3 Survey of Wave Types and Characteristics

3.1 Longitudinal Waves

3.1.1 Pure Longitudinal Waves

In solids, as in liquids and gases, there exists pure longitudinal waves that
is, waves in which the direction of the particle displacements coincides
with the direction of wave propagation. One may readily visualize such
waves by studying the motion of two planes, which in the undisturbed me-
dium are parallel to each other and perpendicular to the direction of propa-
gation. In pure longitudinal wave motion, these planes experience absolute
displacements from their positions of equilibrium and the distance between
them also changes in general. For example, a plane which initially is at x is
displaced a distance &, see Fig. 3.1; a second plane, which initially is at a
distance dx from the first, is displaced a distance & + 0&/0x dx. The mate-
rial whose initial length was dx thus experiences an extensional strain €, in
the x-direction, given by

o5
g, =—. 3.1
. (€RY
Such a strain is associated with a stress or, more precisely, with a devia-
tion of stress from the equilibrium condition. Unlike fluids, solids can sup-
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Fig. 3.1. Displacements, deformations, and stresses in longitudinal wave motion
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port tensile stresses in absence of static pre-compression. Tensile stresses
are usually taken as the positive normal stresses where “normal” indicates
that the stress acts perpendicular to the surface. For the small deformations
of interest in relation to structure-borne sound, Hooke’s law holds and the
tensile stress o, is proportional to the extensional strain ¢, (and the com-
pressive stress -G, is proportional to the compressive strain -g,). One thus
may write

o . =De =

& (3.2)
X

The constant D has the same dimensions as ,, namely force/area, and
represents the longitudinal stiffness of the material. The relation between
D and the usually used constants of elasticity is discussed later in this
chapter.

Also the stress depends on location (x-coordinate) and a net unbalanced
stress causes the element to accelerate; if p represents the material density,
the corresponding equation of motion may be written

2
c, +80x dx |-6_ =p dx%,
ox ot
or
0o ot
L=p—2. 33
o Par (3-3)

The stress and the displacement thus are found to be related by two dif-
ferential equations, Egs. (3.2) and (3.3). In this derivation, the stress o,
was treated not in terms of the location at which it occurs, which would be
(x + &), but in terms of the plane of the medium on which it acts - the plane
that is indicated by its equilibrium position x. In structure-borne sound, the
displacements & are very small compared to the distances over which there
occur significant changes in the vibration field, which distances are frac-
tions of the relevant wavelengths. Therefore, use of coordinates attached to
the medium (as above) leads to the same results as use of coordinates at-
tached to a reference frame fixed in space.

As has been shown in Chapter 2, it is convenient to describe the kine-
matics of a sound field in terms of the (particle) velocity

, 258 (3.4)
ot

instead of the displacement &; this velocity appears directly in the expres-
sion for the kinetic energy per unit volume,
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[
ekin = Epvx ° (35)

Every mechanical wave motion also has potential energy associated
with it. Here, the potential energy per unit volume is given by
I,

€
X 1 2

€ = IGdex =—De. =—oaG ..
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5 (3.6)

The total energy density (i.e., the total energy per unit volume) is given
by the sum of these two parts,

Cor = Cuin T €015 (3.7
and thus is completely specified only if both v, and g,, or both v, and o,,
are given.

One now needs to consider whether one would prefer to use the strain or
the stress in continuing the analysis. If one uses the strain, one obtains a
certain mathematical symmetry, since the two field variables v, and €, then
are the derivatives of the displacement with respect to time and space, re-
spectively. Also, one can usually measure only the strains (or deforma-
tions) directly, whereas one generally needs to deduce the stresses from the
measured strains. In spite of these considerations, use of the stress as a
variable in the analysis turns out to be preferable, not only because many
physical boundary conditions involve the stresses directly, but also — and
more significantly — because the product of stress and velocity give the
power flow per unit area, i.e., the intensity of the sound field:

J =0, (3.8)

The negative algebraic sign here takes account of the fact that a positive
(tensile) stress and a positive velocity result in energy transport in the
negative x-direction.

By introducing the velocity, one may rewrite Eq. (3.3) as

oG,  Ov,
ox P or

(3.9)

Similarly, one may rewrite Eq. (3.2), after differentiation with respect to
time, as
ov, O0Oc

D= =" ,
ox o (3.10)

One observes that the relation between the two variables o, and v, is
such that the spatial derivative of one is proportional to the time derivative
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of the other. This cyclic inter-relation for all is also obtained for the wave
types discussed subsequently. Differentiation with respect to x or ¢ and
combination of Egs. (3.9) and (3.10) results in the wave equation,

o’ &
D==(0. v)=p=7(0.0 v); (3.11)

which applies for all of the field variables. One may easily verify that this
equation is satisfied by all functions of the form

F(ti\/%x} (3.12)

Such functions describe waves that propagate without distortion in the
positive or in the negative x-direction, depending on the algebraic sign of
coefficient of x. If a certain variation with time occurs at x = 0, then ex-
actly the same variation occurs also at any arbitrary location x, but delayed
(or advanced) by an amountx,/p/D . The parameter /D/p thus repre-
sents the constant velocity ¢; with which the disturbance propagates:

¢, == (3.13)
p

This velocity increases with increasing stiffness and decreases with in-
creasing density. The subscript L indicates the longitudinal character of
this type of wave.

The parameters D and p occur also in another important combination. If
one considers, for example, a wave that propagates in the positive x-
direction, and writes the corresponding displacement & as

[
== 5
one then finds from Eq. (3.2) that the compressive stress associated with
this wave is given by

-, =ﬁé’{t—\/%x}

where the prime denotes differentiation with respect to space whereas the

velocity obeys
v, =§ (z - \/%xj
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The two field variables may be seen to depend on space and time in pre-
cisely the same way; their ratio represents a mechanical impedance per
unit area and is called the “characteristic impedance” of the material:

_Gx

Z)=—==\Dp =¢,p. (3.14)

vX

This proportionality of the two variables also implies that for such propa-
gating waves, variations in the potential energy coincide in time and space
with those in the kinetic energy. From the constant of proportionality one
finds that these two energies are equal:

2
1 1 1.
€ por ZEGi = Cin =EPV,§ :Ep{ﬁ (f—\/%xﬂ ‘ (3.15)

Finally, one also finds that the intensity

J=—yv =27 {& (t —\/%xJ:l

and the total energy density

are related by the simple expression

J=e,c,. (3.16)

— %ot

Equation (3.16) demonstrates that the energy density in a propagating
wave advances with the velocity c;.

Figure 3.2 summarizes the foregoing relations for the particularly simple
case of a sinusoidal wave. Here, the time-function

(2, 0) =Esinwt,

in terms of the radian frequency , leads to the space-time function

&[t—cijzgsin[w(t—ciﬁ (3.17)

The ratio w/c; is called the wavenumber and is generally represented by
a separate symbol:
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()]
= (3.18)

The wavenumber £; is the spatial analog of the radian frequency o; ® is
inversely proportional to the duration (period) 7 of a cycle,

_2n

B

T

and the wavenumber k; is inversely proportional to the spatial period, i.e.,
to the wavelength 2,

k, === (3.19)

The wavenumber indicates how many wavelengths correspond to 2w times
the unit length.
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Fig. 3.2. Spatial variation of field variables and energy quantities in a sinusoidal
longitudinal wave

Figure 3.2 is constructed for the instant at which the deformation is
given by

&= —é sink, x. (3.20a)

The top part of this figure shows this deformation in terms of the dis-
placements of planes which are uniformly spaced at equilibrium. Below
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this, the deformation is plotted as a function of x. The next lower graph
shows the compressive stress distribution

—5,=E Dk, cosk,x=-G_cosk,x, (3.20b)

which is shifted by A;/4 with respect to the deformation function. Below
the graph of -o(x) is given a plot of the velocity

v, = Eo cos k,x="_cosk,x, (3.20¢)

which is in phase with the compressive stress. Below these plots of the
field variables are shown the energy contributions. The curve bounding the
horizontally cross-hatched area represents the kinetic energy density

0, = % P92 cos® k,x, (3.20d)

and the distance between the aforementioned and the topmost curve (verti-
cally cross-hatched area) represents the potential energy density

= % pv: cos’ k, x. (3.20e)

epo!

