8 Generation and Measurement of Structure-
Borne Sound

8.1 Mechanical Measurement Methods

8.1.1 Registration of Motion

Most “structure-borne sound sensors” respond to kinematic variables such
as displacement, velocity or acceleration. Dynamic quantities such as
stresses are usually deduced from differences of the former. The reason for
this is in part that the kinematic variables are normally simpler to register
than tensor quantities like stresses and strains despite their directional de-
pendencies. Moreover, usually only the exterior of some structure-borne
sound field is accessible for measurements whereas the field is disturbed if
the structure is penetrated to reach interior points.

The measurement technique that is simplest to visualize consists of di-
rect observation of the excursion i.e., of the displacement of the test object
relative some fixed body, supporting a scale, as sketched in Fig. 8.1. Be-
cause these excursions generally are very small, only some enlarged or
amplified observation can be made. Such a direct observation therefore is
limited largely to calibration instruments in the laboratory.

Optical amplification of excursions from an equilibrium position can be
primitively obtained by means of a mirror deflecting a light beam. If one
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Fig. 8.1. Arrangement for direct observation of test object displacement
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edge of a mirror of length / is displaced by an amount &, while the other
edge pivots about a fix axis as depicted in Fig. 8.2, the mirror rotates an
angle &//. An impinging light beam accordingly is deflected twice that an-
gle and a spot of the light, reflected at a screen at a distance L, is dis-
placed by

A=&(2L/1), (8.1)

relative the equilibrium reflection point. Since an amplification of
2L/1=500 can be readily achieved, a test object displacement of 0.01lmm
not only can be measured but also the time history can be registered.
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Fig. 8.2. Observation of displacement by means of a pivoted mirror. a) mirror at-
tached to a lever and b) mass lever substitution

The rotating mirror sensor differs in one important aspect from the di-
rect observation. Whereas a direct observation leads to no reaction force on
the test object, the mirror inertia results in a force

F= _l(wzmij_: o (8.2)

A similar relation applies to any instrument, with which a displacement is
to be registered by means of a system of levers.

Because the reaction force produced by the sensor varies with frequency
squared for a given displacement, such tilting mirrors and mechanical lever
systems clearly are useful only for low frequencies. This limitation, also,
becomes apparent if one notes that as for airborne sound, the square of the
particle velocity but not the square of the displacement is proportional to
the energy in the structure-borne sound context. Thus, for given energy,
the displacement is inversely proportional to frequency. The dynamic vari-
ables force and strains associated with propagating waves, also, are
proportional to the particle velocities and the products of forces and
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portional to the particle velocities and the products of forces and velocities
constitute the corresponding power quantities.

The most appropriate way to assess the reaction of a vibration sensor on
a measurement object is to compare the mobility of the sensor Y, with that
of the object Y at the point of measurement. The latter mobility determines
the velocity of the object induced by the force. This velocity alters the ve-
locity of the unloaded object from the initial v, to

v=y,-YF=v,—(Y/Y,)v. (8.3)

The relative difference between the velocity sought vy and the actually
measured velocity v, therefore, obeys

(vo-v)/v=Y/Y,. (8.3a)

For the previously described pivoted mirror, the sensor mobility is given
by

Y, =4/(jom), (8.4)

which thus is proportional to frequency. The factor —; indicates that the
velocity lags the force by a phase angle of 7/2.

8.1.2 Comparison with Known Mobilities

If the sensing edge of the pivoted mirror of the previous section is kept in
contact with the object only by gravity and the vibration of interest is in
the vertical direction, the mirror cannot follow downward accelerations
that exceed the acceleration of gravity. The force exerted by the object on
the edge of the mirror cannot be negative,

F=m(g+£)>0. (8.5)

This “1g* acceleration threshold is useful for absolute calibration of vibra-
tion sources such as shakers and vibration tables. Moreover, different
thresholds can be achieved by using preloaded springs to force a known
mass against the vibrating object as depicted in Fig. 8.3. Such a device also
applies in the case of horizontal motion. In the vertical case, the force,
which again cannot become negative, obeys

F=F +m(g+&)+s&>0, (8.6)

where s denotes the spring stiffness. By considering harmonic motion and
introducing the natural frequency o, = /s/m , the displacement amplitude is
found from Eq. (8.6) to be given by
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_F/m+g

g = PP (8.7)

A mass that is pressed by a prestressed spring against a measurement ob-
ject, thus, can serve as an acceleration sensor only if the excitation fre-
quency is substantially larger than the natural frequency of the mass-spring
system. Accordingly, the mass cannot be too small and the spring cannot
be too stiff. In spite of these limitations, early measurements were success-

fully carried out on membranes [8.1].
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Fig. 8.3. Spring-loaded mass used as an acceleration threshold indicator. a) me-
chanical configuration and b) mechanical ‘circuit’ using a mass lever

At resonance i.e., when the excitation frequency coincides with the
natural frequency of the sensor, the displacement amplitude tends to infin-
ity. This condition, however, does not result in a particularly large reaction
force on the measured object. Rather, the oppositely phased spring and in-
ertia forces, making up the force F acting on the sensor

E:[jcom+.ijz, (8.8)
Jo

cancel each other. This means that the sensor mobility tends to infinity at
this frequency.

From Fig. 8.3, it would be tempting to term the mass and spring con-
nected in series. Such a description must not be confused with a series
connection in an electrical sense. Clearly, the same force as given by (8.8)
also results when the mass and spring are attached side by side to the vi-
brating object. The lower and upper side of the mass in Fig. 1.4a, more-
over, do not correspond to the “input” and “output” of an electrical two-
pole. Rather, the force here is exerted at the same pole of the mass, with
the opposite pole being the inertial reference for the acceleration.
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The topology of the mechanical system can readily be translated to an
electrical circuit when the mass is replaced by a mass lever [8.2] with a
point mass at its midpoint, as depicted in Fig. 1.4b. From the considera-
tions of the pivoted mirror, the point mass must be 4m to result in an iner-
tia force of jom. Accordingly, the “mechanical circuit” in Fig. 1.4b much
better displays the physics of the mass and spring being connected in par-
allel. This is also in accordance with the electrical analogy where the
branching forces correspond to the branching currents. The force “flow” in
the mass lever, however, differs in one respect from the current in a branch
of an electrical circuit. Although the force has the same magnitude before
and after the mass, its algebraic sign is reversed. This effect is important if
the other pivot rests on a mobile body instead of being fixed in space such
that the mass lever acts as a coupling element. The sign of the force may
be reversed once more by replacing the single mass lever by two such lev-
ers, mechanically in series.

The fact that a mechanical series connection provides no information
regarding the topology of the analogous electrical circuit is also illustrated
by the observation that the mobility is fully altered when the configuration
shown in Fig. 8.4a is considered instead of the previously discussed sensor
design of Fig. 8.3a. Here, the spring is situated between the vibrating ob-
ject and the mass. In this arrangement no branching force occurs but the
force at the “input” flows unperturbed through the spring to the mass. In
contrast, the displacement of the mass differs from the compression of the
spring. This difference becomes very clear when the two “mechanical cir-
cuits” in Figs. 8.3b and 8.4b, employing mass levers, are compared.
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Fig. 8.4. Simple oscillator representing a sensor. a) mechanical system and b) me-
chanical circuit

By adding the two relations
v, =F/(jom) , v-v,=joF/s (8.9)
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the mobility can be established of the sensor at the contact point with the
object,

Jo 1
Y=|—+——|, .
- (s +jcomj (8.10)

which vanishes at the mass-spring resonance. The velocity of the mass, on
the other hand, tends to infinity for a given velocity of the object, as seen
from the relation

(/o)

also obtained from (8.9). This result indicates that small motions, invisible
to the naked eye, in principle, can be enlarged by resonant systems and not
only by microscopes and optical levers.

=m

(8.11)

8.1.3 Mechanical Transducers as Damped Mass-Spring
Systems

The mechanical systems considered in the previous section must be aug-
mented by the inevitable dissipation to realistically represent transducers
for structure-borne sound. As discussed in Chapter 4, many different types
of dissipation exist but only the most simple, namely the viscous element,
will be considered in this context, realizing a force proportional to the ve-
locity

F ==rv. (8.12)
Herein, 7 is the viscous damping coefficient, which depends on the shape
of the moving body and the ambient fluid. As introduced in Fig. 8.5, the
viscous element is represented by a symbol that should associate to a pis-

ton in a cylinder, a “dash-pot”. Again, the viscous element acts physically
in parallel with the mass, as is evident from the mechanical circuit in Fig.

8.5b.
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Fig. 8.5. Simple oscillator with linear frictional resistance. a) mechanical system
and b) mechanical circuit
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The input mobility of the sensor can be found to be given by

le—(o)/coo)2+jmr/s , (8.13)

Jjom+r

which does not vanish at resonance. Instead, it takes on the real value

Yy=— (8.14)
sm
at the resonance for small enough damping coefficients, satisfying the ine-
quality » << m¢m. The mobility, therefore, is the larger the smaller the
mass and spring stiffness and the larger the damping coefficient.
The transmissibility v, /v can be derived as

% 1

—m

or’ 8.15a
\4 1 ( / 0)2 J ( )
which has the magnitude squared

2

Y| _sm (8.15b)

at resonance. In principle, it thus appears possible to observe the displace-
ment &,,, corresponding to v,,, from which the displacement of the test ob-
ject & can be determined. This measurement method is not practical, how-
ever, not only because the dissipation usually is due to mechanisms other
than pure viscous damping and is difficult to assess but foremost because
the resonance peak is very narrow.

