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Summary. The technique of using the evolution of a satellite orbit through resonance to 
determine the values of appropriate lumped geopotential harmonic coefficients has recently 
been revived, and applied to the triple passage of the Champ orbit through 31:2 resonance. 
Preliminary results for four pairs of coefficients have been derived rapidly, without using 
the most precise data (which will be forthcoming). The values obtained are compared with 
those derivable from various global gravity models (to obtain which, vast amounts of data 
had to be analysed), and the comparison indicates that the resonance technique remains a 
competitive one. 
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1  Introduction 

About 30 years ago, a new orbit technique was developed at the (then) RAE 
(Royal Aerospace Establishment), at Farnborough in England, by means of which 
certain linear combinations of the geopotential (tesseral) harmonic coefficients, 
known as lumped harmonics, could be evaluated much more accurately than the 
values of the individual harmonics in the global models then available. The basis 
of the technique was the recognition that, due to orbital acceleration from the sat-
ellite’s descent through the atmosphere (taking from months to years), significant 
resonances between the orbital motion and the Earth’s rotation would in due 
course be encountered. The effective duration of such encounters would vary with 
the order of the resonance and the atmospheric density, but would normally be of 
a few months at most. 

Rapid improvements in the accuracy and scope of the global models, towards 
the end of the century, had two effects: to confirm the accuracy of the early reso-
nance results, in particular for 15th order resonance, but (in addition) to suggest 
that it was no longer possible for the resonance technique to generate superior re-
sults. More recently, however, it has appeared that, by use of more accurate orbital 
data and more sophisticated software, a revival of the technique would be justi-
fied, and efforts in this direction have been made in the UK, USA and Czech Re-
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public. These efforts are concentrating on Champ, which, after passing through 
46:3 and 77:5 resonances, has now passed through 31:2 three times (as a result of 
orbit manoeuvres). This triple passage has provided a unique opportunity for test-
ing progress on the technique’s revival, and a preliminary result is presented here.  

2  Some detail 

Considerable background material may be obtained from, in particular, the book 
of King-Hele (1992), which includes the historical development at the RAE, and a 
recent paper by three of the present authors (Kloko ník et al., 2003), which relates 
to the technique’s revival. The essence of the technique involves the concept of 
the resonant variable, Φ, defined in terms of the usual orbit elements and the side-
real angle, S, by 

Φ = α(ω + M) + β(Ω – S) (1) 

here β and α are the pair of co-prime integers that define the particular resonance, 
written as either β:α or β/α, whilst Ω , ω and M are the usual orbit elements speci-
fying epochal positions for the ascending node, the perigee and the satellite itself. 

We proceed in terms of the element I (inclination), since the technique is most 
productively applied to this element. The resonant rate of change of mean I, for 
given β:α, is expressible as a Fourier sum, the prototype of which is a term in 
γΦ – qω; in practice we are concerned with the basic term (γ = 1, q = 0), overtone
terms (γ > 1, q = 0) and sideband terms (γ = 1, |q| > 0), usually at most one over-
tone (γ = 2) and two sidebands (q = ±1). The coefficient of a given term consists in 
the product of a particular lumped harmonic with functions (standardized) of I and 
e (eccentricity), the e-functions being of order e|q| (cf Gooding and King-Hele, 
1989; Kloko ník, 1983).

Each Fourier coefficient also involves a linear combination of the relevant 
tesseral harmonics, Cl,m and Sl,m, for a fixed value of m = γβ; here l, in each com-
bination, in principle takes (all) alternate values, from either m or m + 1 as its 
minimum value. The concept of lumping now follows, since we can define Cm
(similarly Sm) via the sum of the effects of the relevant series; we can (as is usual) 
normalize these on the basis that Cm would be exactly equal to the true Cl(min),m if 
all subsequent Cl,m were zero. 

We cannot (without results from many satellites, at different orbital inclina-
tions) separate the individual Cl,m and Sl,m from determinations of Cm and Sm, but 
we can proceed in the opposite direction, by starting from a particular Earth model 
and comparing our values of Cm and Sm with the values implied by the model. Pos-
sible models include (pre-Champ) EGM96 and TEG4 (both US), Grim5-S1 and -
C1 (European), the recent Champ-only models Eigen2 and 2ee, IAPG (Nice 2003) 
and PGS7772p24. This is the second main topic of this paper; but first we give the 
results (still to be regarded as preliminary) on which the comparison is based. 
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3  Data and results 

We based our analysis on the so-called two-line element sets (TLEs) for Champ, 
which have become a universal and classic way of disseminating orbital data rap-
idly; we hope to analyse the potentially much more accurate 30-sec state vectors 
later. TLE accuracy we assess at about 0.00006 deg for the ‘angular’ elements, 
such as I (equivalent to about 7 meters in position, when projected onto the orbit), 
which reflects extremely well on the improvements made in TLE generation over 
the years, bearing in mind that the width of field available for the angular elements 
allows only 4 decimal places! 

