4 Damping

4.1 Damping Mechanisms and their Mathematical
Description

The previous chapter, which dealt with the various types of waves that can
occur in a solid body, in all cases made use of some form of Hooke’s law
that is, it always involved proportionality between stress and strain.
Hooke’s law, like most laws of physics, is exact only for ideal situations,
which represent limiting conditions for practical situations. For the topics
treated in the previous chapter, the deviations from Hooke’s law exhibited
by actual structures are unimportant. However, in relation to processes
that, for example, take place over relatively long times one finds that the
relations derived in the previous chapter are unsatisfactory. Although it is
evident even from cursory observation that every oscillation decays with
space and time, the previously derived relations (for example, Egs. (3.11)
and (3.12)) imply that a motion continues forever once it has been started.

The present chapter deals with the aforementioned decay, which is asso-
ciated with conversion of the energy contained in a given oscillation into a
different form of energy. This conversion usually is called damping or dis-
sipation. “Damping” and “dissipation” usually refer only to conversion of
mechanical energy into heat. These terms are generally not applied to en-
ergy losses that occur as a result of reflection at discontinuities (see Chap-
ter 6), which process is usually described as “attenuation”.

Although damping occurs in all types of oscillations, this chapter is con-
cerned only with processes in which mechanical energy is converted into
heat. Thus, radiation damping and similar processes are not considered
here. The damping of isotropic solids is treated first; then follows a discus-
sion of multilayer systems, for example, plates with damping layers, which
are of great practical importance.

Mechanical damping is of interest not only in relation to the control of
vibrations and noise, but also for studies of the structure of materials
particularly high-polymers and in relation to quality control monitoring.

The question of how the basic equations of elasticity (in the simplest
case, Eq. (3.2)) may be modified in order to take into account damping
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phenomena has concerned physicists for a long time. As early as 1874, O.
E. Meyer [4.1] suggested that a viscous friction force should be taken to
act in addition to the elastic forces. Since such a friction force is propor-
tional to the time derivative of the strain, Eq. (3.2) would then be rewritten
as the later denoted Kelvin-Voigt model [4.2]

o :D(s+8%). @.1)

For the sinusoidal time variations, which are of greatest interest,
€ =£€cosmt, (4.2)
1s obtained

o =D (coswr —03 sinor)
= DéV1+®?9? cos((ot-i-arctan(oS).

Thus, for the given periodic strain variation, the stress and strain are not in
phase with each other. As will be shown later, this phase difference im-
plies that mechanical energy is transformed into heat in the course of such
oscillations.

Equations (4.1) and (4.3) are not quite satisfactory, because it turns out
that the parameter 9 in reality is strongly frequency dependent. Viscous
forces, moreover, within solid bodies are somewhat difficult to imagine.
For this reason, Boltzmann [4.3] suggested a different type of relation be-
tween stress and strain. He reasoned that the force that produces a given
strain does not depend only on that strain, but also on the previous strains
i.e., the “strain history”. Following Boltzmann and assuming that the ef-
fects of the prior strains may be superposed linearly, the dependence of the
stress o (f) at time 7 on the strain € (7) at time ¢ and on the strain & (z-Af) at
the earlier time (#-Af) as can be written as

(4.3)

o (1) = D (1)~ Jo (- Ar)o (Ar)d (Ar), 4.4)

The function ¢ (Af) describes the “after-effect” of a strain and the form
of this function determines the stress-strain relation. One may note that the
above reduces to Hooke’s law for ¢ (A7) = 0, as one would expect.

Of the many “after-effect functions” ¢ (Af) that are possible in principle,
only one, the so-called “relaxation function”, is physically meaningful. If a
strain is imposed on a material, then there occur certain molecular proc-
esses (displacements, distortions of crystal lattices, changes in molecular
structure, excitation of certain molecular oscillations, etc.), which are ex-
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cited gradually, and which then also decay gradually. If the applied strain,
for example, causes a molecule chain to oscillate, one may assume that
these oscillations will decay exponentially. The corresponding after-effect
function then may be written as

D
o(a)= e, @5
T
where D, is a constant and 7 is the so-called relaxation time, which in the
present example is a sort of decay time of molecular oscillations. The form
of the stress history for a given strain is shown in Fig. 4.1, for two exam-
ples.
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Fig. 4.1. Variations of strain and stress with time for a prescribed step-function
displacement (left) and sinusoidal displacement (right). Parameters: D, = 2D,,
ot=0.2

The left-hand part of the figure indicates the force that is required to
produce a step-function jump in the strain from 0 to gj. One finds that the
initial force is relatively large, but that the force decreases as the body
“gets used to” its new state.

The right-hand part of the figure illustrates the stress history for a peri-
odic strain. Because this case is particularly important, it is of interest to
analyse it in some detail. Upon introducing Egs. (4.2) and (4.5) into (4.4),
the stress becomes
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o (1) = D cosot _Dyy Icosco (1=Ar)e™"d(Ar)
o (4.6)
= (Dl —F;H)écoswt -D, %é sinwt.

Relaxation processes thus lead to a phase shift and therefore to dissipation
of mechanical energy. The amount of mechanical energy that is trans-
formed into heat depends on the second term of Eq. (4.6) and thus essen-
tially on the relaxation time and on frequency. For molecular vibrations,
these times obviously are very short, but the times t corresponding to
changes in molecular structure may be very long. Relaxation times may be
of the order of hours and days, but also of the order of nanoseconds.

Equations (4.4) and (4.5) permit one to describe all observed stress and
strain relations, provided that one accounts for all of the relaxation proc-
esses that occur simultaneously i.e., Eq. (4.5) is replaced by a sum of simi-
lar expressions with different relaxation times. Therefore, the relaxation
model of after-effects may be taken as valid in general.

Unfortunately, the stress-strain relations given so far in Eqs. (4.1) and
(4.4) lead to relatively complicated expressions if one tries to use them to
derive a wave equation. As is evident from Egs. (3.9) and (3.10), use of the
viscous model of Eq. (4.1) leads to a differential equation of third order,
whereas use of the after-effect model of Eq. (4.4) leads even to an integro-
differential equation.

Besides the viscous and the relaxation models in (4.1) and (4.4) respec-
tively, there is a number of other suggestions for the mathematical descrip-
tion of damping. Amongst those are the models of Maxwell [4.4] and
Zener [4.5] for which the stress-strain relations read

de _ldo 1
da Ddt v

do de 4.7)
c +‘CIE=D 8+‘l32; ,

respectively. Herein, v denotes the dynamic viscosity while 1, and t, are
relaxation times. The Maxwell model is primarily used in the description
of creep and the Zener model is a combination of that of Eq. (4.1) and the
Maxwell model.
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4.2 Complex Modulus and Wavenumbers

Fortunately, the difficulties associated with the stress-strain relations dis-
cussed above can be avoided, if one limits oneself to periodic processes
and introduces a complex modulus. As has been pointed out earlier, how-
ever, other time dependencies can be handled by means of superposition.
Equation (4.3), as well as Eq. (4.6), indicates that the primary effect of
damping is the production of a phase difference between stress and strain.
One may express this fact very conveniently in complex notation, by writ-
ing

o(r)= Re{Qée’“”} = D'§ coswt— D"E sinwt, (4.8)

where
D=D'+;D"=D'(1+ jn) (4.8a)
represents the complex modulus of elasticity. The quantity n = D"/D’ is
the so-called loss factor, which is used widely throughout the rest of this
book (in textbooks on polymers often the loss factor is denoted d). It
should be noted, however, that the complex modulus may lead to causality

problems by a transformation from frequency domain to time domain
when the loss factor is not known precisely.

Table 4.1. Frequency dependence of complex moduli and loss factor

Type D’ D’ n
Voigt-Kelvin D Dod »d
2,2 D2 /D
Maxwell D Léz D% D/ov
l+ov?/D l+o™v’D
D’ ot D,wt
= D —>2 e el
Boltzmann D, l+mt? 1+ok? DI—D2+D10)2‘E2

constant loss factor

D D
o No No

In Table 4.1 are shown the real and imaginary parts of the complex
Young’s modulus as well as the loss factor for the models described above.
Figure 4.2a depicts the frequency dependencies and 4.2b the force trans-
missibility for a single-degree-of-freedom system, containing a spring
element incorporating the different damping models. The Zener model is
not explicitly included in the table and graphs since it is represented by the
Boltzmann model using the substitution D,/D; = (1, - 11)/1>.
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Fig. 4.2a. Frequency dependence of the real part of the normalized complex
modulus and loss factor. Dy, n, — Voigt-Kelvin, D, nz — Boltzmann and D, 1, —

Maxwell

It is seen in Fig. 4.2a that the Boltzmann model increases by a factor of
(1 + Mmax)/(1 - Nmax) in the vicinity of ot = 1 and that there the loss factor
is a maximum. For the force transmissibility in Fig. 4.2b it is observed that
the Voigt-Kelvin model does not lead to the typical isolation effect that is
present at high frequencies for the other models.
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Fig. 4.2b. Force transmissibility for a SDOF system. KV — Voigt-Kelvin, B —
Boltzmann, M — Maxwell and 1o — constant loss factor

If one substitutes the modulus of elasticity D, as defined above, into the
wave equation, one finds that the propagation speed becomes complex.
Thus, instead of Eq. (3.13) is obtained

2 n2 ! 2 "2 ’
’ ic" = 2_\/\/D +D"" +D +J\/ D""+D D . (49)

B 2p 2p
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For weak damping, that is D' >> D" or n << 1, one may approximate Eq.
(4.9) by

D' n
~ =1+
c 5 ( +12J (4.9a)

Even for n = 0.5, this approximation deviates from the exact value only by

about 4 %. Errors that exceed 10 % result only for 1 > 1. The wavenumber
also becomes complex, of course, namely,

@sz—szL'—jkL"zw %(1—1%} (4.10)
For propagation in the positive x-direction, the above expression must be
multiplied by —1, for propagation in the negative x-direction, by +1.

Similar expressions hold also for quasi-longitudinal waves on plates and
beams, as well as for torsional and transverse waves. An additional simpli-
fication occurs for homogeneous isotropic materials, because the loss fac-
tors associated with extension and shear of such materials generally are
found to be equal. (For anisotropic solids, this is generally not the case.)
For transverse waves, in the presence of weak damping, one finds

G’ M p |
 |—|1+j=; 1o, —|1-j=| .
Cr \/;( +12) LT 03\/;( sz (4.11)

For pure bending waves, introduction of the appropriate complex
modulus into Eq. (3.85) yields

c, ~ 4/0)2%[“]'%] (4.12a)

and the corresponding wavenumber

f ' 4.12b
]_(Bz“(,oz%(l—j%j. ( )

The physical meaning of a complex wavenumber (or of a complex propa-
gation speed) becomes evident at once if one introduces it into the appro-
priate phasor relation. For plane waves propagating in the positive x-
direction, which may be described by

u(x,t)= Re{ﬁe"””"’“} =dcos(or—kx+¢), (4.13)

use of the complex wavenumber results in
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u(x,r)=Re {ﬁe/°)”jk"""‘"’”} =die™" cos(ot—k'x+¢). (4.14)

A complex wavenumber — that is, a complex modulus — thus implies
exponential decay of propagating plane waves.

For lightly damped longitudinal, transverse and torsional waves
k"=km/2=nn/A\. Thus, Eq. (4.14) implies that the amplitude decays by a
factor of ¢™" within a wavelength. Within a distance Ax there therefore oc-
curs a reduction in level by

AL = 8.7t Ax

dB. (4.15)

A different expression holds for bending waves, because for these
ky ~mn /2%, . Here the decrease in level with distance obeys

_ 4.347nAx

5 A dB. (4.16)

B

The reason that Eqs. (4.15) and (4.16) differ by a factor of 2 is that for
bending waves the group speed, which determines the energy propagation,
and thus also the damping is twice the phase velocity, see Eq. (3.89).

A difficulty arises, however, in relation to the nearfields of flexural
waves. Namely, if Eq. (4.12b) is used to determine the nearfield
wavenumber (see Eq. (3.109)), then there result nearfields of the form

kpx—jkpx

e , e

—kpx+ jkpx

One obtains so-called complex nearfields, for which the amplitude de-
crease occurs in the direction which is opposite to propagation direction.
At first glance, this result appears to have little physical meaning, because
it appears to lead to increasing amplitudes. However, Tamm and Weis
[4.6, 4.7] have shown that such complex nearfields occur very often at the
higher-modal vibrations of plates, see Sect. 3.7. By considering the two re-
lated conjugate complex wavenumbers as corresponding to a decaying
standing wave, one may remove the apparent violation of the law of con-
servation of energy. For the remainder of this discussion, however, com-
plex nearfields are of relatively little interest.

For the more complicated vibrations that were treated in Sect. 3.7 (par-
ticularly in Fig. 3.25), one may also obtain the propagation speeds and
damping by introduction of complex moduli. The corresponding equations,
however, turn out to be very complicated. At present, solutions are avail-
able only for rubber-elastic plates (n = 0.5) with pure shear losses [4.7].
The analysis shows that with large losses the modes associated with high
propagation speeds (¢ >> cr) are damped very strongly, so that in essence
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there only remain bending or Rayleigh waves, transverse waves, and
quasi-longitudinal waves.

Not only the spatial variations associated with a vibration are of interest,
but also the corresponding energy relations. Consider a system that is ex-
cited so as to oscillate at a angular frequency o, for example, a rod excited
longitudinally by means of an electrodynamic shaker. The strains that oc-
cur in a given elementary volume of such a system may again be written as

&(t)=Re{ée™ | =& cos(or+9). (4.17)
The corresponding stresses then obey
c= Re{Qéef“’} =£D'cos(0r+@)—€D"sin(w+¢)
=8D'\J1+n? cos (o +arctann +¢),

see Egs. (4.3), (4.6) and (4.8). One may note that the phase difference be-
tween stress and strain is directly related to the loss factor n. If one deter-
mines the potential energy density according to Eq. (3.6), then one obtains

(4.18)

E, = EJ‘G de
0

— (4.19)
22y 1 2
& ;) |:T]0)t+ ;n

cos (2m¢ +arctanm +2¢ ) + const |.

In this equation “const” represents a constant the depends on the limits of
the integration and that is unimportant here. The variation of energy den-
sity with time given by Eq. (4.19) is plotted in Fig. 4.3.
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Fig. 4.3. Time-dependence of potential energy in a sinusoidally vibrating damped
material. Calculated from Eq. (4.19) forn=0.2
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As evident from this figure, the average energy density increases with
time. Because the amplitude of the vibration and thus the mechanical (re-
versible) energy remains constant, however, the additional energy supplied
to the system which corresponds to the term nwt in Eq. (4.19) evidently
must be transformed into another form of energy (heat). The energy that
the shaker continuously feeds into the sample in the last analysis serves to
heat the material.

A stress-strain diagram is useful for providing further insight. If one in-
troduces Eq. (4.17) into (4.18), one obtains

02—268D'+82D’2(1+n2):n2D'252. (4.20)

This equation represents an ellipse, centred at the origin, as shown non-
dimensionalized in Fig. 4.4. Indicated are also the lengths of the semi-axis.
The elliptical area is
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Fig. 4.4. Stress-strain curve of a dissipative material under sinusoidal loading
n=0.2)

Since the energy E; lost during one cycle of a vibration with period 7 is
given by

s c € a
E = C‘fcds =D qu(D’éjd(gj =DE’S,,
which corresponds precisely to the area of the ellipse, one finds that

E :TCT]D’S’Q. (421)

diss
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The energy lost in a time interval ¢ thus is given by
E,t/T=E, ot/2n =¢’Dnot/2. This result corresponds exactly to the
time-average value obtained from Eq. (4.19).

From these energy relations can be developed a convenient and physi-
cally meaningful definition of the loss factor. If one divides Eq. (4.21) by

the (reversible) mechanical energy E, = D'€*/2, one obtains

__E
2nE,

n (4.22)

Thus, the loss factor indicates what fraction of the vibratory (reversible)
mechanical energy is lost (i.e., converted into heat) in one cycle of the vi-
bration. Note that the reversible energy appears in the denominator of Eq.
(4.22), and not the total energy, which is usually used in definitions of ef-
ficiency. This distinction, however, is unimportant for small damping. The
relation between the reversible energy and the periodically varying total
energy is evident from Fig. 4.3.

