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1 An introduction to change of support in geostatistics 

One of the fundamental ideas underlying the field of geostatistics is the concept of 

a regularized variable, the average value of Z(s) over a volume B 
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where 
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dsB ||  is the called the support of Z(B).  The term support reflects the 

geometrical size, shape, and spatial orientation of the units or regions associated 

with the measurements (see e.g., Olea 1991).  Changing the support of a variable 

(typically by averaging or aggregation) creates a new variable.  This new variable 

is related to the original one, but has different statistical and spatial properties.  

Determining how these properties vary with support is called the change of sup-

port problem.  From the beginning, the field of geostatistics has incorporated solu-

tions to change of support problems (Matheron 1963).   

The practical problems driving the initial development of geostatistics were 

those encountered in the mining industry, with a primary problem being the pre-

diction of the average grade of a mining block from drill core samples.  Thus, 

most change of support problems were concerned with “upscaling,” the prediction 

of a variable whose support is larger than that of the observed data.  A common 

example of this is block kriging where Z(B) is predicted from data Z(s1),…, Z(sn)

that have mean E[Z(s)]=  and semivariogram (s-u)=1/2Var[Z(s)-Z(u)].  The 

block kriging predictor is given by 
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obtained by solving the equations (Journel and Huijbregts 1978, Chilès and 

Delfiner 1999) 
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There are many more sophisticated geostatistical solutions to this change of 

support problem, including nonlinear methods and those developed to infer the en-

tire probability distribution of the regularized variable (see, e.g., Journel and Hui-

jbregts 1978, Matheron 1984a and b, Cressie 1993b, Rivoirard 1994, Goovaerts 

1997, and the compilations in Chilès and Delfiner 1999 and Gotway and Young 

2002).  However, most practical applications that use them have data of point sup-

port (or data measured on small cores or boreholes), and the inferential goal is up-
scaling by regularization, so that the inferential goal is prediction of Z(B) (or 

some function of it) in Eq. 1.  Moreover, the volumes B of interest are rectangular 

blocks and so the integrations required can be done fairly easily and quickly.  

However, spatial data come in many forms. Instead of measurements associated 

with point locations, we could have measurements associated with lines, areal re-

gions, surfaces, or volumes.  In many disciplines such as geology and soil science, 

observations often pertain to rock bodies, stratigraphic units, soil maps, and large-

scale land use.  In geographic and public health studies, the data are often counts 

or rates obtained as aggregate measures over geopolitical regions such as census 

enumeration districts and postal code zones.  Moreover, the inferential goal may 

also not be limited to upscaling.  For example, modeling hydrological and soil 

processes often involves making predictions from models that have relatively 

coarse spatial resolution and these then need to be downscaled to the watershed 

level or combined with digital elevation data of point support.  In many studies in 

public health, sociology, and political science, the data are counts or rates aggre-

gated over areal regions (e.g., per postal code or per census unit), but individual-

level inference is desired.  Finally, the idea of regularization as defined through 

Eq. 1 is not always an appropriate mathematical description of either the data that 

are available or the inferential quantity of interest.  For example, in geographical 

studies, the data are totals (e.g., the number of people per enumeration district) or 

rates that are based on population totals and not on the area of the regions.  Devel-

oping valid inferential methods for upscaling, downscaling and “side-scaling” (in 

the case of overlapping spatial units) variables is of critical importance to numer-

ous scientific disciplines.  It seems natural to try to extend the relatively rich ide-

ology on change of support developed in geostatistics to more general change of 

support problems. 

In this context, we examine the change of support problem from an inter-

disciplinary point of view.  This viewpoint allows us to extract some key ideas, 

common themes, and general statistical issues common to change of support prob-
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lems.  We provide a brief summary of the various types of solutions that have 

been proposed to various change of support problems over more than five decades 

of research conducted in numerous fields of study.  The goal of this extroverted 

contemplation is the search for a general framework for statistical solutions to 

change of support problems.   

2 Why is support important? 

Changing the support of a variable through regularization creates a new variable 

with different statistical and spatial properties.  In particular, the variability in 

Z(B) decreases as the support B increases, the histogram of Z(B1) , …,Z(Bm), m<n

will tend to be more symmetric and approximately bell-shaped, and the spatial 

autocorrelation in the regularized values is altered as well (Journal and Huijbregts 

1978, Armstrong 1999).  Thus, any inferential procedure must take these factors 

into consideration.  There are numerous examples of this support effect in the geo-

statistical literature, and many methods have been suggested for adjusting for sup-

port effects in spatial prediction and resource estimation. 