The essence of resonance analysis (of Champ I’s, as we now assume) is the 
least-squares fitting of selected pairs (Cm and Sm) of harmonics, together with a 
few other parameters as necessary, to the daily TLEs, over a period long enough to 
extract maximum information from resonance passage. Before fitting, the TLE 
values of I are, as far as possible, cleared of known perturbations – in particular 
the direct lunisolar attraction, the long-period effects of the Earth’s zonal harmon-
ics (though uniquely very small for I), the effects of the upper atmosphere, and the 
rotation of the adopted reference axes themselves, due to precession and nutation. 
At the accuracy level now required, tidal effects (indirect lunisolar attraction) are 
also important, but suitable software for analytical modelling was not at our dis-
posal, so the effects were removed empirically via additional fitted parameters. 

Fig. 1 indicates the variation of the Champ inclination as it passed through the 
three significant resonances. It shows at once why we are currently presenting re-
sults for 31:2 (the change in I was equivalent to more than 100 meters). 

The independent approaches of the UK, US and Czech authors differed in non-
trivial respects, of which details are not given here. In brief, the (original) UK 
approach (Gooding, 1971) at each stage uses the most recent TLEs (the complete 

Fig. 1. Variation of inclination through three resonances (GRIM5 C1-based with arbitrary 
origin for each integration). 
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set) in computing the ‘known’ perturbations of I, but the US approach (Wagner, 
1973) is a unified one in which the computation of these perturbations (and all the 
orbit arguments as well) is governed by a single orbit, assumed valid over perhaps 
several months; and the Czech approach (Kostelecký, 1984) applies a ‘weighted 
numerical integration’ technique after non-resonant perturbations have been re-
moved. (When relevant, it is the first of the three approaches that should be as-
sumed, since the results now to be presented were obtained by the first author’s 
computer program.) 

Our first analysis (Kloko ník et al., 2003) was of the 46:3 resonance, where dif-
ficulties in extracting good values of lumped coefficients arose from the combina-
tion of a particularly small basic effect for the inclination of the Champ orbit 
(compare 46:3 with 31:2 in Fig. 1) with large sideband effects. The high order of 
the 77:5 resonance made any attempt to analyse this even more daunting, so (as al-
ready noted) we deal here only with the 31:2 resonance. At first it seemed that 
three separate analyses would be necessary, one for each of the three stages sepa-
rated by the two manoeuvres. It was then realized that (thanks in part to using al-
ways the latest TLE set) a single fit should be possible, so long as two additional 
parameters were fitted (empirically), namely, values for the effective discontinui-
ties in I due to the manoeuvres. 

In total, 558 TLE sets were used, starting from Jan 26, 2002 (MJD52300). 
There were a few gaps in the otherwise daily data, including (naturally enough) 
around the manoeuvres. For convenience, these gaps were dealt with by interpola-
tion in the TLEs themselves; and empirical values of –0.000266 and –
0.000278 deg were found for the ‘effective discontinuities’. A total of 20 formal 
parameters were fitted,  including 2 for an overall linear effect  (normally essential  

Fig. 2. Observed inclination (adjusted two-line elements), together with fitted curve. 
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in this approach) and 10 to cover five empirical periods for tidal effects; that left 8 
parameters for the actual resonance. 

Results for the basic (C, S) pair are (–15.05±0.58, –6.40±0.51), with the usual 
scaling factor of 10-9 implied; and for the ‘first overtone’ are (4.00±0.22, 
2.20±0.33). For the only significant pair of sidebands, the results were: for q = 1, 
(–0.44±1.42, –8.61±1.14); and for q = –1, (0.68±3.07, 5.98±2.65). It is obvious 
that the sideband results, particularly for q = –1, are less accurate than the others, 
but in a way they are surprisingly good, since the e|q| factor degrades the sideband 
resonance analysis for I. For analysis of e, however (which we are not able to pre-
sent yet), it is for q = 0, and NOT |q| = 1, that results are degraded, so analyses for 
e and I potentially complement each other. This is why it is normal to do both, 
making an appropriately weighted combination of the two sets of results. 