In practice one is interested not only in the energy loss which occurs in a
system whose vibration amplitude is kept constant by continuous external
excitations, but one is also concerned with the time-wise decay of vibra-
tions that results when the excitation is removed, so that energy is no
longer supplied to the system. The over a period dissipated energy is ob-
tained from the definition in (4.22), E = 21 Eg such that the time de-
pendence becomes

Ediss (t) = Ed[xs % = (’OnERZ (4223)

Consider a system that vibrates at the angular frequency ® and which at
time ¢ = 0 has a reversible mechanical energy E. If the system is discon-
nected at time ¢ = 0 from all external sources, then all of its mechanical en-
ergy Egro will eventually be converted into heat. In order to simplify the
analysis, it is convenient to assume that the system under consideration has
only one energy storage mechanism. Thus, for example, cases where en-
ergy can be stored in coupled bending waves and torsional waves are ex-
cluded here. Further, it is useful to postulate that the change in the ampli-
tude (peak value) that occurs in one period of the oscillation is small. If the
energy that is changed into heat up to time 7 is denoted by E;,(f), then the
reversible energy that is left in the system at this time is Er () = Ego —
Ei5(7), in view of conservation of energy. The energy converted into heat
during the time interval between ¢ and ¢ + df thus is [Ery — E4s(7)] N dt, in
view of the first term of Eq. (4.19). The total energy converted into heat up
to time ¢ is obtained by adding the losses for all earlier times,



4.3. Resonant Vibrations of Damped Beams 161

E, ( I[ERO ) nwdt. (4.23)

If one differentiates Eq. (4.23) with respect to 7, one obtains a simple
differential equation for E;, (7), which has exponential solutions, as would
be expected,

E, (t)=Ey(1-e™) or Ey(f)=Ege™" (4.24)

The energy thus decays exponentially, with a decay constant n.

4.3. Resonant Vibrations of Damped Beams

One procedure that is often used for experimental determination of the loss
factor involves measuring the response amplitude of a system as a function
of frequency, for a constant excitation amplitude, and deducing the loss
factor from the so-called bandwidth of response peaks — the half-power
bandwidth. This method is well-known for measurement of the damping of
systems with one degree of freedom and it is treated here in some detail,
because in measurements on beams and similar structures there arise some
considerations which one does not encounter for single-degree-of-freedom
systems. The conversion from one damping quantity to another is facili-
tated by Table 4.2.

Table 4.2. Conversion formulae for damping quantities

Loss factor n = n bif 2.2/Tf Alm
Bandwidth (Hz) b = nf b 22/T Afin
Reverberation time (sec) 7= 2.2/nf 2.2/b T 6.8/Af
Logarithmic decrement A= mn nbl/f 6.8/Tf A

Phase angle (rad) ¢ = arctann  arctan (b/f) arctan (2.2/Tf)  arctan (A/n@)

A = wavelength (m); ¢ = phase speed (m/sec)

Additional relations:

ki~ k; (1 —jn/2) for longitudinal waves

ks =~ kj, (1 —jn/4) for bending waves

Level decay for plane bending waves: D, = 13.6 n/A [dB/m]
Level decay for longitudinal waves: D, =27.2 n/A [dB/m]
E=E' (14n)
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4.3.1 Quasi-Longitudinal Waves and Torsional Waves

Of the many methods available for the analysis of beam vibrations, the one
used in this section — which deduces the vibrations of a finite beam from
the behaviour of an infinite one — may be somewhat cumbersome, but pro-
vides considerable physical insight. Consider a rod, such as that shown in
Fig. 4.5, excited at one end by the force

F=Re{Fe"}.
In an infinitely long rod, such an excitation would give rise to a wave mo-
tion

% (x)=—e ", (4.25)

where Z represents the complex driving-point impedance (which takes on a
complex value, because the propagation speed is complex), and k is the
complex wavenumber. For quasi-longitudinal waves, the driving-point im-
pedance at a free end is Sp_cyi1.

x=0 x=f
¢
A
To A g KX e jk(24-x) Ty
-\

AN g Tk(2£+x)

Fig. 4.5. Wave propagation along a beam

When the wave given by Eq. (4.25) arrives at the end of the rod, the ve-
locity amplitude is

E o ¥
VA

The wave now is reflected, resulting in a backward travelling wave given
by
Fo .
EE[@ k]k(zl x)

>
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where 7, represents the (complex) reflection coefficient at the location
x = 1. This wave is reflected once again when it reaches x = 0, and the dou-
bly reflected wave obeys

where ry denotes the reflection coefficient at x = 0. This doubly reflected
wave is again reflected at x = /, and this process is repeated again and
again, indefinitely. In the steady state, where all these components are pre-
sent simultaneously, one thus obtains

F j kx - —x - +x - —-x
v(x) =E[e—m py e EO) Ly KO L 2k )] (4.26)
One may note that the first, third, fifth, ... terms of this expression form
a geometric series with the ratio rore’?™ and the same holds also for the
second, fourth, sixth, ... terms. Thus, by applying the summation formula
for infinite geometric series, one obtains

F /™ 4p e/t
y(x) - Z I_Koﬁzeizw : (4-27)
Equation (4.27) also illustrates once again that the resonances i.e., the ze-
ros or the minima of the denominator, correspond to the principle of wave-
train closure, see Sect. 3.4. Closure of a wave train on itself here involves
precisely a phase shift by 24/ and reflection at both ends of the rod; one
thus obtains wave train closure if rore?" is as close to unity as possible.

It is of interest to consider several limiting cases, in order to illustrate
the general validity of Eq. (4.27). For a rod that is free at both ends
(ro=r;=1) and very short (k/ << 1), one may approximate the exponential
term of Eq. (4.27) by the first element of its series expansion

v(x)

Z jki (+29)
For quasi-longitudinal waves, Z k/ = owpS/, and the above result implies
that a short rod which is free at both ends behaves essentially as a mass, as
one would expect.

For a rod that is free at one end and clamped at the other (ro = 1, r; = -1),
one finds by multiplying Eq. (4.27) by ¢* that

v(x)

_Fsink(/-x)

) cosk (=) (4.29)
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In the special case of short rods (k/ << 1) the velocity at x = 0 obeys

F
v(0)~ e (4.30)

and for quasi-longitudinal waves, for which Z =S Ep andk=w+p/E,

.0lF
2(0)= /5 (4.31)
thus, such short rods behave like pure springs.

The behaviour of Eq. (4.27) in the vicinity of minima of the denomina-
tor is of particular importance in relation to measurements. In order to find
these minima, one may assume that at the two ends of the rod there occur
no energy losses i.e. || = 1, but only the phase shifts y, and y; respectively,
see Sect. 3.4. If one introduces the complex wavenumber k£ = k&’ — jk’~ as
defined in Eq. (4.10), then one may rewrite the denominator of Eq. (4.27)
as

| [cos(Zk'l —Yo—Y,)—Jsin(2kT—y, —y,)]. (4.32)

With small damping that is, for £/ << 1, this function takes on its
minimum value i.e., the velocity reaches its maximum for

2kl -y, -y, =2nm.

By comparing this result with Eq. (3.106), one finds that it corresponds
precisely to the resonance frequencies of undamped rods. If the damping is
not small, one must find the minima of Eq. (4.32) by setting the derivative
of the equation with respect to k£’ equal to zero. These resonance frequen-
cies turn out to be somewhat lower than those of similar lightly damped
rods.

Whether the minima of the denominator of Eq. (4.27) correspond to
maxima of the velocity also depends on the observation point. The nu-
merator of Eq. (4.27) is periodic in x, that is, there occur nodes and anti-
nodes of vibration. This is illustrated in Fig. 4.6a, which shows the fre-
quency dependence of the velocity for various amounts of damping, and in
Fig. 4.6b, which shows the spatial dependence of the velocity. Both these
figures pertain to a rod that is free at both ends and excited by a force of
constant (frequency independent) amplitude. The corresponding velocity
obeys

F

v(x)f :‘—

? cosh 2k" (1 —x)+cos 2k’ (I —x)
cosh 2k" — cos 2k"l )

(4.33)
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The abscissa of Fig. 4.6a is k' (the wavenumber, multiplied by the
beam length) and thus is proportional to the frequency, and the abscissa of
Fig. 4.6b is k'x. The ordinate of these figures is the logarithm of the ratio
of the velocity to an arbitrary reference velocity vo. One may note that the
curves become flatter with increasing frequency, and eventually behave
like exponentially decaying functions. For £"/k" = 0.5, that is for n = 1,
the curves would exhibit no recognizable periodicity at all.
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Fig. 4.6. Quasi-longitudinal or torsional vibrations of free-free beams, as deter-
mined from Eq. (33). a) Variation with frequency at x = /; b) Variation with posi-
tion, for k*/ = 4n

For small damping, one may obtain simplified expressions for the be-
haviour in the vicinity of resonances by developing Eq. (4.27) in a series
about a resonance condition. In this development, however, one must take
into account that both the numerator and the denominator depend on fre-
quency. Assume that the velocity is measured at an anti-node i.e., a maxi-
mum in Fig. 4.6b, thus, at a position where the curve corresponding to the
spatial variation is very flat and thus unaffected by small changes in k'x.
Because of this assumption, the analysis that follows is not valid for nodal
positions, since there small changes in frequency lead to large changes in
the numerator and denominator of Eq. (4.27). For the anti-nodes it is found
that
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Yo
2k —/(zu Yo-v1)

Yp =
_|r rl|e

If the damping is small, and only the behaviour in the vicinity of reso-
nances is of interest, then one may use the approximations e " ~1-2k"l
=1-2nk'7 and e”(z“ 071 1= 2Ak'l, and write

v
1=|ror, |(1-2k"1 - 2jAK'T)

Yp &

Since this expression has its maximum value vy, at resonance (Ak7 = 0),
vy __ Uolrn|(-267) 1

o V022 e
T -5, Toly

from which it is found

; | !
-
Ak’ 1 (4.34)
K (k" 1k +(1=|ror|)/ 2|ror, KT
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Vina

1+ —

In the vicinity of the resonance frequency, a plot of vz versus frequency
thus has the typical resonance response character, see Fig. 4.7. The width
of the resonance curve here depends on the energy losses due to reflection
and internal damping. If no energy losses are due to reflections (|ror| = 1),
then Eq. (4.34) reduces to

| Yp |2 ~ 1
Ve | 1+(Ak')2 ' (4.35)
k"

If the wavenumbers are expressed in terms of the frequency to which
they are proportional, then Ak’ /k’" becomes Aflf,, where Af represents the
frequency deviation measured from the peak frequency f,. If one also sets
k" =mk' /2 (see Eq. (4.10)), one obtains

1+(2Afj (4.36)

The half-value bandwidth of the resonance curve, thus, is b = nf,, see Fig.
4.7. Clearly, measurement of this resonant behaviour constitutes a simple
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means for determining the damping, provided that the loss factor is not too
great and the measurements are carried out at an anti-node.

Half power bandwidth
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Fig. 4.7. Vibrational response of lightly damped systems in the vicinity of a reso-
nance

For the vibrations in the vicinity of nodes, one finds that at constant fre-
quency,

2 4 |£1 | e—Zk"(l—x)

+—
(1=l e )

(kax) |. (4.37)

2
|XK| ~ |‘_)min

for vanishingly small damping (£" = 0), this reduces (for ;= 1) to

2 2 2
2 2 2kAx 2 4 Ax
|‘_/K| |‘_/mm (1 _|K1|J |—mm| (1 _|£1|] ( )\/ j ( )
For complete reflection at the end (jr] = 1), the approximation

e?F™ =1-2k"(I-x) may be used to obtain

2
Ax kl2
{“(;_x j "_2] (4.39)

As can be observed, there exists a close relation between the vibrations
near a resonance and near a node. The resonance frequency f, is analogous
to the location x, of a node, and the frequency interval Af'is analogous to
the distance Ax. The fact that the expression 1 + ... occurs in the numerator
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in one case and in the denominator in the other makes little difference, par-
ticularly if the velocity is represented logarithmically.

There are available many methods for analysing the vibrations of a rod,
in addition to that used above. Among the most important of these is the
so-called “four-pole” representation. This representation can be developed
by considering the wave field in a rod to be composed of forward and
backward propagating waves, for which the velocity may be expressed as

v(x)=ye /™ +ye™, (4.40)

where v, and v. are unknown for the present. The corresponding force that
acts in the beam is given by

F(x)=2Zv,e’™ -Zy ™ (4.40a)

where the change in the algebraic sign results from the different directions
of wave propagation. The above must hold for all locations, and thus also
for x = 0. One therefore obtains the following conditions for v, and v_:

vo=v.+v, Fy=Z(v.-v).

If one introduces the resulting values of v. and v. into Egs. (4.40) and
(4.40a), then one obtains that at the location x = /, for example

F, .
v, =V, cosl_cl—j—?osml_d

Z (4.41)
F,=—jZv,sinkl+F coskl.

Equations (4.41) are a four-pole representation of the rod. They relate the
velocity and the force at its beginning to the velocity and force at its end.
Inversion of Egs. (4.41) gives

F, .
Vo=V, coskl+j—7’sml£l

Z (441a)
Fy=jZy sinkl+F, coskl.

Of course, Egs. (4.41a) and (4.27) always lead to the same result.

It depends on the particular problem to be solved whether Eq. (4.27) or
the four-pole representation of Eq. (4.41a) is more advantageous for the
analysis. Equation (4.27) is preferable if the reflection coefficients are
known. If one is concerned with the transmission from one arbitrary sys-
tem via the rod to another system, however, then the four-pole representa-
tion generally is more convenient.
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4.3.2 Bending Waves

In order to apply the previously used analysis procedure for bending
waves, one needs to replace the simple exponential functions in Egs. (4.25)
to (4.27) by the more complicated propagation functions for bending
waves, which consist of nearfields and propagating waves. Because the as-
sociated manipulations are cumbersome and lengthy, it is useful to investi-
gate bending waves on beams by means of a different approach. Equation
(4.27) also gives a good approximation for bending waves on beams that
are not too short, provided that the correct reflection coefficients are used.
(For example, for a free-free beam, ry = 1, = -j.) This approximation only
involves neglecting the nearfields; therefore the results derived in the pre-
vious section also apply to bending waves, for locations farther than a half
wavelength from the beam ends.

As evident from Eq. (3.109), beam bending vibrations involve four
component solutions:

—Jjkx Jkx

v=ye v ety ety et (4.42)

One may use this equation, or the equivalent expression
v =y, cosh kx +v, sinh kx + v, coskx + v, sin kx, (4.42a)

depending on which of the two leads to simpler manipulations. The four
unknowns vy, v., Vij, Vi, OF Vi, V2, V3, V4, respectively may be evaluated from
the four boundary conditions. For example, for a free-free beam that is ex-
cited by a force Fj at x = 0, see Sect. 3.4.2, one obtains

Bkz —Jjkl j ki —kl kl
M(l)=-=—[-v.e -y +y ¥y e ]=0,
jo
Bk’ .
()= ;) [jv.e? —jve® -y e¥+v, e ]=0,
4.43
B_kz ( )
(O)E— = I:_Y+_V +v, +Z+/]=O’
jo
B .
E(0)=75 Ljv.—jv—v +v.,|=F,

By solving Eq. (4.43) for the four unknowns, one finds after some lengthy
manipulation that bending vibrations of free-free beams obey
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sinh k7 cos k (1 —x) —sin kx — cosh k/ sin k (/- x)
Jjo I, —sinkl cosh k(I —x)+sinh kx + cos k/ sinh k (1 - x) (4.44)
Bk’ 2(1-coskl cosh kl) ’

1_}:

For the location x = /, this result reduces to

_ JoF, sinhkl—sink/

Z - .
x) Bk’ 1—coskl coshkl (4.45)

When &/ > 0 i.e., for very short beams, one may show by using a series ex-
pansion including terms up to the fourth power of (/) that

2F
/)~ —=",
E( ) jom'l

(4.452)

This result corresponds to rigid-body motion including rotation and trans-
lation of a rigid beam excited laterally at one end.

Figure 4.8a shows how the velocity at the end x = / varies with fre-
quency, as calculated from Eq. (4.45). Figure 4.8b shows how the velocity
varies along the beam at a constant frequency corresponding to k7 = 97/2,
as calculated from Eq. (4.44). In these figures the ordinate again is the
logarithm of the absolute value of the velocity, and the abscissa are 47 and
k'x, respectively. Because k' =o /m'/ B , the abscissa of Fig. 4.8a is pro-
portional to the square-root of the frequency.
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Fig. 4.8. Flexural vibrations of a free-free beam. a) Variation with frequency at
x =1, as calculated from Eq. (4.45); b) Variation with position, for £/ = 971/2, as
calculated from Eq. (4.44)
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One may derive Eq. (4.45) — but not Eq. (4.44) — considerably more rap-
idly with the aid of the so-called eight-pole equations [4.8]. In order to de-
velop these equations conveniently, one may rewrite Eq. (4.42a) in terms
of the following functions:

%(coshkx+ coskx)=C(kx), %(coshkx—coskx) =c(kx),
%(sinhkx+ sinkx) = S (kx), %(sinhkx—sinkx) =5 (kx).

