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Summary. The energy balance approach is used for a statistical assessment of CHAMP or-
bits, data and gravity models. It is known that the quality of GPS–derived orbits varies and
that CHAMP accelerometer errors are difficult to model. This makes the selection of orbits
for gravity recovery difficult. Here we identify the noise level present in in–situ potential val-
ues from the energy balance in an iterative variance–component estimation. This means we
solve simultaneously for a spherical harmonic model, for polynomial coefficients absorbing
accelerometer drift, and for sub–daily noise variance components. These should be under-
stood in a sense of model consistency. Using dynamic GFZ orbits, results including 92 days
in 2002 indicate that for most days the noise is at 0.25–0.3m2/s2, with notable exceptions.
The corresponding gravity model is found close to EIGEN–2, after two iterations. With TUM
kinematic orbits and Lagrange–interpolated velocities or TUM reduced-dynamic orbits, we
found for preselected data the consistency at the 0.7-0.8m2/s2 (KIN), 0.3-0.35m2/s2 (RD)
level; gravity models improve significantly on EGM96. Generally, iterative re–weighting im-
proves the solutions significantly, and ‘trackiness’ is considerably reduced.
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1 Energy Conservation Method

Various groups have demonstrated that the energy balance approach can be used to
compute a gravity model from CHAMP reduced-dynamic or kinematic orbits, see
Gerlach et al. (2003a,b) or Howe et al. (2003). The approach can also be used to ver-
ify the consistency of CHAMP accelerometer data, orbits, gravity field model and
other (e.g. tidal) models, and to assess the magnitude of systematic and stochastic
errors. We have analyzed CHAMP data for the in–situ potential following Jekeli’s
method. We have estimated simultaneously corrections to the spherical harmonic
coefficients, sub–daily polynomial coefficients describing residual (after applying
bias and scale factors from the ACC files) drift of the accelerometer, and sub–daily
variance components of the in–situ potential values. A known obstacle for this type
of analysis is the selection of ‘good’ orbits. In our approach, arcs showing spurious
behaviour are effectively downweighted within an iterative maximum–likelihood
estimation process, which improves our gravity field solution significantly. In turn,
the estimation of the individual variance components is improved. As a by–product,
we have investigated the correlations of estimated accelerometer drift parameters
with the spherical harmonic coefficients.

The theory of the energy balance approach and its potential application to LEO
satellite experiments goes back to the 60’s, and has been considerably revived re-
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cently, see Jekeli (1999), Visser et al. (2003) Ilk and Löcher (in press). We use the
following formulation, which is based on expressing all quantities of interest in an
inertial coordinate system:

T (t) − V ref(t) − δV (t) − R(t) = E0 +
∫ t

t0

f · ẋ dτ +
∫ t

t0

∇V tides · ẋ dτ (1)

Here T = 1
2 |ẋ|2 is the kinetic potential, V ref is a static reference potential appear-

ing time–dependent in inertial coordinates, δV is a residual geopotential that we
parameterize by spherical harmonics whose coefficients δclm, δslm are to be solved
for, R is the potential rotation term which approximates the potential contribution∫ t

t0
∂V
∂t dτ ≈ −ωe(x1ẋ2 − x2ẋ1) (up to a constant, see Jekeli 1999) of the rotating

earth in inertial space, and E0 is a constant. Furthermore, f are corrected mea-
surements from CHAMP’s STAR accelerometer to account for non–conservative
forces, and the last term on the right–hand side accommodates for tidal effects by
evaluating the corresponding work integral. We found that neglecting the explicit
time–variation of the tidal potentials by simply evaluating V tides(t) would be pos-
sible but introduces low–frequency drift effects that propagate into the low–order
correction polynomial coefficients (see below). We model the direct attraction by
sun and moon from JPL DE ephemeris, the solid earth tides following the IERS
conventions, plus ocean tides (GOT 99.2).