The topmost curve thus corresponds to the total energy density
e, =pv:cos’ k,x. (3.209)

These energies are also seen to be periodic and in phase with each other,
but their wavelength is half that of the field variables. The bottom-most
plot shows the intensity

J =c,p¥’ cos’ k, x, (3.20g)

which is also in phase with the aforementioned energy densities.

3.1.2 Quasi-Longitudinal Waves on Beams and Plates

The previously discussed pure longitudinal waves can occur only in solids
whose dimensions in all directions are much greater than a wavelength.
Thus, some seismic waves are pure longitudinal waves, but one rarely en-
counters practical structures that are of sufficient extent in all directions to
support pure longitudinal waves at the frequencies of interest here. The
largest thickness of concern in building structures, for example, is likely to
be that of a heavy brick or concrete wall; about 25 cm. For this thickness
and for a longitudinal wavespeed of 2500 m/s (which value is representa-
tive for such a wall and corresponds to the lowest wavespeeds in typical
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building structures), one finds that the wall thickness exceeds the wave-
length only at frequencies above 10,000 Hz. For most cases of interest, at
least one of the dimensions is small compared with a wavelength; for
plate-like structures one cross-sectional dimension is smaller than a wave-
length, for beam-like structures, two.

Although an unsteady axial force acting at one end of a beam may be
expected to produce primarily wave motions parallel to the beam axis, it is
well-known that even in a static tensile test there occurs a contraction of
the cross-section in addition to the axial extension. This contraction per
unit thickness (i.e., the strains |¢,| or |¢.| are proportional to the axial strain
€x

g, =€ =—Ue,. (3.21)
The constant of proportionality p is a property of the material and is
known as Poisson’s ratio; Poisson was the first to derive a value, namely
0.25, for this constant on the basis of theoretical considerations. His value
is of the same order as those actually observed, see Table 4.3. The greatest
possible value that u can take on is 0.5; this value is obtained for incom-
pressible materials, for which the volume change associated with the cross-
sectional contraction makes up for that due to the longitudinal extension.
Obviously, the actual cross-sectional contractions must be less than those
for an ideal incompressible material, but they are of the same order of
magnitude.
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Fig. 3.3. Deformations associated with a quasi-longitudinal wave

Because of the cross-contraction phenomenon, there occur in a rod lat-
eral displacements 1 and  in the y and z directions, in addition to the lon-
gitudinal displacements & of the material elements and, therefore, a wave
travelling along the rod cannot be a pure longitudinal one. Rather, the
wave motion appears in principle like that shown in Fig. 3.3 for a sinusoi-
dal wave. The displacements shown in this figure are exaggerated, of
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course, in order to display them more clearly; not only are the magnitudes
of the displacements shown at least five orders of magnitude greater than
in actuality, but also the ratio of the lateral displacement n to the amplitude
of the longitudinal displacement & is shown as large as makes sense. For a
circular or square rod of diameter or thickness d, and for a wavelength A,
the ratio of the transverse to the longitudinal displacement amplitude may
be found from

~1 29 . 2n ~
€, 272 Hig | = “TE’”
to be given by
N _npd
g—T (3.22)

Since mu is approximately equal to unity for most structural materials, one
finds that the ratio of the greatest lateral displacement to the greatest longi-
tudinal displacement is approximately equal to the ratio of the thickness of
the wavelength; — and it has already been mentioned that this ratio usually
is small for the audio-frequency range. The present discussion does not
apply if the wavelength is of the same order as the thickness, because then
the lateral displacements are no longer in phase over the cross-section and
do not vary linearly with distance from the axis cf. 3.7.3. In quasi-
longitudinal waves, the wave motions must be primarily longitudinal and,
therefore, such waves are often also called longitudinal waves, although
the “quasi-longitudinal waves” usage is to be preferred, because it indi-
cates a deviation from the pure longitudinal waves.

Although the transverse motions may be very small, their presence has
two important consequences. It is clear that only motions perpendicular to
a surface can cause radiation of sound into an adjacent medium which
cannot support shear stresses. Quasi-longitudinal waves can therefore radi-
ate sound because of the cross-sectional contractions associated with them.
Estimates of the magnitude of such radiation are given in Chapter 7, but it
should be mentioned here that the associated radiation into air generally is
insignificant unless inordinately large structure-borne sound energies are
present. However, this type of radiation into water generally is not negligi-
ble, because of the considerably greater “acoustic hardness” of water. In
fact, one may even make use of this radiation for measurement of the in-
tensities of longitudinal waves propagating along a plate.

Transverse motions also cause the propagation velocities of quasi-
longitudinal waves to be smaller than those of pure longitudinal waves.
This difference comes about because the stiffness with which a rod resists
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axial forces is smaller if the cross-section of the rod is not constrained. Be-
cause unconstrained cross-sections can easily be obtained in practice, the
modulus of elasticity £ was defined as the ratio of the stress to strain in the
tension direction, as obtained in a simple tensile test:

E=2 ; (o,=0.=0). (3.23)

If, on the other hand, the lateral contraction is constrained to zero, then
there results a three-dimensional instead of a one-dimensional stress condi-
tion, because then there are produced the additional normal stresses o, and
o 1n the directions normal to the tension direction. These stresses reduce
the displacement in the x-direction by an amount which, in view of the su-
perposition principle, corresponds to the cross-contraction they would pro-
duce if they were present by themselves. For the general case, Eq. (3.23)
must be replaced by three equations:

Ee =oc - u(csy +GZ)
Ee =6, —u(c.+0,) (3.24)
Ee =0, —u(cx +Gy) .
For the case where no cross-sectional contraction is permitted, namely
for
e, =g, =0, (3.25)

y

one finds by adding the last two of Eq. (3.24) that

(6, +0.) =20

I-p

X

which, after substitution into the first of these equations, leads to

2
Ee =0, 1—2” .
=0, -

Thus, the “longitudinal” stiffness D, which was introduced in Eq. (3.2) and
which determines the propagation velocity of pure longitudinal waves, de-
pends on the material parameters £ and p according to the relation

£ E(-p) (3.26)

D= = .
1—2u2/(1—u) (1+u)(1—2u)
Clearly, D is always greater than E. For the typical value of p = 0.3,
D/E = 1.35.
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Except for £ taking the place of the longitudinal stiffness D, all the rela-
tions derived in Sect. 3.1.1 remain valid also for “quasi-longitudinal”
waves on a rod. Instead of the tensile stress o, it is convenient here to in-
troduce the longitudinal force F,, which acts on the entire cross-sectional
area S and to take this force as positive if it is compressive,

F. =-5Sc (3.27)

x?

so that the power transported in the positive x-direction is given by the
product

W=Fuv,. (3.28)
The coupled Egs. (3.9) and (3.10) then become

oF ov
- * = S - s .2
x P (3.29)
ov. OF
-ES—=—=. 3.30
ox ot ( )

In the development of the wave equation from these relations, the area
and the algebraic sign-change drop out, and the only change that remains is
replacement of D by E:

2 2

EL (R v)= p§7(F, v). (3.31)

ox? *

The propagation speed here is

E
ey = \/:, (3.32)
p

which is smaller than the speed of pure longitudinal waves. For p= 0.3,
the difference between these two speeds amounts to 16 %, which is not en-
tirely negligible. It thus is important to note which longitudinal wave speed
is meant in any given situation.

In the rest of this book, Roman numeral subscripts indicating the num-
ber of directions along which the cross-sectional contraction is uncon-
strained will be used, in addition to the subscript L, to differentiate among
the various longitudinal wavespeeds (at least where confusion may occur).
Thus, the propagation speed of quasi-longitudinal waves on a rod is desig-
nated by ¢y in Eq. (3.32), in order to differentiate it from the speed ¢; of
pure longitudinal waves. Experimentally determined values of c¢;; are
given in Tables 4.3 and 4.5.
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Quasi-longitudinal wave propagation on a plate constitutes a case,
which lies between the two previously treated ones, because here cross-
sectional contraction is unrestrained in only one direction, say, the z-
direction. For this two-dimensional stress condition,

e, =0;0,=0. (3.33)
The second of Egs. (3.24) then yields
G, =uo,,
which, when substituted into the first of these equations, leads to
Ee, =c, (1— uz).
One finds that here the effective modulus of elasticity is

E
I-p

2

which lies between £ and D, but nearer to £. The corresponding longitudi-
nal wave speed

E
Cu = m (3.34)

differs so little from the value ¢, which applies for rods (for u = 0.3, the
difference amounts to 5 %) that the difference may often be neglected in
practice.

