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Summary. CHAMP orbits and accelerometer data are used to recover the long- to medium-
wavelength features of the Earth’s gravitational potential. In this study we are concerned with
analyzing preprocessed data in a framework of multiscale recovery of the Earth’s gravitational
potential, allowing both global and regional solutions. The energy conservation approach has
been used to convert orbits and accelerometer data into in-situ potential. Our modelling is
spacewise, based on (1) non-bandlimited least square adjustment splines to take into account
the true (non-spherical) shape of the trajectory (2) harmonic regularization wavelets for solv-
ing the underlying inverse problem of downward continuation. Furthermore we can show
that by adapting regularization parameters to specific regions local solutions can improve
considerably on global ones. We apply this concept to kinematic CHAMP orbits, and, for test
purposes, to dynamic orbits. Finally we compare our recovered model to the EGM96 model,
and the GFZ models EIGEN-2 and EIGEN-GRACE01s.
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1 Introduction

In this paper high-low satellite-to-satellite tracking (hi-lo SST) of a low Earth orbiter
(LEO) for gravity recovery purposes is discussed from an alternative point of view,
as originally proposed by W. Freeden [4]. More specifically, we are concerned with
the determination of the Earth’s external gravitational field from a given set of po-
tential values along the orbit of CHAMP. We have obtained these potential values by
applying an energy conservation approach, basically following [8], to GFZ PSO as
well as to TUM kinematic CHAMP orbits. In order to translate the hi-lo SST prob-
lem into a rigorous mathematical formulation we will make use of the geometrical
situation outlined in Fig. 1.

We have the following problem (see [4]): Let there be known the potential values
V (x), x ∈ Γ , for a subset Γ ⊂ Σext of points at the orbit positions of the LEO. Find
an approximation U to the geopotential field V on Σext, i.e. on and outside the
Earth’s surface, such that the difference of V and U is arbitrarily small on Σext in
terms of the underlying function spaces. In addition we require V (x) = U(x) for
all x ∈ Γ . Existence, uniqueness, and well-posedness of the problem are discussed
in [4] and the references therein.
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Fig. 1. Illustration of the geometrical
configuration.
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Fig. 2. Local L-curve for the region shown
in Fig. 3, in Harm25,...,90(ΩR).

In practice we are interested in computing global, and if possible, regionally
improved gravity models from real CHAMP-data. In particular for the regional case
our wavelet approach demonstrates advantages since it allows for the local choice of
a regularization parameter. Thus, we apply locally adaptive regularization by virtue
of multiresolution analysis using adequately constructed wavelets.

The three-dimensional coordinate system that we use throughout this study is
the particular realization of the international terrestrial reference frame in which the
CHAMP ephemeris are given. Let r be CHAMP’s mean orbital altitude. The sphere
in R

3 with radius r around the origin is denoted by Ωr, i.e. Ωr = {x ∈ R
3||x| = r}.

For later use we reserve the name ΩR to denote the Bjerhammar sphere (see Fig.
1). With Ωext

r we denote the exterior of Ωr, while Ωint
r is the interior of Ωr. Further,

in our modelling we will make use of two different spherical grids: The equiangular
Driscoll-Healy grid [1] for numerical integration purposes, and the so–called Reuter
grid [11] known from low discrepancy methods. The Reuter grid is important in our
data selection strategy since it exhibits an almost equidistribution of the points on
the sphere.

For extrapolation of the data {yi, Fi}, i = 1, . . . , M , i.e. M potential values
along the orbit Γ to an integration grid on the sphere Ωr we use a least square
adjustment spline S, see for more details [2, 3, 10]. For this purpose we employ
a Reuter grid {xj}, j = 1, . . . , N ⊂ ΩR for locating the Abel-Poisson kernel K
which is defined by

KH(A,ΩR)(x, y) =
1

4πR2

1 − h2

(1 + h2 − 2h(x · y))3/2
. (1)

The N coefficients of the spline S =
∑N

j=1 ajK(xj , ·) follow from solving the
overdetermined linear system



Multiscale Geopotential Solutions from CHAMP Orbits and Accelerometry 141

N∑
j=1

aN
j KH(xi, yj) = Fi, i = 1, . . . , M.