These functions have the property that differentiation of any of them gives
another function of the set, in the sequence C (kx), s (kx), ¢ (kx), S (kx),
C (kx). In addition C (0) =1, S (0) = s (0) = ¢ (0) = 0. If the transverse ve-
locity and the angular velocity are written as

v, =aC(ke)+ BS (ke)+ye(ke)+8s (k)
w, =k[ous (ke)+ BC(kx)+y S (kx)+3c(kr)],

one may observe that the velocity v, at the beginning of the beam is equal
to o, whereas the angular velocity at the beginning of the beam is w, = Af.
The moment and the shear force similarly may be found to be simply re-
lated to the coefficients in the foregoing expressions. After some mathe-
matical manipulation, one may determine that

1 1
‘_)x :ZOC(]OC)‘FEO—S(]OC)—MOWC(]OC)‘FEOJVV—VICS(]OC)
k 1
=y ks(kx)+w,C(kx)-M,——S(kx)+ F,——c(kx
=0 ( ) —0 ( ) =0 JWI ( ) —0 ‘]W' ( ) (446)
M = e (k) =35, s (h) M, C (k) -, 5 k)

F, :gojW'kS(/oc)+v_vOjW'c(kx)—Moks(/oc)+EOC(lcx),
where W'=Bk* /o =[Bm' .

Inversion i.e., expressing the parameters at the beginning of the beam in
terms of those at the end may easily be accomplished here (as for the four-
pole equations), because the determinant of the coefficients is equal to
unity, in view of reciprocity. Here, the inversion merely leads to a change
in the algebraic sign of the S (kx) and s (kx) terms.

Several approximations are of interest in relation to experimental meas-
urements. For k7 > m, the variation with frequency of the velocity at the
x = [ end of the beam may be written as
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2 ~|(1)E |2 2
|X(l)| ~|B~k30| cosh 2k +cos 2kl (447

and the spatial variation in the region © < kx < k'/ — ® may be approxi-
mated by

oF,[ cosh2k"(1-x)~sin2k' (/- x)
B’ | cosh 2k"l + cos 2kl ’

i zI (4.48)

It is easily verified that these equations are also obtained by setting
ro=r= - in Eq. (4.27). As has already been mentioned, one may apply
the simpler relations of Sect. 4.3.1 to bending vibrations of long beams, if
one introduces the appropriate reflection coefficients. The differences be-
tween the different wave types only become evident if one determines the
frequencies and the loss factor from the wavenumbers k'and k". For
bending waves one find k" /k" =n/4 (see Eq. (4.12b)), unlike for longitu-
dinal and torsional waves.

The damping of bending waves can be determined from half-value
bandwidth measurements, exactly as for longitudinal and torsional waves,
provided the beam is not too highly damped. The same analysis as was
carried out in Sect. 4.3.1 in this case leads to

Vg 1

V14 KT (4.49)
k"l

Because k = o #/m'/ B , one finds that here Ak = %kfif . Thus,

n

| Yy |2 ~ 1
Vi 1{ 20f jz ' (4.492)
n/,

One may observe that the relation between bandwidth and loss factor for
bending waves is the same as that for longitudinal and torsional waves,
namely,

b=nf. (4.50)

The vibrations in the vicinity of a vibration node obey the same relations
as derived in Sect. 4.3.1. Therefore Eqs. (4.37) to (4.39) apply directly to
bending waves, for locations outside of the nearfield regions.

The behaviour of beam vibrations in the vicinity of the various reso-
nances is of interest not only in relation to experiments and for determina-
tion of the loss factor, but also because any vibration of a beam can be rep-
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resented by a sum of its resonant or natural vibrations. This problem is
treated in detail in Sect. 5.7, where it is shown that the velocity of a beam
may be expressed as

;—m '"(p'}n)) — 4.51)

Herein, o, represent the radian natural frequencies of the beam, the v,
are coefficients which are relatively independent of the frequency, and
¢, (x) represent the so-called eigenfunctions or mode shapes. Equation
(4.51) applies for longitudinal and torsional waves, as well as for bending
waves; one only needs to use the appropriate values for ®,, v, and @, (x).

It may seem somewhat surprising at first glance that the velocities given
by Eqgs. (4.44) or (4.27) can be represented by an expression like that in
(4.51), because these equations have entirely different forms. However,
one may change one of these equations to the other by use of the Mittag-
Leffler theorem of function theory, which states that every meromorphic
function and thus also the functions 1/sin x and 1/cos x may be represented
by an infinite sum. The actual transformation of one equation into the other
involves no difficulty in principle, but is too tedious to be carried out ex-
plicitly here.

Equation (4.49a), which is most important in relation to loss factor
measurement, can be obtained directly from Eq. (4.51) by neglecting all
but the largest term and considering only a single point x = xo. In this man-
ner one finds

V(X )z Xn(pn (xO) — Yn(Pn (xo)
e —0? - jo (mn—m)(mn+m)—jmfn.

(4.52)

In the vicinity of a resonance, ® = ®,, ®, + ® = 2 ®,and with ®, - ® = A,
it is found that

~ Xn(pn ('xO) 1
Z(x0)~ _jmjn 1+]2A0) 5
nmn

which corresponds directly to Eq. (4.49a).

4.4. Measurement of Complex Moduli

Because the complex modulus of elasticity of a material is a very impor-
tant mechanical property, many techniques are available for its measure-
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ment. Only the most important ones will be described here. In essence,
there exist three basically different types of measurement methods. For
low-frequency measurements on a sample of small dimensions, one may
consider the test sample as a spring; one then needs only to determine the
sample’s spring constant. At intermediate and high frequencies, this ap-
proach ceases to work, because the sample then acts more like a wave-
carrying distributed system than an ideal (mass-less) spring. In this upper
frequency region, one therefore uses rod-shaped test samples and deduces
the mechanical properties of the sample from the behaviour of longitudi-
nal, torsional and bending waves. At very high frequencies, particularly in
the ultrasonic region, where the wavelengths usually are considerably
smaller than all sample dimensions, one generally determines material data
by considering the test samples to be semi-infinite continua.

Only the first two types of measurements will be discussed here; for in-
formation on pure ultrasonic measurements the reader is referred to the
specialized literature on the subject [4.9]. Also, no attempt will be made
here to discuss the relation between mechanical properties and the struc-
ture of matter, although such topics have been the subject of great activity
in the past few years and include many interesting effects e.g., coupling
between sound and electron motions. Such topics belong the to field of
pure physics and appear to have little application to noise control practice.
On the other hand, investigations of the structure of high-polymer materi-
als by means of structure-borne sounds measurements have led to the de-
velopment of materials, which are of direct interest for structure-borne
sound attenuation purposes, and such materials will be discussed in some
detail.

4.4.1 Measurements on Small Samples

4.4.1.1 Stress-Strain Curve

A direct method for determination of the complex modulus of elasticity is
shown schematically in Fig. 4.9. The test sample is rigidly fixed at one
end, and excited by a periodic force F at the other. From the absolute val-
ues of the force and of the resulting displacement A one may determine
the absolute value of the modulus of elasticity from

||

s S -
g2 1 )
a2] |—E|z T ENI+n (4.53)



4.4. Measurement of Complex Moduli 175

S represents the cross-sectional area and / the length of the test sample and
from the phase angle ¢ between the force and the displacement one may
find the loss factor as

n = tan @. (4.54)

Excitation force

Displacement transducer

Oscilloscope

-~ Force transducer
“a

|

Force transducer
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Eccantric

A

Fig. 4.9. Measurement of complex modulus via the stress-strain curve

Usually, electrodynamic shakers are most convenient for providing the re-
quired oscillatory force, and electromechanical transducers are used for
sensing force and displacement. It thus is relatively easy to convert all me-
chanical quantities into electrical ones, to amplify without introducing sig-
nificant phase shifts, and to measure them. For the signal processing, real-
time FFT-analyser are suitable and furnishes readily the frequency re-
sponse function sought, cf. Sects. 2.1 and 5.2. A frequency response func-
tion defined as the complex ratio of force to displacement represents di-
rectly the complex dynamic stiffness sought. Somewhat more physically
direct perhaps but significantly more time consuming is the employment of
an oscilloscope where the excitation and response signals are fed to the
horizontal and vertical plates of the cathode ray tube. The oscilloscope
output is an ellipse from which the real and imaginary parts of the complex
modulus can be determined as given by Eq. (4.20) and illustrated in Fig.
4.4. In addition, one may easily recognize irregularities such as nonlineari-
ties due to buckling of the test sample, higher order vibrations, resonances
in the support system from distortions of the ellipse.

One may also excite the test sample in bending or torsion and deduce
the complex bending stiffness and the complex shear modulus from the
measured forces, moments, and translational or rotational displacements.
Instead of applying a periodic force, one may also apply a periodic dis-
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placement, for example, by means of an eccenter, see the lower part of Fig.
4.9. This arrangement also permits the application of a static preload with-
out great difficulty.

The most significant problems with this type of measurement are asso-
ciated with the accuracy to which the phase angle must be measured and
with supporting the sample “rigidly”. A “rigid support” is just as impossi-
ble to realize as, e.g., an absolute vacuum. In order to measure loss factors
of the order n ~ 10™ with a 10 % accuracy, a value typical for example, for
wood, the accuracy with which the phase angle between the force and dis-
placement must be determined should be better than 0.6 degrees. Al-
though, high-performance electronic equipment can achieve such an accu-
racy, losses in the sample support commonly contribute with larger phase
shifts. Therefore, the applicability of the method is limited to relatively
soft material with not too small loss factors such as rubber [4.10]. The
lowest resonance frequency of the measurement set-up, moreover, must of
course be considerably above the highest frequency of interest. Attention
must also be paid the fixturing of the sample end. Upon applying a clamp-
ing support, the length of the test sample is no longer precisely defined
since also the clamped part of the sample will participate in the deforma-
tion. It is thus advisable to use slender samples where such end effects are
comparatively small. Unfortunately, slender samples are prone to buckling.
If, on the other hand, use is made of short pad-shaped test samples other
problems are introduced. For instance, the cross-sectional contraction of
the sample is impeded at the contact area with the support yielding a lo-
cally enlarged modulus of elasticity. In particular, this effect must be con-
sidered for rubber samples where the Poisson’s ratio is close to 0.5.

The length of the sample imposes a limit on the applicability of this
measurement technique. As shown by Eq. (4.29), the stiffness of a sample
that is clamped at one end is given by ®wZ cot k/. Because k/ = 2nl/A, Eq.
(4.53) ceases to apply if the length of the test sample approaches the longi-
tudinal wavelength or the bending or torsional wavelength, in bending or
torsional tests. From a series expansion of cot A/ one may find that the frac-
tional error due to the finite length of the sample is of the order of k*/*/3.
For a sample whose length is 1/50™ of the wavelength, this error is about
0.5 percent whereas for a sample length 1/10" of the wavelength, the error
amounts to 13 percent.

The method described above has one great advantage; namely, it per-
mits one to change the measurement frequency continuously without
changing the sample. One may thus determine the frequency dependence
of the modulus and of the loss factor without difficulty over the entire
measurement range of the apparatus. This is not the case for all the reso-
nance methods.
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4.4.1.2 Frequency Response Measurements in a Mass-Spring-
Mass Rig

Due to the large difficulties in realizing a rigid support as employed in Fig.
4.9, is commonly used a measurement rig with dynamically free terminals.
The simplest form of such a rig is the mass-spring-mass system. Two ex-
amples of such a rig type are shown in Fig. 4.10. When the masses can be
considered rigid, the spring element comparatively “mass-less” and the
suspension of the rig itself as well as that of any static preload dynamically
free, the equations of motion read

j(’omlyl +%(‘_’1 _l/z):an

(4.55)

Jom,v, +.i(22 -y ) =0.
Jo

This means that all the suspensions are made extremely soft such that there
is no dynamic interference in the measurement range from the support or
preload body.
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Fig. 4.10. Measurement of frequency response functions a,/F, a,/F, or transfer
function a,/a,, in a mass-spring-mass system. @ suspension, @preload and @ pul-
leys

From Eq. (4.55) is obtained

jom, +s/ jo

=F, : ,
£(ml +m2)—0) m,m, (4.56)

s/ jo ’
V2 :EO 2 .
s(m +my)—o’mm,




178 4 Damping

As can be seen, there is an antiresonance at ®; =s/m, which means that
the wvelocity v, vanishes. Also, a resonance occurs at
oy =s(m +m,)/m+m,. At those two frequencies, the dynamic stiffness
can be determined from Eq. (4.56). A more direct way to determined the
dynamic stiffness, however, is obtained via the frequency response func-
tions a;/F and a,/F) or via the transfer functions a,/a,. Introducing a = jov
instead of the velocities in Eq. (4.56) yields

—om l-ma,/F,
’ 1_(m1+m2)gl /Eo ’

1=}

2 ma, | F,
m, ,
1_(7”1 +mz)Qz /F,

2 1
S=0"m

g

(4.57)

21_21/22.

Of the above forms, the last is the most convenient since it only involves
the acceleration ratio and only requires a simple calibration.

The lower limiting frequency is set by the stiffness of the elastic suspen-
sion and 1 Hz is possible without greater difficulty. It should be observed
the losses in the suspension elements should small in order not to influence
the measurements. Such a suspension, for example, can be realized by
means of air springs (balloon). The upper frequency limit is given by the
eigen-frequencies of the masses. which most often corresponds to bending
resonances. It is preferable to try to achieve as symmetric a rig as possible
to avoid rotational oscillations. Advisable is to ascertain the amount of
contamination due to such rotations prior to the actual test or to perform a
modal analysis.

The influence of sample size in comparison with the wavelength, as
mentioned in Sect. 4.4.1.1, is also important for measurements in a mass-
spring-mass rig. It can be reduced by adding the mass of the test sample
proportionally to the two masses.

Which of the three forms in (4.57) is the more suitable depends on the
specific case. In any case is a situation with g, = g, always problematic
with respect to the last form since the difference in the denominator be-
comes small.

The measurement of moduli via transfer functions is due to Fitzgerald
[4.11] who used a specific rig. Hereby, the mechanical quantities are pro-
portional to electrical resistances, accurately determined from a bridge-
circuit.
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4.4.1.3 Vibration Decay

Whereas the previously discussed methods involve measurements of both
stresses and strains, only one variable (usually the strain, velocity, or ac-
celeration) needs to be measured in all techniques based on resonances of a
system. However, these techniques have the disadvantage that one can ob-
tain data at only one frequency, namely the resonance frequency.

A well-known technique of this type makes use of a torsion pendulum
(Fig. 4.11). This technique is often used for measurements on high-
polymer materials at low frequencies, but is not limited to such materials.
To avoid tension of the test sample due to the disc mass, the latter is placed
on top and suspended by a string.
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Fig. 4.11. Schematic arrangement of torsional pendulum

In tests of this type use was earlier made of an optical arrangement con-
sisting of a light source, a small mirror, and recording paper which moves
past a window at a constant velocity. The vibrations are recorded directly
on this paper, and one may, for example, determine the natural frequency
fo directly from the distance between the peaks and the known paper speed.
For higher frequencies, however, electrical measurements are usually em-
ployed. The damping is usually determined in terms of the so-called loga-
rithmic decrement. A, which is defined as the logarithm of the ratio of suc-
cessive maxima. If 4, represents the maximum excursion measured at a
certain time, and if 4,4, represents the maximum excursion at one period
later, then A is defined as
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A=In(4,/4,,). (4.57a)
For small damping, one finds from Eq. (4.24) that
n=A/n. (4.58)
For large damping, inclusion of a correction leads to

Y
J1+(A/2n ) (4:59)

Because A can be determined rather accurately from measurement over
several periods, the vibration decay technique is a simple and reasonably
exact method for the loss factor .

The second quantity of interest, the torsional stiffness 7" of the sample, is
given by

|7] =(21tf")2®(1+ ;\tz j (4.60)

where ® represents the mass moment of inertia of the disc. The absolute
value of the shear modulus is determined from the torsional stiffness and
the dimensions of the sample. For ribbon-shaped test samples, as are often
used,

3/

Gl=GIen =[]~
g | |b3h(1—0.63b/h)’

(4.61)
where / represents the length, /# the width, and b the thickness of the test
sample with 2 > b. (For high-polymers, the German standard DIN 53445
recommends ribbon dimensions / ~ 60mm, /2 ~ 10mm, b ~ 2mm.) For the
relation between torsional stiffness and shear modulus, see also Table 3.1
and Eq. (3.64).

The primary advantage of the torsional pendulum is its great simplicity.
It allows tests at many temperatures in a relatively short time, but suffers
from the disadvantage that with a given sample and disc moment of inertia
® one can obtain data at only one frequency. One can determine the fre-
quency dependence of the modulus only rather inconveniently, by chang-
ing ©, [, b, and h. There is virtually no lower limit for the frequency at
which a torsion pendulum can be used, provided that the large discs that
are needed to produce low frequencies can be made not to load the test
sample excessively. Frequencies of 0.1 Hz are attainable without great dif-
ficulty.
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The highest frequency at which a torsion pendulum is useful depends on
the length of the test sample; for a measurement accuracy of 1 %, this
length must not exceed 1/50 th of the torsional wavelength. Useful data
above 500 Hz are rarely achieved with a torsion pendulum.