For the purpose of rewriting Egs. (3.9) and (3.10) for plates, it is con-
venient to use the compressive force per unit width

F'=—h, (3.35)

where /4 represents the plate thickness, instead of the tensile stress o,. Then
W'=Fv, (3.36)

gives the power propagating per unit width. The coupled Egs. (3.9) and
(3.10) then become

OF' ov

oy D 3.37
x P (3-37)
Eh_ov, _OF] (3.38)

_l—pz ox o’
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and the wave equation resulting from these may be written as

E ¢ o’
W§<F;’ v)=p =z (Flv.). (3.39)

The case of the plate differs from that of a rod in that the cross-sectional
contractions occur in only one direction, but it also follows from Egs.
(3.24) (appropriately modified for this case) that the cross-sectional con-
traction ¢, for a plate is larger than the two equal contractions for a rod;
namely, for a plate,

___u
€. = l—ugx' (3.40)

In effect, the material in this case “makes better use” of the one direc-
tion it can move to “get out of the way”. For p = 0.3, this increase in the
cross-sectional contraction amounts to 43 %, but does not change signifi-
cantly the previous estimates of the kinematic relations. However, this dif-
ference should be considered in calculations of sound radiation, which, at
any rate, always is greater for plate-like than for beam-like structures, be-
cause for beams the fluid motions on two opposite sides may cancel each
other in the acoustic nearfield.

3.2 Transverse Waves
3.2.1 Transverse Plane Waves

Solids do not only resist changes in volume but also changes in shape. This
resistance to changes in shape comes about because, unlike a liquid or gas,
a solid can support tangential stresses on any cutting plane, even with the
material at rest. Because these tangential stresses oppose “shearing” dis-
placements parallel to the cutting plane, they are called shear stresses. It is
the shear stresses, which make it possible for solids to exist in the shape of
rods, plates, shells, etc. It is also because of shear stresses that transverse
plane wave motions can occur in solid bodies, where the direction of
propagation (here again taken as the x-direction) is perpendicular to the di-
rection of the displacement n (here taken as the y-direction). Since the
transverse displacements of two planes, a distance dx apart, differ by an
amount on/ox dx, an element, which originally was a rectangle with sides
dx and dy, is distorted into a parallelogram. The acute angle of this paral-
lelogram differs from a right angle (see Fig. 3.4) by the shear angle
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on
’ny = a

(3.41)

One may observe that here the deformation is not associated with a change
in volume.

e
\

X x+dx

Fig. 3.4. Displacements, deformations, and stresses in transverse wave motion

On the other hand, there does occur a “rotation” of the element by the (of
course, very small) angle v,,/2. Therefore, transverse waves are also known
as “rotational” waves, see Sect. 3.5.

The previously discussed shear deformations always are associated with
shear stresses 1., and t,,, where the first subscript indicates the axis normal
to the plane on which the stress acts, and the second indicates the direction
of the stress. Moment equilibrium of the element dx dy requires that the
shear stresses on two perpendicular planes must be of equal magnitude.
These stresses are proportional to the strain v,, they produce, so that one
may write

Txy :Tyx = G’ny’ (342)
or, with the aid of Eq. (3.41),
et
xy - ax ° (3.423)

The constant of proportionality G again has the dimension of a stress and
is known as the shear modulus.
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If one replaces the displacement in the y-direction by the corresponding
velocity
on
= 3.43
v, =2 (3.43)
then one may write the result of a differentiation of Eq. (3.42a) with re-
spect to time as

ov, Ot
4 =" (3.44)
ox ot
This differential equation replaces Eq. (3.10). Correspondingly, the version
of Newton’s law in Eq. (3.9) is replaced by the equation

ot, = ov, (3.45)
x Do ’
which one may obtain by noting that the difference between the shear
stresses which act on two planes separated by a distance dx accelerate the
element in the y-direction. Combination of the coupled Egs. (3.44) and
(3.45) again yields a wave equation
o’ o’
Gy(rw, v, )= py(%, v,). (3.46)

from which one finds that the propagation speed in this case is given by

¢ ==, (3.47)
p
where the constant G appears instead of D or E. The subscript 7 is used to
indicate transverse waves and experimentally determined values of ¢y are
given in Table 4.3.

Although G at a first glance may appear to be a new material property,
which is independent of those discussed previously, this is not the case.
That G must be related to £ may be deduced by noting that normal stresses
are always associated with shear stresses, and vice versa. In longitudinal
waves there occur also shear stresses, and in pure transverse waves there
occur normal stresses. It is therefore incorrect to call pure transverse waves
shear waves. Normal or shear stresses occur by themselves only on planes
which are either parallel or perpendicular to the direction of propagation.
In general, the stresses at a given point in a solid depend on the orientation
of the hypothetical cutting plane through that point. Consider, for example,
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the diagonal planes of a square whose edges are subject only to shear
stresses, see Fig. 3.5a.

Fig. 3.5. Relations between a) normal and shear stresses; b) extensional strains
and shear angles

Equilibrium of the forces demands that depending on which diagonal is be-
ing considered there act on the diagonal plane a compressive or a tensile
stress, which is equal to the shear stresses acting on the edges:

2t cos45° = ° ;T =0
cos45°

The cos 45° term on the left-hand side results from the taking of force
components, that on the right-hand side accounts for the greater surface
area on the diagonal. Also the deformation of a differential rectangle de-
pends on its orientation relative to the stresses. Under plane stress condi-
tions, a square with edges parallel to the aforementioned diagonals experi-
ences a normal (extension or contraction) strain, which may be found from
Eq. (3.24) to be given by
.0 (1+ p).
E

These strains, however, are related to the angle y, as evident from Fig.
3.5b, as
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1_—gztan 4501 zl—y/Z’
I+e 2) 1+y/2

which means that

g=L

%
If one combines these equations with
T =Gy,
then one obtains the desired relation between G and E:
E

G=2(1+u)- (3.48)

One may observe that the shear modulus is always considerably smaller
than the modulus of elasticity £, and thus much smaller than the longitudi-
nal stiffness D. The propagation speed cr of transverse waves, therefore,
also is smaller than that of quasi-longitudinal waves,

_\E 1 A
o =\E 20y (3.49a)
o _ |60-w) _ fimw (3.49b)
c, E 2’

and much smaller than that of pure longitudinal waves,
o _ [G_ [1-2n
¢, \E 2(1-p) (3-50)

For p = 0.3, the foregoing ratios become

CT/CL][ = 0620, CT/CL] = 0592, and CT/CL =0.535.

From the similarity of the form of the equations one may determine
without a detailed analysis that in a sinusoidal transverse wave the distri-
bution of kinetic and potential energy is the same as in sinusoidal longitu-
dinal waves as shown in Fig. 3.2.

Plane transverse waves also can occur only in bodies, which are large
compared to the wavelength in all three dimensions. However, a free sur-
face, which is parallel to the propagation and displacement directions
(here, parallel to the x-y plane), has no effect on this type of wave. Plane
transverse waves thus also can occur in flat plates of uniform thickness.
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Since the motions at the surfaces of the plates in such cases are purely tan-
gential, the motions can neither excite an ambient, non-viscous fluid nor
can these motions be excited by the fluid.

3.2.2 Torsional Waves

Another type of transverse waves occurs when a narrow beam is excited
by a torque or a torsional moment i.e., a moment, which varies with time
and whose axis coincides with the axis of the beam. In such wave-motions,
cross-sections rotate about the axis of the beam, so that all points on a
cross-section experience circumferential displacements, which increase
with the distance from the beam axis. If the beam axis coincides with the
x-axis as in Fig. 3.6a, then the y- and z-components of these displacements
may be written as

n=-xz, (3.51a)
g =%y, (3.51b)

where y represents the angular displacement, in radians, from the equilib-
rium position.

~h

Fig. 3.6. Rotation of cross-section in torsion (a) and relation between change in ro-
tation and shear angle (b)
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For circular or annular cross-sections, it follows from rotational symme-
try that none of the points in a cross-sectional plane are displaced out of
that plane, so that

£=0. (3.52)

In this case, one may even obtain pure transverse waves. The infinite ex-
tent of the lateral displacement associated with the previously discussed
plane transverse waves is here replaced by closure of these displacements
around the circle. It will therefore be no surprise to find that the wave mo-
tion propagates with the speed given by Eq. (3.47).