In order to describe the resonance peak in more general form, Eq.
(8.15a) can be rewritten in terms of the decay constant, characterizing the
decay of free oscillations

& =Ee™ cos(or +¢, ) = Re [ée_(5+/(°)’] (8.16)

of the system depicted in Fig. 8.5 with the oscillating object held fix. By
introducing (8.16) in the equation of motion

mE:+r§.+s§:O, (8.17)

one finds that the decay constant is related to the damping coefficient as

5 =— .
- (8.18a)
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and that the eigen-frequency reduces to

o =+Jo, -8’ (8.18b)

The transmissibility, which can be rewritten as

1

<

—=m

Yol (ofo,) + jo 2 (8.19)

=

0
is shown in Fig. 8.6 for a damping ratio of r/r, =8 /0,=0.1 where
r = 2Jsm is the critical damping. The graph does not exhibit a pole but a
pronounced peak at the damped eigen-frequency. By differentiating the
square of the denominator magnitude with respect to w?, the peak fre-
quency can be found to obey

® =0l 25> ~0,(1-5%/n?). (8.20)

For small enough damping ratios, the difference between the undamped
and the damped eigen-frequency can be neglected such that ® ~ m, and the
magnitude follows

~ Lo

vm,max NXV (821)

in the vicinity of the peak.
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Fig. 8.6. Motion transmissibility of the simple oscillator in Fig. 8.5
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With the frequency deviation A® = ® - ®, introduced and neglecting
terms of the order (Am)?, the ratio of oscillator velocity to maximum veloc-
ity

% 1

v 1+ jAefd (8.222)

Zm,max

is obtained. Such a relation between a field variable and its maximum
resonance value as function of the frequency deviation can be viewed as a
definition of the “resonance function”. This function not only describes the
parabolic region in the vicinity of the peak

(Ao Y
zl—E(%’j : (8.22b)

\4

—=m

\4

—m,max

but is valid also below the inflection points for small enough 8. The func-
tion thus describes the “bell-shaped” amplitude curve versus frequency de-
viation, which is common for all resonance phenomena. On a logarithmic
scale, the inflection points occur where the magnitude squared and thus the
power is half of the peak value. The corresponding frequency deviation is
found from Eq. (8.22) to be

A('01/2 =5 . (8.23a)

Twice this deviation can be considered a reasonable measure of the width
of the resonance peak and is termed the half-value or half-power band-
width. This bandwidth is usually given in Hz such that

20 f,, =5/ (8.23b)

Measured from the amplitude, the bandwidth is obtained at 1/ V2 of the
maximum amplitude.

In order to obtain large peak velocities, small damping coefficients, de-
cay constants or damping ratios are required. The small damping means,
however, that the half-value bandwidth is limited. The associated strong
variation with frequency of the response of lightly damped systems near
their resonances makes them unsuitable as structure-borne sound sensors.

On the other hand, lightly damped mechanical systems are well suited
for use as frequency indicators. In this respect, mechanical systems are
usually better than electrical because their damping can be made much
smaller.
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8.1.4 Interaction of Transducer and Measurement Object

Any measurement implies that the object or its behaviour is affected, albeit
ever so little. Since this general law naturally applies also for structure-
borne sound measurements and the effect is not always evident, the issue
will be analysed in this section through some examples.

The first situation considered is outlined in Fig. 8.7. It involves an oscil-
lator attached to a vibrating object with a prescribed velocity v. The oscil-
lator mass m,, is connected to the object via springs of total stiffness s,,.
On top of the oscillator, a transducer of mass m is attached via some
spring-like fixture of stiffness s.

‘[v AP ST ISV

a b
Fig. 8.7. Simple transducer model on top of a simple oscillator. a) mechanical

configuration and b) mechanical circuit

For pure harmonic processes of frequency o, the spring forces are given
by
Sy s
F o o=—@-vy) F,=—,-v,), (8.24)
Jo

M - ]0)

for the lower and upper masses respectively. The inertia forces of the
masses are obtained from the accelerations jmyy, and joy,, respectively as
Fy = jomy vy and F,, = jom,, v,,. The force balances require

N S .
Fy=F, -F = —2@v-v,)-—(,-y,)=jom,y, (8.25a)
JO Jo
and

F,=F, = jim(zM —v,) = jomy, . (8.25b)

This yields the coupled system of equations
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2 p—
(-0 my, +s,, +5)v,, =5V, =5,V,

—sv,, +(~0’m+s)y, =0, (8.26)
from which the transmissibilities
Y _ - (@/0,)’
v (Hs_m;](l_cojj_s’ (8.27a)
Sy Oy @, S
and
v, 1
?Tns_m;j(l_coz}_s (8.27b)
S, O o, ) Sy

are obtained. Herein, o, =./s/m and o, =./s,/m, are the eigen-
frequencies of the separated mass-spring systems.

Equation (8.27a) shows that the presence of the small mass m consid-
erably affects the motion of the oscillator mass m,, at certain frequencies:
e At the zeroes of the denominator i.e., for frequencies above ®,, and
below ), respectively provided »,, < ,;, resonances appear

2
1
0l =3 m;+w;+iiJ(m;+m;+LJ —d0lol |, (828)

my my,

which would not occur in the absence of the transducer mass m.

e At the frequency ® = ®,,, the mass m,, is completely stopped i.e., an
antiresonance occurs and vy, = 0. In the special case of s,/my, = s/m
such that ®,, = ®,,, the biggest alteration is introduced, namely a tran-
sition from an infinitely large to a vanishingly small velocity since
the resonance frequency ®,, would equal ®,, in the absence of the
transducer mass .

Although the effects mentioned above still occur when dissipation is
taken into account, they are not so pronounced. The corresponding analy-
sis for the system sketched in Fig. 8.7 with the dashpot included, fixed to
some inertial frame, simply means that the viscous forces are added on the
right-hand side of Eqgs. (8.25). Such a modelling to some extent, would
represent the friction associated with the motion of the masses in the ambi-
ent medium. In a case where the dissipation is associated essentially with
material losses in the springs, the dashpots must be re-arranged parallel to
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the former. This would mean that s/jo in Eq. (8.25) would be replaced by
r+ s/jo and sp/jo by ry + syljo.

Figure 8.8 shows the transmissibility v,/v as function of frequency, with
and without the transducer. In the example is assumed equal eigen-
frequencies for the two cascaded oscillators i.e., sy/my = s/m and
ry/my = r/m. The small mass and the damping ratio, moreover, are set to
be m = m,/10 and &/®w, = r/2 sm = 0.1. Strong interaction is clearly seen in
the vicinity of the resonance whereas the effect is negligible elsewhere for
small ratios m/my,.
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Fig. 8.8. Motion transmissibility of the simple oscillator. (——) with and (- - -)
without a tuned transducer

All the drawbacks associated with resonance phenomena of a tuned
transducer could be ameliorated by making the damping ratio so large that
no or only little resonant amplification would arise. Such a damping is dif-
ficult to achieve, however, for the relatively large masses of structure-
borne sound transducers. In practice, therefore, tuned transducers are only
designed with their resonances either well above or well below the fre-
quency range of interest.

The mechanical system depicted in Fig. 8.7 not only is of great signifi-
cance for structure-borne sound measurement techniques. It is also a model
for the so-called dynamic absorber i.e., small mass-spring systems, which
are mounted on resonantly vibrating structures, in this case a large mass.
As is observed, the resonance amplitude can be reduced substantially al-
ready with a relatively small dynamic absorber.
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As a second example, Fig. 8.9 presents an idealization of a useful struc-
ture-borne sound exciter. It consists of a small coil mass m;, which is con-
nected to the test object by means of a stiff spring s;, for example, repre-
senting some adhesive. The coil, moreover, is connected via some soft
spring s, to centre the magnet mass m,, which, in turn, resiliently rests on
the test object on soft springs sy.
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Fig. 8.9. Mechanical configuration of an electro-dynamic exciter. a) principal con-
struction and b) model

Upon temporarily disregarding the electro-dynamic interaction, the sys-
tem of equations corresponding to (8.26) is obtained from the force bal-
ances

So(v=v,)+5,(v, -, = _(’szz‘_"z»

(8.29)

s (v=v)+s,(v, —v,)= _O)zmlzl'

Solving for v, and v, brings no difficulties and after some manipulation
one finds, for example, the relative difference between the test object ve-
locity and that of the coil as

y-v _ VZ(VZH_M_Gz)

(8.29a)

v v'u-v’(u+o,+0,)+06,+06,-G;
In this expression are used the abbreviations

m S s 0} wm
_ 1 _ 1 _ 2 2 _ _ 2
p=—, o, = , O, = ,Vi=—= .
m, 5, +5, S, +5, ®, S, +5,

From an interaction point of view, the mobility of the exciter, as seen from
the test object, is more interesting. This is obtained as
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1<

Zexc T

“FLE (8.30)

I~ i<
+

where F' means the total force exerted, composed of the two spring forces
Fo=s0 (v — »)/jo and F, = s (v — vy)/jo. By carrying out the simple but
tedious algebra, it is found that

4 2 2
.V -V +6,+6,)+06,+G, —C
Xexco‘)mZ :.] “ (H : 2) : : s

Vu(I+5, -0,) - (¢ )G, 10, -07) (8300
where the same abbreviations are used as in Eq. (8.29a).

The magnitude of the exciter mobility, normalized with respect to the
mass mobility of the backing magnet, is plotted in Fig. 8.10 for a specific
design. For the computations, some small amount of damping is included,
which limits the resonance and antiresonances. As expected, the mobility
equals the mass mobility of the magnet at low frequencies (v < 1). In an in-
termediate range, the exciter mobility essentially is that of the light-weight
coil mass but increases rapidly at frequencies there above. The latter range,
however, is of little interest from a transducer point of view since the coil
is dynamically decoupled and therefore has a significantly smaller ampli-
tude than the test object.
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Fig. 8.10. Normalized input mobility of the structure-borne sound exciter in Fig.
8.9. Calculated from Eq. (8.30a) with n = 0.003, o, = 10000, o, = 0.95. (------ )
loss factor 1 =0.01, (- - - -) loss factor n = 0.1, (-----) mass mobility of m; and0 m,

The idealized design is outlined in Fig. 8.11 of another transducer of
great practical value. It concerns the mechanical configuration of piezo-
electric transducers where the piezo-electric material constitutes the spring



550 8 Generation and Measurement of Structure-Borne Sound

s. Since the electrical charge is proportional to the acting force
Fy =5 (v-wn)jo, the velocities must be known of the seismic mass m, and
of the house m,;.

4 coil

Fig. 8.11. Encapsulated structure-borne sound transducers with “seismic” masses
m,. a) piezoelectric transducer, b) geophone and ¢) model

For the so-called geophone in Fig. 8.11b, m, represents the mass of a
magnet with a coil fitted in the air gap. The coil is rigidly connected with
the house whereas the magnet is suspended in the soft springs of stiffness
s. With the voltage proportional to the velocity difference v — v, the latter
must be determined.