4.4.1.4 Resonance Frequency and Half-Value Bandwidth

The various test arrangements, in which the test sample acts as the spring
in a resonant mechanical system, are closely related to the torsion pendu-
lum in principle but differ considerably in configuration. In such set-ups,
which are widely used for testing of fiber mats, foam materials, cork, etc.,
typically one end of the sample is fastened to a rigid support or to a large,
very softly supported mass. To the other end of the sample is attached a
known mass; the mass is excited by an oscillating force, and the velocity
of the mass is sensed by means of a suitable transducer, see Fig. 4.12. By
varying the frequency of the exciting force while holding the amplitude of
the force approx. constant, a resonance frequency f; is observed, and usu-
ally the corresponding half-value bandwidth b can be measured without
great difficulty.

Excitation

Sensor

G
SIS

ST

= Weight for static
[~ 7] preloading, if any

Fig. 4.12. Measurement of dynamic stiffness and loss factor via resonance fre-
quency and bandwidth

The real part of the modulus of elasticity may be calculated from
/
E'=4n zf,fmg, (4.62)

where / represents the thickness of the sample and S its surface area. For a
sample resting on a rigid support, m represents the mass atop the sample.
For a test sample resting on a softly supported mass m, and carrying a
mass my, m is given by m = mom,/(my + m,) cf. Fig. 4.10. When the mass
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of the test sample m, cannot be neglected, a first correction can be made by
adding m/3 to the mass m for a set-up as in Fig. 4.12 whereas the sample
mass is proportionally added to the two masses of the mass-spring-mass
set-up. The loss factor is given by

_b
Tu

To achieve a higher accuracy in the measured loss factor, it is appropri-
ate to plot the velocity ratio |V,/Va, ma|* versus the square of the frequency
shift (Ao)%, cf. Eq. (8.22). In this way a straight line results which slope is
proportional to the decay constant 8, from which the loss factor is obtained
as n = o/wf,.

In order to investigate the properties of the sample at various frequen-
cies, one must change the mass supported by the sample. Quite often it
does not suffice simply to lay additional weights atop the initial one; the
weights must usually be bolted together or rigidly interconnected some
other way, so that the total mass m acts as a single rigid body without
resonances of its own. (One may also preload the sample statically — for
example, in order to investigate the load-dependence of the behaviour of a
foam mat — by connecting additional weights to the weight supported by
the sample via a very soft spring, as indicated in Fig. 4.12.)

Like all measurement methods in which the loss factor is determined
from the half-value bandwidth, the present method is useful only for small
loss factors. If the loss factor is too large, the resonance curve becomes so
flat that the bandwidth no longer can be discerned. In the best case, the
relative error is of the order n%/2.

Again, the range of applicability of the arrangements discussed here is
limited by the sample thickness, which must be much smaller than the cor-
responding wavelength.

Practical difficulties in the use of such test arrangements also arise be-
cause of resonances of the supports and rocking motions of the sample,
caused by unsymmetrical excitation. Both of these effects make it difficult
to measure a single, clearly defined resonance, and thus to determine an
unambiguous stiffness. In addition, care must be taken to ensure that the
excitation system does not introduce extraneous damping. The damping of
samples of materials that contain air (fibre mats or foams) sometimes de-
pends markedly on sample size and geometry. For samples that have only
open pores, one measures the stiffness of only the matrix material if one
uses small samples and low frequencies; the air then is merely “pumped”
in and out. At high frequencies, the air can no longer be moved back and
forth rapidly enough; it then suffers some compression and may make a

n (4.63)
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considerable contribution to the total stiffness. For samples with closed
cells, one cannot distinguish between the stiffness of the material itself and
that of the enclosed air; one can only measure the total stiffness, which —
like that of rubber — depends very strongly on the geometry of the sample.
Such samples may behave much like liquids, i.e., they may exhibit a Pois-
son’s ratio near 0.5.

4.4.2 Measurements on Beams

As was discussed in detail in Chapter 3, on beams are encountered primar-
ily quasi-longitudinal waves, torsional waves, and bending waves. Surface
waves occur only at relatively high frequencies. Thus, one may use the
three aforementioned types of waves for measurements on beams. In prac-
tice, one usually concerns oneself only with bending waves, not only be-
cause these are most important with respect to sound radiation, but also
because they can be excited most easily and most “cleanly” since their im-
pedance is the smallest of those of the three wave types. The available
bending-wave measurement techniques have been develop primarily for
studying damping layers and similar noise control treatments [4.12, 4.13].
These techniques will be discussed in some detail in the following para-
graphs. Techniques pertaining to torsional and quasi-longitudinal waves
will be treated only cursorily.

4.4.2.1 Half-Value Bandwidth

Bending-wave resonances can be measured best on freely suspended
beams, with excitation applied to one end and the resulting vibrations ob-
served at the other, as shown schematically in Fig. 4.13.

Supports.—_
F \:[—Tesr sample
5

- Transducer

%‘ Excitation system

. Amplifier
i

Fig. 4.13. Measurement of flexural resonance frequency and bandwidth
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In this arrangement, the exciter and the sensor are at an anti-node at all
frequencies; one thus avoids the difficulties associated with (frequency de-
pendent) standing waves. Almost any electromechanical system that can
be loosely coupled to the test specimen may be used as an exciter; even the
electro-magnet from an earphone and a razorblade glued to the test beam
will do. The loose coupling is important, because the test sample must not
be damped or loaded by the excitation system. The same also holds for the
sensor system. For very light samples, a capacitative sensor is usually best
(a microphone mounted within 1/2 to 1 mm from the surface of the beam,
in order to sense the airborne sound associated with the vibrations, consti-
tutes an acceptable makeshift device). For large samples, other sensors
may also be used. If the sensor is not to distort the measurements, its mass
must be less than M/30 n, where M represents the total mass of the sample
beam and # is the number of vibration nodes on the beam at the highest
frequency of interest. Thereby, it is presumed that the mass impedance of
the transducer is smaller than a tenth of the point impedance of the beam,
cf. Sect. 5.3.2. One may use a somewhat heavier sensor, if one is not inter-
ested in the exact values of the higher resonance frequencies.

The suspension of the sample must be arranged so that it introduces no
extraneous damping. If the loss factors to be measured are greater than
107, then one usually may obtain acceptably low support damping simply
by suspending the beam from threads in any convenient manner. For
smaller loss factors and light samples, however, one must support the
beam at nodal points, in order to minimize the vibratory energy extracted
from the beam by the suspension system; the supports then must be moved
for different resonances, see Fig. 4.13. Radiation of acoustic energy to the
surrounding air may also contribute extraneous damping which is signifi-
cant if one desires to measure small loss factors (n < 10™). One may re-
duce this radiation damping by choosing the test sample shape appropri-
ately — or, of course, by carrying out the measurements in a vacuum. A
practically simple arrangement is to insert the test sample in an upside-
down-held plastic bag filled with helium, cf. [4.14].

One may determine the complex modulus simply by measuring the
resonance frequencies f, and the corresponding half-value bandwidths 5. A
typical amplitude-frequency curve is shown in Fig. 4.14.
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Fig. 4.14. Experimentally determined vibration response of a free-free beam (with
a thin damping layer; n =~ 2 x 107, frequency dependent)

In view of Eq. (3.111e), the real part of the bending stiffness is found
from

r_ 174 2 64
B'=m'l" f, m (4.64)
and the loss factor from
b
n= 7, (4.65)

where m' represents the mass per unit length of the test beam, / represents
its length such that m'/ is the total mass, » is the number of nodes, which
can be determined by scanning the distribution of vibrations along the
beam.

Equation (4.64) is not exact, because it neglects the slight reduction in
the resonance frequency that is caused by the damping. The fractional error
in the frequency associated with this approximation amounts at most to n/4
(see remarks in relation to Eq. (4.32)), but is never of great importance,
because the resonance method allows measurements of loss factors only up
to about 0.1. This limit stems from the fact that for large losses the vibra-
tion field is no longer resonant. Fig. 4.8a shows that for £"/k" = 0.1 i.e.,
N =~ 0.4, the rise in level hardly becomes more than 3 dB already at the
third resonance. A consideration of high order terms shows that the repre-
sentation of beam vibrations through a resonance curve i.e., the use of Eq.
(4.49) instead of (4.47), is fully inappropriate for £"/ > 1. The fractional
error in 1 is approximately #°n*/5 in other words, if the frequency interval
between resonances is of the same order as the half-value bandwidth, then
one can no longer use this method.
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4.4.2.2 Decay Time

For very small damping, one generally obtains more accurate results by
measuring decay or reverberation times than by measuring half-value
bandwidths. For = 100 Hz and n = 107, for example, the half-value
bandwidth is only 0.1 Hz and thus cannot readily be measured by means of
some simple apparatus. The same arrangement as described in the previous
section may be used for decay measurements. Instead of determining how
the amplitude varies with frequency in the vicinity of resonances, however,
the decay of the vibrations is observed after the excitation is suddenly
turned of. As is evident from Eq. (4.24), energy decay may be described by
the function €™, Thus, the reverberation time 7 (within which the energy
of the vibration is reduced to one millionth of its initial value) is measured
as in room acoustics, and the loss factor is determined from the relation

_In10° 22
ol [T’

(4.66)

which follows from Eq. (4.24). One may, of course, also measure any
other parameter that characterizes the decay process, instead of the rever-
beration time 7, and compute 1 from it.

If only the loss factor is of interest and not also the bending stiffness,
then only the reverberation time need be measured, for example, resulting
from exciting the test sample by hammer impacts. In order to determine
the frequency dependent of the loss factor, one must then filter the electri-
cal signal picked up by the sensor. This measurement process does not
yield particularly accurate results, because two or more natural vibrations
with different decay times may lie within a filter bandwidth, leading to
broken reverberation curves, from which the loss factor cannot be deter-
mined uniquely.

Irregularities in decay processes may also occur with periodic excitation
namely, if the excitation frequency does not quite coincide with the natural
frequency, see Fig. 4.15. Equation (4.24) was derived under the assump-
tion that only one energy reservoir is present. If this is not the case, e.g., if
two types of waves or several natural vibration modes are excited simulta-
neously as occurs with off-resonance excitation, then it may happen that
mechanical energy is not only changed to heat, but also exchanged back
and forth between two or more energy reservoirs, leading to rather remark-
able decay curves.
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Fig. 4.15. Experimentally observed decay process near a resonance frequency of
150 Hz

In principle, reverberation time measurements are applicable up to rela-
tively high values of the loss factor . However, because of the inertia of
the usual instrumentation, this technique generally is useful only for small
damping.

4.4.2.3 Attenuation of Vibrations with Distance

In the limiting case of very long, highly damped beams, wave propagation
occurs as on infinitely long beams. The velocities (or acceleration) at the
two points x, and x; are related by

v, = Yoe*f/i('*o —6) _ Yoe*k"(/*o*xl)e*!'k'(-fn*-“l). 4.67)

Thus, the phase difference between these two points is given by

2n

0, :k'(xl —)CO)ZT(X1 —xo), (4.68)

where A represents the wavelength, and the reduction in amplitude obeys

2
V,
In 22 Np = IOIOngB =8.7k"(x, - x,)dB. (4.69)
v Y
By measuring the phase and the amplitude reduction one may therefore de-

termine the real and imaginary parts of the wave number.
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For damping that is not extremely high, one may obtain the real part of
the bending stiffness from

4
B :(Dzm'le :mzm'(uj (4.70)
Doy
and the loss factor from
k" DL\
=4?= 1336, 4.71)

where Dj represents the reduction in vibration level in decibels per unit
length, that is, (x, —x,) D}, = 1010g[|v0|2 /|v1 |2]dB .

In order to carry out this measurement, one typically excites the test
beam at one end and scans the vibrations along the rod with a movable
sensor as depicted in Fig. 4.16.

(signal generator)

Oscilloscope

Ampﬁﬁe;‘—' Recorder |

Movable sensor

Sand

Fig. 4.16. Scanning of propagating flexural waves for measurement of wavelength
and damping

If one moves the scanning sensor along the beam at a constant velocity,
then one may determine Dj,, and thus k", directly from the slope of the re-
corded vibration level. Measurement of the phase difference may be ac-
complished simply by feeding the exciting voltage and the signal from the
sensor to the two perpendicular pairs of plates of an oscilloscope and by
marking on the test beam the points at which the phase difference with re-
spect to the excitation amounts to 180° or 360°. Naturally, the phase can be
registered directly also by means of a two-channel signal analyser.
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Suspension of the test sample and attachment of the exciter is relatively
uncritical for this type of measurement, but the scanning sensor must be
relatively light. It is usually useful to embed one end of the beam in sand
or some similar material, in order to reduce the reflection of waves from
the end of the beam.

If reflections at the end and the associated standing waves are not elimi-
nated, then the amplitude attenuation is not given by e **, but by the ex-
pression in the numerator of Eq. (4.48). In that case, the amplitude maxima
lie on a curve given by[costh"(Z—x)H]% =2 coshk"(I—x), while the
minima are given by v2sinhk"(/~x) . From these two conditions, one may
determine k", and thus n.

The technique of measuring the level reduction with distance along the
beam generally yields acceptably accurate results only for nk'7 > 10 . With
a good sand termination, the limit may be somewhat lower. On the other
hand, the half-value bandwidth method is only good up to aboutnk’7 =2,
see also Figs. 4.8a and 4.8b. In the range between these two limits, one
thus needs to vary the length of the test sample somewhat, in order to be
able to use one or the other of these two methods.

4.4.2.4 Other Methods

The previously described methods for determining the elastic properties of
beams vibrating in flexure are not the only possible ones. For example, one
may also find the loss factor by measuring the frequency interval between
response maxima and minima, the distance between the nodes of standing
waves, or the mechanical driving point impedance. However, all of these
methods have greater disadvantages than those described in detail above,
and thus are useful only in special cases.

For quasi-longitudinal waves and torsional waves, which so far have
barely been mentioned, one may also use half-value bandwidth, reverbera-
tion time, and spatial amplitude attenuation measurements. It should be
noted that for such waves there applies the relation 1 = D’ A/27.2 instead
of Eq. (4.71). The same error estimates apply here as before. Care must be
taken in all cases that the correct wave form is excited and measured. Par-
ticularly for inhomogeneous beams, it is very difficult to avoid exciting
several wave types simultaneously, even if symmetry is carefully main-
tained. Measurements on quasi-longitudinal and torsional waves are gener-
ally used for very lightly damped media because of the very small associ-
ated radiation damping and at high frequencies in view of the large
associated wavelengths.
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4.4.3 Measurements on Other than Beam-Like Samples

On samples in the shape of plates, rings, cylinders, and the like, one can
carry out measurements of the resonance frequencies, half-value band-
widths, and reverberation times much like on beam-shaped samples. How-
ever, evaluation of the results is somewhat more difficult, because simple
formulas for the resonance frequencies are available only for circular and
simply supported rectangular plates, and for rings. For all other configura-
tions, one must use approximate equations for determining the modulus of
elasticity from the resonance frequencies. Equations (4.65) and (4.66) ap-
ply to the evaluation of the loss factor from the half-value bandwidth, re-
verberation time, or decay constant, for test samples of any shape. Because
the resonance frequencies of plate or shell samples are more closely spaced
than those of beams, and are often distributed rather irregularly, one must
take particular care to ascertain whether the interval between resonances is
greater than the half-value bandwidth. Cylinders and long narrow plates,
for example, exhibit a kind of band structure with clusters of resonance
frequencies. The complicated distribution of the nodal lines, also often
makes it difficult to find appropriate measurement points.

Curved test samples involve additional difficulties, because some of
their modes may be much more strongly damped than others. In cylinders,
waves which propagate in the axial direction tend to be less strongly
damped than circumferential ones. For such samples one must either un-
dertake the tedious process of determining all resonance frequencies and
studying the frequency variation of the loss factor in full detail, or one may
obtain a general view of the behaviour of the loss factor by exciting the
test sample with third-octave or octave band noise and determining the re-
verberation times in these bands. The latter technique, which is analogous
to reverberation measurements in room acoustics, is particularly well
suited for samples with very many resonances. It is also useful for cases
where there exists strong coupling between the various wave types, due to
inhomogeneties and the like.

Yet another possibility relies upon measurements of the input power to
the specimen and its spatial average velocity. This implies the determina-
tion of force F (¢) and velocity v (¢) to magnitude and phase at the point of
excitation. The product F' (7) - v () e.g., determined from the cross-spectral
densities, represents the power fed to the object and thus the dissipated
power under stationary conditions. With a test sample mass m, the energy
is E=1/2m< |v|2 >, assuming a resonant response. For not too large damp-
ing, this energy approximates the reversible energy and Eq. (4.22) can be
used to estimate the loss factor as
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4.5 Experimental Data

In the literature, material damping is characterized by several different pa-
rameters. The relations among the most important damping parameters are
given in Table 4.2, in order to facilitate conversion from one to another.
Most of these equations apply only for n < 1.

