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Summary. To obtain an alternative gravity solution to that of EIGEN1S, the
author’s Singular Value Decomposition(SVD) tool, Parallel LArge Svd Solver
(PLASS), was applied to the CHAMP normal matrix ngl-eigen-1s [2] to perform
an Eigenvalue Decomposition (EVD) analysis. The EIGEN1S solution is based on
the Tikhonov regularization method of approximating the ill-conditioned system of
equations in a subspace of lower rank. In the EVD solution, poorly determined lin-
ear combinations of parameter corrections are removed in the culpable eigenspace
of the unconstrained least-squares normal equation. The selection of eigenvalues
to be removed, is based upon a new method and four different common optimiza-
tion (truncation) criteria. The new method, the Kaula Eigenvalue (KEV) relation,
optimizes the removal of eigenvalues to best satisfy Kaula’s Rule. The four other
techniques are: inspection, relative error, norm-norm minimization, and finding the
minimum trace of the mean square error (MSE) matrix. Analysis of the five different
EVD gravity fields was performed. Two of them were shown to be comparable to
the EIGEN1S CHAMP solution obtained by the GeoForschungsZentrum Potsdam
(GFZ) [2]. The best of the five optimal solutions, that of the KEV, is presented.
The number of estimated parameters is 11216.
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1 Eigenvalue Disposal

To illustrate the effect of eigenvalue truncation on the inversion for solution,
the inspection analysis, which is based on the graph of the eigenvalues versus
number (where ”number” is the ith eigenvalue), is discussed first. Figure 1
shows the spread of eigenvalues. The largest and smallest eigenvalues are
7.17x1025 and 8.08x109, respectively, which yields a condition number of
8.87x1015; indicating an ill-conditioned system of equations. The eigenvalues
are displayed from largest to smallest.

Because the smallest eigenvalue is much greater than zero and there is
a smooth transition throughout most of the graph, it is difficult to deter-
mine which of the eigenvalues are responsible for the ill-conditioned nature
of the normal matrix. To illustrate the stabilization effect of eigenvalue dis-
posal, solutions were calculated in which the smallest 4000, 6000, and 10000
eigenvalues were set to zero. These are compared to a solution retaining all
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Fig. 1. CHAMP Eigenvalue vs. Number.

eigenvalues. Figure 2 is a graph of degree amplitude versus harmonic de-
gree overlayed with Kaula’s rule. This shows that much of the excess power
above harmonic degree of about 35 is removed, when the culpable eigenvec-
tors contributing to this inflation (through their linear combination in the
eigenspace), are eliminated by setting their eigenvalues to zero. Because the
inspection method is somewhat subjective, it is useful only for illustrative
purposes.
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2 Kaula Eigenvalue (KEV) Relation

The KEV method relates the disposal of eigenvalues, in the EVD stabilization
of a gravity field solution, to Kaula’s power rule of thumb. Since an EVD solu-
tion is affected by eigenvalue inclusion/exclusion, there must exist a relation
between eigenvalue truncation and the equations of gravity field estimation.
A gravity field solution is an estimated parameter vector, whose elements
are the scaled dimensionless coefficients, Cl,m and Sl,m. These parameters
are the constants that are multiplied against the basis functions appearing
in the spherical harmonic expansion, which is used in the equation to de-
scribe a three dimensional gravitational potential in the free (zero density)
space above the Earth. The connection between eigenvalues and these spher-
ical harmonic coefficients is revealed through the use of the degree variance
equation, σ2

l =
∑l

m=0(C
2
l,m +S2

l,m). Since the power of these coefficients at a
particular harmonic degree l are closely approximated by Kaula’s rule, eigen-
value truncation/disposal can be manipulated to best satisfy this criterion.
Thus, a series of these scalar power values can be monitored as eigenvalues are
truncated (one at a time) for each inversion case and a minimum difference
between the generated power curves of Kaula’s rule and that of the truncated
EVD solutions, can be found. The following illustrates this concept.

For ease of description, let us label the one dimensional storage array con-
taining the Kaula power at all harmonic degrees and another which contains
the degree variance as determined by an EVD solution, as the Kaula and
EVD ”vector”, respectively. Thus the ”Kaula vector” vK can be constructed
using Kaula’s rule, and the estimated coefficients of the EVD solution defines
the elements of the ”EVD-vector”, vEV D. The ordering of the elements for
both vectors are identical and is based upon the sequence of the estimated
coefficients in the EVD solution. A relation between Kaula’s power rule and
eigenvalue truncation/disposal is discovered by taking the two-norm of the
difference of these two vectors, yielding the scalar, α = ‖vEV D − vK‖2. This
is equivalent to taking the square root of the sum of the squares of the dif-
ferences between the vectors for every ”jth” solution for a particular number
of used eigenvalues ”u”. The following equations illustrate this.

