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Abstract The CB1 cannabinoid receptor is widely distributed in the central and
peripheral nervous system. Within the neuron, the CB1 receptor is often localised
in axon terminals, and its activation leads to inhibition of transmitter release.
The consequence is inhibition of neurotransmission via a presynaptic mecha-
nism. Inhibition of glutamatergic, GABAergic, glycinergic, cholinergic, noradren-
ergic and serotonergic neurotransmission has been observed in many regions
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of the central nervous system. In the peripheral nervous system, CB1 receptor-
mediated inhibition of adrenergic, cholinergic and sensory neuroeffector trans-
mission has been frequently observed. It is characteristic for the ubiquitous op-
eration of CB1 receptor-mediated presynaptic inhibition that antagonistic com-
ponents of functional systems (for example, the excitatory and inhibitory inputs
of the same neuron) are simultaneously inhibited by cannabinoids. Inhibition of
voltage-dependent calcium channels, activation of potassium channels and direct
interference with the synaptic vesicle release mechanism are all implicated in the
cannabinoid-evoked inhibition of transmitter release. Many presynaptic CB1 re-
ceptors are subject to an endogenous tone, i.e. they are constitutively active and/or
are continuously activated by endocannabinoids. Compared with the abundant
data on presynaptic inhibition by cannabinoids, there are only a few examples for
cannabinoid action on the somadendritic parts of neurons in situ.

Keywords Acetylcholine · Axon terminal · CB1 cannabinoid receptor · GABA
· Glutamate · Neurotransmission · Noradrenaline · Presynaptic inhibition ·
Transmitter release

1
Introduction

As described in the chapter by Mackie (this volume), the CB1 cannabinoid receptor
is widely distributed in the central and peripheral nervous system. One of the pri-
mary consequences of activation of CB1 receptors is the inhibition or activation of
ionchannels. For example, voltage-dependent calciumchannels are typically inhib-
ited by cannabinoids, whereas several kinds of potassium channels are activated.
Theoretically, due to their influence on ion channels, cannabinoids can change the
function of neurons in several ways. By acting in the dendrites, they can interfere
with the conduction of synaptic currents to the soma of the neuron. By acting in the
soma, they can interfere with the generation of action potentials. By acting on ion
channels in axon terminals, they can inhibit transmitter release from the terminals;
the consequence is inhibitionofneurotransmissionwithapresynapticmechanism.
Inhibition of neurotransmission appears to be, at present, the best-characterised
electrophysiological effect of cannabinoids, and this review focuses on this effect.
Before analysing the presynaptic effect, we describe cannabinoid effects on ion
channels and the anatomical evidence for the presence of cannabinoid receptors
in axon terminals. Presynaptic inhibition by endogenous cannabinoids released
by postsynaptic neurons—retrograde signaling—is described in the chapter by
Vaughan and Christie (this volume).

2
Effects of Cannabinoids on Ion Channels

The somadendritic region of most neurons is accessible for electrophysiological
studies. In contrast, direct electrophysiological recording from axon terminals of
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mammals is either impossible or extremely difficult. Accordingly, we know rela-
tively well how cannabinoids change the function of ion channels in the somaden-
dritic region. Our knowledge on electrophysiological changes in axon terminals is
limited; we can only assume that ion channels are influenced similarly as in the
somadendritic region. In this section, effects on the somadendritic region are dealt
with.

2.1
Effects of Cannabinoids on Voltage-Gated Ion Channels

2.1.1
Calcium Channels

In the majority of studies, cannabinoids depressed voltage-dependent calcium
channels. According to the first observations, activation of CB1 receptors inhibits
N-type voltage-dependent calcium channels in neuronal cell lines (Caulfield and
Brown 1992; Mackie and Hille 1992; Mackie et al. 1993). No inhibition occurred in
pertussis toxin-treated cells, indicating the involvement of G proteins containing
Gαi/o subunits. Later, this observation was extended to isolated rat hippocampal
neurons and cerebellar granule cells (Twitchell et al. 1997; Nogueron et al. 2001). In
isolated rat sympathetic ganglion neurons that previously had been injected with
CB1 receptor cRNA, cannabinoids also inhibited N-type calcium channels (Pan et
al. 1996). Q-type calcium channels were also inhibited in CB1 receptor-transfected
AtT20 cells (Mackie et al. 1995). The endogenous cannabinoid (endocannabinoid)
anandamide inhibits T-type calcium channels; this effect is, however, not mediated
by CB1 receptors (Chemin et al. 2001).

There are at least two examples for stimulation of calcium channels by cannabi-
noids: L-type calcium currents in a neuronal cell line (Rubovitch et al. 2002) and
in retinal rods of the tiger salamander (Straiker and Sullivan 2003) were enhanced
by cannabinoids.

2.1.2
Potassium Channels

Activated CB1 receptors can also change the function of several types of potas-
sium channels. In oocytes and AtT20 cells artificially expressing the CB1 receptor,
stimulation of inwardly rectifying potassium channels was repeatedly observed
(Henry and Chavkin 1995; Mackie et al. 1995; Garcia et al. 1998; McAllister et al.
1999). Potassium A currents in cultured hippocampal neurons are stimulated by
cannabinoids (Deadwyler et al. 1995; Mu et al. 2000). The effects of cannabinoids
on potassium M currents in hippocampal brain slices have also been studied;
M currents were inhibited, which means an enhancement of neuronal excitabil-
ity (Schweitzer 2000). The potassium K current is inhibited by cannabinoids in
cultured hippocampal neurons (Hampson et al. 2000). As in the case of calcium
channels, anandamide can elicit a CB1 receptor-independent effect on potassium
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channels, i.e. it inhibits the acid-sensitive background potassium channel TASK-1
(Maingret et al. 2001).