The starting point for the continued analysis, again, is a force balance,
which reads

S(X_Ez)/jw = jom,y,.

From this, both the velocity ratio v,/v and the velocity difference in the
magnetic field can readily be developed,

1

(Y—Xz)zyw- (8.31a)
For the piezo-electric spring, similarly, the acting force is
1
F, = jomy———,
L, ]mmzzl—(m/mz)z (8.31b)

where, in both the above expressions,w; = s/m, .
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As can be seen, the velocity difference registered by the magnetic trans-
ducer approximates well the velocity of the test object for @ >> ®,. Ac-
cordingly, the geophone is tuned as low frequent as possible to obtain a
voltage proportional to the velocity. This means that the spring s is made
very soft and the mass m, as big as is admissible in view of its mobility.

Contrary, the force /| proves proportional to the acceleration joy of the
test object in the range ® << m, and a high frequency tuning is pursued for
the piezo-electric transducer.

Finally also, the input mobility of the transducer design is of impor-
tance. It is composed of the mass mobility of the house and the reaction
from the seismic mass such that

1 1
: + 12 Jjoom, + Jom, _ (8.32)
jom, s 1—(co/w2)

Y

=transd

YIS

Jjom, +

The last part of (8.32) shows that the mobility vanishes for o* =s/m, i.e.,
the transducer exhibits an antiresonance whereas it tends to infinity and a
mass-spring-mass resonance occurs at

, 11
o, =s| —+— |.
ml mZ

By means of the input mobility of a transducer, its interaction with the test
object can be treated in a general way. To see this is considered the situa-
tion outlined in Fig. 8.12, where the undisturbed test object exhibits the ve-
locity vy and mobility Y, at the measurement position. Due to the loading
from the transducer, the test object’s velocity changes from v, to v,, since
the transducer reacts with the force ¥ = v,,/Y;ransa. This means that

Y 1
v, =V, —FY =y, ——=—y SV =y
Y 1+Y,/Y

= transd transd

: (8.33)

As is observed, an as unperturbed measurement as possible is obtained for
|Yiransal >> |Yo|. Structure-borne measurement devices, therefore, should be
as small and light-weight as possible or as weakly coupled dynamically to
the test object as possible. Also, internal transducer resonances should be
avoided since they may lead to low mobilities at certain frequencies, which
can be difficult to predict. The inevitable interaction mainly leads to a re-
duction of the vibration velocity. For Y. = |Yo|, however, also an in-
crease is possible since the two mobilities can have opposite signs.
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Fig. 8.12. Influence of the transducer mobility on the motion of a measurement
object. Only one component of motion is considered

It should be noted that the quantities in Eq. (8.33) usually are complex,
which means that the interaction also yields some phase distortion. When
such phase errors must be kept small, for instance in conjunction with in-
tensity measurements, the requirements on the condition |¥y4,s4 >> [Yo| be-
comes much more rigorous than for ordinary magnitude or amplitude
based measurements.

8.1.5 Immobile Reference and Rigid Termination

For the structure-borne sound transducers illustrated in Figs. 8.1 and 8.2 as
well as for numerous other optical and electrical sensors, an “immobile”
reference is required. Naturally, this is an ideal condition, which is hardly
realizable for frequencies above some hundred Hz since immobile means
an absolute motion less than 10°m or even 10™'’m.

A similar, principally unsolvable, problem is the “rigid termination”,
which is desirable for some structure-borne sound measurement tech-
niques, for example, in conjunction with stiffness measurements. Also in
this case an ideal condition is sought that becomes the more insuperable
the higher the frequency.

A way out of this dilemma is offered by transducers built according to
the mass-spring-mass design cf., Sect. 4.4.1.2 or employing a seismic mass
as a reference, as in Fig. 8.11. The basic idea is to replace the unfeasible
immobile reference with an element for which the motion can be predicted
precisely and thence can be used as the reference. Obviously, not only
seismic masses are suitable for this purpose but also any configuration
with a known mobility for the component of motion considered.
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8.2 Controllable Sensors

For all types of measurements, particularly of oscillatory quantities, it is
usually useful to convert any non-electrical quantity to an electrical current
or a voltage change. This is so since use can then be made of the entire
signal conditioning and processing capabilities provided by modern elec-
tronics. For example, the signals can be amplified, filtered, recorded and
displayed in many ways and, above all, fed to computers for post-
processing and, eventually, the manipulated signals can react on the test
object.

Structure-borne sound transducers that convert mechanical quantities to
proportional electrical ones may be divided into two groups. For the first,
under consideration in this section, the motion of some mechanical ele-
ment acts on an electrical or optical source without any reaction, except for
such small effects as the radiation pressure or the local rise in temperature.
The transduction phenomena on which such sensors are based, thus, can-
not be used for the conversion of electrical or optical signals to mechani-
cal. Accordingly, they are unsuitable for the generation of structure-borne
sound.

In contrast, the phenomena underlying the second group of sensors, the
so-called electro-mechanical transducers, are reciprocal and, hence, can be
used both as sensors and exciters, disregarding the phase. As an inevitable
consequence, this group always is accompanied by some reaction from the
electrical side onto the mechanical.

8.2.1 Electrical Sensors

Sensors that control electrical circuits without producing a mechanical re-
action act on the electrical circuits by virtue of a relative displacement A&,
which, in principle, is frequency independent even down to the static state.

The most commonly employed principles involve a change in one of the
basic electrical two-poles, a resistor, an inductance or a capacitance.

A carbon microphone such as those previously used in telephones, is an
example of a sensor that depends on a change in electrical resistance. The
displacement of a membrane compresses the carbon aggregates against a
rigid housing and this compression increases the aggregate contact area,
which thus reduces the resistance. With a few volts from a battery across
the aggregate, the A& quantities may be converted to directly measurable
current changes Ai. Although the sensitivity is so high that no additional
amplifier is required, it is rather unstable and generates so much self-noise
that it is not useful for structure-borne sound measurements. On the other
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hand, sheets of pressure-moulded carbon or graphite are occasionally used
for this purpose. Because such sheets are relatively stiff, they are suitable
for high frequency tuned acceleration sensors or load transmitting force
transducers if their modulus of elasticity is known.
Such a transducer configuration used as a force gauge suffers from the

fundamental disadvantage that the electrical resistance

/

R=p,—, (8.34a)

S
where p,; denotes the resistivity, and the reciprocal of the stiffness i.e., the
compliance

/

1_7
s ES’

(8.34b)
depend on the length / and cross-sectional area S in the same way. For
force measurements, however, the compliance usually should be small and
the resistance large. It is therefore advantageous to separate the resistance
element from that determining the extension. Thereby, the resistance ele-
ment can be made of a thin wire with a large effective length in the direc-
tion of the extension, obtained by folding the wire as a serpentine. This de-
sign is employed in the modern strain gauge, a typical example of which is
shown in Fig. 8.13. For the nine back-and-forth folds shown in the figure,
the effective length to be used in (8.34a) is / = 19/,. The lengths / or /; ap-
pear only, however, in the absolute length changes but not in the strain

A A
_gz_l:(c;

T (8.34¢)

The sensitivity of a strain gauge, defined as the relative change in resis-
tance per unit change of strain, is made up of three contributions, as can be
found from Eq. (8.34a)

1dR 18l 135 1 dp,

= —_——= + .
Rde 1loe Soe p, Oe

(8.35a)

The first term is equal to unity, as follows from the definition of strain.
The cross-sectional contraction accounted for by the second term, amounts
to 2. This means that the sensitivity reduces to

apel

1
k=142 +—Pe
A (8.35b)

giving typical sensitivities between 1.6 and 5.
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Fig. 8.13. Typical resistance strain gauge

The primary use of strain gauges is the direct sensing of strains of test
objects and not in special force transducers. The additional force required
to induce a strain in such a gauge itself is generally negligible. Similarly,
only for measurements on very thin plates in bending, the slightly elevated
location of the gauge from the plate surface of primary interest may require
some consideration.

It is common practice to use a strain gauge as one branch of a balanced
Wheatstone resistance bridge as depicted in Fig. 8.14 and to find the strain
by measuring the bridge current. By appropriate use of several strain
gauges in different branches of the Wheatstone bridge, also, various types
of deformation can be separated. For example, strain gauges I and II that
are glued to the top and bottom of a bar or plate, as shown in Fig. 8.14b,
yield the extensional strain if they are connected in branches A and D of
the bridge in Fig. 8.14a but indicate the bending strain if they are con-
nected in neighbouring branches such as A and B.

AN
. | )

Fig. 8.14. Two resistance strain gauges a) in a bridge circuit and b) attached to a
plate
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The sensitivity is substantially increased by use semi-conductors. This is
on behalf of larger temperature sensitivity than for resistors or common re-
sistance strain gauges.

Sensors making use of inductance changes involve somewhat heavier
elements, even if they consist of only two coils that move relative to each
other. By using ferrous elements, greater inductance changes, of course,
can be obtained but then also the non-linearities and losses resulting from
the associated hysteresis phenomena.

Test objects of iron or steel may serve as mobile armatures, the motion
of which change the resistance of a magnetic circuit as further discussed in
Sect. 8.3.4.

A more reliable and easily implemented system makes use of a rod that
is pressed lightly against the test object by a soft pre-compressed spring.
Only the end of the rod need be magnetic. When the test object is at rest,
this magnetic end should be approximately equally entered in the two coils
that constitute the two neighbouring branches of an inductance bridge cf.,
Fig. 8.15. If the rod is displaced by an amount & that is not too large, the
inductance of one branch is increased whereas the other is decreased and
the current in the bridge is proportional to the displacement & or to the
practically equally large differential displacement &, for a sensor with a
low natural frequency.

Since the reactance changes are observed, an alternating voltage must be
supplied to the bridge. The frequency of this voltage is called the “carrier

| |

:H:/ Armature
>

Fig. 8.15. Configuration and circuit of a variable inductance sensor
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frequency”. The displacement ¢ thus is observed in terms of a change in
the amplitude of an alternating current at the carrier frequency.