In order to derive this result, it is convenient here — as for all configura-
tions of finite lateral extent — to describe the system in terms of integrals of
the field variables. The shear stresses, which act circumferentially every-
where on the cross-section and are proportional to the radius, may be
found from Eq. (3.42) and from the relation between the angles,

v=ress (3.53)

which is evident from Fig. 3.6b, to obey

0
t=Grk. (3.54)
Ox
Instead of this shear stress, one may use the torsional moment (acting

about the x-axis)

ra

M, =2n I‘U‘zdl”=%G(l”f—l’i4)Z,—i(, (3.55)

where r; and 7, represent the inner and outer radii of an annular cross-
section.
One may note that

T:%GQt%ﬂ (3.56)

represents the torsional stiffness of a rod with an annular (or circular)
cross-section. Since the torque is proportional to the rate of change of the
angular displacement for all cross-sectional shapes, that is,

5
M, =7%, (3.56a)
ox
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this proportionality serves to define a torsional stiffness for all cases. If one
introduces the time-derivative of the angle of rotation v, that is, the angular
velocity about the x-axis,

o
W=t 3.57
=X (3.57)
then one may differentiate Eq. (3.56a) with respect to time to obtain a rela-
tion between the space-wise variation of the angular velocity and the time-
wise variation of the torque:
oM ow,

X :T X 3
Py . (3.58)

This partial differential equation must again be complemented by a rela-
tion between the spatial variation of the torque and the time-variation of
the angular velocity. Such a relation may be obtained by equating the net
moment acting on an elementary length of the rod about its axis to the an-
gular inertia of that element. By this process one finds

oM., ow

=®/ X s X
Ox ot (3-59)

where @' represents the mass moment of inertia per unit length of the rod.
For a circularly symmetric cross-section with inside radius 7; and outside
radius r, this moment of inertia is given by

@':2npr]r3dr:%p(r:—ri4). (3.60)

By combining Egs. (3.58) and (3.59) one obtains the wave equation

ol o
TE(MX, W’x)=® y(MX, W’x), (361)
from which it follows that the propagation speed is given by the square-
root of the ratio of the torsional stiffness to the moment of inertia. As evi-
dent from Egs. (3.56) and (3.60), which follow from the same integrations,
the geometric parameters cancel each other in this ratio, so that only the

material constants G and p remain, and

=]~ (3.62)
p

The aforementioned identical dependence of 7" and ®' on geometry
holds only for rotationally symmetric cross-sections. If one considers a
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narrow rectangle (keeping the total area constant), its torsional stiffness
decreases while its moment of inertia increases. The increase in the mo-
ment of inertia is evident from the well-known expression

b4 hb) s
o PLOH D) ps (Lﬁ) (3.63)
12 12 \b h

This expression, which is symmetric with respect to the height /4 and the
width b, takes on its minimum value for 4 = b i.e., for a square, but even
this value is larger than that for a circle of the same area. For narrow rec-
tangles, the second term in the parentheses is negligible in comparison
with the first, and the foregoing relation simplifies to

3
®' = p%. (3.63a)

On the other hand, one obtains the following values for the torsional
stiffnesses of rectangles with various ratios of /4/b:

Table 3.1. Torsional stiffnesses some rectangular cross-sections

h

— 1 1.5 2 3 6
b

TI(GS"b/h) 0.141 0.196 0.229 0.263 0.298

As h/b approaches infinity, the torsional stiffness approaches the limiting
value

(3.64)

If one introduces values of ®"and T given by Egs. (3.63) and (3.64) into
Eq. (3.62), then one obtains the following values for the propagation ve-
locities ¢z of torsional waves on bars with rectangular cross-sections:

Table 3.2. Torsional wave speed corrections for some rectangular cross-sections

h

— 1 1.5 2 3 6
b

Sn

— 0.92 0.85 0.74 0.56 0.32
Cr

One notes that ¢;; becomes smaller and smaller in comparison with the
value given by Eq. (3.62), as the height-to width ratio becomes larger and
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larger. For large values of 4/b, one obtains from Egs. (3.63a) and (3.64) the
approximation

2b
Cn :7CT' (365)

A comparison with the values given in Eq. (3.65) shows that this approxi-
mate relation is acceptably accurate for 4/b greater than 6.

The phenomena, which here have been investigated quantitatively for a
rectangular cross-section, are also valid in principle for all other cross-
sections with no rotational symmetry. Their moments of inertia are always
greater, and their torsional stiffness always smaller than those for a circular
cross-section of the same area. From the values tabled as well as given by
Eq. (3.65) for a special case, one may deduce the general result that the
propagation speeds of torsional waves in rods with elongated cross-
sections are considerably lower than those of transverse waves.

Torsional waves in rods whose cross-sections are not rotationally sym-
metric are not pure transverse waves, because motions in the direction of
propagation accompany them, so that

& #0. (3.66)

Surfaces which initially are planes perpendicular to the axis of the rod be-
come curved. One may observe such distortions by twisting an eraser with
a rectangular cross-section. The longitudinal displacements, of course, are
again very small compared with the transverse ones, so that one may again
classify all torsional waves on bars with non-rotationally-symmetric cross-
sections as “quasi-transverse”. (In order to differentiate the propagation
speed of such waves from cr, the notation c7;; was introduced, in analogy
with the notation to differentiate ¢; from c;;; in both cases, the additional
subscript / indicates that there occurs a secondary motion perpendicular to
the primary motion.)

A completely rigorous analysis must also explore the validity of the as-
sumption (which was taken from statics) that the axial displacements can
propagate longitudinally without obstruction i.e., that there occur no longi-
tudinal stresses o,. For the present purposes, however, it suffices to note
that in every wave motion there occur opposite conditions (changes in al-
gebraic sign) at all locations which are half a wavelength apart. Since these
half-wavelengths here always are smaller than the corresponding longitu-
dinal half-wavelengths, which determine the equalization of alternating
longitudinal stresses, one may conclude that the assumption to unob-
structed longitudinal stress propagation can lead to no significant discrep-
ancies. One may also readily determine on the basis of simple estimates
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that the inertia forces, which oppose the longitudinal motions, are negligi-
bly small compared with the elastic forces.

Torsional waves on bars with non-rotationally-symmetric cross-sections
also differ from those on bars with circular and annular cross-sections in
another significant way. In the latter, the surface only moves tangential to
itself and thus can produce no sound radiation, whereas for the former un-
der torsion, there also occur components of motion normal to the surface.
But because here regions of opposite motion perpendicular to the axis of a
bar always lie close to each other, significant radiation associated with tor-
sional waves can result only at high frequencies. (Of course, at high
enough frequencies, the entire cross-section no longer vibrates in phase.)

All of the wave types discussed so far make only negligible direct con-
tributions to the radiation of sound into air. However, they may be
important as intermediate carriers of energy, which may eventually be ra-
diated elsewhere into the surrounding medium.

3.3 Bending Waves

3.3.1 Pure Bending Waves

Of all the various wave types, bending waves, which also are called flex-
ural waves are by far the most important for sound radiation. Because of
the rather large transverse deflections associated with them, one might be
inclined to include bending waves in the class of transverse waves. But
such a classification would be wrong — not only because the stresses and
strains that dominate the potential energy in bending waves act in the lon-
gitudinal direction, but also because the entire behaviour of such waves
and the underlying differential equations differ so greatly from those of the
previously discussed transverse waves that even use of a name like
pseudo-transverse waves would be misleading. Flexural waves also differ
no less basically from quasi-longitudinal waves. In short, flexural waves
fall into a class by themselves.