2.1.3
Sodium Channels

In an early study, Turkanis et al. (1991) showed that ∆9-tetrahydrocannabinol
inhibits voltage-dependent sodium channels; the involved primary receptor was
not identified in this study. More recently, it was observed that anandamide and
the synthetic CB1/CB2 receptor agonist WIN55212-2 inhibited voltage-dependent
sodium channels in synaptosomes prepared from mouse brain (Nicholson et al.
2003). Since the effects were not attenuated by the CB1 receptor antagonist AM251,
the involvement of CB1 receptors can be excluded.

2.2
Effects of Cannabinoids on Ligand-Gated Ion Channels

The function of several types of ligand-gated ion channels is changed by cannabin-
oids—as a rule, these effects are not mediated by CB1 receptors. In isolated rat
nodose ganglion neurons, cannabinoids inhibited serotonin-3 (5-HT3) receptor-
mediated currents (Fan 1995). This observation was verified and extended in
a recent study. In HEK293 cells expressing the human 5-HT3A receptor, several
cannabinoids inhibited the 5-HT-evoked current (Barann et al. 2002). CB1 re-
ceptors could not be involved in this effect, since HEK293 cells do not express
CB1 receptors.

The function of AMPA-type glutamate receptors (Akinshola et al. 1999) and
nicotinic acetylcholine receptors (Oz et al. 2003), expressed in oocytes, was inhib-
ited by anandamide. These effects are, again, CB1 and CB2 receptor-independent.

2.3
What Is the Functional Consequence of the Inhibition
of Somadendritic Ion Channels?

The majority of the experiments in which the effect of cannabinoids on somaden-
dritic ion channels was studied were carried out on cell lines, on cells artificially
expressing the CB1 receptor or on isolated neurons. It is not known whether the
effects also occur under natural conditions. For example, cannabinoid receptor ag-
onists did not influence voltage-dependent calcium channels in caudate-putamen
medium spiny neurons (Szabo et al. 1998), although these neurons are known
to synthesise CB1 receptors. It is conceivable that in neurons under physiological
conditions, the density of somadendritic CB1 receptors is too low for modulation
of certain ion channels. Alternatively, the coupling mechanism between receptor
and ion channel may not be functional.
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Another important question also remains unanswered. We basically do not
know how modulation of somadendritic ion channels by cannabinoids affects the
excitability or integrative capacity of neurons. There are only a few experiments
in which neurons were studied in situ (in brain slices), and cannabinoid effects
were restricted to the somadendritic region of the neurons (by blockade of the
synaptic input of the neurons), and cannabinoids elicited an effect. One such
experiment was carried out by Kreitzer et al. (2002): cannabinoids lowered the
firing rate of cerebellar interneurons and this was attributed to the activation of
barium-sensitive potassium channels. In the experiments of Himmi et al. (1998),
cannabinoids changed the firing rate of nucleus tractus solitarii neurons in brain
slices; since the synaptic input was not blocked, it is not known whether the change
in firing rate was due to an effect on the neurons themselves, or to an effect on
their synaptic input.

3
Anatomical Evidence for the Presence of CB1 Cannabinoid Receptors
in Axon Terminals

The wide distribution of the CB1 receptor in the nervous system is described in
the chapter by Mackie (this volume). The prerequisite for presynaptic inhibition
of neurotransmission is that the receptor is localised in axon terminals. The fol-
lowing paragraph lists known examples for localisation of CB1 receptors in axon
terminals.

In the cerebellum, CB1 receptors in terminals of basket cells can be seen at the
light microscopic level (Tsou et al. 1998; Diana et al. 2002). Electron microscopical
studies have indicated that a great portion of CB1 receptors in the caudate-putamen
(Rodriguez et al. 2001), hippocampus (Katona et al. 1999, 2000; Hájos et al. 2000)
and amygdala (Katona et al. 2001) is in axon terminals. Comparison of the site
of CB1 receptor synthesis (which was determined by in situ hybridisation) with
the distribution of receptor protein (which was determined with receptor autora-
diography and immunohistochemistry) indicates localisation of CB1 receptors in
terminals of parallel fibres in the cerebellum and in terminals of striatonigral neu-
rons in the substantia nigra pars reticulata (compare, for example, Mailleux and
Vanderhaeghen 1992; Matsuda et al. 1993; Tsou et al. 1998). The changes in the CB1

receptor distribution pattern during neurodegeneration accompanying Hunting-
ton’s disease and experimentally elicited neurodegeneration also suggest that CB1

receptors in the substantia nigra pars reticulata are localised in striatonigral axon
terminals (Herkenham et al. 1991; Glass et al. 2000).

In a few instances, it was shown that CB1 receptors are not uniformly distributed
in a neuron, but are preferentially localised in the axon terminal. For example, CB1

receptors were well visible in cerebellar basket cell terminals, but not in the somata
of these neurons (Diana et al. 2002). Preferential localisation of CB1 receptors in
axon terminals was also observed in hippocampal neurons (Twitchell et al. 1997;
Irving et al. 2000).
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4
Effects of Cannabinoids on Neurotransmission
in the Central Nervous System

Two methods were used to study the effect of cannabinoids on presynaptic axon
terminals. The more frequently used electrophysiological approach measures neu-
rotransmission. In brain slices or neuronal cultures, electrical currents in post-
synaptic neurons are recorded with patch-clamp or microelectrode techniques.
Presynaptic axon terminals are electrically stimulated and the postsynaptic cur-
rent resulting from stimulation of ligand-gated ion channels of postsynaptic neu-
rons by the released transmitter is determined. The change in the postsynaptic
current amplitude is a measure of the change in synaptic transmission.