2 Statistical Assessment and Estimation Procedure

The energy balance approach uses eq (1) for combining orbit, accelerometry data,
reference geopotential model, tidal corrections and auxiliary information (e.g. earth
rotation) into a preprocessed stream of pseudo–observations, δV (t), which can be
used without further linearization to estimate the δclm, δslm. Consequently, position
errors εx, velocity errors εẋ, accelerometry errors εf and tide model errors affect
the in–situ potential differences (see Visser et al., 2003) approximately as

εV = ẋ·εẋ−∇V ref·εx−ωe(εx1 ẋ2−εx2 ẋ1)−ωe(x1εẋ2−x2εẋ1)+
∫ t

t0

εf ·ẋ dτ+δV tides

(2)
It is clear that accelerometer biases and scaling errors, predominantly in the in–flight
axis, cause in first approximation a linear drift in the δV measurement. It is also
known that if an erroneous reference model went into the computation of (reduced–
) dynamic orbits, resulting orbit errors will compensate to a certain extend for this in
the energy balance (1), and an estimated gravity model will be biased. This is why
we use the term noise variance in a sense of consistency. Knowing the variance of
the potential difference error, σ2(δV ) = E{ε2V }, we can set up a weighted least
square adjustment which would suppress spurious arcs by downweighting. This
noise variance, however, is nonstationary and difficult to assess a priori. The or-
bits, on the other hand, are given in batches of 0.5–1.5 day length dependent on the
POD analysis strategy. Here we assign an unknown variance component σ2

k(δV ) to
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each batch and estimate it jointly with the residual gravity field and with parameters
that account for accelerometer drift. Written as a Gauss–Markov model, this is

Ak

⎛
⎝ xSH

xACC1
. . .

xACCp

⎞
⎠ − yk = εk

D(εk) = σ2
(k)I

D(xSH) = σ2
(0)R

k = 1 . . . p (3)

where xSH contains SH coefficients, xACCk
and σ2

(k) are drift parameters and vari-

ance components for the k–th data set, and σ2
(0) is a regularization parameter if

needed. This requires an iterative strategy involving re–weightings of the contri-
butions, synthesis of potential residuals, and repeated solutions of the overall LS
problem. A fast Monte Carlo machinery for implementing maximum–likelihood
estimation has been developed in Koch and Kusche (2002) and tested in Kusche
(2003) on a simulated LEO gravity recovery problem. Weighting factors for combi-
nation solutions can be computed the same way. At convergence the results of ML
estimation equal those of the iterated MINQUE technique. It should be emphasized
that from the point of view of estimating drift parameters for each batch k of data,
it would be preferable to have short batches comprising an orbital revolution each.
From the statistical analysis point, we must keep the number of solved–for variance
components limited to maintain fast convergence of our algorithm.

3 Analysis of GFZ dynamic orbits

We used 92 days of GFZ’s PSO and ACC data, of the first half 2002 and with-
out preselection. These are broken up into daily/half–daily batches. We solve for
a SH expansion to degree 75, for 4 polynomial parameters per day to account for
accelerometer drift in the form ε(t) =

∑3
n=0 ak

n(t − tk)n, and for a daily variance
σ2

k. Arc–dependent ak
n parameters are eliminated from the normal system by the

method of partitioning and backsubstitution. The gravity field model that went into
GFZ’s dynamic PSO orbits is not completely identical to EIGEN–2 (P. Schwintzer,
pers. comm.), and we treat it as unknown here. In the first iteration, all batches are
weighted equally. Fig. 1 shows the estimated σk’s after the second iteration where
practically convergence is reached. Fig. 3 (left) shows the difference of the resid-
ual gravity field with respect to GFZ’s published EIGEN–2 solution (Reigber et al.,
2003) without re–weightings (0th iteration), in geoid heights. Fig. 3 (right) shows
the difference, complete to degree 70, after arriving at convergence. No data has
been removed, but all spurious orbits are downweighted. It should be noted that for
EIGEN–2 data from a different time period was used than we used in this study.

4 TUM kinematic and reduced–dynamic orbits

We have further investigated about 100 days of kinematic CHAMP orbits, which
were kindly provided by D. Svehla by IAPG, TU Munich. These orbits are pro-
cessed following the zero–differencing strategy, see Svehla and Rothacher (2003),
and were provided with full variance–covariance information per data point. In
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Fig. 1. σ2
k(δV ) for DOY 002–148

(2002), PSO orbits
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Fig. 2. σ2
k(δV ) for DOY 167–268