Flexural waves, unlike the other wave types, must be represented by
four field variables instead of two, and therefore also the boundary condi-
tions are more complex. It is convenient to use the following four vari-
ables. The (transverse) velocity v, of an element, the angular velocity w.
about the z-axis, which is perpendicular both to the axis of the beam and to
the transverse displacement, the bending moment M., which acts on a
cross-section (again about the z-axis), and the shear force F), transmitted
across the section. For a plate, the moments and forces are considered per
unit width and are represented by M'. and F",. One may select appropriate
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algebraic signs by taking v, positive in the positive y-direction, selecting w.
as positive for counter-clockwise rotation in Fig. 3.9, and choosing M, and
F, so that the products

M. -w =W, (3.67a)
and

F,-v, =W, (3.67b)
represent power flow in the x-direction. Even at this stage one observes

that two different forms of power flow occur, a fact which will turn out to
be of considerable importance.

o

Fig. 3.7. Displacements and deformations in bending

The four field variables here are related by four differential equations,
which again couple these variables cyclically. The lateral displacement n
and the rotation of a cross-section through the small angle 3 (see Fig. 3.7)
are related by the approximate expression

_o
p="1 (3.68)

Differentiation with respect to time then leads to the following relation
between the angular and lateral velocities:
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ov,
w, =—=. (3.69)
Ox
The rate of change of the angular velocity with distance is equal to the
time-wise rate of change of the curvature, because for small lateral dis-
placements m, both can be represented in terms of 6™n/ax :

ow, 0, 9 (aznj

(3.70)

o ' ooy

As is shown in elementary strength of materials, the curvature depends
primarily on the local bending moment and is proportional to it i.e.,

on M

= 3.71
ox? B ( )

The negative algebraic sign results from taking M, positive for power flow
in the positive x-direction i.e., from taking M, positive on the left (smaller
x) surface of an element as shown in Fig. 3.9 if M, acts in the same direc-
tion as w,. This direction of M,, however, is opposite to that which pro-
duces a positive curvature.

The constant of proportionality B is called the bending stiffness or flex-
ural stiffness. This stiffness may be determined on the basis of the experi-
mentally verified assumptions that plain sections remain plane and merely
rotate by an angle én/dx (so that two neighbouring sections rotate with re-
spect to each other by an amount 6’ /0x” dx ) and that this rotation affects
only the extensions or compressions in the axial direction. The additional
deformations that result from shear displacements produced by the shear-
ing forces may be neglected, provided that the bending wavelength is large
compared with the cross-sectional dimensions; this relative size of wave-
length may be considered as a necessary condition “pure bending waves”.

The strains g, in the axial direction increase linearly with the distance y
from a neutral fiber,

o
€, PR (3.72)

For symmetric cross-sections, the neutral fibre is located at the midpoint
of the section, see Fig. 3.8. The negative algebraic sign indicates the occur-
rence of compression at locations above the neutral fibre i.e., for positive y
there occur compressive strains. The same sign applies also for the tensile
and compressive stresses,

o, =FEe =—Ey—-. (3.73)
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Fig. 3.8. Distribution of a) strain and b) stress over cross-section

For plane bending of plates, one must again replace E by E/(1-p?), in order
to account for the fact that cross-sectional contraction is prevented in one
direction. One may obtain the bending moments by multiplying the
stresses o, by the lever y, see Fig. 3.8 and summing them over the area of
the cross-section:
0’ 0’
M. =§[ny dSz—E%!yzdSz—Elﬁ. (3.74)

In this expression, / is the second moment of area about the z-axis. As is
observed from a comparison of Egs. (3.71) and (3.74), the bending stiff-
ness of the system is given by the product of the material related Young’s
modulus and cross-sectional shape related second area moment /

B:EJ:Ejy%lS (3.75)

The second moment of area for a rectangular cross-section of height /
and width b, a tube with inner radius 7; and outer r, as well as a solid cyl-
inder of radius r, are given by:

bh3 . 4 4. T 4
g (3.76)

For complicated cross-sectional shapes, the second area moment can be
taken from a handbook but also calculated analytically or numerically em-
ploying Eq. (3.75). It should be noted that the reference y = 0 for the inte-
gration must first be estimated from
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Sf EydS =0 (3.76a)

This procedure is also applicable when multi-layered beams are consid-
ered, where Young’s modulus £ is a function of .

Upon differentiating (3.71) with respect to time and introducing the ro-
tational velocity from (3.70) one obtains

oM, _ _pow ow,
ot o

(3.77)

The expression relating the shear force F, to the bending moment M.
may also be obtained from static bending theory This relation results from
the moment equilibrium of an element of length dx, as shown in Fig. 3.9
together with the positive direction, and can be written as

M. [M +a£dxj Fdx=0 (3.78)
Ox ’
yielding
oM
F =-—= (3.78a)
’ Ox
Vy
Fy
i ™N,, . M
M| whi
\_ ‘\ﬁ,} M+ = I dx
le—0 Xx— Fy 4 ajjd

X

Fig. 3.9. Ficld variables for a beam element in bending indicating the positive
directions

For the dynamics, also an inertia term have to be included on the right
hand side of (3.78), which amounts to

ow,
ot
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but, as will be shown later, the kinetic energy associated with such rota-
tional motion can be neglected in comparison with that associated with
translational motion as long as the bending wavelength is large composed
with the cross-sectional dimensions cf., Sect. 3.8.2.

Finally, is needed a relation between the shear force and the transverse
velocity to complete the cycle of equations. This relation may be obtained
from an application of Newton’s second law to an element of the beam,
see Fig. 3.9,

r r OF, i e ov, 3
— 4+ — = -
T T e P (3.79)
which reduces to
OF, 6vy
—L=m' . (3.79a)
Ox ot
Here,
m'=pS (3.80)

is the mass per unit length.

The combination of Egs. (3.69), (3.77), (3.78a) and (3.79a) furnishes the
one-dimensional form of the bending wave equation, which is valid for all
field variables

4 2
—Baa?(vy,wz,MZ,F}_):m'(g?(vy,wz,Mz,li,) (3.81)

This equation resembles the usual wave equations only in that the time
derivative is of second order. In contrast to the other wave equations, the
left-hand side of Eq. (3.81) involves the fourth derivative with respect to
space and appears with a negative sign. This algebraic sign, which affects
the basic character of the solutions, is not the result of arbitrary choices of
signs for the field variables and cannot be changed by modified choices.

The fact that the spatial and temporal derivatives appear with different
orders implies that the wave motion is dispersive. Furthermore, the disper-
sion, in general, cannot be given a simple functional description.

On the other hand, Fourier analysis is still applicable such that any time
dependence can be decomposed in pure tonal components and the propa-
gation of those temporally sinusoidal components investigated.

The spatial variation of temporally waves can readily be shown to allow
also sinusoidal forms i.e., sinusoidal flexural waves are also possible. By
substituting
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<

L=, sin(of —kx+¢,) (3.82)

in (3.81), it is seen that the velocity assumed satisfies the wave equation
for arbitrary amplitudes and phase angles as long as the angular frequency
and wave number characterizing the temporal and spatial periodicity
respectively, obey

B
k=0’ (3.83)

m
Also in this case, the ratio of angular frequency to wavenumber

(O]

—= .84
L =¢ (3.84)
represents the speed with which one has to move to remain at the same
phase of the sinusoidal wave motion. This ‘phase speed’ of bending waves,
designated by subindex B thus depends on frequency as seen from Eq.
(3.83),

¢, =il (3.85)

Such a phase speed clearly represents speed of propagation only of one in-
finite sinusoidal wave. Waveforms that in a Fourier analysis sense are
composed of various sinusoidal components always distort since high fre-
quency components propagate with higher speed than those of low fre-
quency.

In optics, the corresponding process, is called dispersion and this con-
cept is carried over to all wave carrying systems with frequency dependent
phase speed.