In the other method, the release of endogenous or radiolabelled neurotrans-
mitters from presynaptic axon terminals is determined chemically. Although this
latter method shows directly what happens at the level of axon terminals, it does
not measure “neurotransmission”.

In electrophysiological experiments, cannabinoids inhibited neurotransmis-
sion. The inhibition was always due to inhibition of transmitter release from axon
terminals and never to interference of cannabinoids with the postsynaptic ef-
fects of the neurotransmitters. The experiments in which transmitter release was
determined neurochemically also indicated that cannabinoids inhibit transmit-
ter release from axon terminals. In most instances the presynaptic cannabinoid
receptors can be classified as CB1 receptors (but some exceptions are given in
Tables 1 and 2). Effects of cannabinoids on the release of individual transmitters
are discussed below. Effects of cannabinoids on neurotransmission have also been
reviewed by Schlicker and Kathmann (2001).

4.1
Fast Excitatory Neurotransmission

Activation of CB1 receptors inhibits the release of the excitatory neurotransmitter
glutamate in many brain regions and in the spinal cord (Table 1).

Inhibition was seen in nuclei belonging to the extrapyramidal motor control sys-
tem: caudate-putamen, globus pallidus and substantia nigra pars reticulata (Fig. 1
shows an example of presynaptic inhibition of glutamatergic neurotransmission
in the substantia nigra pars reticulata; see Fig. 6 for an overview of cannabinoid
effects on neurotransmission in the extrapyramidal motor control system). In-
hibition of neurotransmission was also observed in the ventral tegmental area,
hippocampus and the nucleus accumbens—these regions are parts of the limbic
system. Inhibition of the excitatory synaptic transmission in the hippocampus
could contribute to the anticonvulsive effect of cannabinoids. Purkinje cells in
the cerebellar cortex receive excitatory inputs from parallel fibres and climbing
fibres; both kinds of excitatory inputs are inhibited by activated CB1 receptors (see
Fig. 7 for an overview of cannabinoid effects on neurotransmission in the cerebel-
lar cortex). Moreover, cannabinoids depress the glutamatergic neurotransmission
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Fig. 1A, B. Cannabinoids inhibit glutamatergic synaptic transmission in the substantia nigra pars reticulata
(SNR) of the rat via a presynaptic mechanism. The major glutamatergic afferent input of SNR neurons

originates in the subthalamic nucleus. A SNR neurons were patch-clamped and their glutamatergic afferent
axons electrically stimulated. The stimulation elicited excitatory postsynaptic currents (EPSCs) in SNR neurons.
EPSCs remained stable in solvent (SOL)-superfused slices. The synthetic cannabinoid agonists WIN55212-2
(WIN) and CP55940 (CP) inhibited the EPSCs. B SNR neurons were patched-clamped and glutamate (GLU)
was pressure-ejected from a pipette in their vicinity. Glutamate-evoked currents remained stable in SOL-
superfused slices. Superfusion of WIN also did not change the glutamate-evoked currents. This observation
indicates that cannabinoids do not interfere with the postsynaptic effect of glutamate; thus, the inhibition of
neurotransmission seen in panel A is due to presynaptic inhibition of glutamate release from axon terminals.
In both panels, a typical original recording obtained in a WIN experiment (inset) and the statistical analysis
are shown. PRE, initial reference period. See Szabo et al. (2000) for details of the experiments. *, Significant
difference from SOL (p<0.05)
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between primary sensory fibres and neurons in the dorsal horn of the spinal cord:
this effect could be the basis of the spinal analgesia produced by cannabinoids.

According to recentobservations, someeffectsof cannabinoidsonglutamatergic
transmission in the hippocampus are not mediated by CB1 receptors (and also not
by CB2 receptors). Synthetic cannabinoidsdepressed excitatoryneurotransmission
also in brain slices from CB1 receptor-knockout mice and in the presence of some
CB1 antagonists (Hájos et al. 2001; Hájos and Freund 2002). Similarly, cannabinoid-
evoked glutamate release from hippocampal synaptosomes was resistant to CB1

antagonists and persisted in CB1 receptor-knockout mice (Köfalvi et al. 2003; but in
a similar preparation, effects were sensitive to a CB1 antagonist; Wang 2003). Based
on such observations, the existence of a new cannabinoid receptor was postulated.
It must be noted that the involvement of known non-cannabinoid receptors or
ion channels—for which cannabinoids might possess a hitherto unrecognised
affinity—was not excluded in these studies.

Prolonged exposure of G protein-coupled receptors to their agonists leads to
desensitisation due to diminished coupling of the receptors with G proteins and
receptor internalisation. This phenomenon was observed also in the case of CB1

receptor-mediated inhibition of neurotransmission. Cannabinoid-evoked inhibi-
tion of glutamatergic and γ-aminobutyric acid (GABA)ergic neurotransmission
in the nucleus accumbens was diminished by treatment of animals for 1 week
with natural and synthetic cannabinoids (Hoffman et al. 2003a). Cannabinoid-
evoked inhibition of excitatory neurotransmission between cultured hippocampal
neurons was also strongly desensitised by a 24-h treatment of the neurons with
a cannabinoid (Kouznetsova et al. 2002).

4.2
Fast Inhibitory Neurotransmission

CB1 receptor-mediated inhibition of GABAergic neurotransmission has been ob-
served in many brain regions, belonging to different functional systems (Table 2).