This carrier frequency approach has such great advantages that it is also
used for resistance strain gauges. By use of appropriate frequency band fil-
ters, the interference or noise at other frequencies can be largely elimi-
nated. In this process, however, the three components making up the
“modulated” carrier current must be taken into account, as is seen from the
identity

(A+acoso1)cosQ 1= AcosQ t+%(cos(Q —w)t+cos(Q+o)).  (8.36)

This means that the filters must be chosen such that the entire band
(Q-0)/2n to (Q+w)/2rn is passed. The carrier frequency, also, always
must be kept considerably above the highest frequency to be measured in
order to minimize distortion. With a carrier frequency of 4000 Hz, for ex-
ample, events of frequencies of up to 1000 Hz can be reproduced without
distortion.

Instead of using a variable inductance as an element in a circuit, con-
nected to a constant frequency alternating voltage source, the inductance
can be used as part of an electric oscillator circuit, the natural frequency of
which depends on the inductance L and the capacitance C as

o, =1/JLC. (8.37)

A feedback amplifier may be employed to keep the circuit oscillating at its
natural frequency. Because of the non-linearities mentioned above, such
arrangements are used less with variable inductances than with variable
conductances, as illustrated in Fig. 8.16.

A variable capacitance sensor in its simplest form consists of two metal
surfaces of area S, parallel to each other, one of which may be part of the
test object or simply a glued-on foil. For small displacements &, the
changes in the capacitance can be considered approximately linear such
that one can write

o 4 3
c=C _§~e"£1+dj’ (8.38)

where C,, represents the equilibrium value of the capacitance. Variations
of & thus leads to alterations of the capacitance and thence a frequency
modulation, which can be further, processed by means of a signal analyser.
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Fig. 8.16. Configuration and circuit of a variable capacitance sensor

This technique, which originally was developed for microphones, allows
measurements of excursions as small as 10®m. The utility of the method,
however, is restricted essentially to laboratory investigations, because the
equilibrium separation d has a very important effect and must be accounted
for by calculations or by electrical compensation. In addition, the capaci-
tance of the sensor is usually so small that unavoidable capacity changes in
cables can induce spurious modulations.

In fact, it is important to note that all the phenomena that can be har-
nessed for sensors, also, can contribute to extraneous signals. From this
point of view, a carbon microphone is simply a random aggregate of knife
switches.

8.2.2 Optical Sensors

In conjunction with the rather simplified arrangements in Figs. 8.1 and 8.2,
it was pointed out that optical means allow measurements of vibration am-
plitudes using microscope, mirror or stroboscopic light. Also interferomet-
ric arrangements can be used, in particularly for calibration purposes. The
reflected light beams from an immobile and a vibrating, reflecting surface,
are brought to interference so that a fringe pattern results and the ampli-
tude can be determined from the number of fringes and knowledge of the
wavelength of the light.

With the laser and the fibre optics, a new avenue for measurements of
structure-borne sound is opened. The so-called laser-doppler-vibrometer
(LDV) establishes a robust equipment. It uses the fact that a moving reflec-
tor realizes a frequency shift due to the Doppler effect. With fj;4;, being the
frequency of the impinging light, f..; that of the reflected light, v the vibra-
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tion velocity of the reflector and ¢, the phase velocity of the light, one
may write

fon =ﬁ,-g,,,[1i - ] (8.39)

light

Since v is of the order of 10” m/s or smaller and the phase velocity of the
light is 3 - 10° m/s, the frequency deviation is extremely small. Modern
opto-electronic devices, however, can discriminate such small differences
and furnish an electrical signal, which similar to signals from electro-
dynamic transducers, can be amplified, filtered and stored [8.3].

Figure 8.17 shows the principal design of an LDV. The complete optics
is enclosed in a manageable measurement head, which can be used as a
non-contacting and interaction-free device in the vicinity of the vibrating
object. It should be noted that, again, an immobile reference or a seismic
mass is required since a velocity difference is registered between the
measurement head and the test object.
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Fig. 8.17. Principle design of a laser-doppler-vibrometer

In Fig. 8.18, yet another principle is outlined for structure-borne sound
measurements. In this case a vibrating surface deflects a narrow light beam
and establishes a modulation of the light energy impinging on the second
optical fibre.
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emitter
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Fig. 8.18. Amplitude modulation of a narrow light beam from a reflecting vibrat-
ing surface

In conjunction with optical methods, also, the vibration holograms
should be mentioned. Such holograms are either developed as time aver-
aged or double-pulse holograms, which yields more or less easily inter-
pretable pictures of the vibration field. Whereas all other measurement
techniques furnish the vibration at a single measurement position, a vibra-
tion hologram ’in one go’ offers the distribution of an area. Despite this
obvious advantage, the snarl in post-processing the holograms has pro-
moted the scanning technique, for instance, employing the laser-doppler-
vibrometer, yielding a very good representation of the vibration process.

8.3 Excitation and Measurement of Structure-Borne
Sound

For most measurements of structure-borne sound, reciprocal, electro-
mechanical transducers are used in practice. They are based on the electro-
dynamic, piezo-electric, electro-static or magnetostrictive principles. Their
performance is principally determined by the associated transducer con-
stant. Important are additionally their inevitable inner mechanical and elec-
trical impedances as well as the properties of connected elements [8.4-8.6].
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8.3.1 Electro-Dynamic Transducers

The fundamental electro-technical principle, upon which, for example, the
dynamo is based, states that a loss-free lead of length /;, which moves with
a velocity vy, perpendicular to its length and to a magnetic field of strength
B, establishes a transducer voltage

U, =-Blyv,. (8.40a)

The velocity vy is the velocity relative to the magnetic field cf., Fig. 8.19.
The transducer constant B/;, in this case, has the units Vs/m = Ws/Am and
a typical value is 10 Vs/m for structure-borne sound exciters and sensors.
The sign is principally arbitrary but in this context it is chosen such that
both the electric and the mechanical powers are positive when transmitted
to the transducer.

: Z, Z
Iw El EK_ i
Zp
Zuk ' Uy U U
™~ 1 1
- Vgl
-
w4
Fx F F w Fu(=0)
Vi v vu(=0)
o I i a
ransaucer
K ) e k .
i w {7 : iy
o ] w J i L U9
Fx F Fw Uy 7] Uy
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Fig. 8.19. Electrical and mechanical impedances for an electro dynamic trans-
ducer. a) Configuration outline and b) generalization as cascaded four-poles

Another fundamental electro-technical principle, underlying, for in-
stance, the electro-motor, states that a current 7, that is passed through a
lead of length /; at rest, perpendicular to magnetic field of strength B, in-
duces a transducer force
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F,=Bli,, (8.40b)

acting perpendicular to B and i,.
In phasor notation, Egs. (8.40) can be rewritten in matrix form as the
four-pole equations

E)_[B 0 [i
{yw}{o —l/BZJ{QM}' (8.40c)

By means of this expression, however, the physical transducer is not de-
scribed adequately since the loss-free and the motion-less lead clearly is an
idealization. The description thus must be augmented by the effects of the
mechanical and electrical impedances of the transducer.

For the electrical part, the situation is relatively simple because the
transducer is connected in series to the inner electrical impedance consist-
ing of a self-inductance L, and a resistance R; such that Zz; = joL; + R;. Ac-
cording to Fig. 8.19 the relation

i, |1 0fi
{Qw}_{—Zﬂ 1}{Q} (8.41a)

exists between the transducer quantities i, and U, and the physically
measurable voltage and current. This relation states that the current
through the coil remains unaltered whereas the transducer voltage differs
from the measurable by the voltage drop over the inner impedance. Usu-
ally, there is externally yet another impedance to consider, for example,
that of the measurement equipment connected. Aligned with the arrange-
ments outlined in Fig. 8.19 this means that

il [ 1 0]
{Q}{—ZEK 1}{@(}' (8.41b)

For the mechanical part, the influence of the inner impedance is somewhat
more involved. Therefore, the simple case of a rigidly fixed magnet
(var=0) is considered first and subsequently the more general case.

8.3.1.1 Impedances and Transfer Functions for Inmobile
Magnets

By excitation of light-weight structures, it is possible to presume that the
magnet in Fig. 8.19 is so heavy or fixed to a rigid body such that the mag-
net velocity v, equals zero. This is particularly true for loudspeakers,
which are nothing but structure-borne sound exciters driving a light mem-
brane and the fluid in front.
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With the assumption that the different elements are rigidly connected
i.e., the coil and membrane of impedance Z,; are connected to the meas-
urement object of impedance Z,x, the arrangement in Fig. 8.19 leads to

Fy-F=Z,xve, F-F =Z,v,, v=v =V, (8410)

This can also be rewritten in matrix form as

PR Il i P g ST

Herein, Z); is an inherent part of the transducers. It is given by the mass of
the coil and membrane m; and the lossy stiffness of the suspension s;,

Z,, = jom +s,]jo. (8.41e)
Upon combining Eqgs. (8.41a), (8.41b) and (8.41d), one obtains
L = RS [(B,) +ZysZps] —Zys |1 ’ (8.411)
Vi B, Z -1 [|\Ux

where Zys = Zyi + Zyx and Zgs = Zg; + Zgx are the sums of the inner and ex-
ternal mechanical and electrical impedances respectively.

Since the expressions above are written in a form of linked four-poles,
which can be combined by means of matrix multiplication, the formulae
are readily generalizable to

{Ek}:|:Kll KIZ:'{E}:|:K11 K121||:[11 [12:|{Ew}
YK KZI KZZ E KZ] K22 [21 122 YW
_ |:K11 K, j||:[11 112j||:W11 W12j|[811 812i|{'<11 KlziH iy }
K21 K22 [21 [22 VV21 VVZZ 821 822 K21 K22 QK

Thereby, the input quantities of one transducer element connect to those at
the output of the adjacent one. This cascading may involve mass-spring
elements, wave guides and electrical circuits.

From (8.41f) and (8.42), all the impedances and transfer functions of in-
terest can be computed. For an immobile magnet of an electro-dynamic

structure-borne sound transducer, operated short-circuited, the impedance,
for example, is obtained as

(8.42)

F (BL,)
—K ZZMSJ'_Z—L'

Y |y, -0 ES

(8.43a)

The mechanical impedance thus consists of a pure mechanical part
Zys = Zyi + Zyk and the electrical reaction, the latter of which becomes the
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more pronounced, the bigger the transducer constant B/; and the smaller
the electrical load Zgs. For a typical constant of B/, = 10 Vs/m and short
circuited operation such that Zzs = Zz; = 1Q2 due to an inner coil resistance,
the electrical part of the measured total mechanical impedance would
amount to 10 Ns/m. As a comparison, a 16 g mass at 100 Hz also presents
an impedance of about 10 Ns/m. One may thus conclude that the electrical
reaction predominantly is of significance for light-weight structures and
low frequencies. It is possible, however, that the impedance at a resonance
becomes that small for big and weakly damped structures that the electric
part appears as a noticeable additional damping.