For a plate of thickness 4, Eq. (3.85) can be simplified to

1.8h
cp, 2 AJ1.8¢, hf =c,, o (3.85a)

LI

In Fig. 3.10 are shown some bending wave speeds for plates of various
materials as function of the product of thickness and frequency. The curves
are approximately valid also for beams with rectangular cross-sections
since Poisson’s contraction only has a minute effect. In the figure, more-
over, the frequency independent phase speeds of waves in air and water are
included as is the limit of validity of the Kirchhoff bending theory cf.,
(3.196D).
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Fig. 3.10. Flexural wave speed (c; to ¢¢) and normalized wavelength (A to A4) for
plates of various materials versus product of thickness and frequency. (1) Steel,
aluminium, (2) glass, (3) brass, dense concrete, (4) brick stone, chipboard, (5)
light-weight concrete, Gypsum board, perspex and (6) lead

Besides the theoretical case of an infinite sinusoidal wave, there is an-
other special case, in which it is meaningful to consider a definite propaga-
tion speed. This is the case, in which a wave motion occurs composed of
several components of slightly differing periodicity. Intuitively, one could
jump to the conclusion that these phase speeds have a small variation
around some mean which also could be used as a mean speed. Unfortu-
nately, it is a bit more involved as can be gathered from the simplest case
with two superimposed, equally strong components, of frequencies ®, and
®, and wavenumbers k, and k,. Such a superposition results in a modula-
tion

sin(o, 1 —k, x)+sin(w, 1k, x)

- - 3.86
:2SII1 W—%Z_Mk cOS M[‘_Mx 5 ( )
2 2 2 2

which means that a sinusoidal carrier wave of the mean frequency
(01 + ©,)/2 and of the mean wave number (k; + k,)/2 is amplitude modu-
lated by the substantially lower wavenumber (k; - k;)/2. This envelope
curve, however, is of primary interest since it determines the average en-
ergy transport. Although the carrier wave indeed propagates with the aver-
age phase speed
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o +0,

T (3.87)

the envelope curve, which encloses the group of the wave peaks, propa-
gates at the ‘group speed’

e b 3.88

¢ k-k Ak (3.88)
This group velocity can be considerably larger as well as considerably
smaller than the phase speed. In the limiting case, where the frequencies
and wavenumbers are arbitrarily close to each other, ¢, is given by the de-
rivative

do

c, =—
¢ dk

(3.88a)

The group speed as defined here does not apply only to the envelope
function of a modulation given by Eq. (3.86) but in general is applicable to
the envelope function of all processes composed of arbitrarily many adja-
cent wave trains of arbitrary amplitudes and phases. The group speed is
also applicable to continuous spectra which have negligible components
outside of the immediate vicinity of the carrier frequency. Such individual
wave-groups are of significant interest since they represent the only type of
excitation signals for which dispersive systems exhibit clearly defined
transit times.

From Eq. (3.83), the group velocity of bending waves c.5 obeys

Cop =2\/§k=205, (3.89)

which thus is twice the phase speed. In Fig. 3.11a, this relation is exempli-
fied. The upper and lower curves represent two points in time respectively,
which are displaced half a period of the carrier wave. Therefore, the carrier
wave is shifted half a wavelength of the carrier wave rightwards whereas
thereby, the envelope curve is shifted the double distance. The lower part
of Fig. 3.11b shows a continuous wavenumber spectrum - in this case rep-
resented by a Gaussian error curve. The significant position of this curve
encompasses only a small wavenumber range. There above is the disper-
sion relation ® (k) plotted and indicated is the difference between group
and phase speeds via the associated angles.
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Fig. 3.11. Illustration of the difference between group and phase speeds

3.3.2 Energy Relations

The fact that the energy is propagated with the group speed can be demon-
strated by means of the energy relations that holds for pure sinusoidal
waves. These energy relations for bending waves differ markedly from
those of the previously discussed wave types as is observed from a com-
parison of Fig. 3.12 pertaining to bending waves and Fig. 3.2 associated
with a longitudinal wave. The sinusoidal displacement in the former case
can be written as

n ="sin(ws—kx). (3.90)

At the top of Fig. 3.12 is shown the corresponding deformation at time
t=0. Next follow the spatial distributions of the translational velocity, the
rotational velocity, the bending moment and the cross-sectional force. Pair-
wise, F), and v, are in phase as are M. and w. but group-wise a quarter pe-
riod out-of-phase. These phase relations lead to a remarkable property of
the energy flow composed of

W, =Fv, =1’Bok’ cos’ kx = 1:“),\3), cos” kx 3.91)
W, = M.w._=q’Bok’ sin® kx = M_,_ sin® kx '
Their sum, however, establishes a time-invariant power

W=W,+W, =1’Bok’ (3.92)
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For the sinusoidal flexural wave, the energy flow does not vary with the
period A/2 between zero and a maximum value but is spatially constant.

SSEzasss=ssii=tus:

D e B - et ]

'

W, —__ - X
J/-

M > X

X

Fig. 3.12. Field variable and energy distribution of a sinusoidal flexural wave

Accordingly, the same must be true also for the sum of potential and ki-
netic energy. Per unit length, the latter amounts to

’

SE

kinT ?Vv

=m7((m]) cos” kx = TSV cos kx (3.92a)

and is essentially governed by the translational energy. Upon comparing it
with that associated with rotations

SE p! w? =

kin,R = 2 z

I . .
p—kzvz, sin® kx,
2 ¥y
it is noted that the rotational energy maximum is a factor

Max (Ekin,R ) _ (275 MJZ

Max(Ekm)T) A

smaller. Owing to the fact that the rotational energy grows towards the
boundaries, an average value is understood, which is denoted by an over
bar. As has already been mentioned, in pure bending the cross-sectional
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dimensions must be small compared with the wavelength. For this reason,
Egs. (3.85) and (3.89) are also only valid in the range where the calculated
wave speeds are substantially below that of the longitudinal wave, ¢;. The
potential energy, on the other hand, is controlled by the axial stresses and
strains,

= 1 E 6271 ’ 2 B i
SEp =— |6 £.dS=—| — daS =—k"M kx. 3.92b
=g o 2(axzjsjy Sk (3.92b)

Both the energy components vary between zero and a maximum value
with period of A/2. This maximum value is, furthermore, in both cases the
same, which can be seen by substituting expression (3.83) in the relation
for the potential energy. The two energy components oscillations are quar-
ter wavelength displaced, however, and where the beam, for example, has
its maximum curvature and is about to change the direction of motion and
thus momentarily at rest, the potential energy is a maximum. Thus, the
sum of the two energy components is a constant,

_ _ _ A2
SEuw =(SEpu+SEun)="=(m'o" cos® kx+ Bk* sin® kx)
2
3 (3.92¢)
=~ k7.
5 n
This is illustrated in Fig. 3.12 with horizontally and vertically hatched
regions. The constant energy per unit length can be found to be related to
the constant energy flow W as

W = Z%SEMI = 2CBSEMI = CgBSEzm N (393)

and the power transmission is again determined by the group speed.

3.4 Wave Motions on Beams of Finite Length

Waves that propagate in one direction, which have been the subject of dis-
cussion until now, can occur only as long as they encounter no change in
the wave carrying system. Every homogeneous wave guide, however, have
ends and at those ends the wave motion always change direction, usually
also its amplitude and phase, and often even its basic characters.

This section deals only with the one-dimensional case, and for the sake
of further simplicity, only with waves in beams of the types treated in
Sects. 3.1.2, 3.2.2, and 3.3.1, in the presence of ideal boundary conditions.
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3.4.1 Longitudinal Natural Vibrations

It is convenient to begin by considering a quasi-longitudinal wave arriving
at the end of a beam at x = 0, which end may be either free or clamped
(i.e., built into a rigid body). At a rigidly constrained end, the velocity
must vanish whereas at a free end, the force. For airborne sound in ducts,
rigid ends can be approximated well in practice, but for sound in liquid —
and even more so for sound in solids — free ends can be obtained much
more easily. It is therefore preferable, particularly because experimental
verifications will also be of interest, to study first a beam with a free, for
which the boundary conditions are

F=0 ; x=0. (3.94)

These conditions must be satisfied at all times. However, the arriving wave

()
C

where the subscript + indicates that the waves propagates in the positive x-
direction, cannot satisfy the boundary conditions by itself. An additional
wave, which propagates in the negative x-direction,

- (Z j ’
C
must be added. Then

F(x, 1)=F (z-fjw_[”f), (3.95)

C C
and satisfaction of the boundary condition of Eq. (3.94) requires that
F (1, 0)=—F, (¢, 0). (3.96a)

Thus, as far as the force is concerned, the wave merely changes its sign
becomes “ideally reflected”.

One may now determine the behaviour of the velocity, by noting first
that the velocity in the arriving wave has the same dependence as the force,

v, = ! F+[t—£),
pSc, c

as is evident from Eq. (3.14) for a pure longitudinal wave, and as may be
easily derived from Egs. (3.29) and (3.30). In the reflected wave, however,
the ratio of v. to /. occurs with a changed algebraic sign,
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-1
v = F [t + ﬁj )
pSc, c
because in this wave energy is transported in the negative direction. At the
boundary, therefore,

v (£,0)=v, (1,0). (3.96b)

Thus, while the force vanishes at the boundary, the velocity there is twice
that of the arriving wave:

v(2,0)=2v, (2,0). (3.97)

An assumption of zero motion at x = 0 would have led to a doubling of the
force at this end.