(2002), KIN and RD orbits
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Fig. 3. Difference to EIGEN–2 [m]. Left: L=75, 0th iteration. Right: L=70, after 2nd iteration

a preprocessing step we have removed all kinematic positions to which a–priori
sigma’s of larger than 5cm in either x, y, or z were assigned. Furthermore, only
data segments of at least 2.5h have been selected. To allow a clean comparison af-
terwards, we have based our selection on purpose not on comparing KIN and RD
orbits. After this, the used data corresponds to about 52 days. Kinematic orbit de-
termination does not provide velocities, so we had to compute CHAMP velocities
using a Lagrange 7–point interpolator. We avoid any smoothing at this step. In what
follows, the same analysis has been performed as with the GFZ PSO data. One must,
however, bear in mind that KIN orbits are completely independent from any prior
gravity field, that they are spaced at 30s intervals, and that the interpolator used for
deriving velocities is of influence. In addition, we have taken TUM RD orbits for
the same time periods and repeated the procedure (apart from the Lagrange interpo-
lation). Results for the noise levels are shown in Fig. 2.

In summary, one can state that the estimated variance components for the KIN
orbits are roughly at the 0.7–0.8m2/s2 level, whereas those for the RD orbits are
at the 0.3–0.35m2/s2 level, with exceptions and a slight increase at about DOY
250. According to eq. (2), assuming that the velocity error dominates, this indicates
that velocities from Lagrange interpolation have an accuracy of about 1mm/s. We
have compared these directly with RD velocities and found this error level con-
firmed. Note that we have based our orbit selection on purpose not on a–priori
comparison of KIN and RD orbits; which would have given a more optimistic
error level. Fig. 4 shows for the estimated gravity field solutions the signal de-
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Fig. 4. Degree variances. Solutions with TUM KIN, RD orbits

Fig. 5. Correlation of a0 (+) and a1 (×) with the δclm, δslm. Left: arc length 16h. Right: 3h.

gree variances and the difference degree variance with respect to the recently pub-
lished EIGEN–GRACE01S model (Reigber et al, in preparation). For comparison,
EGM96 (Lemoine et al., 1998) is also shown, which has been used as a refer-
ence field in the computation. Both KIN and RD solution show clear improve-
ments towards the EIGEN–GRACE01S, when compared with the EGM96 model.
Due to regularization, there is almost no signal left beyond degree 50 and the ref-
erence solution EGM96 dominates. It is obvious that between degrees 15 and 40
the reduced-dynamic solution is somewhat closer to the GRACE model; probably
because CHAMP data are already enclosed in the prior gravity model used for com-
puting the RD orbits. We believe that the timespan we used is too short to draw
further conclusions.

In our treatment the determination of arc–dependent accelerometer drift param-
eters ak

n is part of the estimation procedure and not a separate preprocessing step.
It is therefore possible to study the correlation between the ak

n and the SH coeffi-
cients from the a–posteriori covariance matrix. In Fig. 5 we show as an example
correlation coefficients of the estimated energy constant a0 ≡ E0 (+) and of the
slope parameter a1 (×) with the δclm, δslm per degree, for arc lengths of 16 hours
and 3 hours. The correlation between estimates for a0 and a1 is much higher and
increases for short arc length. However, as indicated in the figures, there appears to
be no estimability problem so far. We plan to extend this type of correlation studies,
in particular when incorporating longer data sets and time–variable low–degree SH
coefficients.
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5 Discussion and Outlook

We have discussed a statistical assessment of CHAMP orbits and data within the
energy balance method. Non–stationary noise has been modelled with piecewise
constant variance. We have proven that we can efficiently estimate individual noise
levels for data batches, and that gravity solutions using an optimally weighted LS
procedure are superior to heuristic weighting. Our results indicate that the consis-
tency of GFZ PSO orbits is at 0.25–0.3m2/s2 for the time interval that we consid-
ered, with notable exceptions. TUM orbits were found at levels of 0.7–0.8m2/s2

(KIN) and 0.3–0.35m2/s2 (RD). This is due to the different POD processing strate-
gies, and these figures should be interpreted with care. We have estimated grav-
ity models which we believe clearly improve on pre–CHAMP models. More orbits
have to be added to make final statements on the quality of these models. In particu-
lar, velocity derivation from KIN orbits needs to be investigated. Ongoing research
includes using more data, and accounting for time–wise correlations. In the mean-
time, we added CHAMP data from KIN orbits to EGM96 by using its full variance–
covariance matrix and determined weighting factors σ(0) by ML estimation.
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