For the electrical impedance of a structure-borne sound exciter with no
external forces acting i.e., Fx = 0, the relation in (8.41f) yields

— ZMS .
(BL,)' +Z,5Z s

e

u

=K

(8.43b)

Eg=0

This expression is composed of one pure electrical part and a mechanical
reaction. Hence, it is, in principle, possible to infer the mechanical imped-
ance from the voltage and current.

The transfer function during operation is also found from (8.41f), again,
with no external forces present,
—-BI

L

C(BLY +ZysZys

Yk

u

=K

(8.43¢)

Eg=0

Furthermore, it follows from (8.41c¢) that F' = -Z,x vk and by substitution in
(8.43¢), the force exerted by the moving coil on a structure with the im-
pedance Z, is found to be given by

F

_ BILZMK
(BI,Y +Zy5Zy

u

=K

(8.43d)

Eg=0

For loudspeakers and exciters, acting on very light-weight structures i.e.,
Zys = Zyi, the resulting velocity is of primary interest. It is given by
(8.43c). With a softly suspended moving coil of impedance Z;5 = jom (1 -
oz’ /%), a frequency characteristic is obtained as outlined in Fig. 8.20, as-
suming an electric impedance as given by (8.43b). In the graphs, wy is the
resonance frequency of the mass-spring system made up by the moving
coil and the stiffness of the suspension.
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Equation (8.43¢)

v
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—:‘I
3
wj / \
@ i
o X

| E
b

' - 7 = log m/wpq¢
w=(BI) "-z"mKR w=R/L
Equation (8.43¢)
x [
wi| !
x| i
=| :
o | !
_S! ]
1 |
: |
& h : = log w/aygf
w=wg w=R/L

Fig. 8.20. Transfer function of electro-dynamic transducers. a) Exciter (Fx = 0)
with negligible mechanical load, b) exciter (Fx = 0) with high mechanical load and
¢) sensor (U = 0) with negligible mechanical load. For high mechanical load, the
transfer function is uniform cf., Eq. (8.43f)

For structure-borne sound exciters acting on heavy structures,
Zyx =jomg >> Zy; and with Zgs = R + joL, Eq. (8.43d) renders the middle
graph in Fig. 8.20.

Operated as a sensor, the describing transfer function can also be devel-
oped from (8.41f). In this situation, however, Uy = 0 and

/9 Bl

Fol " BLY +ZyZys

Lxly, o

With the exception of the sign, the right-hand side is identical to that of
(8.43c) owing to reciprocity. The design criteria, however, lead to different

(8.43¢)
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transition frequencies. Whereas comparatively large masses can be toler-
ated for exciters such that mg, where Zx > 0, can be tuned to low frequen-
cies, this is not possible for sensors designed to be very light-weight. In
the latter case, the resonance frequency is placed at the centre of the fre-
quency range of interest and the mechanical and electrical damping is
made that high that the frequency characteristics in the bottom graph in
Fig. 8.20 result. The most important example is the condenser microphone
where the exciting force is given by the pressure. Such microphones can be
made extremely small owing to the limited load Z,,s from the ambient air.

For structure-borne sound sensors, aimed at measuring the velocity of
heavy structures, (8.41f) gives

s

_ B, U Bl Z

Z

Uy =0 ES

(8.43f)

>

v

Yily, -0 Ly Yk

Up to the decay above » = R/L, a uniform signature can be established.

8.3.1.2 Energy Balance

In this section it is demonstrated that the equality of the transducer con-
stants in (8.40a) and (8.40b) is a consequence of energy conservation. In
this pursuit, quite generally one may write

EW :a’éw ’ Qw = B‘_)w (8443)

In combination with (8.41a) and (8.41c¢), the physically measurable quanti-
ties are obtained as

E:E\1'+ZMiZ:(X‘Z+ZMiX3 844b
Q:QW_ZEIZZBV_ZEI! ( ' )
The mechanical power transmitted is obtained as
1 * 1 L% 2
w, ZERe[ﬂ ]:ERe[azv +Zy Y ], (8.44c¢)
and, similarly, the electrical power is
1 o 1 *, * .2
W, —ERe[ﬁ J—ERe[B iv +ZE,.|1| J (8.44d)

In these expressions, Re[Z,, ]|y /2 and Re[-Z, ]|i /2 are the dissipated
powers by inner mechanical and electrical impedances. The two remaining
terms must sum up to zero given the sign convention since ideal transduc-
ers neither produce nor dissipate power. Accordingly, one obtains
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1 -
o=%Re[azz }+5Re[3 L J (8.44¢)

—oczB*,

respectively. If therefore, o = B/, it follows that B = - B/, in accordance
with (8.40a).

8.3.1.3 Impedances and Transfer Functions for Mobile Magnets

Upon trying to excite a concrete plate or a heavy machine at low frequen-
cies by means of a handheld, several kg heavy exciter, it is realized that the
assumptions made in the previous section of vy, = 0 or equivalently v,, = v
cf,, Fig. 8.18, do not reflect reality. It is obvious that the important effect in
exciting low mobility structures at low frequencies, must be taken into ac-
count. Whilst all other elements of the transducer remain, only new coeffi-
cients /; in the chain of matrices need be established, linking F), v,, and
Fov.

For this purpose, Fig. 8.21 presents the essential parts of the transducer
together with the forces and velocities. Additionally is introduced a com-
mon spring of stiffness s, representing the moving coil suspension s; and
that suspending the magnet s,. This means that

F-F, = ZMiE+.i(Y_YM)!
Jo

(8.45)

—w

S
F.—Fy=Zyvy——@-vy,),
Jo

Y, =¥V

M

Herein, F), again is the transducer force and v, the velocity difference be-
tween that of the moving coil and the magnet. Z,, is the impedance of the
magnet. In the following it is assumed that /', = 0, which does not imply
any restrictions since if the magnet is supported by another structure
merely the value of Z,;, must be raised and additional resonances consid-
ered.
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Fig. 8.21. Velocities and forces associated with an electro-dynamic transducer
with a mobile magnet

By eliminating vy, in (8.45) and rewriting the equations such that /" and
v only appears on the left-hand side and F,, and v,, on the right, the desir-
able four-pole is established,

Zyit 2y LZM+ZMM+Z

El_| Zw Jo Zw  "|[E. (8.450)
s ’ )

1
4 1+ Yy

Zy JOZ,y,

This expression must be substituted in the chain of matrices (8.42) for /.
The multiplication by the other already known matrices principally yields

{EK}_|:AII Alzi‘{il(} 8 45b
ve [Tl 4 \US (8.45b)

Of the rather lengthy expressions for the elements 4 ;, only

ZM5+ZMM+ZESZMS(1+LZMS+ZMMJi|

1
4, :_I:(Blz)z o 2,7
s mm

Bl

MM

and
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Z
4, - ES£1+; 1 \J_’_ Bl,
Zyma

are required for the transfer function. As before, Zys = Zy; + Zyx and
Zis=Zg; + Zgx with the notation given in Fig. 8.19. Upon assuming that
Zys and Zyy, can be approximated as mass impedances, one obtains

e
BI,

m, . +m ) o’
4, = |:(BIL )2 — Ly Z s JONq [1 - A/;S J:I (8.45¢)
myn, w0

The resonance frequency w,s is that of the mass-spring-mass system con-
stituted by the mass m,s of the structure and the moving coil, the stiffness
s of the spring and the mass m,,, of the magnet.

The transfer functions when the transducer is operated as exciter, follow
from (8.45b) as

Vi _ —4,4, v A = A, Ay, — 4,4, :_L
22
QK Fy=0 All All All
> (8.45¢)
r _ ZMI(
2K lp, =0 4,
and operated as sensor
i 1
EK Uy =0 All (8 45f)
Akl 1 Ul _Zx '
YK Ug =0 A21 EI( Uy =0 A21

In the first of these expressions, use is made of the fact that the determi-
nant of the transducer matrix in (8.40c) equals —1. The other matrices in
(8.42) have all unity determinants. This means that the determinant of the
chain of matrices becomes

A11A22 - A12A21 =(+D)-(+D)--D-+D-(+)=-1

From the transfer functions in (8.45¢,f), the following conclusions can be
drawn:
e When the spring is very stiff, o, falls relatively high. In the range
o < s almost nothing moves and almost no force is exerted on the
test object.
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e When o, is tuned sufficiently low in frequency, which is the usual
design, the transfer functions turns into the corresponding expressions
in (8.43d) to (8.43%) for Zyn, > Zus.

e For structure-borne sound exciters, the motion of the magnet leads to
an elevation of the lower frequency limit at |Z,| = (BI,)’ /|Z,| in Fig.
8.20b by a factor of[1+Z,/Z,,,|. This means that the force dimin-
ishes towards low frequencies, which is due to the counter voltage in-
crease induced by the magnet motion. Differently described, the ef-
fective electrical resistance increases with the enlarged motion of the
magnet through the reaction in (8.43a). In the upper range, the trans-
ducer has the frequency characteristics depicted in the figure.

For structure-borne sound sensors according to Fig. 8.11b, the same ap-
plies as for exciters. By means of soft springs is pursued, a mass-spring-
mass resonance as low as possible. A resonance frequency of 5 Hz or be-
low is fully realistic.

From the expressions and the associated discussion it follows that elec-
tro-dynamic transducers should be designed with an as large transducer
constant and an as low mass-spring-mass resonance as possible. These
guide lines become slightly contradictive in practice. A low mass-spring-
mass resonance requires a very soft spring and a large B/, product requires
a very narrow air gap in the magnet, which can be achieved only by means
of a stiff coil suspension in order to prevent the coil from touching the
magnet. This problem is usually solved through a multi-stage suspension,
which is soft in the direction of motion but avoids sidewise and rocking
motion of the moving coil.

For modern electro-dynamic exciters, one may typically assume a
maximum long-term force of 5 to 10 N per kg exciter mass. A larger force
could be achieved, in principle, through a higher current but this would re-
sult in too high a heat release without external cooling.