Table 4.3. Mechanical properties of metals at 20°C

Material Density Modulus  Shear Poisson” ¢ Ccr Loss Factor Remarks
kg/m3  of Modulus s Ratio m/s  m/s
11311/“:‘1210“)' N/m2 Flexural Longitudi
nal
Aluminium 2700 72 . 100 27100 0.34 5200 3100 (3-10-10° =104 [4.19, 20, 24]
Lead 11300 17100 6.109 0.43 1250 730 5.30-10° = 2.102  [4.19] chem.
ure
1-4.10- l[34.19] Antimon

Iron 7800 200100  77.109 0.30 5050 3100 1-4-10*  2-6-104 [4.19,21,24]
Steel 7800 210100  77-109 0.31 5100 3100 (2-3-10*

Gold 19300 80 - 100 28.100 0423 2000 1200 =~3.10™* [4.23]
Copper 8900 125.109 46.10° 0.35 3700 2300 2-10° ~2.103  Polycrystal

2-7.10+4 single crystal

Magnsium 1740 43.100 17109 029 5000 3100 =104 [4.24]

Brass 8500 95 . 100 36.100 0.33 3200 2100  0.2-1.103 <103 [4.19]
Nickel 8900 205.100 77.109 0.30 4800 2900 <103 [4.24]

Silver 10500 80 . 100 29.100 0.37 2700 1600  =4.104 <3.103  [4.22,23]
Bismuth 9800 3.3.100 1.3.100 0.38 580 360 ~8.104 [4.24]

Zinc 7130 13.1.100 5.109  0.33 1350 850 =3.104 [424]

Tin 7280 4.4.100 1.6.100 039 780 470 =20.104 [4.24]
4.5.1 Metals

Although the density, modulus of elasticity and Poisson’s ratio of metals
and thus also the sound speed in metals, are relatively independent of the
load history, duration, frequency, etc., that is by no means the case for the
loss factor. Numerous and extensive investigations have shown that the in-
terior damping of a metal is strongly affected by relatively small changes
in the structure of the metal, such as may be caused by cold rolling, heat
treatment and irradiation [4.5, 4.15]. The loss factor of a metal therefore
cannot be considered as a material constant. On the contrary, measure-
ments of the loss factor may be used to detect small structural changes.
Such measurements are often employed in practice and constitute one ex-
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ample of how acoustical measurement techniques may be of great value
for metallurgical and solid-state physics investigations. Thus, the loss fac-
tor values given in Table 4.3 only provide an indication of the appropriate
order of magnitude. (It is an interesting historical fact that very simple
measurements on torsionally vibrating wires have long been used to detect
fatigue effects) [4.16].

The physical processes that produce the damping of metals are very in-
tricate and not yet fully understood. In addition, it is not at all easy to
measure the often very small loss factors, so that some of the values given
in the literature do not represent the losses in the material under investiga-
tion, but those due to the measurement apparatus (support, excitation sys-
tem, etc.) or due to sound radiation (particularly for bending waves).

The primary mechanisms responsible for the damping of metals are as-
sociated with dislocations in the crystal lattice and with heat conduction
between differently strained regions. Investigations concerning dislocation
processes [4.16—4.19] are still ongoing, but interpretation of the heat con-
duction phenomena is relatively well in hand. It merely involves tempera-
ture changes produced by strains and the resulting heat conduction and the
classical equation of heat conduction and linear thermo-dynamic relations
apply.

Upon carrying out the corresponding analysis [4.5] it is found that the
damping due to heat conduction appears as a relaxation process. Thereby,
the relaxation times are

t=(1/2r) Cp/A,

472
t=(hin) C,p/A, (4.72)

for the longitudinal and bending waves respectively. Herein, C, is the spe-
cific heat, A the thermal conductivity, p the density, A longitudinal wave-
length and / the plate thickness. With numerical values introduced, where,
for most metals C,p/A ~107, it can be established that some damping oc-
curs at low frequencies for bending waves, typically below 200 Hz, and in
the ultrasonic range for longitudinal.. The effect, however, is always small.
At }he relaxation maximum ot = 1, the loss factor is merely of the order of
10

The damping process associated with heat conduction is readily inter-
preted by recognizing that a material is cooled by an extension and heated
by a compression. Thus, when the period is too short to allow for a com-
plete equalization of temperature — isothermal case — but too long to real-
ize ideal adiabatic conditions, then there is a small energy remainder which
serves to heat the material. The fact that the wavelength appears in Eq.
(4.72) on the one hand and the plate thickness on the other, stems from the
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distance between elongated and compressed structural regions i.e., cool
and hot zones for the two wave types respectively. For the longitudinal
wave those zones are typically half a wavelength apart whereas the thick-
ness of the structure separates them in bending.

The damping of bending waves due to heat conduction, has repeatedly
been verified experimentally. However, it appears that the measured damp-
ing values agree with the theoretical ones only in the vicinity of the relaxa-
tion maximum. At higher frequencies, other damping mechanisms (heat
conduction between individual crystals, dislocation processes, etc.) tend to
predominate. These other mechanisms are responsible for the values given
in Table 4.3, obtained under “normal” conditions.

With the exception of lead, tin, silver and copper, the loss factors of
metals in general are considerably smaller than 10~

For built-up structures such as machines and vehicles, the differences in
the damping of materials are of little importance. The actual damping of
such structures is not determined by the losses in the materials, but by fric-
tion at supports, interfaces, connections, etc., see Sect. 4.8.

4.5.2 Plastics

Because damping measurements have long been used as a tool in investi-
gations of high-polymer materials, and because such materials are very of-
ten used as damping treatments, a separate discussion of this group of ma-
terials is justified. The mechanical properties of amorphous high polymers
characteristically exhibit a very broad transition region between the rigid
and the liquid state. In this transition region, the long and possibly cross-
linked chains of molecules become increasingly mobile, and there occur
relaxation mechanisms which lead to loss factors up to n = 10. The moduli
of elasticity and the loss factors of such materials depend very strongly on
temperature and frequency. Thus, complete description of the mechanical
properties of such a material involves, for example, curves that show the
frequency dependences of these properties at various constant tempera-
tures. An example of such a set of curves, taken from Becker and Oberst
[4.24], is shown in Fig. 4.17.
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Fig. 4.17. Dependence of modulus of elasticity and loss factor of polyvinylchlo-
ride on frequency and temperature, [4.24]

Figure 4.17 illustrates the fact that the loss factor is greatest where the
modulus of elasticity changes most rapidly with frequency. This sort of
behaviour is exactly what one expects for a relaxation process in view of
Egs. (4.4) and (4.5), cf. Fig. 4.2a and Table 4.1. The fact that in reality
there are present a multitude of relaxation processes, and not just a single
one, does not affect the foregoing considerations.

Several other “laws” apply to amorphous high polymers, in addition to
the relation between the loss factor and the frequency dependence of the
modulus of elasticity. The most important of these laws are briefly de-
scribed below.

All plastics have a so-called “freezing” point, below which their proper-
ties are much like those of glass. This freezing point or glass-transition
temperature is not uniquely defined. It increases with increasing frequency,
as evident in Fig. 4.17. Below the glass-transition temperature, most high
polymers have a modulus of elasticity of about 5 - 10° N/m”, and a rela-
tively small loss factor, usually less than 0.1. Plastics therefore are not
suited for damping applications below their transition temperatures.

Above the glass-transition temperature, there occurs a more or less
broad temperature region — the so-called “rubber-elastic” region — in which
plastics behave neither entirely like solids, nor like liquids. Because plas-
tics exhibit rather high loss factors in this region, see Table 4.4, it is this
region that is best for damping applications. The moduli of elasticity in this
transition region are of the order of 10° to 10’ N/m® for “linear” materials
that is, for materials with long non-cross-linked molecules. For cross-
linked materials, the moduli are of the order of 10®* N/m* The modulus of
elasticity of plastics which is of importance for damping layer treatments
may be increased somewhat by the addition of fillers e.g., vermiculite. By
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Table 4.4. Loss factor and modulus of elasticity [N/m”] at maximum damping for
some high-polymers

Polyvinylchlorid

n=18 E=3-10 at 92°C and 20 Hz
(pure)
Polystyrene n=2.0 E=30-10 at 140°C and 2000 Hz
Polyisobutylene n=2.0 E=0.6-10" at 20°C and 3000 Hz
Nitrile Rubber n=0.38 E=33-10 at 20°C and 1000 Hz
Hard Rubber n=1.0 E=20-10 at 60°C and 40 Hz
Polyvinylchlorid
with 30% plasti- n=0.8 E=2-10 at 50°C and 100 Hz

cizer

this, materials with loss moduli up to about E” = E" =10° N/m’ can be ob-
tained.

In addition, one may obtain significant changes in the temperature-
variations of the properties of plastics by adding “plasticizers”. One may
thus expect in principle to be able to obtain materials with optimised
damping behaviour over prescribed temperature and frequency regions, by
using appropriate combinations of cross-linked polymers, fillers, and plas-
ticizers. However, both experience and theoretical considerations [4.25,
4.26] show that the temperature region in which the loss factor is high that
is, the “temperature bandwidth” decreases as one increases the maximum
loss factor. The variations of the loss factors with frequency behave simi-
larly; the higher the loss factor, the smaller the bandwidth.

But there is more to the relation between the temperature and frequency
variations. It was shown, particularly by Williams, Landel and Ferry
[4.26], that in the transition region a temperature increase (at constant fre-
quency) corresponds approximately to an increase in the logarithm of the
frequency (at constant temperature). Thus, an increase in temperature, a
reduction in the frequency, and addition of a plasticizer all have the same
qualitative effect. All three changes reduce the modulus of elasticity, and
all either increase or decrease the loss factor, depending on where one be-
gins in relation to the position of the loss factor peak.

It should also be pointed out that in most cases the shear modulus is ap-
proximately 1/3 of the modulus of elasticity, and that the loss factor in
shear differs only negligibly from that in tension and compression.

Beyond the rubber-elastic region, there occurs the plastic, and finally the
fluid region. In these regions, any loading results in permanent deforma-
tion, and the moduli of elasticity become so small that materials in these
regions are neither suitable for structural applications, nor for optimal
damping treatments.
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4.5.3 Building Materials

Other materials, besides metals and plastics, also are important in practice.
Table 4.5 lists the moduli of elasticity and loss factors of several such ma-
terials in the audio-frequency range. The indicated values are useful only
as guidelines, because the mechanical properties of material like concrete,
asphalt, brick, etc. are known to depend strongly on their composition and
on how they are made.

One may note that the loss factor in very many cases is of the order of
102 Thus, this value may be used as a rough estimate for building struc-
tures, as well as for sheet-material structures.

Table 4.5 Mechanical properties of building materials

Material Density Modulus of elas- ¢y m/s Loss factor Remarks
kg/m’ ticity N/m?

Asbestos con- 2000 28 -10° 3.7-10° 0.7-2-102  23°C, 10% Soft

crete Bituminous con-
tent

Asphalt 1800-2300  7.7-10° 19-10° 0.38 13°C, 11% Soft

12-10° 24.10° 0.21 Bituminous con-
21-10° 32-10° 0.055 tent

Oak 700-1000  2-10-10° 1.5-3.5-10° ~1-107 13°C, 8.5% Hard
Bituminous con-
tent

Fiber mats, in- 50-300 1.4-3-10° ~0.1

cluding matrix

and air stiff-

ness

Fir 400-700 1-5-10° ~25-10° ~8-10° [4.12]

Felt 0.03-10° ~6-107

Gypsum board 1200 7-10° 24-10° 6-10° [4.32]

Glass 2500 60 - 10° 49.10° 0.6-2-10°  [4.32]

Pressed-wood ~ 600-700 46-10° 2.7-10° 1-3-10?

panels

Plaster 1700 44.10° 1.6-10° 2-5-107

Cork 120-250 ~0.025 - 10° 0.43-10° 0.13-0.17

Light concrete 1300 3.8-10° 1.7-10° 15-10° [4.32]

Plexiglas 1150 5.6-10° 22-10° 2-4-107

Porous, con- 600 2.10° 1.7-10° 1-107 [4.32]

crete

Sand, dry ~ 1500 ~0.03 - 10° 0.1-0.17 - 10°  0.06-0.12 [4.31]

Dense concrete 2300 26 - 10° 34-10° 4-8-10° [4.28.4.31]

Plywood 600 5.4-10° 3-10° ~13-107 [4.28.4.21]

Brick 1900-2200 ~16-10° 2.5-3-10° 1-2- 107 [4.28.4.21]
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4.6 Plates with Attached Layers

Whereas previous discussions dealt with more or less homogeneous mate-
rials, the discussion to follow deals with very inhomogeneous arrange-
ments. Plates with attached layers, in particular, are of great importance for
practical noise control applications. Typical configurations usually consist
of a base plate (usually of metal), to which are attached one or more layers
of a viscoelastic (e.g., a high-polymer) damping material and possibly ad-
ditional metal plates. Such systems essentially result in a “division of la-
bour”, where the metal plates contribute the necessary strength and the
damping material produces desirable structure-borne sound properties.

It is important to note that the loss factors of plates with attached layers
may differ greatly for different types of loading. It is therefore important
that one knows for which type of loading a given loss factor applies. The
case of a plate with a simple attached layer, as discussed in the next sec-
tion, illustrates how the loss factor for longitudinal waves differs from that
for bending waves for such a configuration.

4.6.1 Plates with Simple, Extensionally Loaded Layers

A simple means for increasing the damping of metal plates consists of at-
taching to them a so-called damping layer. The loss factor obtained by this
means may be determined simply by referring to the definition in Eq.
(4.22). For the case of quasi-longitudinal waves, the reversible mechanical
energy is composed of the maximum potential energies in the basic plate
and in the attached layer. The total reversible energy, in view of Eq. (3.6),
thus is given by

1, NP3
I :E(Eld] +Eld,) %

W, =%(E]'d] + Eyd, e (4.73)

where  represents the maximum displacement during a period, E/ and d,
represent the real part of the modulus of elasticity and the thickness of the
basic plate, and E; and d, represent these properties of the attached layer.
Herein and in the following is considered the energy per unit area and to
avoid confusion, W is introduced.

If the losses of the base plate are negligible, then, in view of Eq. (4.21), the
energy transformed into heat per cycle of vibration may be found to obey

a4
dx
Thus, the loss factor ), for longitudinal loading is given by

2

Wd[xs = nnZEZVdZ . (4 733)




198 4 Damping

_ Wdiss _ E2’d2
Vo, TV Ed +Ed, (4.74)

As one may note, this loss factor is proportional to the loss modulus n,E; .
For the best material known so far, thls quantlty has a value of about 10°
N/m’. For sheet steel with E; =2 - 10 N/m one finds that for d| = d, the
loss factor amounts only to 1, ~ 5 - 107, Thus, quasi-longitudinal waves
are very difficult to damp, unless they can be converted into other types of
waves.

In the case of bending waves, which is considerably more important for
sound radiation, the attached layer also deforms primarily in extension, as
shown in Fig. 4.18. If &), represents a displacement at the centre line of the
attached layer, then the energy per unit area transformed into heat in one
cycle is given by

g, |

=mn,E,d, e

dzss

(4.75)

5%
1_ ——
T A\

X \\‘dsmpr’ng layer
neutral layer

base structure

damping layer
neutral layer
base structure

Fig. 4.18. Flexure of beam with viscoelastic layer

The reversible mechanical energy in bending, according to Eq. (3.92b),
may be expressed as
dm ’
dx’

B/

ox

(4.752)

W, =

1 g
2 2
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where B represents the bending stiffness of the combined system consist-
ing of the plate and the attached layer, and P represents the angle of flex-
ure. If a denotes the distance from the neutral fiber to the centre-line of the
attached layer, then &), = aff. Thus, the loss factor np for bending waves
obeys

w

diss

Eid,a’
7

N =

RET (4.76)

2
This expression contains the two quantities, @ and B, that must still be
evaluated. As an approximation [4.33] one may take a = (d, + d,)/2, that is,
one may assume « to be approximately equal to the distance from the mid-
dle of the basic plate to the middle of the attached layer, cf. Sect. 4.6.3.1.
One may approximate B as

3
:a?+@@f, (4.76a)

B

where the second term is of importance only for relatively thick attached
layer (dz > d])

Figure 4.19 shows the dependence of the loss factor ratio nz/m, on the
thickness ratio, based on the exact analysis of Oberst [4.12]. Also shown in
this figure are points for E,/E, =3-107 . Clearly, Eq. (4.76) is a very good
approximation.
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Fig. 4.19. Loss factor of beams or plates with single visco-elastic layer, after
Oberst. Points show values calculated from the approximate relations, Eqs. (78)
and (78a) E} /E, =3-107 .
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It is interesting to note that the loss factor for bending waves is inde-
pendent of frequency, as it is for longitudinal waves, but that it is consid-
erably higher for bending waves. Whereas for Em, =10° N/m’, d; = d, and
E,=2-10" N/m’ it was previously found that the longitudinal-wave loss
factor is 1, ~ 5 - 107, for the same configuration and materials the loss fac-
tor for bending waves turns out to be 1z ~ 5.5 - 107 — thus, more than 10
times greater.

