).

In the latter formulae the (yj0
i , wj0

i ) and (yj
i , w

j
i ) denote the locations on ΩR and

corresponding weights of the Driscoll-Healy integration scheme (cf. [1]).
The scaling function and wavelet coefficients aj0

i and cj
i are also obtained by nu-

merical integration. Therefore, the coefficients are

aj0
i ≈

(Ñj0+1)2∑
k=1

w̃j0
k Φj0(z̃

j0
k , yj0

i )V (z̃j0
k ) , cj

i ≈
(Ñj+1)2∑

k=1

w̃j
kΨj(z̃

j
k, yj

i )V (z̃j
k).
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3 Selected Examples

We have chosen three different types of wavelets: the bandlimited Shannon and
Cubic Polynomial and the non-bandlimited Abel-Poisson kernel.
Shannon Wavelets: In the case of Shannon scaling functions the symbol ϕj(n)
reads as follows

ϕSH
j (n) =

{
1 for n ∈ [0, 2j)
0 for n ∈ [2j ,∞),

and for the corresponding wavelets we choose the P-scale version to resolve the
refinement equation (2), i.e.

ψ̃SH
j (n) = ψSH

j (n) =
√(

ϕSH
j+1(n)

)2 −
(
ϕSH

j (n)
)2

.

Cubic Polynomial (CuP) Wavelets: In the CuP case the symbol takes the follow-
ing form:

ϕCP
j (n) =

{
(1 − 2−jn)2(1 + 2−j+1n) for n ∈ [0, 2j)

0 for n ∈ [2j ,∞)

and for the corresponding wavelets we apply again the P-scale version. The param-
eters for the discretization of the integrals in (1) are also taken as above.
Abel-Poisson Wavelets: For the Abel-Poisson scaling function the symbol takes
the following form:

ϕAP
j (n) = e−2−jαn, n ∈ [0,∞), with some constant α > 0.

We choose α = 1. Since ϕAP
j (n) 	= 0 for all n ∈ N this symbol leads to a non-

bandlimited kernel.
It should be noted that the Abel-Poisson scaling function has a closed form repre-
sentation which allows the omission of a series evaluation and truncation, i.e. for
x, y ∈ ΩR, i.e. |x| = |y| = R we have

ΦAP
j (x, y) =

∞∑
n=0

2n + 1
4πR2

ϕAP
j (n)Pn

(
x

|x| ·
y

|y|

)

=
1

4πR2

1 − e−2−j+1

(
1 + e−2−j+1 − 2e−2−j t

) 3
2
.

When constructing bilinear Abel-Poisson wavelets we want to keep such a represen-
tation as an elementary function. Thus, we decide to use M-scale wavelets whose
symbols are deduced from the refinement equation (2) by the third binomial for-
mula:

ψAP
j (n) =

(
ϕAP

j+1(n) − ϕAP
j (n)

)
ψ̃AP

j (n) =
(
ϕAP

j+1(n) + ϕAP
j (n)

)
.
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Since the Abel-Poisson scaling function and its corresponding wavelets are non-
bandlimited we obtain just a good approximation by the method based on an equian-
gular grid (we choose the parameter of polynomial exactness sufficiently large
enough).

4 Wavelet Variances

The wavelet coefficients cj
i can also be used to compute the scale and space variance

of V at the positions yj
i and scale j. These variances at the positions yj

i are given by

Varj ; yj
i
(V ) =

∫

ΩR

∫

ΩR

V (x)V (z)Ψj(x, yj
i )Ψj(z, yj

i )dω(x)dω(z) =
(
cj
i

)2

.

The scale variance of V at scale j, Varj(V ), is then defined as the integral over the
scale and space variances which can be evaluated using the coefficients cj

i . For more
about wavelet variances, see [4].

CP-wavelet variances for scales 6 (left) and 7 (right) of EGM96, in [m4/s4]

5 Reconstruction

We supply to the end-user the scaling function or wavelet coefficients, aj0
i or cj

i

corresponding to some locations on ΩR. One reconstructs the J-level representation
of the potential V by

VJ(x) ≈
(Nj0+1)2∑

i=1

wj0
i aj0

i Φj0(x, yj0
i ) +

J−1∑
j=j0

(Nj+1)2∑
i=1

wj
i c

j
i Ψ̃j(x, yj

i ). (3)

A full multiscale analysis of the EIGEN2 with CP-wavelets is exemplarily given
below. (Note that all figures are in [m2/s2].)
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+ +

The CP-scaling function with j0 = 2 (left) and the CP-wavelet with j = 2 (right)

+ +

The CP-wavelet with j = 3 (left) and j = 4 (right)

+ +

The CP-wavelet with j = 5 (left) and j = 6 (right)

+ +

The CP-wavelet with j = 7 (left) and j = 8 (right)
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=

The CP-wavelet with j = 9 (left) and the whole sum (3) (right)

Moreover, we present some details of the Abel-Poisson multiresolution of EIGEN2.
The sectorial parts of the model are resolved more and more by the higher scales.

The AP-wavelets of scale 6 (left) and 8 (right) in [m2/s2].

Location in the Web

The coefficients, a detailed model description as well as further figures can be found
and downloaded at the following web page:

http://www.mathematik.uni-kl.de/˜wwwgeo/waveletmodels.html
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