While this view of support has served the mining industry quite well, the situa-

tion is more complex in other disciplines.  Global Positioning Systems, remote 

sensing technology, and Geographic Information Systems (GIS) allow greater ac-

cess to a variety of spatial data and easily permit analysis on almost a limitless 

choice of spatial units: points, postal code polygons, Census tracts and enumera-

tion districts, hydrogeologic regions, raster images with different pixel sizes, and 

even regions defined by the whim of the user.  More often than not, the data of in-

terest in any one analysis are of different supports that are irregularly shaped.  An-

other factor, related to support, comes into play here: the concept of scale.  From 

our review work in this area, we have found that the term is used differently in dif-

ferent disciplines. In fact, few good definitions exist.  For example, Bierkens et al.

(2000) use the terms scale and support interchangeably, defining scale to be sup-

port.  We argue that they while these two concepts are very much related, they are 

in fact quite different.  From our perspective, spatial scale is defined by both the 

number and the relative size of the spatial units used to partition a spatial domain 

of interest.  Corresponding to every spatial scale is a level of spatial aggregation 

that represents the particular mixture of sub-units that comprise the larger units of 

interest.  For a fixed domain, increasing the scale results in a fewer number of lar-

ger units.  Since size is one aspect of support, clearly support and scale are related.  

However, we prefer the more general definition of support that includes the shape 

and orientation and the units.  It is possible to partition two spatial domains into 

subunits with the subunits being of essentially the same size in both partitions, but 

of different shapes and/or different orientations (Fig. 1).   

Geographers have long encountered the interplay between support and scale, 

noting that the choice of spatial units for analysis is “modifiable,” and that statisti-

cal results depend heavily on the way the spatial units are created.  In geography, 
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the change of support problem is known as the Modifiable Areal Unit Problem
(MAUP) (Openshaw and Taylor 1979).  

Fig. 1.  Components of the support effect and sources of the MAUP.  Adapted from 

Wong(1996). 

Thus, the change of support problem and the MAUP are really comprised of 

two interrelated problems.  The first occurs when different inferences are obtained 

when the same set of data is grouped into increasingly larger areal units.  This is 

often referred to as the scale effect or aggregation effect.  Aggregation reduces 

heterogeneity among units. The uniqueness of each unit and the dissimilarity 

among units are both reduced.  However, spatial autocorrelation is a mitigating 

factor: When areal units are similar to begin with, aggregation results in much less 

information loss than when aggregating highly dissimilar units.  Spatial aggrega-

tion also affects the spatial variability in the resulting units, often inducing posi-

tive spatial autocorrelation, particularly if the aggregation process allows overlap-

ping units.  The second, often termed the grouping effect or the zoning effect,

arises from the variability in results due to alternative formations of the areal units 

that produce units of different shape or orientation at the same or similar scales 

(Openshaw and Taylor 1979, Wong 1996).  The zoning effect is much less pro-

nounced when aggregation of areal units is performed in a non-contiguous or spa-

tially random fashion.  It is most apparent only when contiguous units are com-

bined, altering the spatial autocorrelation among the units.  Combining smaller 

units through regularization is analogous to smoothing with different combina-

tions of spatial neighbors.  Depending on the similarity of the neighbors, different 

zoning rules may lead to different analytical results.    

In geostatistics, the aggregation effect and the zoning effect are usually treated 

in a combined fashion through the ideas of the dispersion variance, the regularized 

semivariogram and its theoretical relationship to the point semivariogram and 

change of support models that account for both issues simultaneously.  However, 
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to appreciate the solutions to the MAUP and the change of support problem de-

veloped in other disciplines, we found it helpful to separate the two components.  

Most solutions to upscaling problems address the effects of aggregation, and most 

solutions to downscaling problems recognize the need to reconstruct variation at 

the smaller scale, but the zoning effect issues associated with both of these prob-

lems are often ignored.   

3 Solutions to change of support problems 

Most solutions to change of support problems require spatial prediction of data as-

sociated with one set of units based on data associated with another set of units. In 

developing solutions to change of support problems, the criteria that such predic-

tions should satisfy varies widely across the different disciplines.  A collective list 

of some of the important considerations includes the following: 

1. The ability to explicitly account for the differing supports of the spatial 

units involved; 

2. A general framework that can be used for upscaling (aggregation), down-

scaling (disaggregation), or side-scaling (overlapping units); The frame-

work should allow for upscaling from points to volumes or from volumes 

to other volumes with larger support.  It should allow for downscaling 

from volumes to volumes with smaller support, or from volumes to 

points. 