Thus, cannabinoids depress cerebral cortical GABAergic neurotransmission.
Neurotransmission is also depressed in nuclei belonging to the extrapyramidal
motor control system: caudate-putamen, globus pallidus and substantia nigra pars
reticulata (Fig. 6 also shows cannabinoid effects on inhibitory neurotransmission
in the extrapyramidal motor control system). GABAergic synaptic transmission
in the cerebellum, a major brain region involved in motor control, is inhibited as
well (Fig. 7 also shows cannabinoid effects on inhibitory neurotransmission in the
cerebellar cortex). Figure 2 shows inhibition of GABAergic neurotransmission in
the cerebellar cortex, and Fig. 3 shows that the inhibition is due to the inhibition of
GABA release from presynaptic axon terminals. In several nuclei belonging to the
limbic system (e.g. hippocampus and amygdala), activation of CB1 receptors leads
to depression of inhibitory neurotransmission. Inhibition of GABA release in the
ventral tegmental area—where the mesolimbic reward pathway originates—could
explain the euphoria produced by cannabinoids. The rostral ventromedial medulla
oblongata and the periaqueductal grey in the midbrain are involved in nocicep-
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Fig. 2A–C. Cannabinoids inhibit GABAergic synaptic transmission between basket and Purkinje cells in the
cerebellar cortex of the rat. A The basket cell synthesises CB1 receptormRNA (�) and the CB1 receptor protein
(•) is localised in the axon terminal. Action potentials (APs) of a basket cell and spontaneous inhibitory
postsynaptic currents (sIPSCs) in a synaptically coupled Purkinje cell were recorded simultaneously. B1,
B2 APs and sIPSCs were recorded during the initial reference period (PRE) and during superfusion with
WIN55212-2 (WIN). During PRE (B1), every presynaptic AP was accompanied by a postsynaptic IPSC: synaptic
transmissionwasalwayssuccessful.DuringWINsuperfusion (B2), synaptic failuresappear (markedbyarrows).
Enhancement of synaptic failure is typical for drugs that decrease probability of transmitter release from the
presynaptic axon terminal. C1 AP-coupled postsynaptic currents were averaged only if transmission was
successful. The decrease in amplitude indicates inhibition of neurotransmission by WIN. C2 All AP-coupled
postsynaptic currents were averaged (successes and failures). The WIN-evoked inhibition is greater (than in
C1), because WIN also increased the number of failures. The figure represents five experiments with a similar
outcome. See Szabo et al. (2004) for details of the experiments

tive information processing; in both regions, GABAergic synaptic transmission is
inhibited by cannabinoids.

In the above-mentioned experiments, cannabinoids inhibited fast GABAergic
transmission by inhibiting GABA release from axon terminals. It is expected that if
GABA release is inhibited, then GABAB receptor-mediated slow inhibitory trans-
mission will be inhibited as well. This was indeed observed in the ventral tegmental
area (Riegel et al. 2003).

In addition to GABA, glycine is also involved in fast inhibitory neurotransmis-
sion. Activation of CB1 receptors inhibits both GABAergic and glycinergic synaptic
transmission in the medulla oblongata (Jennings et al. 2001; see Table 2).
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Fig. 3A–D. Cannabinoids inhibit GABAergic synaptic transmission between basket and Purkinje cells in the
cerebellar cortex of the rat via a presynaptic mechanism. Miniature inhibitory postsynaptic currents (mIPSCs)
were recorded in Purkinje cells in the presence of tetrodotoxin (3 × 10–7 M) during an initial reference period
(PRE) and during superfusion with WIN55212-2 (WIN). A Original tracings from an experiment with WIN: WIN
obviously lowers the frequency of mIPSCs. B Averaged mIPSCs from the experiment shown in A: WIN does
not change the amplitude of mIPSCs. C, D Cumulative probability distribution plots of inter-event intervals
and amplitudes of mIPSCs (same experiment as in A): the inhibitory effect of WIN on the frequency of mIPSCs
and its lack of effect on the amplitude of mIPSCs is evident. Lack of effect of WIN on the amplitude of mIPSCs
indicates that the cannabinoid does not interfere with the effect of GABA on the postsynaptic neuron—this
is an indication that WIN inhibited neurotransmission between basket and Purkinje cells (see Fig. 2) via
a presynaptic mechanism. Lowering the frequency of mIPSCs by WIN suggests that WIN directly interferes
with the vesicle release machinery. The figure represents six experiments with a similar outcome. See Szabo
et al. (2004) for details of the experiments

4.3
Neurotransmission via Monoamines and Acetylcholine

A synopsis of the inhibitory effects of cannabinoids on the release of the mono-
amines noradrenaline, dopamine and serotonin and of acetylcholine in the brain
and the retina is given in Table 3. Noradrenaline release is inhibited via CB1 re-
ceptors in the hippocampus of guinea-pig and man but not in the hippocampus
of rat and mouse (Table 3, Fig. 4; Van Vliet et al. 2000). Although CB1 receptors
inhibit the release of dopamine from amacrine cells of the retina, contradictory
results were obtained with respect to the modulation of dopamine release from
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Table 3. Inhibition of the release of monoamines and acetylcholine in the brain and the retina

Neurotransmitter Species Region Method References

Noradrenaline Guinea-pig Cortex, hippocam-
pus, hypothalamus,
cerebellum
(brain slice)

[3H]Noradrenaline
release

Schlicker et al. 1997

Man Hippocampus
(brain slice)

Dopamine Rat Caudate-putamen [3H]Dopamine
release

Cadogan et al. 1997

Dopamine Rat Caudate-putamen NMDA-stimulated
[3H]dopamine
release

Kathmann et al. 1999

Dopamine Guinea-pig Retina [3H]Noradrenaline
release

Schlicker et al. 1996

Serotonin Mouse Cortex (brain slice) [3H]Serotonin
release

Nakazi et al. 2000

Acetylcholine Rat Hippocampus
(brain slice)

[3H]Acetylcholine
release

Gifford andAshby 1996

Cortex, hippocam-
pus (synaptosomes)