Experimental measurements made on plates with attached layers have
been found to be in good agreement with Fig. 4.19. Therefore, these rela-
tions may also be used for the design of damping treatments. As one may
note, the total damping increases with increasing values of the product
En, and with increasing thickness 5. The damping layer therefore should
not only be thick and have a high loss factor, it should also have as high a
modulus of elasticity as possible. Soft materials, such as felt or soft rubber,
thus are not well suited for structural damping. Useful damping materials
generally consist of filled high-polymer plastics, with moduli of elasticity
greater than 10° N/m” and with as high loss factors as possible.

Beside the previously discussed parameters, the separation distance a
(see Fig. 4.18) also plays a significant role. Clearly, one should make a as
large as possible. One can accomplish this either by increasing the thick-
ness of the attached layer, or by using a “spacer” between the attached
layer and the basic plate, Fig. 4.20. That an increase in the thickness of the
attached layer increases the separation distance is obvious; the foregoing
considerations also imply that one obtains the greatest amount of damping
from a given thickness of damping material by applying it to only one side
of the basic plate. The aforementioned spacer [4.34] essentially acts so as
to amplify the motion of the basic plate, by a lever action. Ideally, the
spacer should be an interlayer with a very high shear stiffness. (One typi-
cally uses a metal honeycomb structure as a spacer.) Use of a spacer in-
creases the distance a by the thickness of the spacer, and consequently in-
creases the loss factor considerably. If the spacer does not have a very high
shear stiffness, then the increase in the loss factor is less.

A

a

“ ' damping layer
spacer
neutral layer
base structure

Fig. 4.20. Spacing layer for increasing the effect of a visco-elastic layer
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4.6.2 Plates with Multi-Layer Treatments

It has become common practice to damp plate-like structures by attaching
a layer of viscoelastic material and placing atop that layer a secondary
“constraining” plate of structural material. Such arrangements are often ob-
tained in practice by use of so-called “damping tape” (a self-adhesive, rela-
tively thick metal foil, where the adhesive is a viscoelastic material) or in
sandwich configurations which incorporate an interlayer of a highly dissi-
pative plastic material. Also conceivable are many other “constrained
layer” configurations, with or without spacers, see Fig. 4.21. In all of these
constrained layer configurations, the viscoelastic material is subjected pri-
marily to shear loading (see Fig. 4.22) caused by the covering plate
extending less than the upper surface of the basic plate. The associated dis-
placement difference &, gives rise to the shear angle y, = &,/d,. By analogy
to Eq. (4.21), one finds that the energy (again per unit area) that is changed
into heat within the viscoelastic layer in one cycle is given by

&

2

w , 4.77)

diss

=mn,G,d, |Y2|2 =mn,G,d,

2

where G, represents the shear modulus of the middle layer.
The reversible strain energy here, as previously, is given by

2

w,~LpldB =%Bk2|[3|2, (4.78)

2 |dx

where B represents the flexural stiffness of the entire composite plate, and
is made up of several parts, as will be discussed later.

\

Dvisco-glastic ~ SPacer

Ty S S
esenos =

Y

-
visco-elastic
layer

Fig. 4.21. Various configurations in which viscoelastic materials act in shear
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The x-differentiation indicated in Eq. (4.78) may be carried out easily
for the case where the entire composite plate vibrates only in flexure, and
where the wavelengths of the motions of the two plates and of the inter-
layer all are the same. For the case of plane waves, from which one may
obtain any desired waveform by superposition, the x-dependence of all
motions is given by e’*. Here k ={w’m'/B is the bending wavenumber,
which depends on the total mass and total bending stiffness of the compos-
ite plate.

The loss factor of a composite plate, in which the energy losses are due
primarily to shear of a viscoelastic interlayer, may be found from Egs.
(4.77), (4.78) and (4.22) to be given by

Gyd, v, '
" BB

2
n=n | (4.79)

This equation still contains two unknown quantities, the flexural stiffness
B of the composite plate, and the ratio of the shear angle y, to the angle of
flexure B. These two quantities are determined below for two special cases.
Even without further analysis it is clear that the damping is enlarged by in-
creasing the ratio y,/p.

4.6.2.1 Stiff Base Plate with Thin Cover Plate

If the damping treatment added to a plate is thin e.g., a damping tape, one
may approximate the bending stiffness of the composite by that of the ba-
sic plate and take the extension of the viscoelastic layer as af3, see Fig.
4.22. If one takes into account that the shear forces cause the cover layer to
extend by an amount &;, then one finds that the shear angle y, obeys

dy, =&, =ap -¢;. (4.80)

One may determine &; from the force Gy, that acts on the cover plate and
the restoring force in this plate which extends longitudinally. By replacing
the inertia force in Eq. (3.3) by the shear force and using Eq. (3.2), one ob-
tains

d2
Ed L2 =Gy, (481)
X

where E; represents the modulus of elasticity of the covering plate.
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Fig. 4.22. Deformation of viscoelastic layer between two plates

Since differentiation with respect to x again is equivalent to multiplica-
tion by k, one finds from Eqgs. (4.80) and (4.81) that

1
s G (4.82)
E,d,d,k*

h_a
p 4

Note that the complex modulus G, =G, (1+n,) appears above, and not
the real part G, of the shear modulus, as in Egs. (4.77) and (4.79). By sub-
stituting Eq. (4.82) into (4.79), the loss factor of the composite plate can be
written as

E3d3a2gd
=N, : 3 4.83
B|1+(1+m2)gd| ( )
in terms of a so-called “shear parameter” g, defined as
I 4.84
8 S Edd i (4.84)

where index d denotes that the covering plate is thin. The shear parameter
also may be expressed as

G, B G\’
= AR 4.84
8 Eddo\m ~ an’Edd, (4.842)
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where A represents the bending wavelength of the composite plate. One
may note that g, and therefore also the loss factor of the composite plate,
depends on the frequency. In contrast, the loss factor of a plate with a sin-
gle damping layer was found to be frequency independent. The variation
of the loss factor with frequency, as obtained from Eq. (4.83), is shown in
Fig. 4.23. As one may observe, there occurs a maximum in the damping.
The frequency at which this maximum is obtained is found to obey

G\l :
o = +n2\F 10“dG 14m2 (4.85)

= +n7,
o Edd 22 dd, E, i

where ¢, represents the longitudinal wave speed in the base plate.
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Fig. 4.23. Frequency dependence of loss factor of constrained-layer system

Since ¢,, ~5-10° m/sec for metal plates, the shear modulus of the inter-
layer must be much smaller than the modulus of elasticity of the covering
plate, if the frequency corresponding to the damping maximum is to lie in
the 100 to 1000 Hz frequency region or primary interest. The decrease in
the damping on both sides of the maximum occurs relatively slowly such
that the “half-value bandwidth” amounts to about 5 octaves.
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There is another important difference between single-layer and multi-
layer damping treatments, in addition to the frequency dependence dis-
cussed above. Whereas for a single-layer treatment the damping is propor-
tional to the product n,E, (see Eq. (4.76)), the damping of multi-layer
treatments does not vary as the product n,G, . In fact, Eq. (4.83) indicates
that the shear modulus G, does not affect the magnitude of the loss factor
maximum. G, only determines the frequency at which this maximum oc-
curs. In selecting viscoelastic materials here, one thus may primarily ig-
nore the magnitude of G, , and only choose a material with the largest pos-
sible loss factor m,. Even relatively soft plastics with n, > 1 may be used
effectively, see Table 4.4.

The maximum damping, obtained at the optimum frequency, is given by

_ E3d3a2 N,

Mo == 2@+Jﬁﬁ?y (4.86)

For thick base plates for which B ~ E; d,*/12 and thin covering layers
for which d, >> d,, d, >> d; and a = d,/2, Eq. (4.86) reduces to

_ 3 E3d3 n2

nw—?a¢@+ﬁj¥) (4.86a)

The greatest loss factor obtainable with n, = 2 (larger values are extremely
rare) is about 0.9 E; d5/E, d;. By choosing appropriate dimensions, ap-
proximately 80 % of this is obtained over a rather wide band of frequen-
cies. The “appropriate dimensions”, however, vary for different base plates
and must be calculated separately for each special case.

An increase in the temperature results in a decrease in G, and thus in a
lowering of the frequency at which maximum loss factor occurs.

4.6.2.2 Thick Plates with Thin Interlayer

The formulae derived in the previous section giving a loss factor propor-
tional to E3d; are valid in cases where the top layer is thin and does not no-
tably affect the compound bending stiffness. When this is not the case the
formulae must be modified. Since the development is principally the same,
reference is made to the literature [4.35]. The problem, moreover, is
treated from another aspect in Sect. 4.6.3.2.

For the interpretation it is suitable to introduce a geometry and a shear
parameter i.e.,
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1 B+B( 1 1
—= +
A [Eldl E.d, j (4.87)
and
G (1 1
= +
S (Eldl E.d, ] (4.87a)

respectively, the latter of which is analogous to that in Eq. (4.84). Herein,

By and B; are the unassembled bending stiffnesses of the base and top

plates respectively and a = d, + (d, + d5)/2 the distance to the neutral layer.
With these parameters, the loss factor of the system reads

n=n gh
- . : 4.88
2|1+(1+mz)g|2+gh[g(l+n§)] (4.88)
Since
G, a’
h=—2 —
g 4 BB (4.88a)

the analogy to (4.83) is evident. Similarly, the frequency for damping
maximum is obtained by introducing

1 1
Eopt = m m (489)
and the maximum by
hgo !
Mo =M 3 (4.89a)

2(1+8,, )+ g,

It is readily confirmed that the expressions for a thin top plate are regained
for h <<1.

For the application of the expressions in (4.88) and (4.89) there is one
difficulty, which relates to bending stiffness of the assembled system, re-
quired for the bending wavenumber in Eq. (4.87a). Although the complex
bending stiffness can be explicitly written as

gh ,
§=(31+B;)[1+1;—g];g=g(l+mz), (4.90)

the difficulty is not removed since g is required involving k&, which in turn
depends on B. It would be possible to calculate & directly (see Sect. 4.6.3)
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but this implies high order polynomials and hence an iterative procedure
appears easier. This means that &* is approached by using B = B, + Bs or
the bending stiffness from g = g, as the initial value. For the special case
of two equal plates i.e., £} = E5 and d| = d5 >> d,, the geometry parameter
is approximately ~ ~ 3 and thence

3
N, =N, ——F—=—=<0.75. 491
" T seaflen? @91

50 100 200 400 809 1600 Hz 6406
i
Fig. 4.24. Experimentally observed loss factors of a sandwich plate and of a plate
with a simple layer (d»/d, = 2.5)
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Fig. 4.25. Loss factors for a damping layer constrained by a segmented top plate.
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This optimum is attained at a frequency, which is a factor four higher than
that given by (4.85).

Measurement results for two plate configurations are shown in Fig.
4.24. Although the three-layer configuration exhibits an increased loss fac-
tor for a wide frequency band in comparison with that of the single-sided
damped plate, the marked reduction towards low frequencies is often per-
ceived as a disadvantage. Fortunately, this is relatively simply remedied by
means of a top plate consisting of short strips. In [4.36, 4.37] is shown that
such strips lead to larger shear than the corresponding all-covering top
plate and thereby an enhanced low frequency damping. The most suitable
strip length is /= 3.3/a. where o is defined in Fig. 4.25.

In summary, one may thus conclude that three-layer plates are well
suited for damping of structure-borne sound when the interlayer is devel-
oped for shearing action and the thicknesses and material properties, in
particular G, and 1), can be optimised such that the loss factor maximum
covers the interesting frequency range. By segmenting the top plate, the
performance at low frequencies can be improved.

For equal weight, the loss factors of the three-layer plate and the single-
sided damped plate are approximately equal when the best commercially
available materials are used in both cases. An interesting advantage of the
three-layer configuration is the high bending stiffness at low frequencies,
which for equal Young’s moduli of the two plates can be approximated by

BzéE1 (d+d,) ;g >>1. (4.92)

For high frequencies, on the other hand, following Eq. (4.90)
B~ B +B, :éE] (df+d33);g<<l. (4.92a)

This means that the, for the sound transmission loss pivotal, critical fre-
quency is shifted upwards in frequency [4.38] cf., Chapter 7.

4.6.3 Equations of Motion of Layered Plates

4.6.3.1 Free Damping Layers

For many applications, it is insufficient with only the loss factor derived
from static considerations but additional dynamic characteristics must be
detailed such as the coupling between flexural and tensional waves. This
means that the complete set of the equations of motion must be available.
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To achieve this it is suitable to employ Hamilton’s principle as was done in
Sects. 2.5.1 and 3.8.

Upon assuming that the motions of the two-layer system depicted in Fig.
4.26 can be described by means of the longitudinal motion &, of the plane
y = 0, the transversal motion &, and a rotation [, the motion in the x-
direction &; can be written as

& =S, +yB, (4.93)

which is valid for any plane y. The actual position of the plane y = 0 with
respect to the interface between the two layers is not specified. It is arbi-
trary and need not coincide with the neutral layer. This means, however,
that the displacement &; also depends on the choice of the plane y = 0,
which will be further discussed subsequently.

Fig. 4.26. Notations for a two-layer system with densities p;, p, and Young’s
moduli Ela E2

For the strain, Egs. (3.114) to (3.118) yield with the use of (4.93)

4.94
N #99
Yooy ox ox

A limitation to Euler-Bernoulli bending theory implies that y,, = 0 which
gives

%,

b= ox

=L (4.95)
This is the elementary relation between the bending translation and rota-
tion, given in Eq. (3.68) although the sign is changed due to the altered
positive direction of the translation. The spatial derivative with respect to x
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is abbreviated by means of a prime in this section and temporal derivatives
by means of a dot.

The approximation in (4.95) could have been omitted for the further
analysis. This would have meant that a similar procedure had to be em-
ployed as for the treatise of the Timoshenko beam in Sect. 3.8.2. For the
sake of brevity, however, this route is discarded since no new information
is revealed.

The necessary formulae for the application of Hamilton’s principle on a
beam of extension —1 <x < 1 read

Iy

m=%ﬁjapﬁzm@+ jja+é2m@, (4.96)
—l—hy —1hy
and
E, L
E,, :7 I J. 2dxdy+ II g dxdy
: o R (4.97)
27 I I dxdy+ H. & - y&z dxa’y
—1—hy “1h

Upon carrying out the integration with respect to y, using the abbreviations

=Py Idy+ P2 _[dy p.d, + p,d,,
_h3
Iy hy

m, Iydy+pzjydy— dy (h =)+ 22 d, (h + 1),
& i (4.98)
h Iy

my=p, [Vdv+p, [ydy
iy n

p p
:?ld] (A = yh, +h§)+?2d2 (A +hhy+ 1),
and, correspondingly
E, =Ed +E,d,,

E E
E, ==kd (h—hy)+—+dy (b + 1), (4.99)
ED :%dl (hlz _h1h3 +h32)+%d2 (hl2 +hlh2 +h22)’

one obtains
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1

1 ) . ., )
Ekin = E I(mE‘iLz _2mzéL‘t:~2 +mDé22 + mE‘tazz)dxa
B (4.100)

1 12 ren "2
Epof = E J‘(EEE.!L —2E,8,8+ENG, )dx,

-1

The aim of the following steps is to rewrite the expressions involved in the
variation

23

5 [(Eq, —E,, )dt

h

so that only 0&; or 6&, appear. This is done in accordance with Sect. 3.8
regarding the derivative of the equation of motion for the Timoshenko
beam. Again, this is achieved by transferring the derivatives as in Egs.
(3.190f) and (3.190g). In this manner arise linear expressions in &&; and
8&, and those variations can only vanish when the factors in front equal
zero i.e.,

E£§L" _mEaL _ngz’ + Ez 2"’: 0,
m,&, —EL;"—E&=mE, +m,E"=0= (pA )

This is thus the equations of motion for a two-layer beam. The pressure p,
is introduced subsequently and represents an externally applied force per
unit area (or unit length) acting perpendicular to the plate or beam. It can
be incorporated through the variation of the external work 6W = p,8&, as
shown in Eq. (3.188).