3. The predicted surface generated should be smooth across unit bounda-

ries;

4. Standard errors of the predictions can be computed and these should ac-

curately account for the uncertainty involved; 

5. Covariates can be used to improve predictions; 

6. The method can be used when the data and predictions are averages (as 

in Eq. 1) or counts/totals; 

7. Predictions should lie in the parameter space (e.g., when predicting an 

inherently positive quantity, the predictions should not be negative); 

8. There should be consistency in predictions across scales: For example, 

consider predicting Z(Aij) from data Z(B1) , …,Z(Bm), where the Aij , j=1, 

… ni are nested within volume Bi where Aj  Ak=  for j k, and 

ij
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Huang et al. (2002) call this the mass balance property.  When down-

scaling observed data that are totals and not averages to point support, 

then the predictions )(ˆ sZ should satisfy the pycnophylactic (volume pre-

serving) property (Tobler 1979): 
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9. Ideally, the prediction method should be based on a paucity of model and 

distributional assumptions; 

10. The prediction method should be computationally feasible for routine use 

within a GIS where it is relatively easily to perform computations involv-

ing point-in-polygon operations and digital boundaries.  

Of course, asking for a solution that satisfies all of these properties is probably 

unrealistic.  However, this list provides a backdrop against which we can evaluate 

current solutions and understand their advantages and disadvantages.  In the fol-

lowing sections, we provide an overview of some of the general types of solutions 

to change of support problems and briefly outline some of their main advantages 

and disadvantages.  More comprehensive descriptions of the methods are found in 

the references provided and many of these are reviewed in more detail in Gotway 

and Young (2002).  We deliberately exclude the rich literature on upscaling and 

downscaling in many of the physical sciences such as hydrology, soil science, and 

petroleum engineering in which models that adhere to engineering laws often form 

a basis for solutions to change of support problems.   

3.1 GIS operations and raster calculations 

Description:  Basic geoprocessing operations with a GIS include union, intersec-

tion, and dissolve operations applied to the boundaries of the spatial units in order 

to create new spatial units.  Raster calculations include averaging of interpolated 

values over irregularly shaped regions (“zonal” statistics) and pixel-by-pixel com-

putations. 

Main Advantages:  Working with digital boundary files is the consummate utility 

of GIS.  The computations are fast, invisible to the user and can explicitly factor in 

the support of the different units involved.  Layers representing different variables 

can be combined using raster calculations so that covariates can be incorporated, 

although the effect of the covariate layers on the predictions must be specified, 

rather than inferred statistically.  Smooth surface generation is straightforward and 

visualization is automatic. 

Main Disadvantages:   The main disadvantage is the lack of uncertainty measures 

for the resulting predictions.  Moreover, when several layers with different sup-

ports are rasterized to the same cell size and then used in subsequent computa-

tions, error propagation is a big concern.  Volume-volume disaggregation is done 

using proportional allocation.  Depending on how many operations are used and 

their nature, the resulting predictions may not be aggregation consistent. 
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3.2 Spatial smoothing 

Description:  The goal with spatial smoothing methods is to make a smooth map 

from aggregated data.  Methods in this group vary greatly and include point 

kriging based on centroids, kernel smoothing (Bracken and Martin 1989), support-

adjusted locally weighted regression (Brillinger 1990, Muller et al. 1997), and 

pycnophylactic interpolation (Tobler 1979).  

Main Advantages:  Point kriging and kernel smoothing based on centroids are eas-

ily implemented and provide a measure of uncertainty associated with predictions.  

The kernel smoothing approach developed by Bracken and Martin (1989) and the 

pycnophylactic interpolation method of Tobler (1979) computationally constrain 

the predictions to be aggregation consistent.  The methods developed by Brillinger 

(1990) and Müller et al. (1997) are more statistically sophisticated and allow ad-

justment for covariates and provide a measure of uncertainty.  The methods devel-

oped by Tobler (1979), Brillinger (1990) and Müller et al. (1997) explicitly con-

sider the supports of the units involved.  

Main Disadvantages:  The major disadvantage to these methods is that are con-

cerned only with the volume-point change of support problem.  Constraining pre-

dictions to ensure aggregation consistency (as in the methods of Bracken and Mar-

tin 1989 and Tobler 1979) makes it difficult to adjust for covariates and to obtain a 

valid measure of uncertainty.  On the other hand, the methods developed by Brill-

inger (1990) and Müller et al. (1997) may not give predictions that are aggregation 

consistent. 