Gifford et al. 2000

Acetylcholine Mouse Cortex, hippocam-
pus (brain slice)

[3H]Acetylcholine
release

Kathmann et al. 2001a

Acetylcholine Mouse
Man

Cortex (brain slice)
Cortex (brain slice)

[3H]Acetylcholine
release

Steffens et al. 2003

NMDA, N-methyl-d-aspartate

the terminals of the striatonigral axons in the caudate-putamen. Dopamine re-
lease was depressed in some studies (Table 3), but not, however, in a study using
voltammetry to measure dopamine release (Szabo et al. 1999). Serotonin release
was slightly inhibited in the cortex of mice but not affected at all in the cortex of
rats (Table 3; Van Vliet et al. 2000). Moreover, cannabinoids inhibit acetylcholine
release in the hippocampus and cortex; inhibition also occurs in human cortex
(Table 3). However, not all cholinergic neurons are affected by cannabinoids: e.g.
acetylcholine release from the cholinergic interneurons of the caudate-putamen is
not changed by cannabinoids (Gifford et al. 1997a; Kathmann et al. 2001a).

The papers listed in Table 3 and discussed in the preceding paragraph rep-
resent in vitro studies, and the question arises whether similar results are also
obtained in vivo. This was examined in a series of studies on rats subjected to in
vivo microdialysis; the ligands under study were administered intraperitoneally
or intravenously. Cannabinoids indeed decrease acetylcholine release in the dorsal
hippocampus (Mishima et al. 2002). In the studies by Tzavara et al. (2001, 2003a), in
which cannabinoid agonists were not studied themselves, the CB1 receptor inverse
agonist SR 141716, which elicits effects opposite in direction to those of cannabi-
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Fig. 4A–C. Cannabinoids inhibit noradrenaline release in the brain. A Guinea-pig hippocampal slices were
preincubatedwith [3H]noradrenaline and superfused. The electrically (0.3 Hz) evoked tritiumoverflow (which
represents quasi-physiological noradrenaline release) was inhibited by WIN55212-2 but not affected by its
enantiomer WIN55212-3. The concentration–response curve of WIN55212-2 (WIN) was shifted to the right
by a low concentration of the CB1 receptor antagonist SR 141716 (pA2 8.2) but hardly affected by a high
concentrationof theCB2 receptorantagonistSR144528.Givenalone,SR141716 facilitated,whereasSR144528
did not affect, noradrenaline release. In another series of experiments, not shown here, slices were superfused
with K+-rich (2.5 × 10–2 M) Ca2+-free medium containing tetrodotoxin 10–6 M; under this experimental
condition WIN inhibited tritium overflow evoked by re-introduction of Ca2+ 1.3 × 10–3 M (in a manner
sensitive to SR 141716 3.2 × 10–7), suggesting that the CB1 receptors are located presynaptically on the
noradrenergic axon terminals. B WIN inhibited noradrenaline release also in human hippocampus but failed
to do so in rat and mouse hippocampus. Although SR 141716 3.2 × 10–7 M counteracted the effect of WIN in
humanhippocampus, it didnot affect noradrenaline releaseby itself (not shown). (Sincenoradrenaline release
is relatively low in human hippocampus we used a higher stimulation frequency than in hippocampal slices
from the three animal species.) C In guinea-pig hippocampus, the inhibitory effect of WIN is higher than that
of prostaglandin E2 (PGE2; acting via prostaglandin EP3 receptors) and R-α-methylhistamine (RαMH; acting
via histamine H3 receptors), but lower than that of nociceptin (Nocic.; acting via opioid OP4 receptors) and
U-69,593 (U-69; acting via OP2 receptors). Note that the concentrations of the five agonists causemaximumor
near maximum effects at the respective presynaptic inhibitory receptors. *, Significant difference from control
(p<0.001). See Schlicker et al. (1997) and Timm et al. (1998) for details of the experiments (some of the data
shown here are unpublished)

noid agonists under a variety of conditions (for a more detailed discussion, see
Sect. 7), increases noradrenaline release in the prefrontal cortex and anterior hy-
pothalamus, dopamine release in the prefrontal cortex and serotonin release in
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the prefrontal cortex and nucleus accumbens. On the other hand, cannabinoids
increase rather than decrease striatal dopamine release (Malone and Taylor 1999)
and acetylcholine release in the frontal cortex (Verrico et al. 2003). The situation is
even more complicated with respect to the effects of cannabinoids on acetylcholine
release in the medial prefrontal cortex and hippocampus. Low doses of cannabi-
noids increase (Acquas et al. 2000, 2001), whereas high doses decrease (Gessa et
al. 1998; Carta et al. 1998), the release of this transmitter.

The fact that cannabinoids when given systemically increase rather than de-
crease transmitter release in various paradigms in vivo is in all likelihood not
related to the fact that there are also facilitatory cannabinoid receptors. Inhibitory
CB1 receptors occur both on facilitatory and inhibitory neurons of complex neu-
ronal networks and cannabinoids may therefore elicit inhibitory or facilitatory
effects on transmitter release, depending on the exact site(s) where they act. Two
typical networks in which presynaptic inhibitory CB1 receptors occur on various
sites are depicted in Figs. 6 and 7. The recent study by Tzavara et al. (2003b) shows
that the differential effects of cannabinoids on hippocampal acetylcholine release
(Gessa et al. 1998; Carta et al. 1998; Acquas et al. 2000, 2001) are due to the fact
that the cannabinoids, depending on the dose, act on different pathways, involving
dopamine D1 or D2 receptors.