The equations for torsional waves, which are discussed in Sect. 3.2.2,
are analogous to those for quasi-longitudinal waves, and this analogy also
holds for the boundary conditions at free and clamped ends where either
the moment M or the angular velocity w vanishes. Without needing to ana-
lyse torsional waves in detail, one may therefore conclude that torsional
waves also experience ideal reflection at free or rigid ends. Also, M
changes sign at a free end, but w does not, and the reverse is true at
clamped end. Similarly, the angular velocity is doubled at a free end, and
the moment, at a clamped end.

A wave propagating on a beam which has the same type of boundary at
both ends is reflected similarly at both ends. After two reflections, the
wave again propagates in the same direction as originally, and both field
variables again have the original algebraic sign. This implies that every-
where each field variable varies periodically in time. The period,

=2 (3.984)
C
corresponds to the time taken by the wave to propagate to one end, from
there in the reverse direction to the other end, and from there again to its
starting place, all with the same velocity c.
Because every periodic process with frequency
1 ¢

- (3.98b)

h=7=3

can be analysed in terms of sinusoidal components with frequencies

C

=, (3.98¢)

=n
1y 2/
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one is led to consider the character of these component waves or, the char-
acter of the vibrations that result from these waves in the presence of the
boundary conditions. Because these vibrations are characteristic of the par-
ticular beam under consideration, they are called characteristic vibrations.
Since such vibrations can occur “naturally” in absence of external driving
forces, they are also called natural vibrations.

In the simplest case, such as that of pendulum or an elastically sup-
ported mass, constrained to move in only one direction, the natural vibra-
tion obeys

u=dcos(wi+¢,) (3.992)

for every field variable u (displacement, velocity, restoring force, etc.).
The natural vibrations of systems with m independent degrees of freedom,
m independent co-ordinates are required, all varying sinusoidally in time,
generally with different amplitudes. In the absence of energy losses i.e., in
undamped natural vibrations all co-ordinates of the same type transverse
their extreme (and their zero) values simultaneously. Therefore, if one
takes the time origin # = 0 at an instant when all co-ordinates pass through
their extreme values, and if one admits positive and negative values for the
amplitudes # , then one may choose ¢, = 0 and write for any coordinate,
say, the k",

u, =1, Cosmt. (3.99b)

As one progresses toward a continuum, the number of degrees of free-
dom becomes infinite. Correspondingly, the discreet coordinate amplitudes
become a continuous function of space:

u(x, t)=1(x)coswt. (3.99¢)

This separation of the field behaviour into a function of space and one of
time (a process named after D. Bernoulli) can provide even more insight
into the concept of natural vibrations than can the decomposition of vibra-
tory motions into propagating waves as in Eq. (3.95) (which goes back to
D’ Alembert).

From what has been proven so far namely, that the time variation of
each field variable is periodic with the period 2//c and may be analysed in
terms of its Fourier components, one may conclude only that these Fourier
components must be of the form

u(x, 1)=i(x)cos(wr +g, (x)). (3.99d)

This means that one cannot exclude possible phase differences. The more
general expression in (3.99d) is of importance, not only because it de-
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scribes the natural vibrations of interest here, but also because it can de-
scribe any oscillation, which involves sinusoidal vibrations with time, if x
is replaced by a positive vector r.

The expression of Eq. (3.99d) is no longer separable into multiplicative
terms, but may be written either as the sum of two such separable expres-
sions (phase shifted in time with respect to each other),

[u x)cosq, ( }cosmt+[—ﬁ(x) sing, (x)] sinwt, (3.99¢)

or as the real part of a product of two quantities, each of which depends
both on space and on time,

u(x, 1) = Re{[ﬁ(x) e"“’"(x)Je"“”} =Re {L_?(x) e""”t}. (3.991)

By extending the phasor notation introduced in Sect. 2.2, to include a
location dependence, the one-dimensional wave Egs. (3.11), (3.31), (3.46),
and (3.61), reduce to the simple vibration equation

2 A
94, j2q=0, (3.100)

By again considering the vibration in terms of two waves propagating in
opposite directions, as in Eq. (3.95), one may write the solution of the
“spatial” vibration for the special case of the longitudinal force in a beam
as

E(x)zﬁ&’ﬂ“ +F et (3.101)

One may observe that for the first term, which represents a wave propagat-
ing in the positive x-direction, the phase must increase with increasing x,
because a given phase arrives later at a location for which x is larger.

The first boundary condition, requiring that the axial force at x = 0 van-
ishes, implies that the two phasors /', and /_ must have opposite alge-
braic signs, as in Eq. (3.96a).

Since one may also write

=P (3.102a)
as

(3.102b)

Il
[~
+

Q

one may consider the change of the sign of the force wave due to reflection
as a “phase jump” of

Y =-m. (3.102¢)
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From the first boundary condition, one may deduce that the spatial distri-
bution of the axial force is a sinusoid, beginning at x = 0:

E(x)=FE,, sinkx. (3.103)

Because of the second boundary condition, which requires vanishing of
the force at x = /, this sinusoid also must vanish there. This requirement
determines k and, therefore, the wavelengths A

=y 1= "R
2

(3.104)

The frequencies that correspond to these values are the same as those
given by Eq. (3.98c), as one would expect. These frequencies are called
“natural frequencies”, “eigen-frequencies” or “characteristic frequencies”.
The left-hand part of Fig. 3.13 shows the force distributions for n =1, 2, 3
at the instant at which the greatest absolute values occur. The right-hand
part similarly shows the corresponding velocity distributions, and thus also

the displacement distributions given by

Zn =Y, max

B, (X) =9, cOSk,x , E(¥)=E  cosk,x, (3.105)

respectively the condition that the “round-trip” path length 2/ is an integral
multiple of the wavelength, which is indicated by Eq. (3.104), may also be
deduced from a general, easily visualized principle which holds for all
natural vibrations. This principle states that a natural vibration occurs if a
propagating wave, after reflection at all boundaries along its path, returns
to its starting point with the same amplitude and phase that is, if such a
wave can form a wave train that closes on itself. In the present case, the re-
flections at the ends do not change the amplitudes. Therefore, formation of
a closed wave-train requires only phase-matching of the wave as it closes
on itself after being reflected at both ends. By applying this principle to a
velocity wave, which is reflected without phase change, one obtains the re-
lation (3.104) directly. A corresponding closed wave train for the case of
n =2 is illustrated in Fig. 3.14, where the rightward moving part is shown
as a solid curve, the leftward moving part as a dotted curve.
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v,(F)

—
I—-— *”/\1

x=0 x=1

Fig. 3.13. Longitudinal natural vibrations of a rod. F, v without parentheses corre-
spond to free end; F, v in parentheses correspond to clamped ends. (The solid and
dashed curves represent conditions half a period apart.)

Application of the “wave train closure principle” to the force wave is a
little more difficult, because there occur phase jumps v, and v, at x = 0 and
x = [. One must take these phase jumps into account in expressing the re-
quirement that the wave train close on itself in phase. This leads to the
general relation

2kl -y, —y, =2nm. (3.106)

Because each phase jump in this case is equal to -m, Eq. (3.106) differs
from Eq. (3.104) only in that it involves n — 1 instead of n. Since n can be
any integer, the two equations amount to the same thing. One would not
expect otherwise, because the natural frequencies obviously cannot depend
on which variable one imposes the requirement of phase continuity.

Fig. 3.14. Sketch to illustrate the principle of phase-continuous closure
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From the foregoing result one may also deduce that a bar with both ends
rigidly constrained has the same natural frequencies as one with free ends.
One needs only to note that in an axially constrained bar, the force and ve-
locity boundary conditions and, therefore, also the associated phase jumps,
are interchanged with respect to those in a free bar.

From phase continuity at wave train closure, one also may readily de-
termine the natural frequencies of a rod, which is clamped on one end and
free on the other, irrespective of if the wave is longitudinal or torsional
waves. For any field variable, one obtains a reflection with zero phase
change at one end, and a phase jump of -m at the other end. One thus ob-
tains

(2n-D)n, . (2n-1)c

2k,1=(2n-1)m; I = R 3.107
1 =(2n-1)r T L (3.107)

Like the natural frequencies of a closed-ended organ pipe, the natural
frequencies here are associated with the odd integers.