3.3 Regression methods 

Description:  Proposed by Flowerdew and Green (1992), a regression model is as-

sumed for data associated with “target” units, with the response data on target 

units treated as missing values.  Starting values from proportional allocation are 

used to obtain initial estimates of the regression parameters.  Updated estimates of 

target-unit data are then obtained from the regression model and constrained to 

satisfy the pycnophylactic property.  This process is repeated until the estimates of 

the target unit data remain essentially unchanged.  

Main Advantages:  The main advantage is the ability to use covariates to estimate 

data on the target units.  The regression framework can be used for a variety of 

change of support problems involving different types of data (binary, discrete and 

continuous)  The computations are fairly simple and could be easily programmed 

into a GIS script. 

Main Disadvantages:  Because of the iterative process that includes the pycnophy-

lactic constraint, accurate measures of the uncertainty in target-unit predictions 

cannot be obtained.  Also, the regression model must be built on units formed by 

the intersection of the target units and the “source” units (those for which data are 

observed), and so covariates on these “atomic” units must be derived.  The support 

of the units is not considered and spatial autocorrelation is ignored. 
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3.4 Bayesian hierarchical models 

Description:  A statistical model is specified for the data, given unknown vari-

ables, and then prior distributions are specified for the unknown variables.  The 

unknown variables may include unknown data to be predicted.  A posterior distri-

bution is derived from the likelihood of the data that is updated by prior informa-

tion in accordance with Bayes’ theorem.  Simulation methods are used to generate 

realizations from posterior distribution (see, Mugglin and Carlin 1998, Wikle et al.

2001, Gelfand et al. 2001, Kelsall and Wakefield 2002). 

Main Advantages:  The methodology is based on very elegant statistical theory 

combing Bayes’ theorem, likelihood estimation and Markov chain theory.  The 

posterior predictive distribution provides a comprehensive description of uncer-

tainty.  Complex models that include covariates on many different scales can be 

more easily constructed hierarchically than simultaneously.   

Main Disadvantages:  The models are computationally intensive. With the excep-

tion of the model in Gelfand et al. (2001) each model can be used to solve only 

one type of change of support problem, and solutions to other problems require 

complex statistical derivations.  Most rely too heavily Gaussian distributions and 

many account for support only through areal weighting and hence ignore the zonal 

effect completely.  The hierarchical specification can induce unknown constraints 

within the overall model.  There has been little evaluation of the resulting uncer-

tainty distribution (e.g., to assess ergodic properties, or the ability to contain a 

value of a transfer function of interest as described in Deutsch and Journel 1992 

and Gotway and Rutherford 1994).  

3.5  Multi-scale tree models 

Description: Chou et al. (1994) developed a scale-recursive algorithm based on a 

multilevel tree structure for image processing in engineering. Each level of the 

tree corresponds to a different spatial scale (see Fig. 2).  Data are observed at 

some of the nodes of the tree and the goal is prediction at other nodes of the tree.  

Algorithms are based on the Kalman filter.  To eliminate some of the artifacts im-

posed by the tree structure and to ensure mass balance, Huang and Cressie (2000) 

and Huang et al. (2002) extend these models to more general graphical Markov 

models. 

Main Advantages:  The recursive nature of the Kalman filter (for which kriging is 

a special case) is extremely computationally efficient for processing huge data 

sets.  It also provides a measure of uncertainty associated with the predictions.  

Main Disadvantages:  The tree structure ignores spatial support and it is not clear 

how it can be adapted to more general cases with overlapping spatial units.  Statis-

tical parameter estimation can be difficult. 
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Fig. 2.  A tree structure for multiscale processes. 

3.6 Geostatistical methods 

Description: Includes ``block" kriging, nonlinear geostatistical methods and iso-

factorial models (Journel and Huijbregts 1978, Matheron 1984a and b, Cressie 

1993b, Rivoirard 1994, Goovaerts 1997, and Chilès and Delfiner 1999). 

Main Advantages:  The field of geostatistics includes many innovative solutions to 

change of support problems.  These solutions have proven themselves in practical 

applications such as mining where profitability is of primary concern.  A measure 

of prediction uncertainty can be easily obtained.  The basic calculations needed for 

change of support predictions based on kriging and cokriging can be done in GIS.  

