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Summary: The gravity field recovery strategy presented here enables the global recovery 
of the gravity field combined with a regional focus on geographical areas with rough 
gravity field features in a consistent way. The global gravity field is modeled by a series of 
spherical harmonics while the regional gravity field features are represented by space 
localizing base functions of harmonic spline type. The physical model of the orbit analysis 
technique is based on Newton’s equation of motion, formulated as a boundary value 
problem in form of an integral equation of Fredholm type. The observation equations are 
established for short arcs of approximately 30 minutes length. The procedure can be applied 
either globally or regionally to selected geographical regions. For a regional application the 
coverage with short arcs should be slightly larger than the recovery region itself to prevent 
the solution from geographical truncation effects. A proper combination and weighting of 
the normal equations of every arc combined with a tailored regularization allows a stable 
solution for the field parameters. This procedure can be adapted to the roughness of the 
regional gravity field features, the discretization of the gravity field and the sampling rate of 
the observations. A global gravity field solution ITG-Champ01E has been derived based on 
kinematic orbits covering 360 days from March 2002 to March 2003. Regional gravity field 
solution have been determined for selected regions with rugged gravity field features. 
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1  Introduction 

The solution strategy presented here enables the global recovery of the gravity 
field combined with regional refinements in geographical areas with rough gravity 
field features in a consistent way. The physical model is based on Newton’s equa-
tion of motion applied to short arcs of approximately 30 minutes and formulated 
as integral equations of Fredholm type. The integrands contain the reference and 
residual gravity fields and specific disturbing forces. The reference gravity field 
representing the low and medium frequency gravity field features are expressed by 
a series of spherical harmonics complete up to an appropriate degree, while the re-
gional parts are represented by space localizing base functions of harmonic spline 
type. Especially for a regional refinement of the gravity field it is important to 
proof in an a-priori step whether there are residual gravity field signals in the ki-
nematically determined orbits caused by rough gravity field features which are not 
modelled by spherical harmonics. In a post-processing step, the regionally refined 
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gravity field is validated again by using the orbits. The validation procedure is 
based on the computation of an extended Jacobi integral along the satellite orbits 
and described in detail in Ilk and Löcher (2003).  

2  Mathematical Model 

The mathematical model of the gravity field analysis technique is based on New-
ton’s equation of motion (Schneider, 1967),  

( ) ( ; , ; )t t=r f r r x , (1) 
formulated as a boundary value problem,  
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satisfying the boundary values  
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The specific force function, 
( ; , , ) ( ; , ) ( ; ; ) ( ; ; ).d V Tτ τ τ τ′ ′ ′ ′= + ∇ + ∇ ∆f r r f r r r rx x x (5) 

can be separated in a disturbance part df , which represents the non-conservative 
disturbing forces, in a reference part V∇ , representing the global gravity field fea-
tures and in an anomalous part T∇ , modelling the corrections to the gravity field 
parameters. The mathematical model applied in this investigation is given by 
equation (2) together with the force function (5) (Ilk et al., 1995). The geocentric 
positions ( )tr  of the arcs over the analysis area represent the observations. The 
unknowns are the corrections ∆x  to the field parameters x . These are in case of a 
global gravity field recovery corrections to the coefficients of a spherical harmon-
ics expansion of the gravitational potential ( )PV r  or in case of a regional recovery 
the parameters of space localizing base functions modelling the anomalous poten-
tial ( )PT r :
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The coefficients nk  are the degree variances of the gravity field spectrum to be de-
termined, 
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Fig. 1. Computation procedure including the determination of variance factors for every arc 
and the regularization parameter for the gravity field recovery. 

ER  is the mean equator radius of the Earth, r  the distance of a field point from the 
geo-centre and ( , )

in P QP r r  are the Legendre’s polynomials depending on the spheri-
cal distance between a field point P and the nodal points iQ  of the set of base 
functions. With this definition the base functions ( , )

iP Qϕ r r  can be interpreted as 
isotropic and homogeneous harmonic spline functions (Freeden et al., 1998). The 
nodal points iQ  are defined on a grid generated by a uniform subdivision of an 
icosahedron of twenty equal-area spherical triangles. In this way the global pattern 
of spline nodal points shows approximately uniform nodal point distances. Every 
short arc of approximately 30 minutes builds a normal equation. All normal equa-
tions are combined by estimating a variance factor for every arc as well as an ac-
celerometer bias (Koch and Kusche, 2002). The regularization has been restricted 
to all potential coefficients from degree 40 upwards and the regularization pa-
rameter has been determined during the iteration as sketched in Fig. 1. 