5
Effects of Cannabinoids on Neurotransmission
in the Peripheral Nervous System

Effects of cannabinoids on the sympathetic nervous system have been studied in
isolated tissues and in pithed animals (Table 4). Sympathetic neurons were usually
activated by electrical stimulation. Activation of CB1 receptors led to inhibition of
noradrenaline and/or ATP release and, consequently, to inhibition of the effector
responses in theheart, inmesenteric andrenalbloodvessels and in thevasdeferens.
Figure 5Ashows that cannabinoids inhibit sympathetic neuroeffector transmission
in the heart. Sympathetically mediated vasoconstriction was inhibited in many
tissues of pithed rats and rabbits. Sympathetic tone is depressed during long-term
∆9-tetrahydrocannabinol administration in humans; the presynaptic inhibitory
effect of cannabinoids on sympathetic axon endings may be the basis of this effect.

Cannabinoids also inhibit transmitter release from cholinergic autonomic neu-
rons (Table 4). As an example, the bradycardia elicited by vagal nerve stimulation
is depressed. Figure 5B shows that cannabinoids inhibit parasympathetic neuroef-
fector transmission in the heart. Electrically evoked contractions of the ileum and
urinary bladder can also be inhibited by activation of CB1 receptors (Table 4).

Finally, cannabinoids inhibit the release of neuropeptides like calcitonin gene-
related peptide (CGRP), substance P and somatostatin from sensory neurons
(Table 4). Capsaicin or electrical stimulation was used to evoke neuropeptide re-
lease. In some of these studies, the endocannabinoid anandamide was used, which
has a dual effect on neuropeptide release from sensory neurons. Anandamide pos-
sesses an inhibitory effect mediated via CB1 receptors at low concentrations and
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Fig. 5A,B. Cannabinoids inhibit sympathetic andparasympathetic neuroeffector transmission in the heart. A
Cardiac sympathetic nerves in pithed rabbits were stimulated at a frequency of 1 Hz for 30 s. Solvent (SOL) and
WIN55212-2 (WIN) were administered i.v. as indicated by the arrows. One of the WIN groups (YOH+WIN) was
pretreatedwiththeα2-adrenoceptorantagonistyohimbine(0.5mg/kg–1; i.v.)att = –14min.Cardioaccelerator
responses are given as percentages of the initial reference value (PRE). WIN inhibited the cardioaccelerator
response more strongly in the presence of YOH, probably because YOH prevented concurrent inhibition by
endogenous noradrenaline. B The right vagus nerve was stimulated at a frequency of 10 Hz for 5 s. SOL, WIN
and CP55940 (CP) were administered i.v. as indicated by the arrows. Cardiodecelerator responses are given
as percentages of the initial reference value PRE. *, Significant difference from SOL (p<0.05). See Szabo et al.
(2001) for details of the experiments

a stimulatory effect mediated via vanilloid receptors (TRPV1, transient receptor
potential V1 channel) at high concentrations (Zygmunt et al. 1999; Tognetto et al.
2001; Ahluwalia et al. 2003; Nemeth et al. 2003).

The effect of cannabinoids on peripheral autonomic transmission has been
extensively reviewed by Ralevic (2003).
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6
Mechanism of the Presynaptic Inhibition

Information regarding the mechanism of presynaptic inhibition is included in
Tables 1 and 2. As expected for a Gαi/o protein-coupled receptor, the presynaptic
inhibition mediated by the CB1 receptor was sensitive to pertussis toxin in the
few cases where this interaction was studied. Moreover, in isolated hippocam-
pal neurons, presynaptic inhibition of excitatory neurotransmission elicited by
CB1 receptor activation could be mediated by several subtypes of Gαi/o proteins:
Gαo1, Gαi2 and Gαi3 (Straiker et al. 2002). Information on the involvement of sec-
ond messengers in the presynaptic inhibition by cannabinoids is sparse. For exam-
ple, the role of Gβγ proteins is not known. Data on the role of the cyclic adenosine
monophosphate (cAMP)–protein kinase A messenger system are contradictory
(see Tables 1 and 2). After activation of Gαi/o protein-coupled receptors, several
final mechanisms may lead to inhibition of transmitter release (for review see
Thompson et al. 1993; Wu and Saggau 1997; see Fig. 8). Most often, presynaptic
inhibition is attributed to inhibition of voltage-dependent calcium channels. In
addition, activation of potassium channels and direct interference with the vesicle
release machinery can also play a role in presynaptic inhibition. It seems that
cannabinoids can use all three mechanisms for producing presynaptic depression
(see Tables 1 and 2). Since it is extremely difficult to obtain electrophysiologi-
cal access to mammalian axon terminals, direct evidence for cannabinoid-evoked
modulation of axon terminal ion channels is lacking. Therefore, most of the evi-
dence regarding the mechanism of cannabinoid-evoked presynaptic inhibition is
indirect.

6.1
Inhibition of Calcium Channels

As mentioned above, cannabinoids inhibit voltage-dependent calcium channels
in somadendritic regions of neurons (see Sect. 2.1.1). It is assumed that such
an inhibition also operates in axon terminals and is responsible for presynaptic
inhibition. Using microfluorometric methods, it was indeed shown that the action
potential-evoked increase in axon terminal calcium concentration is depressed
by exogenous and endogenous cannabinoids (Kreitzer and Regehr 2001; Diana
et al. 2002; Daniel and Crepel 2001; Brown et al. 2003a; Diana and Marty 2003).
Based on the interaction between cannabinoids and calcium channel blockers,
Sullivan (1999) concluded that calcium channel inhibition is responsible for the
cannabinoid-evoked depression of synaptic transmission.