As is obvious from a comparison with (3.31) and (3.81), Eq. (4.101) de-
scribe the coupling of quasi-longitudinal and flexural waves. m; is herein
the mass per unit area or length, £z and Ej are the stiffnesses in tension or
bending respectively. The coupling comes into play through £, and my.
With the exception of the special case of E,/p; = E»/p», the coupling terms
cannot be made to vanish even with a suitable choice of the plane y = 0.
This means that the bending translation &, is always coupled to a longitu-
dinal motion in a rigorous sense. The coupling, however, can be made very
small by making the plane y = 0 coincide with the neutral layer of the sys-
tem, which in this case is given by £, = 0. From Eq. (4.99) therefore,

(4.101)

_ Eldlz_Ezdzz

hl_—Z(Eldl+E2d2)’ (4.102)

since i3 = d, — hy and hy, = d, + h;. The static bending stiffness per unit
width of the double-beam thus becomes
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3 3 2
g -p bd BEd  Ed, d+d,\ _dd, | (4.103)
12 12 1+Ed,/Ed || 2 3

This expression is identical to that used by Oberst [4.12] and almost alike
that in Eq. (4.76a). The expression (4.103) can be used to compute the
bending wavenumber and the loss factor for complex Young’s moduli £,
and E,. The results are identical to those of Sect. 4.6.1 and presented in
Fig. 4.19. The same is true for the extensional wave at the neutral layer
since, omitting the coupling i.e., with w’m; = 0, the wavenumber is given
by

:(,02 pldl + pZdZ

2
k; .
Ed +E,Jd,

(4.104)
If the principally static consideration is to be avoided wherein w’m, = 0,
constituting the basis for Eqs. (4.103) and (4.104), the remaining option is
to determine the complex wavenumber of the free waves from (4.101). In
this pursuit, the wave is assumed in the form e7*¢*", leading to

(a)sz —szE)ch —jk(mzmz +kE, )E:z =0,

. . (4.105)
—jk(mzmz +k2EZ)§L +(k4ED —-o’m, —kz(nsz)E_,2 =0=(p,)
The determinant to this system is
Det =k°(E} - E,E, )+ k'’ (E,m, —2E,m, + E,m,)
(4.106)

2 .2 2 2 4
+k'o [EEmE + (mz—mEmD)J—co my.

It is easy to convince oneself that the coefficients of this polynomial are
independent of the position of the plane y = 0, which is required and ini-
tially arbitrarily introduced. If the analysis is confined to the neutral layer
i.e., Ez=0, Eq. (4.106) is simplified but does not split into two equations.
To obtain a split, w’m, must be set equal to zero and thus a quasi-static
calculation is undertaken. By letting (4.106) equal zero, the solution * k;, +
kgp and * jkpy results i.e., the wavenumbers of the extensional and the
propagating and evanescent flexural waves. The numerical results are very
close to those resulting from a quasi-static analysis.

Equations (4.105), moreover, describe the coupling between the exten-
sional wave motion at the neutral layer &,y and the bending motion &,. The
first equation in (4.105) yields with £,=0
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E-:ﬂ_ jkmzmz ~_j032mz ~ jn P9, ;\‘(dl +d2)

£, o'm,—KE,  kE, pd, AL

(4.107)

Az1 1s here the wavelength of the longitudinal wave in beam 1 and A = 2n/k
the wavelength of the motion of interest e.g., the bending of the system.
For the approximation it is assumed that A;; > A and E\/p; > Ey/p. It is
seen that the coupling between &, and &,y indeed exists but that it is weak,
particularly at low frequencies since A < A;; as well as d; + d, < A;;. The
separate treatment of the two kinds of motion, moreover, is justified by the
common applications.

The wave impedance, frequently used in Sect. 4.4, can also be obtained
from Eq. (4.105). With £,=0,

A A k4E k2 k2 2 2
7 =B Lo jom 1o B SO | (4.108)
V, Jot, @ mg Mg mg (03 my =k EE)

Upon introducing the approximations employed above and letting
K*mp, << mg, which is also made in ordinary bending theory, one finds

4E 2.2
Z~:jcomﬁ(l—k2 O Mz
o'm, Em,

2
~ jom [1— K'E, +{P1dl n(d1+d2)} }
B :

(Dsz p.d, A

(4.109)

With the exception of the last term within the brackets, this is the wave
impedance of an ordinary beam. The correction due to the coupling is
again small since d; + dr << A;;.

4.6.3.2 Three-layer plates and beams

The analysis of three-layer systems is similar to that employed for the two-
layer structures in the previous section. For the former configuration, how-
ever, the shear stiffness plays a profound role and the approximation in
(4.95) does not apply. With the notation given in Fig. 4.27, the motions of
the three layers read

&1 :E.aL +y[31»
Eall:&L"'hlB/"'(y_hl)Bm (4.110)
Ep =&, + B, +d,B, +(y_h1 _dz)Bm'
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As before, £, is the displacement in the x-direction in the plane y = 0,
which does not necessarily coincide with the neutral layer. The position of
the plane y = 0 i.e., the value of 4, is again arbitrary. As in the case of two-
layer structures, the displacement &, refers to the y-direction. It is the same
for all layers in this treatment.

i /

y=hyedaedy  _———— L L

& E,,G E— |11

¢ Seas hy+d //“__l_f,L
=M+

) y=m+0z2 ll'

d2

! 921E2:0; S~ )

i y=hy H

dl ....................... y:o ------------- ;: ---------- -

i e y==ldy=hy) //5_\&
ke,

Fig. 4.27. Notations for a three-layer system with densities p;, py, p3, Young’s
moduli £, E,, E5 and shear moduli G, G,, G

From Egs. (4.110), the strains become

€, = a@i =&, +yB,; analogous for g, and g,
X
(4.111)
Vi = %, + %, =B, +&,; analogous for y; and y;;
} oy Ox

Upon carrying out the same but substantially longer calculation as in the
previous section, the equations of motion for the three-layer system result
in form of second order differential equations in the variables &;, &, B;, B
and B;;. With the wave motion assumed in the form e”*¢®, a differentia-
tion with respect to time is a multiplication by jm and a differentiation with
respect to space a multiplication by —jk and the system of equations can be
written as
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A

oy 0 oy oy oy &iL 0
0 oy 0y 0y Oy %2 Py
Oy Oy Oy Oy Oy || B, |=|0 |, 4.112)
Qg Oy Oy Oy Olys [3A,, 0
Qs Olys Olzs Olys  Olss ﬁm 0

when the system is excited by the pressure p, in the y-direction. For a
beam-like system, the coefficients are given by:

1 1
oy, :szE —0)sz , Olys :[EEhl —5E1d12)k2 _(mEhl _Epldf}m2’
oy = (%Ezdzz +E3d2d3)k2 _(% pzdzz + p3d2d3]0)2,

1 1
o5 = 5E3d32k2 —5p3d32(n2 , Oy = —szz +0)sz,
Oy, =—jkGd,, 0, =—jkG,d, , o, =—jkG.d,,
oy = Ephi = Ed} (h —d,/3) | [ m, 1 = pd} (b —d,/3) |0 + Gd,,

Oy =0l , Oy =0ush,

Oy = [éEzdz3 +E3d22d3Jk2 _[% pzdz3 + psdzzdz}nz +G,d,,

1 1
Oys = dy)0ys 5 Olss ngsd;kz f§p3d;0)2 +Gyd,,

E,=Ed +Ed,+Ed,, m;=pd +p,d,+pyd,
G, =Gd, + G,d, + G, d,.

Again, the free wavenumbers are determined by equating the determi-
nant of (4.112) to zero and the loss factors are obtained the same way
when the moduli are complex. Since the determinant is a fifth order poly-
nomial in &, there are five solutions at every frequency of which the quasi-
longitudinal and the bending type solutions are propagating. The remain-
ing three solutions represent exponentially decaying near fields (evanes-
cent waves).

The wavenumbers can also be computed in analogy with Eq. (4.108).
Thereby, is demonstrated that for an excitation and motion in y-direction,
the free wavenumbers as well as the wave impedance are independent of
the arbitrarily chosen /;.

A marked simplification of (4.112) results when it is assumed that no
shear occurs in the top and bottom layers, I and II, as is done in simple
bending theory. This means that
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Bu/ = B1 = _ézl = Bu/ = B/ = jkéz (4‘113)

To maintain symmetry of the system of equations, it is suitable to multiply
the third and fifth rows by jk and add them to the second. Thereby is ob-
tained

2
Ay _(XM jk jk[aw +a; _%4723] ~
- S =[ ] (4.114)
. Oy o3 2 '}'225 éz Py ‘
Jk| oy, +os — Vo tk
44 44
in which

Yo =—KGydy +&’m, —k'[ B, + B, + Ed, + Exd i, + E,d, |
+(’02k2 ':MI +M3 + pldlhlzl + p3d3h123 + p2d2h12:|7

1 1
Vo =—God, + k* |:E3dzd3h13 +EEzd22h1 :| -’ [p3d2d3hl3 +Epzdzzh1},

hy=h—d /2, hy=h+d,/2.

The quantities By, B3, M; and M; are the bending stiffnesses and second
mass moments of inertia of layers I and III respectively, where the inter-
mediate layer is assumed arbitrarily soft,

— E1d13 B = E3d33 M. pICll3 M. = p}d;

B’ ) 9 .
R IR I 2 )

The determinant of Eq. (4.114) is a fourth order polynomial in k*. Upon
equating this to zero, the four solutions obtained correspond to propagating
quasi-longitudinal and bending waves and evanescent bending and shear
waves.

As in conjunction with Eq. (4.101), one may ask the question whether a
suitable choice of /; leads to a decoupling of the two equations in (4.114).
Again, this turns out not to be the case without allowing for a frequency
dependent 4.

A highly useful approximation for not too high frequencies [4.39] can
be achieved by letting £, vanish. This means that the intermediate layer is
assumed to be very soft in compression. It is assumed, moreover, that all
inertia terms except ®’my can be neglected i.e., M; = M; = 0 and
p2 = p3; = 0. Hereby, the two equations in (4.114) can be decoupled by se-
lecting 4, such that
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oy,
14123 _
oy +0o,; ———=0,

44

which can be shown to be equivalent to

B = Ed; (1+g3)—E3d32g3 (ds +2d2)
2[Ed (1+g,)+ Eydyg, |

where g3 = Go/(Esdhdsk?). Equation (4.115) presents the position of the

neutral layer of a three-layer beam structure. With the approximations in-
troduced above, Eq. (4.114) yields

, (4.115)

Edj |-
|:sz5_(”sz_ = :|éLNF:0

3

i (4.116)
{wzmg —k‘{B, + B+ g, —— LA, (Li%j }}a 3

Ed, (1+g3)+E3d3g3 2 2

The first of the two equations describes the quasi-longitudinal wave at the
neutral layer of the three-layered beam. The second describes the bending
wave whereby the expression within brackets corresponds to the bending
stiffness in (4.90). Hence, the approximation introduced recover the sim-
plified formulae of Sect. 4.6.2.

It should be pointed out that (4.116) implies the solutions of one second
and one third order equation in & since also g3 depends on &°. Commonly,
an initial value is inserted in g; and an iterative procedure is used.

4.7 Damping by means of Resonant Systems

All of the previously discussed composite plates have a rather broadband
effect, as is desirable for practical applications where excitation occurs by
noise. However, for narrow frequency band excitation such as by trans-
formers and wheel squeal, it is often useful to tune the damping to the nar-
row band of interest, thereby sacrificing bandwidth for the sake of obtain-
ing very high damping in the narrow band.

The simplest case of such tuned damping resonators consists of inde-
pendent spring-mass systems attached to the surface that is to be damped.

Consider a rod along which are attached many independent springs and
masses, as shown in Fig. 4.28. If quasi-longitudinal waves propagate along
the rod, then each of the springs obeys

F'=5"(&5-E)). (4.117)
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where F’ denotes the exciting force, &g and &, represent the displacements
of the two ends of the spring, and s’ denotes the complex spring stiffness.
Since all springs here act in shear, one may write

b b
s_’=QF7=G;(1+mF)7, (4.118)
where G represents the shear modulus, nr the loss factor of the spring ma-
terial, / the distance between the beam and each attached mass, and b the

width of the spring material.

Fig. 4.28. Rod with attached damped spring-mass systems

From Newton’s law, one finds that the motion of the mass obeys
F'=—o’m¢,,, (4.119)

where the form of ¢ is understood for the motion. If one now introduces
the velocity vs = jw&s, one obtains

. Jom'vg
F'= =,
1_@7 (4.120a)
®,
where
’ G'

=0
m' Im

represents the square of the complex natural frequency of each spring-
mass system.

In order to determine the vibratory motion, one only needs to apply Egs.
(3.29) and (3.30), after extending these to include the force as given by Eq.
(4.120a). The longitudinal motion of a beam with attached springs and
masses thus obeys
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_d_F:jo)pSvS—i- ]mmz Vg,
dx 1_e°
®, 4.121)
_EsYs _joF.
dx
Differentiation with respect to x then leads to
d? "o (1+ )
VZS ro? P12 - 0(2 JT.]F) ~ |vs =0. (4.122)
dx E pPS O —my — jnsm,

As one would expect, for m' =0 this equation reduces to the usual wave
equation.

The attached springs and masses result in changing the wavenumber,
which for the original untreated beam is given by &, =0’ /c; =o’p/E, to
the new value &, which obeys

, (4.123)

where v = o/w,. This change involves both the real and the imaginary part
of the wavenumber. Thus, attachment of the damped springs and masses
results in changing both the propagation velocity along the beam and the
damping.

Figure 4.29 shows how the propagation velocity and damping vary with
frequency, for the case where the attached masses in total amount to 10 %
of the mass of the beam. In the vicinity of the resonance, the attached
springs and masses may be seen to produce a small change in the propaga-
tion velocity and a considerably amount of damping. This damping may
even become so high that the assumption of 1 << 1 originally made in the
derivation does not remain valid.
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Fig. 4.29. Loss factor and propagation velocity of beam with added spring-mass
systems, m' /pS=0.1

One may readily extend Egs. (4.117) to (4.123) to other systems at-
tached to the beam, if these systems act independently of each other. One
merely needs to use the input impedance

F’

Vs

ZI

of an attached system (per unit length of the beam) in Eq. (4.118) to obtain
the differential equation

dvy . p z'
+o =|1-j =0, .
d? ® E ]copS Vs (4.124)

which represents a generalization of Eq. (4.122). The real part of the input
impedance determines the magnitude of the damping. If this impedance is
purely real, the damping can be very large. The driving point impedance of
a plate is an example of such a real impedance, see Eq. (4.47). Thus, one
may obtain very considerable amounts of damping of quasi-longitudinal
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waves by means of thin damped plates attached normal to the axis of the
beam. Loss factors of 0.3 are achievable with such configurations.

The damping of the previously discussed systems may also be derived
by use of the energy methods of Sect. 4.6. If the loading by the added at-
tached springs and masses is not too great, then the reversible strain energy
stored in a beam of length / may be written as

" __ 1 2
W, —EpSl|vS|.
The energy lost by the beam per unit time is given by
1 n e
- S
2nRe{vSF }= 2|vs| Re{Z,},
where 7 is the number of attached systems and Zg represents the driving

point impedance of such systems. Thus, the energy lost per period 7 of the
vibration is

W" —

diss g|vs|2 TRe {ZE} = %|"S|2 Re {ZE}

In view of the definition, Eq. (4.22), the loss factor of the total arrange-
ment thus is given by
Re{Z,}
opS

? (4.125)

Since nZg/l corresponds to the driving point impedance per unit length,
one finds that Eqs. (4.123) and (4.125) give very nearly the same result.
The small discrepancy may be ascribed to the fact that the attached sys-
tems also store reversible energy, which here has been neglected.

The same kind of analysis as was carried out above for quasi-
longitudinal wave can also be performed for torsional and flexural waves.
For this purpose, the forces due to the external loads are added to the iner-
tia forces. For bending waves is obtained

dv '

Z
kgo| 1= J— =0
d'x BO( J c)ijv (4.126)

instead of Eq. (3.108). Here Z' represents the driving-point impedance per
unit length of the added system, pS denotes the beam mass per unit length,
and kg is the bending wavenumber of the original untreated beam. Clearly,
the damping is again determined by the real part of the impedance. For at-
tached simple spring-mass systems, the damping again exhibits a definite
peak, and the overall behaviour is much like that indicated in Fig. 4.29.
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An example of experimental results for a beam damped by attached
resonators is shown in Fig. 4.30 [4.40]. The beam vibrates in flexure and
has many small differently tuned sheet-metal strips attached to it, each
strip being lightly damped. Nevertheless, this configuration leads to loss
factors of 0.01 to 0.02. Although this value is not particularly high (the
weight of the added strips was about 9 % of the weight of the beam; for the
same amount of added weight one could obtain three to four times as high
a loss factor by use of a simple added viscoelastic layer), this type of con-
figuration is likely to be of practical interest for special-purpose applica-
tions, because one may obtain almost any desired frequency dependence.