Main Disadvantages:  Most practical solutions were developed only for the up-

scaling problem.  Estimating the semivariogram from data that are not of point 

support may be problematic.  Prediction uncertainty may not adequately reflect es-

timation error in the semivariogram.  

4 Towards a general framework 

Clearly, the solutions to change of support problems range from those that are 

simple and require few assumptions, but are statistically unsophisticated (GIS and 

proportional allocation), to those that are complex and statistically elegant, but re-

quire many assumptions and are difficult to implement (Bayesian hierarchical 

models).  Moreover, many solutions are particular to the change of support prob-

lem they were developed to address.  We seek a compromise, one that provides a 

unified framework for the different types of change of support problems encoun-

tered in a variety of disciplines, is based on fewer assumptions, and can be imple-

mented in a geographic information system (GIS) using current GIS technology, 

but also one that can incorporate covariates and provide standard errors for the re-

sulting predictions.   
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While block kriging was developed for the upscaling problem, a slight modifi-

cation allows the same ideas to be adapted to more general change of support 

problems (Journel and Huijbregts 1978, Gotway and Young 2002, Gotway and 

Young 2004).  Consider the linear predictor 

)()()(ˆ

1

ij

n

i

ij BZAwAZ      

based on data Z(B1) , …,Z(Bn), where each weight wi(A) measures the influence 

of datum Z(Bi) on the prediction of another variable with differing support, Z(A).  

The theory of best linear unbiased prediction can be applied to determine optimal 

weights, wi(A) in a manner analogous to that used in the development of the block 

kriging predictor.  The key to this development is the relationship between the 

semivariogram of Z(B) and that of the underlying process Z(s) (Journel and Hui-

jbregts 1978, p. 77) 
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Given data of point support, (s-u) can be estimated and then used to determine 

the semivariogram of data at any other support, (Bi Bj) and (Ai, Aj).  Although in 

many applications, data of point support are available, in man others, such data are 

not available. However, it is possible to still use this relationship.  If a parametric 

model, (s-u; ), is assumed for point support semivariogram, an estimate of  can 

be obtained, and hence (s-u; ) can be determined, from data of volume support 

Z(B1) , …,Z(Bn) (Mockus 1998, Gotway and Young, 2004).  Computationally, it 

is easier to use the covariance functions  
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since only one multidimensional integration is required.  Then, if Y(Bi)= Z(Bi)-µ, 
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Gotway and Young (2004) extend these ideas to the “external drift” case where 

)()]([ sxSZE  and develop an iterative generalize least squares approach to es-

timating the drift parameters and the autocorrelation parameters simultaneously.  
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If the data are totals instead of averages, so that 
B

dssZBZ )()(* , this approach 

can be used with the normalized  variables .||/)(*)( BBZBN

Since an optimal predictor is derived in terms of data with general supports A 

and B, it can be used for upscaling (spatial aggregation), downscaling (spatial dis-

aggregation), or side scaling (overlapping) units, and the spatial units may be of 

point, areal, or volumetric support. Because the predictor is linear and honors the 

data, mass balance properties are inherently satisfied.  

However, this approach suffers from the same problems encountered in using 

geostatistical methods with data of point support, namely the variability in the 

cross-products if not suitably binned and averaged, and the sensitivity of the esti-

mates of  to a few large cross-product values and choices for the lag spacing.  

Another disadvantage of the geostatistical framework when applied to count data 

is that negative predictions can occur; the predictions are not formally constrained 

be positive.   

5 Summary and challenges  

In spite of the rather substantial disadvantages associated with using GIS opera-

tions to combine spatial data, the ability to easily implement solutions to change of 

support problems within a GIS is overwhelmingly appealing.  Thus, overall, this 

approach is the most commonly used method for combining incompatible spatial 

data and solving complex change of support problems.  While Bayesian hierarchi-

cal models and isofactorial models offer elegant statistical solutions to a variety of 

change of support problems, their complexity (both statistical and computational) 

and their dependence on a large number of unverifiable, pedantic assumptions 

make them unattractive for routine use in most applied sciences at the present 

time.  Thus, as a compromise, we considered a geostatistical approach to general 

change of support problems that allows downscaling and side scaling.   This ap-

proach explicitly accounts for the supports of the data, can incorporate covariate 

information to improve the predictions, and provides a measure of uncertainty for 

each prediction.   

While the geostatistical framework presented here is not without its disadvan-

tages, it offers a way to put the concept of spatial support back into spatial analy-

sis.  Subsequent research and development could easily adapt this framework for 

use as a routine part of many software packages. 
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