6.2
Activation of Potassium Channels

As mentioned above, cannabinoids activate several types of potassium channels in
the somadendritic region of neurons (see Sect. 2.1.2). Cannabinoid-evoked open-
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ing of potassium channels will hyperpolarise axon terminals and shorten action
potentials. As a consequence, invasion of axon terminals by action potentials and
the activation of calcium channels can be impeded. The duration of calcium in-
flux during the action potential may also decrease. Evidence for the involvement
of potassium channels in presynaptic inhibition was obtained by using potas-
sium channel blockers. Thus, potassium channel blockers prevented cannabinoid-
evoked presynaptic inhibition (Daniel and Crepel 2001; Robbe et al. 2001; Diana
and Marty 2003; Azad et al. 2003) and cannabinoid-evoked inhibition of the ac-
tion potential-triggered increase in axon terminal calcium concentration (Daniel
and Crepel 2001). In contrast, since potassium channel blockers did not affect
cannabinoid-evoked presynaptic inhibition, Hoffman and Lupica (2000) excluded
a role of potassium channels in presynaptic inhibition.

6.3
Direct Inhibition of the Vesicle Release Machinery

In most nerve terminals, spontaneous and asynchronous quantal transmitter re-
lease occurs also in the absence of calcium influx through voltage-dependent
calcium channels. Such release events are recorded in electrophysiological exper-
iments either in the presence of tetrodotoxin or calcium channel blockers. The
recorded postsynaptic events are called miniature excitatory or inhibitory postsy-
naptic currents (mEPSCs or mIPSCs). There are many examples for the lowering
of the frequency of mEPSCs and mIPSCs by cannabinoids (Tables 1 and 2), includ-
ing GABAergic synaptic transmission between basket and Purkinje cells in the
rat cerebellar cortex (Fig. 3). These observations indicate that cannabinoids are
capable of inhibiting neurotransmitter release at a site downward of calcium entry
into axon terminals, most probably at the level of the vesicular release machinery.
However, it is also clear from Tables 1 and 2 that at many synapses cannabinoids
produce presynaptic inhibition without directly interfering with vesicular release.

In conclusion, there are examples for presynaptic inhibition by all three mecha-
nisms: inhibition of voltage-dependent calcium channels, activation of potassium
channels and inhibition of the vesicle-release machinery. The inhibitory mecha-
nisms vary in different types of axon terminals. One axon terminal can possess
several inhibitory mechanisms (for example, calcium channels and vesicle release
can be inhibited simultaneously).

7
Endogenous Tone at Presynaptic Cannabinoid Receptors

There is now increasing evidence that cannabinoid receptors involved in the inhi-
bition of neuroeffector transmission are subject to an endogenous tone (Table 5).
A typical example is the presynaptic CB1 receptors on GABAergic neurons synaps-
ing with the pyramidal neurons in the rat hippocampus (Wilson and Nicoll 2001).
Depolarisation of the latter neurons causes an increase in formation of endo-
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cannabinoids, which in turn activate the presynaptic inhibitory CB1 receptors on
the GABAergic neurons (Fig. 8; see also the chapter by Vaughan and Christie,
this volume). The inhibitory effect is mimicked by a blocker of endocannabinoid
reuptake, i.e. AM 404 (in a manner sensitive to the CB1 receptor inverse agonist SR
141716), suggesting that endocannabinoids are accumulating. This has also been
shown in some other paradigms (Table 5) and even in human tissue (Steffens et
al. 2003). The same conclusion was reached from experiments in which a blocker
of the degradation of the endocannabinoids, i.e. phenylmethylsulfonyl fluoride
(PMSF), mimicked the inhibitory effect of the endocannabinoids (Table 5). The
third approach was the use of a partial CB1 receptor agonist, O-1184, which led to
an increase in transmitter release, probably by interrupting the inhibition caused
by accumulating endocannabinoids (Steffens et al. 2003).

In many studies, SR 141716 or other antagonists/inverse agonists increased
transmitter release (Fig. 4; Table 5). Although the reason for their facilitatory effect
might be the same as in the case of O-1184, an entirely different explanation has to
be considered as well. Thus, presynaptic CB1 receptors may be constitutively active,
i.e. inhibit transmitter release even if they are not activated by endocannabinoids,
and in this case inverse agonists would be expected to increase transmitter release
as well. Constitutive activity frequently occurs with G protein-coupled receptors
expressed in high densities (Seifert and Wenzel-Seifert 2002) and CB1 receptors are
expressed in relatively high densities when compared to other G protein-coupled
receptors (Wilson and Nicoll 2002). In at least one of the paradigms shown in
Table 5, constitutive activity seems to be the only possible explanation. Thus, SR
141716 increased the Ca2+-induced [3H]acetylcholine release in rat hippocampal
synaptosomes (Gifford et al. 2000). In synaptosomes as opposed to isolated tissues
(used in most of the other studies shown in Table 5), accumulation of endoge-
nously released ligands cannot occur, since the latter are efficiently removed by
the superfusion stream (Starke et al. 1989). For further clarification, neutral CB1

receptor antagonists (which have become available only recently; Hurst et al. 2002;
Ruiu et al. 2003) will be useful, since they are expected to facilitate transmitter
release if endocannabinoids are accumulating but should be without effect if CB1

receptors are constitutively active.
The facilitatory effect of inverse agonists on transmitter release was mimicked

in some paradigms by the disruption of CB1 receptors, i.e. transmitter release
was higher in tissues from CB1 receptor-deficient mice when compared to wild-
type animals (Table 5). This experimental approach does not allow one to reach
a conclusion as to whether the endogenous tone is related to accumulation of
endocannabinoids or constitutively active CB1 receptors; yet it is remarkable that
blockade of, or inverse agonism at, CB1 receptors during the course of the experi-
ment and complete lack of CB1 receptors have the same consequence.