T—FF FTF

[~ Eq.(4125) }— 2-25mm steel beam  —
1 —F ,fﬂ‘j‘nm aluminium strip
q !
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Fig. 4.30. Loss factor of beam with sheet-metal strip resonators

Another system in which the damping is of a resonant nature consists of
two plates that are interconnected by resilient elements. Such plates in ef-
fect are two coupled systems, which may be described by means of two
coupled bending-wave equations. The exact expressions obtained for the
two bending wavenumbers are rather complicated the general case, see
Sect. 6.7.1. However, it is found that the damping is greatest at

()] :0)0 = S”(m’l:,—’_:’rl;’)

ml m2
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where s” represents the spring-constant of the interlayer per unit area, and
m and m; denote the masses per unit area of the two plates. w, then
represents the resonance frequency of the two masses interconnected by
the spring. Above and below », the damping is relatively small. This fact
is sometimes of importance for multi-layer plates with very soft or thick
interlayers, for which the relatively high loss factors indicated in Sect.
4.6.2 is not obtained above mg. One therefore should be careful not to
make the interlayers of multi-layer composites too soft.

4.7.1 Damping by Thick Layers (Ballast)

For thick layers, damping is achieved by radiation of structure-borne sound
energy to a material with high losses. There is thus a certain resemblance
to airborne sound radiation treated in Chapter 7. For the following it is as-
sumed that the wavelength A, of the vibrating structure is larger than that
of the thick lossy layer c,/f. With the quantities of Chapter 7, this means
that the radiation efficiency is approximately unity, ¢ ~ 1. This approxima-
tion implies that the layer can be treated as a one-dimensional wave-guide
of density p,, and the complex speed of sound ¢, When the wave-guide is
free at the remote end at the distance d from the interface with the structure
as depicted in Fig. 4.31, then the input impedance per unit area is

Z = jpycytan(od/c,):ic, =c\ I+, (4.128)

Herein, n,, is the loss factor of the layer material. If the base structure per-
forms bending vibrations, ¢, is given by the longitudinal wave speed of
the layer whereas for longitudinal vibrations, the shear wave speed is to be
chosen.

Upon substituting Eq. (4.128) into (4.124) or (4.126), the loss factor of
the assembly can be estimated approximately. An example is shown in Fig.
4.31 where extensional waves in an aluminium rod are damped. For the
damping is employed a soft rubber layer for which ¢, = 100 m/s and
Nu =~ 0.9. The first thickness resonance of the layer is at about 2000 Hz,
od/cy=1/2. As can be observed, the loss factor diminishes rapidly below
this frequency since only little energy is transmitted to the layer. Above the
first thickness resonance, the subsequent resonances are barely visible ow-
ing to the high loss factor. In this frequency range it is possible to set
Re[Z, |~ p,cy -
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Fig. 4.31. Damping by structure borne sound radiation to a thick layer (liner) of
soft material (A, > cu/f)

Compared with a free damping layer treatment of mass equal to that of
the thick layer, almost the same loss factor is obtained above the first
thickness resonance. Soft, lossy layers accordingly, are suitable for damp-
ing of structure-borne sound provided they are sufficiently thick. Their
particular advantage is that longitudinal waves are almost as strongly
damped as the flexural ones. A drawback is their space consumption; a fact
that possibly can be compensated by simultaneous use as airborne sound
absorbers.

In [4.41] also, those loss factors are calculated, which are obtained un-
der consideration of the lateral coupling in the liner. In these calculations
the continuum expressions are employed i.e., longitudinal and transversal
motions of the liner are taken into account. A comparison of the results
with those obtained using Eq. (4.128) in (4.124) or (4.126), exhibits hardly
any difference. It can be shown that this is always the case whenever ¢, is
smaller than the governing wave speed of the base structure, the latter of
which, for instance, being the bending wave speed.

The treatment of thick layers also encompasses embedding the structure
or part there of in sand. Such a solution has the advantages of being cheap
and temperature robust. Also in such a case, there is a significant effect at
and above the first thickness resonance and the mean of the damping is set
by Re[Z), ]~ p,c), . Here, py is the density of sand and ¢, is the appropri-
ate wave speed, which can only be quantified with difficulty. It is sug-
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gested, however, that for thin, dry, uncompacted sand layers, ¢; = 150 m/s,
cr = 100 m/s and n = 0.1 [4.42]. These values represent the most favour-
able case since sand is most often humid. Besides this, the sand is inevita-
bly compacted through gravity and by being vibrated. Both effects there-
fore, lead to higher wave speed and thence less damping for low and
intermediate frequencies. Nevertheless, commercially available dried sand
remains an appreciable damping material for intermediate and high fre-
quencies.

4.8 Damping at Joints

It is well-known that machines and technical appliances consisting of sev-
eral structural parts exhibit substantially larger losses than those of the
constitutive materials. As an example, the loss factor of a building is al-
most always about 2 - 10 whereas systems made of steel or aluminium
having a material loss factor less than 107, show

N~5-107; £ <500Hz
n~2-107; f >1000Hz

in systems consisting of few, thick substructures such as a ship’s hull,
N~ 107
for systems consisting of several, thick or thin parts such as a car body and

N ~5-107; f <500Hz
n~107 ;7 >1000Hz

for systems of several thin substructures.

Such “built-in” loss factors are the reason for lower resonant response
than would be expected based on only material dissipation. They are also
the reason for why damping treatments such as free damping layers, only
lead to audible improvements when the loss factor of the assembly is ele-
vated to more than 107,

The added damping observed for built-up systems stems from the small
relative motions, at interfaces between subsystems e.g., bolted or riveted
joints, typically smaller than 10 m for intermediate and high frequencies.
There, the thin interlayers (air, oil, dust) or contacting peaks of the surface
roughnesses act as damped miniature springs or dampers. They come into
play for relative motions normal or tangential to the contact surface respec-
tively.



226 4 Damping

4.8.1 Damping by Relative Motion Normal to the Interface

Rather comprehensively investigated is the damping due to relative motion
normal to an interface with a fluid film (gas pumping or squeeze film
damping) [4.43-4.46]. The most essential mechanism behind the energy
loss can be understood from calculating the damping of a plate vibrating in
a viscous medium with prescribed velocity, see Fig. 4.32. Starting point is
the linearized Navier-Stoke’s equations for a compressible medium of den-
sity po speed of sound ¢y and kinematic viscosity v (v, = 16 - 10° mz/s,
Viater & 107 m?/ s)

“o @ ot ot
8 v, o

p0§+2—p—po\/(a‘}2y+ aV;}:o, (4.129)
y oy

Restricting the analysis to harmonic vibrations such that all field variables
are in the form ¢ ¢ /*"¢/" a set of homogeneous linear equations results
from (4.129) by employing the phasor notation. This set of equations has
non-trivial solutions as the determinant to the coefficient matrix vanishes

1.€., when

> 2
, © 1 ®
kylz P . 2_kf: _kf’
¢y 1+ jov /¢ TN

. . . (4.129a)
PR IR ~(1—1j
2 x =~ ~ .

v v I

The approximations introduced comes about as the kinematic viscosity v is
small and the thickness of the resulting acoustic boundary layer
8 =+/2v /o usually is of the order of 10™*m whereas the wavelengths are
some orders of magnitude longer. The general solution to Eq. (4.129) for
harmonic motion can be written as

~ —jk,1y —jk,y\ —j

v, :(Ale g ge )e hex

~ —jk,1y —jk,,y\ —j

Vy :(A3e JKy1Y +A4e JKy oY )e /k)x’ (4129b)

A - jk, - jk, - jk
p=(A5€/ 1y+Aée/ z)’)ejx)(.
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Fig. 4.32. Particle motion in a viscous medium adjacent to a vibrating plate

Upon substituting (4.129b) into (4.129), the relations
Al A =k, Tk, A A =k, [k,

op, 1
Ja =P 4 =,
414 k. 1+ jovel  °

result for the so far unknown amplitudes. The latter are obtained from the
boundary conditions at the plane y = 0. In this case, the normal velocity
component must equal the plate velocity while the tangential vanishes in a
viscous medium i.e.,

b, (x,0)=v,e ", % (x,0)=0. (4.129c¢)

k, = 21/}, is the wavenumber of the plate wave and 7, its amplitude. Upon
combining the expressions, it is found that

A

v . oy
‘,}y (X,y) = ﬁ(kylkyze*jkﬂy _k;e*jkyz} )e jkp ,
1 {2 P . (4' 129d)
f?(x,y) = Vp y2 e—jkylye_/'kpx’

1+ jov /c; k,k,, —k;

since k. = k,. As can be seen, the sound field in front of the plate consists
of one part with wavenumber k,; which is of the same order of magnitude
as k, and one part having very large wavenumbers k,,. The former part
represents either a hydrodynamic nearfield or a propagating wave radiated
to the far-field and will be treated in detail in Chapter 7. The latter part is
associated with the viscous boundary layer. Usually this boundary layer is
neglected because its thickness d is so small as was mention above. In the
present case, however, it must be taken into account since the small vor-
tices occurring in the layer convert the vibration energy into heat due to the
viscosity and act like an energy sink for the plate.
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To calculate the damping, it is necessary to develop the power that is
transmitted from the plate to the ambient medium. In general the power is
given by

W = [Re[ p(x.0.1) |Re[ v, (x.0.r) Jax = %Re[ [5(x.0)7; (x,o)dx]. (4.129¢)

The integration is to be taken over the total length of the plate /,. An aver-
aging over time is indicated by the over bar. Upon substituting the expres-
sion in (4.129d) into Eq. (4.129¢) is obtained

o’
s 2 —+k,
W_‘°‘z:;“ Re[k, -2k ml ks |- [k, ]|, @4.1299)
2[c2_k‘2’] DY ;21
0 0

when the small terms v’w*/c,’ are neglected. Because the wavelength in
the plate A, is substantially larger than the boundary layer thickness & in all
cases of interest in practice, Im [k,] << Im [k,,]. This means that the first
term in (4.129f) representing the radiated sound, and the second, represent-
ing the energy conversion to heat, remains whereas the third is insignifi-
cant. The loss factor can be obtained by inserting (4.129f) in the definition
(4.22) observing that the dissipated energy per period 7 is given by
E,=w-T = 2nW/®. Moreover, approximating the reversible energy by
E, = ph|\3p| A, /2, it follows that
. 2w
- Nz 4.129
ophl| (4.129¢)

Herein, p is the density of the plate and # its thickness. For thin plates,
ko> >> k,” >> ®*/c® such that Re [k,;] ~ 0 and

. mp0h|\3p|2 A,

oo PO (4.129h)
4 2ph

Since the boundary layer thickness &, as mentioned, is very small and
diminishes inversely proportional to the square root of frequency, the loss
factor of a system as depicted in Fig. 4.32 is also small and plays a role
only for thin folios. Corresponding experiments show that (4.129h) well
describes such realizations.

The situation is slightly different for double plates as shown in Fig.
4.33. The previous analysis (4.129a-h), however, applies when account is
taken of the fact that for such systems there are also waves in the negative
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y-direction. This means that terms involving ¢’*” and ¢™** must be in-

cluded in (4.129b). With the additional boundary conditions
B (5:0) =5, 5, (vd) =5,
\3X(x,0)=0 ,ﬁx(x,d)zo,
again results a solvable set of linear equations. The explicit analysis is

omitted for this case since the outcome is readily understood from Eqg.
(4.129h).

Fig. 4.33. Motion at times #; and ¢, for a double plate with a fluid interlayer

As is seen from the previous analysis, the damping is associated with
the viscous losses arising by fluid flow in tangential direction. The same is
true also for the double plates in Fig. 4.33, the only difference being that
the tangential velocity is markedly larger. The reason is that the fluid only
has a narrow channel of thickness d in which it can move, implying that
the tangential velocity becomes much larger than that in the normal direc-
tion. It is readily shown that the flow velocity v, in tangential direction is a
factor A,/d larger than the normal velocity. Owing to the fact that the dissi-
pated energy is proportional to the velocity squared, it is to be expected
that the loss factor n of the double plate system is a factor of (kp/a')2 larger
than the value of (4.129h). This is indeed the case since the rigorous treat-
ment [4.44-4.46] reveals a loss factor of

pod( %, Y
n=E 2] (4.130)

for a double plate system for which the gas pumping or squeeze film
damping is the governing loss mechanism. In Fig. 4.34 is shown, a few ex-
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perimental results [4.44] for a case where one plate could be considered
rigid. Herein is observed the slope, which is proportional to 7~ associated
with the fact that  as well as A, are inversely proportional to the square
root of frequency, exhibited by both experimental and theoretical results.
Figure 4.34 also includes two comparative measurements results to dem-
onstrate that the fluid interlayer governs the damping. Squeeze film damp-
ing, however, is not the only damping mechanism for thin double plates
that exhibit a relative motion in the normal direction but the most impor-
tant. Other mechanism, besides gas pumping, can be assessed by model-
ling the interlayer as many small damped springs joining the two plates for
which the discussion in conjunction with Eq. (4.127) is valid.

‘0'; = R ——450mm—=,
\:\_‘\ ! Al plate |
4 | | [
" N \\? o TR T T 77777
5 SO 7 f7 <
i A rigid plate air cavity
10 s \\ \
. LY Y
LY b Y
4 by 3 LY
VAN
) 5 ) k\\\\ \\\ o——o measured
AR ‘\,‘ — —— calculations with (4.130)
3 3
10 L
8 RS ®:d=05-15mm
\ , d=1mm
4 b L 1
Ny M| =15 mm @:d=15-25mm
2 o e 2% |
I d=2
4 @ - 3 lmm ® : Measurements in vacuo, d~1 mm
o
1c0 200 400 800 1600 3200 6400 Hz
Frequency @ : free plate, d~200 mm

Fig. 4.34. Measured and calculated loss factor for a squeeze film damped, 1mm
aluminium plate

4.8.2 Damping by Relative Motion Tangential to the Interface

For built-up systems consisting of thick substructures such as engines or
industrial machines, the motion perpendicular to a junction or interface is
usually very small and hence does not lead to significant damping. Instead,
the tangential relative motion becomes the governing.

When an interface encompasses a thin viscous film e.g., oil, dust, etc.,
Sect. 4.6.2 regarding multi-layered systems apply i.e., the interlayer acts in
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shear and converts a fraction of the structure-borne sound energy into heat
owing to its dissipation. A theoretical assessment of the loss factors is in
this case in principle possible for harmonic motion by replacing the viscos-
ity by a complex shear stiffness.

Employing the definitions of the viscosity v = t/v and the shear modulus
G = 1/¢ and using the relation ¥ = jof for harmonic motion, it is found
that

G = jov, (4.131a)

which is purely imaginary. An introduction of this shear modulus in the
expressions of Sect. 4.6.2 therefore implies the following substitution

G, = jov,, Gz":ﬂsz' =QV,,

ov, [ 1 . 1 (4.131b)
dk*\ Ed, Ed, )

N8, =®

V2 Eddi*
Numerically, one finds that the loss factor is the bigger the smaller the
interlayer thickness, d.

Somewhat more intricate is the situation where dry friction occurs at the
interface. Two cases must be distinguished according to the present
knowledge.

a) When the amplitudes of the relative motion in tangential direction
are not too small but larger than some pm, i.e. above all for low
frequencies, the Coulomb friction apply. This means that the proc-
ess is non-linear since the stick and slip motions follow different
laws. The corresponding analysis [4.47-4.49] shows that an increase
in amplitude increases the loss factor. It would lead way out of the
scope of this book to include the associated analysis.

b) For small motion amplitude, present at intermediate and high fre-
quencies, measurements show only weak amplitude dependence of
the loss factor. It thus appears possible to model the interface by
many small, damped springs, as illustrated in Fig. 4.35a. The stiff-
ness per unit area for cut steel surfaces is given approximately by
the empirical formula [4.50, 4.51]

% _ SOO(pN )2/3

2

where py is the normal pressure in N/mm” and the constant such
that G»/d, has the proper dimension of N/mm®. Some measurement
results are shown in Fig. 4.35b. It is expected that the interlayer
stiffness increases with increasing normal pressure. The loss factor
lies between 102 and 10" and tends to decrease with increasing
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normal pressure. With the surface roughnesses commonly found in
machine manufacturing, the interlayer stiffnesses and loss factors
observed for dry joints between metals are remarkably similar. In
measurements of interlayer stiffness and loss factors was observed
only a negligible reduction when the average roughness was altered
from 5 pm to 40 um.

% 2P IE P m:g;
NN\ N\ \ G
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Fig. 4.35. Conditions at dry joints with tangential relative motion. (a) Idealized in-
terface and mechanical model. (b) Stiffness and loss factor versus normal pressure
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