α(j;u) =

{
lmax∑
l=1

[vEV Dl − vKl]
2

} 1
2

, (1)

where,

vEV Dl =

[
l∑

m=0

(C2
l,m + S2

l,m)

]
and vKl =

{
10−10(2l + 1)

l4

}
. (2)

By constructing this ”vector” pair for each new EVD solution, according to
each new combination of eigenvalues, the behavior of the dimensionless scalar
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Fig. 3. CHAMP: Global Minimum of Used Eigenvalue Cases.

α(j;u) may be plotted against u, the number of used eigenvalues. Thus a func-
tion relating Kaula’s rule to eigenvalue truncation may be plotted. It is the
minimum of this function that corresponds to the optimal choice of eigen-
values, for the gravity solution that best satisfies Kaula’s rule. By sweep-
ing through many solutions, the global optimum (minimum) is very quickly
found. Figure 3 displays the magnified view of the area where the global min-
imum occurs for ”ngl-eigen-1s”, which is at 7581 discarded eigenvalues (3635
included). Figure 2 also includes this KEV EVD gravity solution expressed
as degree amplitude versus harmonic degree overlayed with Kaula’s rule. It
is the EVD solution which closely follows the entire length of Kaula’s power
curve. About 68 percent of all eigenvalues were discarded for this optimum
solution.

3 Evaluation of Gravity Field

Orbital Arc Fit Computations. The satellites selected to fly through
the estimated EVD gravity fields are shown in Table 1. All arc fits were
computed using UTOPIA [1] and compared with the actual observation data
for a chosen satellite. Table 1 shows the SLR orbit fits in centimeters RMS
of all five candidate gravity fields on all selected satellites. Notice, that for
the Inspection case (1216 eigenvalues used), all satellites fall out of orbit,
leading to its rejection. The case EIGEN1S is the gravity field produced by
the GFZ from the same CHAMP normal matrix ”ngl-eigen-1s” used in this
investigation. It is this EIGEN1S gravity field to which all EVD fields of this
investigation were compared. Other than the GFZ1 satellite, the RMS fits
are fairly similar for all cases of the EVD gravity fields and the EIGEN1S.
However, the EVD deflation effects are best seen in the orbit fit residual of
the low altitude satellite GFZ1.
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Case GFZ1 Lageos 1 Lageos 2 Starlette Stella Topex

Inspection crash crash crash crash crash crash
KEV 11.52 8.12 10.77 3.08 3.64 2.32
MSE 15.65 10.77 10.77 2.95 3.64 2.32
Norm-Norm 11.34 8.13 10.77 3.08 3.64 2.39
Relative Error 11.22 8.12 10.77 2.97 3.64 2.34
EIGEN1S 74.03 8.11 10.76 3.07 3.31 2.37

Table 1. Orbital Arc Fits of Candidate Gravity Fields (cm. radial RMS).
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Fig. 4. CHAMP: KEV Degree Error Var. and Var. Geopotential Difference to
EIGEN1S.

EVD Degree Error Variance and Geopotential Variance Difference
vs. EIGEN1S. The covariance matrix corresponding to a truncated Eigen-
value Decomposition (EVD) estimated solution, is not an adequate measure
of error for an estimate. Because not all eigenvectors were included into the
estimation process, the estimate is biased. The calculated gravity field is
”shifted” by some amount away from the true gravity field and the confi-
dence in the estimated coefficients may be too optimistic, i.e. their variances
are not an accurate indication of the difference between the estimated gravity
field and the true gravity field. However, if the bias introduced by an EVD
estimate is ”small”, its covariance may be considered unbiased in an approx-
imate sense. Although the KEV EVD estimate is biased, its variances and
those of an unbiased gravity solution (reference field) may be compared to
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evaluate the difference between the two fields with respect to the error vari-
ance of the reference field. Figure 4 shows the degree error variance of the
KEV EVD solution in comparison to that of the EIGEN1S reference field.
The differences between their geopotential coefficient variance spectra along
with the EIGEN1S solution, is shown (Degree Difference Variance (DDV)).
The formal error of the biased KEV solution are all within the error variances
of EIGEN1S, implying that this candidate EVD field is within the uncertainty
(in a random sense) of the EIGEN1S gravity field. However the differences in
the coefficients between the two solutions, as seen in the DDV curve, become
larger than the EIGEN1S formal error above a harmonic degree of about 30.
This indicates that the KEV EVD solution may be too optimistic in this
region.

Conclusion. PLASS demonstrates a new feasibility in the application of
the EVD in the solution for large gravity fields. Employing the KEV tech-
nique, the removal of 7581 eigenvalues, was deemed optimum. The bias in
this solution caused no deleterious effects detected by the analyzes of this
investigation.
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