The fact that presynaptic CB1 receptors at many sites are activated by endoge-
nous compounds lends further support to the view that the cannabinoid system
plays an important regulatory role. It has also great practical relevance since CB1

receptor antagonists/inverse agonists may be used for therapeutic purposes (for
further discussion, see the chapter by Robson, this volume).
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8
What Is the Functional Role of Presynaptic Cannabinoid Receptors?

It is evident from Sects. 4 and 5 that presynaptic CB1 receptors are ubiquitous in the
central and peripheral nervous system. Even within one functional system, several
components of the neuronal circuitry are equipped with CB1 receptors. This will
be illustrated in two functional systems: the extrapyramidal motor control system
(Fig. 6) and the cerebellum (Fig. 7).

Figure 6 shows the most important glutamatergic, GABAergic and dopaminer-
gic neuronal connections within the extrapyramidal motor control system. Gluta-
matergic andGABAergicneurotransmission is inhibitedat several sitesbycannabi-
noids. In contrast, dopaminergic transmission may not be influenced. A typical
motor effect of high doses of cannabinoids is catalepsy (Compton et al. 1996;
Sanudo-Pena et al. 1999). Catalepsy is thought to occur if the GABAergic neurons
in the output nucleus of the basal ganglia, the substantia nigra pars reticulata, are
firing at a high rate (Kolasiewicz et al. 1988). Among the 11 sites where cannabi-
noids can act presynaptically, an action at 5 sites would indirectly enhance the
firing rate of substantia nigra pars reticulata neurons, and thus would lead to

Fig. 6. Effects of cannabinoids on synaptic transmission in nuclei belonging to the extrapyramidal motor
control system. DA, dopamine; FSN, fast spiking neuron; MSN, medium spiny neuron; SNC, substantia nigra
pars compacta; SNR, substantia nigra pars reticulata. CB1 receptor-mediated inhibition of neurotransmission
was demonstrated at many synapses of this motor control system. In addition to the proved sites of inhibition,
inhibition is very probable at additional sites (based on the localisation of the CB1 receptor). For the sake
of simplicity, the pathway including the entopeduncular nucleus (globus pallidus medialis/internus) is not
shown
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Fig. 7. Effects of cannabinoids on synaptic transmission in the cerebellar cortex. CB1 receptor-mediated
inhibition of neurotransmission was demonstrated at several synapses in the cerebellar cortex. In addition
to the proven sites of inhibition, inhibition is very probable at additional sites (based on the localisation of
the CB1 receptor). In addition to synaptic inhibition, activation of CB1 receptors can also directly decrease the
firing rate of interneurons (not shown)

catalepsy. Action at the remaining sites would lead to the opposite effect, i.e. the
firing rate of substantia nigra pars reticulata neurons would decrease, which would
be an “anticataleptic” effect. In vivo, the balance of all effects obviously favours
catalepsy.

Figure 7 shows neuronal connections in the cortex of the cerebellum and the
action of cannabinoids on these connections. Activation of CB1 receptors inhibits
glutamatergic as well as GABAergic neurotransmission at altogether five sites.
Cannabinoids cause static and gait ataxia, and this is attributed to cerebellar
dysfunction (Fränkel 1903; Patel and Hillard 2001). It is thought that the firing
rate of Purkinje cells is increased during cerebellar ataxia. Two of the presynaptic
cannabinoid effects shown in Fig. 7 would indirectly enhance the firing rate of
Purkinje cells; these effects could be the primary events behind cerebellar ataxia. As
in the extrapyramidal motor control system, however, inhibitory CB1 presynaptic
receptors are also localised on neurons that play opposite roles in the function of
the cortex of the cerebellum.

Further examples for the simultaneous inhibitory effects of cannabinoids on
antagonistic components of functional systems can be easily found. For example,
cannabinoids inhibit the glutamatergic as well as the GABAergic input of ventral
tegmental area dopaminergic neurons (Szabo et al. 2002; Melis et al. 2004) and the
sympathetic as well as the parasympathetic input of the heart (Szabo et al. 2001).

What is the physiological role of CB1 receptors—receptors that are so widely
distributed and that simultaneously influence antagonistic components of a given
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Fig. 8. Effects of cannabinoids on synaptic transmission. Activation of the CB1 receptor at the presynaptic
axon terminal inhibits transmitter release from the synaptic vesicle. Three mechanisms can be involved in
presynaptic inhibition (X refers to unknown second messengers): inhibition of voltage-dependent calcium
channels, activation of potassium channels and direct interferencewith the vesicle releasemachinery. The CB1
receptor can be activated by exogenous agonists, but also by the endocannabinoids anandamide (AEA) and
2-arachidonoylglycerol (2-AG), which are released from the postsynaptic neuron by passive and/or facilitated
diffusion. The synthesis of endocannabinoids is triggered by a depolarisation-induced (Vm, membrane
potential) calcium influx or by activation of Gq/11 protein-coupled receptors

functional system? One functional role of CB1 receptors is their participation
in retrograde signalling, at least with respect to fast excitatory and inhibitory
transmission. Endogenous cannabinoids released from postsynaptic neurons can
diffuse to presynaptic axon terminals where they produce presynaptic inhibition
(Ohno-Shosaku et al. 2001; Wilson and Nicoll 2001). The trigger for synthesis of en-
docannabinoids is depolarisation of postsynaptic neurons or activation of Gαq/11

protein-coupled receptors of postsynaptic neurons (see Fig. 8). This phenomenon
is called depolarisation-induced suppression of inhibition (DSI; if inhibitory neu-
rotransmission is suppressed by endocannabinoids) or depolarisation-induced
suppression of excitation (DSE; if excitatory neurotransmission is suppressed by
endocannabinoids). This new research field was reviewed by Wilson and Nicoll
(2002) and Freund et al. (2003) and is also reviewed in the chapter by Vaughan and
Christie (this volume).
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