3  Global gravity field recovery based on kinematic orbits 

The global gravity field recovery presented here is based on kinematic orbits of 
CHAMP with a sampling rate of 30 seconds provided by M. Rothacher and D. 
Svehla from the FESG of the Technical University Munich (Svehla and Roth-
acher, 2003). The orbits cover a time period of approximately 360 days from 
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Table 1. 1°x1°-grid comparisons of ITG-Champ01E, Eigen-2 and Eigen-3p with GGM01s: 
rms of undulation differences (cm). 

filled up with EGM96 from n=37 filled up with EGM96 from n=73 
GPS data set points 

min max wrms min max wrms 

USA 5168 -122,2 179,4 43,4 -129,4 183,5 44,0 

Canada 1931 -131,8 174,2 40,1 -112,4 131,8 38,5 

EUVN (Europe) 186 -142,4 168,3 42,4 -88,4 143,8 36,3 

BKG (Germany) 575 -114,8 73,9 29,6 -95,8 63,4 20,5 

Table 2. Global gravity field recovery: rms of geoid undulation differences (cm). 

The result of the global recovery has been checked by determining the rms of the 
differences of 1°x1° grids of point geoid undulations between our solution ITG-
Champ01E and the recent GRACE solution GGM01s (CSR, 2003) for various 
spectral bands (Table 1). For comparison the same tests have been performed for 
the gravity field models Eigen-2 (Reigber et al., 2003) and Eigen-3p (Reigber et 
al., 2004). Our model ITG-Champ01E is biased in the higher degrees by the refer-
ence gravity field EGM96 caused by a regularization from degree n=40 upwards. 
But another gravity field recovery solution with no a-priori information and no 
regularization at all confirmed the results shown in Tab. 1. While the results in the 
low-frequent spectral band are similar to Eigen-3p there are slight improvements 
in precision in the spectral band between degree 40 and 60 compared to alternative 
recovery solutions. Additional test computations have been performed by F. 

GGM01s – ITG-Champ01E 3,5 7,4 14,3 18,8 21,8 

GGM01s – Eigen-2 7,6 20,7 47,3 57,5 68,0 

GGM01s – Eigen-3p 3,9 7,6 23,1 32,0 42,1 
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March 2002 to March 2003. The three-dimensional accelerometer data are pro-
vided by the CHAMP Information System and Data Centre (ISDC). The transfor-
mations between the terrestrial and celestial reference frames follow the conven-
tions published by McCarthy (1996). For the computation of the tidal forces 
caused by Moon and Sun the numerical ephemeris DE405 of the Jet Propulsion 
Laboratory (JPL) have been used. The accelerometer measurements to determine 
the surface forces for the CHAMP orbit have been processed according to the 
rules of the CHAMP data format (Förste et al., 2001). The force functions caused 
by the Earth tides as well as by the ocean tides have been based on the models as 
published by McCarthy (1996). As reference frames ITRF2000 and ICRF2000 are 
used as well as the corresponding rotations according to the IERS conventions. 
The one-year orbit has been split up into 17000 short arcs with in total 2400000 
observations. Then the procedure summarized in Fig. 1 has been applied to deter-
mine the 5772 unknown corrections to the potential coefficients of the reference 
gravity field (EGM96 up to degree 75).  

spectral range 0…40 0…50 0…60 0…65 0…70 
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Barthelmes from GFZ with the GFZ standard evaluation procedure. Tab. 2 shows 
selected results from this evaluation test, the comparisons with geoid undulations 
derived from GPS and levelling measurements.  

4  Regional gravity field recovery

To demonstrate the regional recovery three regions with rough gravity field fea-
tures have been selected (Fig. 2): South East Asia, South America and Europe. An 
additional strip of 10° around the recovery areas have been considered to prevent 
the solution from geographical truncation effects. The parameterisation of the re-
sidual field was based on harmonic spline functions as defined in equation (7); the 
corresponding recovery parameters are shown in Tab. 3. The mean distance be-
tween the base function nodal points amounts approximately 130 km. The same 
data set as in case of the global gravity field recovery has been used also for the 
regional recoveries. Instead of EGM96 Eigen-2 has been used as reference field 
up to degree 120. The regional recovery results are shown in Tab. 4. 

Fig. 2. Gravity field recovery for South America, Europe and South East Asia. 

region South East Asia South America Europe
orbits 3192 2340 1922 

observations 317000 260000 135000 
unknowns 4064 3046 1172 

Table 3. Parameters for the regional gravity field recovery. 

region South East Asia South America Europe

Table 4. 1°x1°-grid comparisons of ITG solutions and Eigen-2 with GGM01s in the spec-
tral band 36…120: rms of undulation differences (cm). 

-150 -100 -50 0 50 100 150

-50

0

50

ITG – GGM01s 92,2 85,5 65,4 
Eigen-2 – GGM01s 141,2 114,7 106,0 

ITG – Eigen-2 104,7 101,3 88,9 
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5  Conclusions 

The use of short arcs for global gravity field recovery as well as for regional grav-
ity field refinements is an adequate alternative recovery technique based on high-
quality kinematic orbits as performed by the FESG Munich. Despite the fact that 
the CHAMP mission is designed to recover first of all the long and medium wave-
length features it could be shown that also regional refinements are possible with 
surprising accuracy.  
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