In many applications it is interesting to know the relation between the
transducer force F,, and magnet velocity v,,. It is presumed thereby that the
transducer is operated as a sensor such that Egs. (8.45) takes the form

Zyv—F, = ZMf‘_"i'.i(‘_’_YM)
Jo
(8.46)

E,-0=Z,,,vy, _.i(‘_)_ZM)'
Jo

By eliminating v, the relation is obtained
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v, =F Zus _£, 1
M T —w - Z Z .
ZoZoy + (Lo + Z,yy) L 1 S s L (8.46a)

The second denominator can also be brought in the form1-o; /o’ . Equa-
tion (8.46a) thus states that above the mass-spring-mass resonance, the
transducer force £, can simply be determined from the easily measured
magnet velocity, multiplied by Z,,, cf., Sect. 4.2.

In the present analysis is left aside the mechanical reaction onto the test
object by the transducer. This problem was considered in Sect. 8.2.4, par-
ticularly in Eq. (8.33). Merely the remark should be made that the trans-
ducer impedance required in this context can be obtained from the chain of
matrices as Z,.. = F/v, which consists of one mechanical and one electrical
part as exemplified in Eq. (8.43a). As in many other situations, the analysis
demonstrates that splitting a complicated problem in “independent parts”,
as here in mechanical and electrical parts, certainly conforms to human
perception and often performs successfully. At the end of the day, how-
ever, the “parts” are coupled and the behaviour and performance always
must be assessed for the integrated system.

8.3.2 Piezo-Electric Transducers

Thanks to their manageability, almost exclusively piezo-electric sensors
are used for structure-borne sound measurements. The designs of the most
important types are outlined in Fig. 8.22. One is here concerned with a
transducer responding to acceleration, which up to its resonance frequency
has an almost flat response and can be manufactured robust and very
small, down to a tenth of a gram. As rough guides can be used a sensitivity
of 100 to 1000 2, [Vsz/m] and a resonance frequency of 100/m,.. to
600/m,.. [Hz] where m,.. is the total mass of the transducer.
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c)

d) e)

@ = Test object @ = Inertial mass
@ = Enclosure ® = direction of motion
@ = piezo-electric material ® = electric leads

Fig. 8.22. Examples of piezo-electric transducers. a) compressional, b) shear and
c) flexural design. d) longitudinal and e) flexural PVDF transducers

The piezo-electric transducer is suitable as exciter only when small dis-
placements but large forces are required. Hence, the transducer must face
large impedances on both sides and large voltages must be employed.

More recently, thin piezo-film (PVDF) has become commercially avail-
able, which can be glued to the test object and used both as sensor and ex-
citer. As illustrated in Fig. 8.22, longitudinal and flexural waves can be ex-
cited with a good bonding. The advantage is that no large masses or stiff
suspensions are required as support for the exciter [8.7]. Such piezo-film is
manufactured in different thicknesses and thereby, almost non-loading
transducers can be achieved. The reproducibility, however, can still be sig-
nificantly improved.

To understand the piezo-electric effect, one can imagine different posi-
tive and negative ions, which are displaced in the material such that a net
charge is realized as sketched in Fig. 8.23. In an undeformed state, the ions
are in electrical equilibrium so that no charge appears at the externally at-
tached electrodes. This equilibrium is disturbed if the lattice is compressed
or stretched corresponding to compressive or tensile strains as in Fig.
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8.23b and c respectively. Electric charges then collect at the electrodes,
without the requirement of an external source of charges. Due to the Pois-
son contraction, also a displacement n along the crystal (y direction), per-
pendicular to the crystal axis (x direction) can produce such a change in
charge. One may therefore assume [8.8] that

0,=-K.&, 0,=-Kn, (8.47)

where 0O, is the transducer charge established.  and 1 are the compression
and cross-sectional contraction respectively with the associated transducer
constants K., and K,,, dependent on the material, patch size, patch form
and alignment with the crystal axis.

> e T oo

a) b) c)

Fig. 8.23. Behaviour of piezo-electric materials [8.4]. a) undeformed state, b) de-
formation in the direction of (axial) and c) perpendicular to the current (lateral)

In the following only one direction of motion will be considered and
therefore a single transducer constant K is sufficient. For the analysis must
be considered, moreover, that the temporal change in charge is propor-
tional to the current i = dQ/dt and the temporal change in displacement is
proportional to the velocity v = d&/dt. Upon introducing the phasor nota-
tion, the first fundamental relation

Ky (8.47a)

=w

is obtained for piezo-electric transducers. The reciprocal piezo-electric ef-
fect implies that an applied voltage gives rise to a proportional expansion
of the material, leading to a mechanical transducer force

Ew = ng * (847b)
The fact that the same constant K appears in both (8.47a) and (8.47b) is

again a consequence of energy conservation. The proof proceeds exactly as
for electro-dynamic transducers in (8.44c) to (8.44e).
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By combining the last two equations, the four-pole description is ob-

tained as
E\_[ 0o Kl[i
{zw}{—l/K ng} (8.48)

Since the velocity is proportional to current and force to voltage for piezo-
electric transducers whereas the situation is the opposite for electro-
dynamic ones, the distinction is made between N-transducers in the former
case and M-transducers in the latter.

Another difference between the two types of transducers is the role of
the inner impedance. In Fig. 8.19, this impedance is in series with the
transducer, rendering an inevitable voltage drop. For the piezo-electric
transducers, in contrast, the capacitance of the transducer is parallel to the
current source i, and, thus, yields a drop in current. Therefore, the trans-
ducer circuit is that shown in Fig. 8.24. The associated electrical relations

can be compiled as
Zw _ 1 _]/ZEi l
e =

Herein, Zg; essentially represents the relatively large impedance of the ca-
pacitance realized by the transducer

Z, =1/joC. (8.49a)
Thereby, the matrices in the four-pole chain in Fig. 8.24 are known since
the mechanical and electrical loads, again can be taken from (8.41d) and

(8.43a) and (8.41b) respectively. By carrying out the matrix multiplication,
the mechanical part is found to be described by

Zys +Zyy LZMS +Zyy

F Z o 7 o | (p
(o) v
{;K} _ MM J! MMS {;u } ’ (8.49b)
- 1/Z,, 1+— -
JOZ,,
and the electrical part by
-KZ K
F, ; i
o (= 1 1+ZEK 1 Ul (8.49¢)
- K ZEi KZE: -

In the mechanical part, Zys = Zy; + Zyx 1s the sum of the mechanical sen-
sor impedance, essentially given by the mass of the housing, and the im-
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pedance of the test object. In contrast to the electro-dynamic transducer,
Zuny here represents the impedance of the seismic mass.

lw
-
Zpgy(my)
e 2
Zyik (mpg) Uw
—
~
A
. Fw Fu
Fx F M
Vi v
inner
mechanical mechanical Transducer
fos load
] o : :
[} ' L} .
v Ky v b oW
H S S ¥
; A A Liw
leneaaaas L pep—_— leassassss ]  esss=
Fi = Fuw Uy
VK v Vv

electrical

electrical
load

............

Fig. 8.24. Electrical and mechanical impedances for a piezo-electric transducer. a)
Configuration outline and b) generalization as cascaded four-poles

Upon comparing Figs. 8.19 and 8.24, the following correspondences can

be made, cf., Sect. 8.3.6.1:

Electro-dynamic transducer

Piezo-electric transducer

Voltage source
Series connected inner impedance
Magnet impedance Z,,

Ly = JOMm,,,

Soft suspension s
Moving coil impedance Z,;

Z; = jom,,

Current source
Parallel connected inner impedance
Seismic mass impedance Z,,

(8.49d)

Stiff piezo crystal s
Transducer housing impedance Z,;

(8.49¢)
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A multiplication of (8.49b) and (8.49c) yields the complete matrix,
again, in the form of (8.45b). Also in this case, the individual determinants
equal 1. In analogy with (8.45f), the sensor sensitivity is obtained as
e K

U
Yk

g0 (ulj[l,s}ﬂ (8.50a)
Zy Z JOZ,, Zy

Ei

For the subsequent discussion it is suitable to let Zyy = jomn,
Zgi = 1/joC, Zgx = R, which correspond to the usual experience with piezo-
electric transducers and to convert from velocity to acceleration. Accord-
ingly, (8.50a) becomes

Q _ mMMK -1

aclyo C (1, 1) @im ) K (8.50b)
JjoCR s sC

The second term in the denominator is very small and plays only a role at
the resonance frequency ®” = s/my,. In Fig. 8.25a are shown the frequency
characteristics of Eq. (8.50b). Since R can be made extremely high with
modern charge amplifiers and also the ratio s/m will be high for small ac-
celerometers, the frequency response is essentially constant in a wide fre-
quency range.

Piezo-electric materials are also frequently employed for measurements
of dynamic forces. A design of the transducer is shown schematically in
Fig. 8.26. The transfer function can be developed from (8.49a) and (8.49b)
to be given by

vl _ 1 <1
Fy U, =0 K ZMM+ZMS+1[ ! " 1 ](Z +SZMM+ZMS] K (8500)
ms T
Zym K* Zy Zy Jjo  Zyy

The rather simple approximation in the last part of (8.50c) is admissible for
the following conditions:

e For force transducers, one is concerned with making the mechanical
element between the force to be registered and the piezo-electric ele-
ment as small but stiff as possible. Therefore, Zys = Zyx +
Zyi << Zym, Where Zy, 1s the impedance of the excited structure.

e The transducer constant K as well as the electrical impedances Zg;
and Zgx are numerically very large.
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Fig. 8.25. Frequency response of piezo-electric transducers. a) accelerometer as in
Fig. 8.23, b) force transducer as in Fig. 8.26 and ¢) piezo-electric exciter

I
_

Fig. 8.26. Principle design of piezo-electric force transducer

As pointed out, the piezo-electric materials can also be used for struc-
ture-borne sound exciters. In such a case the transfer function is deter-
mined from (8.49b) and (8.49c¢) as
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iy _Zu -K
Uileoo Zus [y, Zox |10 5 ), K'Ze (8.50d)
Z, JjoZ, Z,

where Zy =Ly +Zyi + Loy )/ZMM (Zyi +Z o) andZMs =Ly Ty = L -
By substitution of typical data, one can readily convince oneself that
piezo-electric exciters do not offer large forces at low frequencies cf., Fig.
8.25c. For frequencies above the mass-spring-mass resonance, where the
piezo-electric material acts as a spring, Eq. (8.50d) reduces to -K in a wide
frequency range.