Sobolev Spaces: We will work in Sobolev spaces, as introduced in [5, 4], and as-
sume in particular that the measured potential can be characterized as an element of
the space H(A, ΩR) with symbol A∧(n) = h−n/2, n ∈ N0, 0 < h < 1. This again
leads immediately to the Abel-Poisson kernel, representing the reproducing kernel
in H(h−n/2, ΩR). It should be remarked that this kernel can be directly identified
with the upward continuation operator. This operator facilitates mapping between
H(A,Ωext

R ) and H(Λ−1A, Ωext
r ), and can be interpreted as a pseudodifferential op-

erator (PDO) defined on H(A,Ωext
R ) with the symbol Λ∧(n) =

(
R
r

)n+1
.

Tikhonov Regularization Scaling Functions: Now we consider the solution
of the inverse problem given by ΛV = G, V ∈ L2(ΩR), and G ∈ L2(Ωr). As is
well-known, cf. [4], this equation possesses an exponentially ill-posed pseudod-
ifferential equation with an unbounded inverse operator Λ−1. The idea of regu-
larization is to replace the inverse operator by a more ‘friendly’ operator which
yields an approximate solution. By operating directly on the singular values of
Λ−1, wavelets appear as a very appropriate tool to solve this problem. We obtain
the J-level regularization of the potential V on ΩR by evaluating the convolution
VJ = ΦJ ∗ G =

∫
Ωr

ΦJ(·, η)G(η)dωr(η), where ΦJ denotes the J-level regular-
ization and reconstruction Tikhonov scaling function:

Definition 1 (Tikhonov Scaling Function). Let Pn, n ∈ N0 denote the Legendre
polynomials as given by [5], and γj , j ∈ N0 a positive decreasing sequence with
limj→∞ γj = 0. The Tikhonov regularization scaling function is defined by

Φj(x, y) =
∞∑

n=0

φj(n)
2n + 1
4πRr

(
Rr

|x||y|

)n+1

Pn

(
x

|x| ·
y

|y|

)
,

with x ∈ ΩR, y ∈ Ωr, and the symbol φj(n) is given by

φj(n) =
Λ∧(n)

(Λ∧(n))2 + γj
, n = 0, 1, . . . ; j ∈ N0.

Since φj(n) decreases for increasing n, we may regard these functions just as
low-pass filters - which is similar to Tikhonov regularization for ill-conditioned
linear systems. The Tikhonov regularization wavelets are analogously obtained as
bandpass filters, i.e. by the difference of two subsequent low-pass filters (see [4]).

2 Multiscale Geopotential Modelling from CHAMP Data

In the present study we consider two different CHAMP orbit data sets, covering sev-
eral months in the year 2002. We work with dynamic PSO orbits provided kindly by
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GFZ Potsdam, and with kinematic orbits computed by Drazen Svehla (IAPG, TU
Munich) following the zero-differencing strategy. Whereas dynamic orbits basically
represent a best-fit of GPS observations within an a–priori gravity field and provide
a kind of test for our method, kinematic orbits are free of a-priori gravity infor-
mation and the recovered gravity model should be free of any biases. These orbits
have been converted to in-situ potential values following the energy conservation
approach (cf. [8]), corrected for nonconservative forces using GFZ’s accelerometer
data products, and for astronomical and solid Earth tides according to IERS con-
ventions, and ocean tides using GOT 99.2. That the energy balance approach can be
successfully applied to gravity recovery from CHAMP has been proven meanwhile
by several groups, cf. [7], [6], or [9]. By subtracting a reference potential up to de-
gree 24 (from EGM96) we obtain residual potential values along the orbit. Finally,
by using cubic approximating splines we try to suppress trends in the data which we
believe are induced by remaining accelerometer drift effects.