Finally, the usual a posteriori estimate of rms was made, based on the 558 re-
siduals and the number of degrees of freedom; the result was 0.00006 deg, whence 
our assessed accuracy at the beginning of this Section. Fig. 2 displays (as points) 
the observed values, as cleared of known perturbations (and the effective disconti-
nuities as above), and (by the curve) the fitted evolution of I.

4  Comparisons 

Are there external (independent) data of equivalent or better quality than the result 
just given, which could therefore validate it? Or alternatively, is this resonant re-
sult for Champ significantly better than those derived from general geopotential 
models, and could thus serve to calibrate them? The lumped harmonics (C31, S31)
from I (Champ) are the following linear sums of geopotential harmonics (Cl,m and 
Sl,m):
C31, S31 = 1.0000(C32,31, S32,31) + 0.9096(C34,31, S34,31) + 0.7405(C36,31, S36,31)

+ … = –15.05±0.58, –6.40±0.41 (2) 

the directly measured result given in the previous section. 
In the 1970's and 1980's, most of the resonant results were derived for orbits 

not used in comprehensive satellite-geopotential solutions. As a result, the reso-
nant lumped harmonics for these orbits were generally superior (had much lower 
sd-estimates) than those computed for them from the comprehensive models, so 
they served as calibrating markers for them (eg., Wagner and Lerch, 1978). For 
Champ, however, there are already a number of high-degree geopotential models 
that have been computed from its GPS data, used roughly every 30 seconds for up 
to 6 months. These models are all complete to 120x120, with terms as high as 
140,140. What are the lumped harmonics for this (31,2) resonance computed from 
them? 

Table 1 gives these values from the above series, with projections of the co-
variance matrix for two of these Champ-only models, together with the series for a 
recent high-degree field computed from Grace-intersatellite tracking on a nearby 
orbit (altitude ~480 km, I = 89.02 degrees), as well as for the pre-Champ combina-
tion model Grim5-C1 (120x120; Gruber et al., 2000).  
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C31 S31 Models Data 
Champ’s own 31:2 resonance 

-15.05±0.58 –6.40±0.41 Analysis here Champ TLEs (2002-3) 
Comprehensive pre-Champ 

–15.71 –8.54 EGM96 satellites + surface gravity 
–16.47±1.68 –7.33±1.56 Grim5-C1 29 satellites + surface gravity 

Comprehensive Champ only 
–16.91±0.45 –9.43±0.37 Eigen 2 GPS ~2 cm Phases 
–16.41±0.40 –8.73±0.40 PGS7772p24 GPS ~2 cm Phases 

–16.61 –10.75 IAPG(Nice 2003) Geopotential Anomalies 
Comprehensive with Champ data 

 –15.80 –10.03 Eigen 1S Grim5-S1 + Champ + SLR 
Comprehensive Grace only 

–16.53 –9.36 GGM01S 1 µm/sec range rates (111 days) 

Table 1. Lumped harmonics for Champ-type orbit (in 10-9 units, with standard deviations 
when known) (altitude = 393 km, inclination = 87.27 deg, eccentricity = 0.003) 

Note the generally good agreement of all these independent results. (Among the 
Champ-only models, the data spans were wholly independent.) 

Attesting to the method's efficiency, we also note that the precision of the 
Champ 31:2 resonance is roughly equal to that for the complete high-degree 
Champ-only models,  while  employing only a few hundred observations of 
(mean-)I, compared with more than a million GPS phases for the latter.  

Formally, the resonance and Champ-only values all calibrate the less accurate 
Grim5-C1 values to within about 1-sd of the latter. Comparing values from the 
other four independent high-degree models with the resonance coefficients, we 
note that both C and S from resonance are numerically smaller, the discrepancy in 
S being the more serious in terms of the stated precisions. In the resonance solu-
tion, the extra empirical parameters, especially those in the longer period tides, 
may be absorbing part of the resonant signal in I.

5  Conclusions 

The variation of Champ’s orbital inclination has been analysed over the period of 
a year and a half that covers three passages through 31:2 resonance with the geo-
potential. This has resulted in values of certain lumped harmonics that are in ex-
cellent agreement with those that can be inferred from comprehensive geopotential 
models. The latter are based on vast amounts of very precise tracking, followed by 
highly elaborate analysis, whereas our results have been obtained just from the 
(mean) orbital elements of Champ that continue to be issued daily. 

This work is a preliminary stage of a programme in which it is hoped that more 
accurate resonance results can be obtained from the more precise state vectors be-
ing derived for Champ. If possible, accurate lumped harmonics will also be ob-
tained for the higher order resonances (46th and 77th), through which the orbit 
passed before reaching 31st order.
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