The choice of suitable piezo-electric materials as well as electrical and
mechanical impedances is a crucial aspect of the transducer design. Addi-
tionally, a series of other considerations must be made. In this context
should be mentioned, the sensitivity to disturbing electrical and magnetic
fields, temperature stability (pyro-electric effects), minimal deformation of
the transducer housing etc. as well as directional sensitivity.

8.3.3 Electro-Static Transducers

Electrostatic or dielectric transducers most often consist of two plate-like
electrodes across which a dc-voltage is supplied. One of the electrodes is
very thin and is fixed (glued) to the test object. In accordance with applica-
tions in practice, only the situation with an immobile backing electrode as
depicted in Fig. 8.27 will be considered. A situation with a mobile backing
electrode can be treated as in Sect. 8.3.1.3.

U Uk
[] Zg;

(1jwC)

@ = rigid electrode
@ = thin plate
@ = de source

Fig. 8.27. Principle configuration of an electro-static transducer



8.3 Excitation and Measurement of Structure-Borne Sound 579

The condenser microphone for airborne sound is also an electrostatic
transducer. It consists of a thin, firmly prestressed membrane constituting
one of the electrodes and the rigid housing forming the other. The mem-
brane is forced to vibrations by incident sound whereby its amplitude is
converted to an electrical signal by the transducer [8.9].

The electro-mechanical relation underlying this transducer is Coulomb’s
law of electro-static attraction. Applied on two plates at a distance d with
the equilibrium capacitance C, the attraction force is given by

— = o
_QU_CU_C giop~ L0+ Lo (8.51a)
2d  2d  2d 2d  d

Herein, O is the charge of the condenser, U the dc voltage supplied and U
the ac voltage.

In the acoustics context, the approximation in (8.51a) corresponding to a
linearization is legitimate since the dc voltage supplied usually is of the
order of 100 V or more whilst the induced ac voltage is less than a hun-
dredth thereof. The linearization is also valid for the so-called electret
transducers, often employed in microphones, for which no external dc
voltage is supplied but the transducer material furnishes an internal polari-
zation voltage.

For the exciter problem, only the alternating voltage is of interest and in
phasor notation, the transducer force can be written as

F,=—U,. (8.51b)
d
This force is exerted on the test object for a constant capacitance C . In the
opposite situation with the transducer as sensor, where the membrane is
brought to vibrate with the velocity v, the transducer current amounts to
cU

lw == d ‘_}w'

(8.51c)

In this development, again, the equality of magnitudes of transducer con-
stants, proven in (8.44a) to (8.44e), is used. In the four-pole representation,
the equation for ideal electro-static transducers reads

{5} 0 @/d{iw} $.51d
v " caier o L) @514

Disregarding the symbols, (8.51d) is identical to the representation for
piezo-electric transducers. The close relationship between the two types of
transducers is also valid for the influence of the inner electrical impedance.
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Also for electro-static transducers, one part of the resulting current passes
the inner impedance Z; connected in parallel as shown in Fig. 8.27. The
inner impedance is essentially capacitive such that Egs. (8.49) and (8.49d)
can be adopted directly.

Regarding the inner mechanical impedance there is a small difference,
however. In contrast to electro-dynamic and piezo-electric transducers, a
polarization voltage is supplied resulting in an attraction force according to
(8.51a). During operation, this force varies, a fact that also can be ex-
pressed in terms of an additional, electrically induced stiffness

_dF_1dQU_0dU Udo_0 d dr U dc

Sp = = = = —
s 2d de 2d 2d 2d CU d¢  2d d
3 g ds ds 3 3 (8.51¢)

C2de 2d dE 2 de

_ldF U'Cda-g/d)_1dr_U'C _Uc_ (ueya
2d° oa d)c

as developed from (8.51a). Herein, & is the change in electrode distance
and the variable capacitance is approximated by

C

c:Hé/d:C(pg/d). (8.519)

As can be expected, sy is negative since compression implies an enlarged
attraction, in contrast to an ordinary mechanical spring. Accordingly, the
additional mechanical impedance, resulting in this way, becomes

——\2
s 1 (UC
"= jwc[dJ (8.51g)

In this expression, the transducer constant squared appears. This is typical
for the mechanical effect of an electrical element as observed in (8.43a).

For the remaining analysis, all the relations, previously derived for the
piezo-electric transducers, can be adopted. Only the inner mechanical im-
pedance must be replaced by

——\2
1 [UC
Z,.=Z,———=—|. 8.51h

In this way, the chain of matrices becomes

R I P

| Zyf a+Z,faz, [ (8.52a)
_{_1/0( oz, HQ}’
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in case of an immobile backing electrode. With Z,;, > oo, the transfer func-
tion of the transducer operated as a sensor is obtained by means of (8.50a)
as

vl __cuz, | U o
vely o d(1+24/Z5 ) jmd(1+1/ijR)' (8.52b)

In this development are used the impedances Z,, = 1/ joC andZ, =R, in
accordance with applications in practice. Upon multiplying both sides by
jo, the left-hand side becomes the ratio of voltage to displace-
menté =y/jo . This means that for high impedance signal analysis equip-
ment such thato >1/RC, the electro-static transducer constitutes a dis-
placement sensor.

The transducer relations derived in these sections can also be established
by means of Hamilton’s principle, once again proving its generality. The
procedure will be exemplified in this section of electro-static transducers
whereby are required the energy of a charged condenser

1 Q2
E. =—=, 8.53
c=3o (8.530)
and that of an inductance
1. |
E, =EL12 =ELQ2, (8.53b)

both of which can be obtained from textbooks.

For the model sketched in Fig. 8.28, where the displacement &, is as-
sumed prescribed, the kinetic energies to be considered are m&?/2 and
LO?/2  whilst the potential energies read s&2/2, s.(&-E.)/2
and (0+0)° / 2(C+C). This means that the Hamiltonian becomes

— ~\2
% m&>+LO" —s& =5, (£ -8, ) —@(1—&/@ : (8.53¢)

where both the charge and the capacitance are split in dc and ac compo-
nents and the vanishing time derivative of Q is omitted. In the last term,
moreover, the displacement dependent ac component of the capacitance is
approximated according to (8.51d).
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Fig. 8.28. Model of electro-static transducer showing the notation used in Egs.
(8.51) to (8.54). The backing electrode (1) and the mass (2) form a capacitor

Upon carrying out the variation with respect to the unknown co-
ordinates & and O, one obtains

mKa"+sg+sK(<“;—§K)— 3Ca =0, (8.54a)

LO+= (Q+Q)(1 &/d)=0

The subsequent manipulations are:
° Omission of terms of second order e.g., é’;Q.

e  Change to velocity v=& and current i=( implying that all dc
components vanish.

o Introduction of phasor notation i.e.,& = jov, Q Joi.

o Substitution of the inductive impedance joL by Zgx and the mass
and spring impedance by Z,; such that, simultaneously, the result
becomes more general and losses can be taken into account.

The outcome of these operations is

Sy .Sk
Zyvt—v=Bi=—"-y,
JO JO

1 (8.54b)
ZFK ° 09
& { " J'(DC}

where the abbreviation = Q/ jodC=U / jod has been introduced. Clearly
the first expression has the dimension of force whereas the second that of
voltage. Therefore, this set of equations can be compared with that in
(8.52a). By observing that the force and the voltage are F =s, (v, —v)/jo
and U =Z,, i respectively, Eq. (8.54b) can be rewritten as
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E:ZMiE_[SZ’

U=pr+iljoC. (8:54¢)

It is somewhat laborious to bring (8.54c) in the form of (8.52a) since the
difference between Z,; and Z,, need be considered. If, in spite of that, the
algebra is undertaken, it is found that both methods yield the same result
with the exception of the sign of the current i, associated with the sign
convention.

A comparison of the two procedures shows that the one based on Hamil-
ton’s principle is the least transparent and that, in the present formulation,
the electrical and mechanical losses can be taken into account only after-
wards. On the other hand, however, it has the advantage of starting from
very fundamental relations as well as automatically accounting for the
equality in transducer constants, the influence of the inner impedances and
the significance of the additional, electrically induced stiffness.

8.3.4 Electro-Magnetic Transducers

For electro-magnetic transducers, the ferromagnetic armature is located in
a magnetic field with a large flux as depicted in Fig. 8.29. The force acting
between the magnet and the armature, is proportional to the flux squared,
— ~\2
Fod? oc((D +q>) . (8.55a)

To establish a linear relationship between the electrical and mechanical
variables, again, a large dc component ® is required. It can be achieved
by means of a permanent magnet or a coil supplied with a direct current.
Superimposed on the direct component is an alternating. Operated as an
exciter, the latter is the alternating current through the coil and as a sensor,
it is ultimately the perturbations of the reluctance due to the changes in the
distance d , which give rise to an alternating flux® . Because the trans-
ducer is reversible, the ideal transducer relations are given by

E_[v 0 fi,
{zw}{o —1/YHQH}’ (8.55b)

where y is the transducer constant, dependent on the distance d, the
strength of the magnetic field and the geometry.
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Fig. 8.29. Principle configuration of an electro-magnetic transducer. Ferro-
magnetic armature (1) and permanent magnet (2)

A comparison with Eq. (8.40c) shows that save the numerical values,
the transducer relations equal those of ideal electro-dynamic transducers.
Also the role of the inner electrical impedance is the same since it results
in a voltage drop. In both cases, the inner impedance consists of an induc-
tance L; and a resistance. Regarding the inner mechanical impedance, there
1s a small difference. Similar to the electro-static transducer, there is an at-
traction force which depends on the distance between the magnet and the
armature and thus on their relative motion. As before, this leads to a nega-
tive stiffness cf., (8.51e). This means that Eq. (8.42d), again, can be
adopted albeit with Z,; replaced by

2

' S Y
7' =7 £ -z _ . 8.55¢
Mi Mi I Mi j Li ( )

As seen, the pivotal quantity with respect to the reaction of an electrical
element on the mechanical impedance is, as always, the square of the
transducer constant.