Data Gridding with Splines: First, using the Abel-Poisson kernel with h =
0.95, we fit a least square adjustment spline to the residual potential along the satel-
lite orbit. All data has been weighted equally, after applying a selection procedure.
It is then possible to extrapolate these values to a Driscoll-Healy integration grid
defined on the mean altitude sphere Ωr (see Fig. 1). This essential step preserves
the harmonicity in the data.

Solving the Inverse Problem and Reconstruction: From the previous step,
we have now a set of gridded, predicted measurements on Ωr. This allows us to
compute a j-level regularization of the potential on ΩR. However, we need an ap-
propriate criterion for stopping the regularization, i.e. we have to balance the regu-
larization error decreasing with higher scales, and the the reconstruction/prediction
error increasing with higher scales. For this purpose we use the L-curve method,
which in turn requires that we predict residual potential values in the spherical inte-
gration grid on Ωr, by use of the recovered potential. Since ‖ · ‖H(A,ΩR) is defined
in the spectral domain, we prefer for regional applications the L2(ΩR)−norm which
can easily be evaluated in the space domain. We plot the norm of the reconstructed
potential (within Harm25,...,90(ΩR), see below) on the y-axis against the predic-
tion residual from this potential to the orbit data on the x-axis (cf. Fig. 2). Locally,
we calculate the RMS of the reconstructed potential values respectively the data
residuals on a grid, which approximates the L2-norm. It should be remarked that
the time-consuming numerical integration in the wavelet transform is intrinsically
data parallel. We exploit this by using an efficient parallel implementation. For an
easier comparison of our solution with spherical harmonic models, we project the
solution globally on Harm25,...,50(ΩR) and locally on Harm25,...,90(ΩR); that is we
extract those spectral bands from our solution which can then directly compared to
spherical harmonic expansions. The difference in the globally recovered potential
compared to several models is given in Tab. 1 and 2.

Local Reconstruction Process: The Tikhonov scaling functions are strongly
localizing on ΩR. It is clear that only a small cap contributes in the reconstructing
convolution, which resembles numerically a local compact support. It is the rea-
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Table 1. Global potential differences from CHAMP-PSO data in Harm25,...,50

[m2/s2] EGM96 EIGEN-1s EIGEN-2 EIGEN-GRACE01s

Median Abs. Diff. 2.918 2.900 2.407 2.467
Mean Abs. Diff. 3.825 3.727 3.283 3.274

Table 2. Global potential differences from CHAMPTUM kinematic data in Harm25,...,50

[m2/s2] EGM96 EIGEN-1s EIGEN-2 EIGEN-GRACE01s

Median Abs. Diff. 2.888 3.257 2.620 2.552
Mean Abs. Diff. 3.785 4.027 3.416 3.258

son why we are able to compute a reconstruction of the gravitational potential in a
desired area only. For a detailed description for the choices of the windows see [2].

Fig. 3. Locally improved potential in
Harm25,...,90(ΩR).

Fig. 4. Difference Fig. 3 and EIGEN-2
in Harm25,...,90(ΩR).

Local CHAMP Data Analysis: Global reconstructions show that differences
to EIGEN-2 are located mainly in the high frequency parts, owing probably to reg-
ularization effects. Thus, we analyze a region of strong signal (see Fig. 3) and try
to improve our global results locally. The locally obtained L-curve, Fig. 2, reveals
that the regularization parameter obtained from a global L-curve is too large for this
specific region, and high-frequent phenomena are over-smoothed. For more detail
see [2]. Beyond this, the local L-curve indicates that γ = 0.0001 is an appropriate
choice for this region. It turns out, that we are in fact able to improve our model lo-
cally. The maximum differences to EIGEN-1s and EIGEN-2 could be significantly
decreased from ca. 60m2

s2 to ca. 20m2

s2 or even less, see Fig. 4. Remaining differences
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can be assigned to regions of high signal variability in the Andes. It will be subject
of future work to investigate ‘trackiness’ in the solutions.

3 Conclusion

We believe our results show that a spline-based wavelet method can be applied suc-
cessfully to real CHAMP data. Beyond this, it should be outlined that our method
can improve satellite-only models regionally by adapting the regularization proce-
dure to the regional variability of the Earth’s gravity field.
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