By multiplying the matrices (8.41d), (8.55b) and (8.41a), the relation for
the physical electromagnetic transducer with an immobile magnet is ob-

tained as
Vil ('YZ"'Z/’\/II'ZE:')/Y _Z}Lﬁ/y:HZ}
= . 8.55d
{l—}} { ZEi/y _I/Y u ( )

From this relation, all the quantities of interest can be developed. If the
motion of the magnet must be taken into account, the procedure demon-
strated in Sect. 8.3.1.2 applies.



8.3 Excitation and Measurement of Structure-Borne Sound 585

Electro-magnetic as electro-static transducers essentially are employed
in the laboratory. Their advantage is that they are only weakly coupled to
the test object and realize hardly any loading, also allowing for investiga-
tions of very light-weight systems.

8.3.5 Magnetostrictive Transducers

A magnetostrictive transducer most often consists of a rod of
magnetostrictive material inserted in a coil as illustrated in Fig. 8.30. The
primary magnetostrictive materials are nickel, some ferrites and, more
recently, special alloys termed “giant magnetostrictive alloys” [8.10].

@i iw 28 ZEK ik
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Fig. 8.30. Principle configuration of a magnetostrictive transducer. Magnetostric-
tive rod (1) and coil (2)

By passing a current i through the coil, the magnetic forces in the mag-
netostrictive material either shorten or lengthen the rod and constraining
the rod at its ends results in a relatively large force. As stated previously,
the force is proportional to the square of the magnetic flux. To achieve an
alternating force, proportional to some supplied alternating current, a dc
component is again required, such that the total and the transducer forces
can be written as

1 1 - . 1 -2 -~
Fo®®=—y i’ ==y (i+i) = =y4i +y,ii,
] ZYS ZYS( ) 2Ys Ys (8.56a)
Ew = y S iéw N

Since the transducer is reciprocal for i>>7 , an alternating voltage arises
when the magnetostrictive transducer is compressed with the velocity v,,

which is given by
Qw = _YSZV

—_w*

(8.56b)
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With the exception of the altered symbols, these relations are the same as
those for the electro-magnetic transducers. Moreover, since the effects of
inner electrical and mechanical impedances are the same, the formulae of
the previous section can be directly adopted.

Magnetostrictive transducers essentially are used in underwater acous-
tics. The attainable displacement amplitudes are very small. For nickel, the
maximum relative elongation is of the order of 10° and for the giant mag-
netostrictive alloys 10™ to 107,

Despite the very simple design, the magnetostrictive transducers are
only employed for special structure-borne sound problems [8.11]. Typi-
cally, there is a use when large force and small displacements are required
such as at high frequencies. A disadvantage is the direct current required
which is accompanied by resistive losses.

8.3.6 Elaboration on Reciprocal Transducers

8.3.6.1 M- and N-Transducers

By summarizing the transducer expressions for immobile magnets and
backing electrodes respectively, those dependent on magnetic fields in
(8.411) and (8.55¢) are described by

F _ 1 (BIL)2+ZMiZEi _ZMi i
v B Z, -1 |lu)’
Fl 1 VA ZyZy ~Zy |1

S -1 |lu)

for the electro-dynamic and electro-magnetic as well as magnetostrictive
transducers respectively. When all displacements are blocked, the force is
proportional to the alternating current for this class of transducers.

For the transducers dependent on electro-static forces, (8.48), (8.49),
(8.41a) and (8.52a) apply. One finds

E _ 1 _ZMi K2+ZM/ZEi 1
vl K| -1 /7, ul’
E _ 1 Z}:/Ii a2+ZMi/ZEi £

vl al -1 1/Z,, ul’

for the piezo-electric and electro-static transducers. For this class of trans-
ducers, the forces are proportional to the alternating voltage as the dis-
placements vanish.

(8.57a)

(8.57b)
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Two of the relations in (8.57a) and (8.57b) still contains the flaw that
the electrically induced, negative stiffness must be considered in the inner
mechanical impedance Z;, . By substituting (8.51f) and (8.55¢) in (8.57b)

and (8.57a) respectively, the electro-static description becomes

F 1 ((x'ZEi)2+ZMiZE[ Zy|) 1
{E}——QZJ , Yot (8.57¢)

Mi

Upon letting B/, ->o.Z,,, (8.57¢c) but the sign becomes identical to the for-
mula for the electro-dynamic transducer. The electro-static and electro-
dynamic transducers are categorized as M-transducers (equivalent voltage
source). The description in (8.57¢), moreover, would have been established
directly from Eq. (8.54¢), developed from Hamilton’s principle.

In a similar way, one obtains

r _l Zi Y2+ZMi/ZEi i
e R 6579

for the electro-magnetic and magnetostrictive transducers from (8.57a)
with (8.55¢). Aside for the sign, this is also valid for the piezo-electric
transducer. The latter electromagnetic and the magnetostrictive transducers
are categorized as N-transducers (equivalent current source). Ultimately,
however, the categorization is of a formal nature.

8.3.6.2 Reciprocity Calibration

The reciprocity of reciprocal transducers can be used also to calibrate elec-
tro-mechanical transducers without absolute measurements of dynamic
quantities. The procedure is illustrated in two steps in Fig. 8.31 [8.12].

In the first step, a mass is given a velocity v; by means of an auxiliary
exciter. Instead of a mass, any other mechanical structure can be used pro-
vided its impedance is well defined. The voltage proportional to the veloc-
ity is measured at the transducer W to be calibrated and the reciprocal
transducer R,

Upr =0y vy, Up =040, (8.58a)

For the second step, the auxiliary exciter is turned off and the mass driven
by the reciprocal transducer. The force F, and velocity v, resulting for a
current i, are related by

|22|:|E2/Z|:|0“Rzkz/z|’ (858b)
where Z is the known impedance. In this relation is used that the reciproc-
ity principle or the law of mutual energies are valid such that
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Yn|_|E

i

s Upiipy = E5v, (8.58¢)

14

21 ZR2

respectively. Since the transducer to be calibrated should be linear, the
voltage offered is

Uy, =0y v,. (8.58d)

By substitution of (8.58a) and (8.58b), v,, ok and v can be eliminated and
UWl UWZ

o, | === 7. 8.58¢

el =1 (8.58¢)

Thus, the determination of the calibration factor o sought is transferred to
measurements of electrical voltages and currents besides the knowledge of
a well-defined impedance.

Stage |

]J,@ IUW1
jum

Stage 2
_,‘t:|; @ I Uwz

Ir2

J
B \\ @K\k\\\\k

®-= auxilliary source

@ = transducer to be calibrated

@ = reciproced transducer

@ = reference impedance e.g. mass

Fig. 8.31. Measurement of combined quantities associated with bending motion
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Precise measurements of currents and voltages are usually straightfor-
ward as long as the reciprocal transducer is sufficiently strong to achieve a
measurable signal over the entire range of interest. A well-defined imped-
ance can be more cumbersome, however, since also for compact masses,
the suspension may lead to deviations from the basic Z = jom. Addition-
ally, it must be taken into account that for small masses, all connected
electrical equipment can noticeable affect the impedance.

8.4 Combined Quantities

With the transducers hitherto described, the displacement, velocity, accel-
eration or strain can be measured directly. In addition to these primary
measurement quantities, more and more often some further are required,
which can be derived from the former. For bending motion, for example,
the first and second derivatives, corresponding to the cross-sectional rota-
tion and the curvature respectively can be of interest. Those derived quan-
tities can be obtained from finite differences formed from the signals from
two or three identical or carefully calibrated transducers, as illustrated in
Fig. 8.32. In this it is important that the distance Ax, on the one hand, does
not become too small but, on the other, not too big. In the former situation,
signals are subtracted of almost the same magnitude with enhanced errors
as a risk whereas, in the latter, the finite difference will not be a satisfac-
tory approximation of the corresponding differential. A reasonable com-
promise is to set Ax somewhere between a twentieth and a tenth of the
wavelength.

Without strain gauges, strain can be measured also by using two adja-
cent sensors and approximating the spatial derivative in e.g., (3.1) by a fi-
nite difference.

A substantial problem for the structure-borne sound measurement tech-
nique as a whole is the fact that with the exception of optical methods in
transparent structures, there are no means to undertake measurements in
the interior of a structure without causing serious disturbances of the vibra-
tion field. Accordingly, one is forced to extract the interior motion from
the results of measurements on the surfaces. As long as the structure is thin
i.e., its thickness typically less than a sixth of the governing wavelength,
such an extraction is principally possible. In that case, it can be assumed
that all quantities are linearly related. Nonetheless, such measurements can
prove rather laborious when different wave types must be distinguished. In
Fig. 8.33 is exemplified the extraction of displacement, rotation, strain and
cross-sectional contraction from measurements of eight displacement



590 8 Generation and Measurement of Structure-Borne Sound

quantities on two sides of a thin structure. Fortunately, such extensive and
error prone measurements are only necessary on rare occasions since fre-
quently, the most dominant component of motion can be identified and a
proper transducer configuration devised.
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Fig. 8.32. Estimation of different components of motion from surface measure-
ments
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Fig. 8.33. Determination of various motion components from measurements on
the surfaces of a plate or shell structure
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In conjunction with measurements of structure-borne sound intensity,
registration of stress and velocity is required as indicated by the expression
in Sect. 3.9. Again, the velocity registration is comparatively straightfor-
ward, at least a far as the necessary quantities representing the interior mo-
tion can be deduced from measurements at the surfaces. In contrast, the de-
termination of stresses is more intricate from two aspects [3.27,3.28]:

e The stress-strain relations comprise several strain components cf.,
(3.119) and (3.162a), such that a set of finite differences would
have to be formed. Due to the complicated and error prone finite
difference operators, simple states of deformation are assumed, for
which simple stress-strain relations are available, (3.2), (3.42),
(3.54), (3.73) and (3.223f).

° The stresses can be calculated from the strains only when some
properties such as Young’s modulus or shear modulus are known
for the material at the measurement position. This means that cer-
tain knowledge must be present in advance.

At present, measurement of structure-borne sound intensity in slender
rods and beams as well as in thin plates and shells is practicable in the
laboratory. The employment of the technique in everyday practice will
probably take a while although the insight gain from knowledge of the in-
tensities and power transmissions would be of great help in many practical
applications.
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