3.4.2 Natural Vibrations in Bending

It is instructive to turn now to flexural vibration of a beam of finite length
and to determine the natural frequencies on the basis of the principle of
phase continuity. For this purpose first, the phase jumps must be deter-
mined, which result from the various boundary conditions. In this case it is
not sufficient to deal only with the ideal limiting cases of “clamped” or
“free” ends, but also with boundaries where these descriptions apply only
to the translational or to the rotational deflections.

A simple support, as represented in the upper let-hand part of Fig. 3.15,
prevents a beam from deflecting vertically (v = 0) but permits it to rotate.
Such a support therefore does not produce bending moments (M = 0). At a
“built-in” or clamped end, as shown at the upper right of the figure, the
translational and rotational displacements both vanish, and thus also the
corresponding velocities (v = 0, w = 0). At a free end, on the other hand,
the moment and the shear force vanish (M = 0, F = 0). Finally, at a
“guided” end, as indicated schematically by guidepins in the lower right
part of the figure, the beam is free to translate, but prevented from rotating.
Thus, the shear force and angular velocity must vanish (F =0, w = 0).
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M=0 w=0
— 2
7
v=0 7
e Z
=
F=0 |
==

Fig. 3.15. Summary of ideal boundary conditions for bending vibrations of beams

In each of the four cases, two boundary conditions must be satisfied.
Addition of a reflected wave to the incident one thus clearly is not enough.
This insufficiency demonstrates how closely the doubling of the number of
boundary conditions is related to the doubling of the order of the differen-
tial equation for the wave system. The differential equation also has other
types of solutions than those which correspond to propagating waves.

For sinusoidal time-variation, the bending wave equation, Eq. (3.81),
may be rewritten in terms of the phasors v, w, M, F . For example, for ¥
one obtains

d*v

4

k=0, (3.108)

where k, which has been written in place of {/mYB+Jo in accordance with
Eq. (3.83), represents the wavenumber of a propagating bending wave.
Wave motion of the type that result from solutions of the ordinary second-
order wave equation also satisfy the bending wave equation. One may ar-
rive at this conclusion by factoring the operator that acts on the v in Eq.
(3.108) to obtain

d* d’ d’
——kt = —+k || -k
e R
The first of the factor operators corresponds to the “spatial” equation of
vibrations, Eq. (3.100) i.e., it leads to propagating sinusoidal waves of the

form given in Eq. (3.101) for the axial force phasor or to the following
similar expression for the transverse velocity:
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ﬁl = £+eijkx + ﬁ—eJrjkx .
Because one may obtain the second operator from the first by replacing
* k by £ jk, there must also exist solutions of the form

~ —kx

- +hkx
v, =V e

+ve
corresponding to the second operator. Such solutions represent fields with
constant phase, which decrease exponentially with the distance from a dis-
turbance (or an end), and which are also called “near fields”.

The general solution thus consists of four parts, corresponding to the
fourth order of the differential equation

v=v.e M +p e +D e 47 e, (3.109)

and this solution must satisfy two independent boundary conditions at each
of the two ends.

If a wave v e arrives from the left (x < 0) at an end located at x = 0,
then there results at that location a reflected wave v e/ and a near-
field v ¢, which together make it possible to satisfy the two boundary
conditions there.

In some special cases, the nearfield may vanish. This happens, for ex-
ample, at a simply supported end. For such an end, the boundary condi-
tionsv =0; M =0, which are equivalent to

2

0, (3.110a)

leading to the two equations

VAV, ==V, , =D 4V, =47, (3.110b)

In these equations, the known quantities appear on the right-hand side,
those to be determined appear on the left-hand side. By adding these equa-
tions, one finds

(3.110¢)

which means that the same -r phase jump is obtained as for the velocity of
longitudinal waves in a rigidly constrained beam.

The distributions indicated in the left-hand part of Fig. 3.13 therefore
also correspond to the velocity and displacement of a beam that is simply
supported on both ends. However, because of the dispersive nature of
bending waves, the frequencies are proportional to the square of the
wavenumber, according to Eq. (3.83). Therefore, the natural frequencies
here are proportional to the squares of the integers:
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1 [B n |B#n
- 2=l /——.
1 o\ r Ao 2 (3.110d)

For a beam with “guided” ends (lower right-hand side of Fig. 3.15), one
finds the same natural frequencies, because for this case the equations for
the angular velocity w are identical to those for v for a simply supported
beam.

Reflection of a wave from a free end, on the other hand, gives rise to a
nearfield. Since the corresponding boundary conditions,

M:O, EZO, (31113)
may also be written as
M
M=0 Y2 _, (3.111b)
dx

it is convenient to describe the field in terms of the phasors for the mo-
ments in the incident wave M e, the reflected wave M e, and the
nearfield M " .

The boundary conditions lead to two equations

JM_+M,=jM,,

+

(3.111¢)

from which one may obtain the reflected nearfield and propagating wave
phasors

M, =(-1+ /)M, M =—jM, 3.111d)

The magnitude of this nearfield phasor at the beam’s end is even greater
than that for the incident wave. Although this greater magnitude extends
the effective length of the nearfield, it does not change the fact that at some
distance from the beam end there remains only the reflected wave, and that
only the latter wave transports energy. Because the reflected energy must
be equal to the incident energy, the amplitude of the reflected wave must
be equal to that of the incident one. Indeed, the solution for M _ corre-
spond to a phase jump of'y = -7/2.

If one assumes that the nearfield which results at one end is negligible at
the other end (an assumption which becomes increasingly valid for shorter
wavelengths, that is, at higher frequencies), then wave-train closure is
again obtained if the wave train closes on itself with equal phase. In this
case one obtains the following approximate expression for the natural fre-
quencies of free-free beams (i.e., beams with both ends free).
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1 (B, n [B(2n-1)
2k l~(2n-Dn, f =—, |—k> =, [ —— 2. 3.111e
A=(2n=1)m . f, e \m" " 8\m' I ( )

The above relation between the wavenumber and the length of the beam is
the same as that which previously was obtained for longitudinal waves in a
clamped-free beam. In the latter case, the phase change of -© was produced
at one end, whereas in the present case a phase jump of -n/2 occurs at each
of the two ends.

Figure 3.16 shows the velocity (or the displacement) distributions for
three natural vibrations of a free-free beam. The thick curves include the
nearfield contributions, whereas the thin curves correspond to only the
pure propagating waves.

Although Eq. (3.111¢) admits the case of n = 1, this case must be ruled
out on physical grounds. It would imply either a rigid-body translation of
the beam and thus an oscillating motion of its centre of gravity or a rigid-
body rotational oscillation of the beam about its centre; the former is im-
possible because no external forces are present, the second, because there
is no external moment.

The natural frequencies of free-free beams are approx. in the ratio
9:25:49:81... . The “overtones” thus are not related harmonically to the
fundamental.

Fig. 3.16. Flexural natural vibrations of a free-free beam. Light curves: without
nearfield; heavy curves: with nearfield. (Again, solid and dashed curves represent
conditions half a period apart.)
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For a clamped-clamped beam, the boundary conditions are

Therefore, if one uses v instead of M, one obtains the same results as be-
fore, and one finds that Eq. (3.111¢) applies equally well also for clamped-
clamped beams.

In most cases, the difference between the actual and the ideally rigid
constraint at the support is likely to have a greater effect on the natural fre-
quencies than does neglecting of the nearfield effects in the derivation Eq.
(3.111e) and the exact values is generally smaller for » > 2 than the accu-
racy with which one can determine B, m’, /, or with which can measure the
frequency.

Corrections to Eq. (3.111e) are of practical interest only for the lowest
natural frequencies of free-free beams. It is also instructive to investigate
these corrections, in order to remove any impression that the wave-train
closure is only an approximation. Indeed, this principle always yields exact
results also for flexural wave problems, provided one takes into account
that the nearfields generated at one end still have finite values at the other
and there again give rise to additional waves and nearfields.

As shown by means of (3.111c) and (3.111d), a propagating wave of
amplitude M, results in

M =jM, =Me"", T
01, =~(1- )81, =M, G
as reflected propagating wave and nearfield respectively.
Upon applymg this on a nearfield of amplitude M, ;, the boundary condi-
tions in  (3.111b)  require  that M. + M+ M =0 and
M. i+ M. i+ jM_ =0 respectively. It follows that subsequent to the reflec-
tion are formed
M,j ]M M ejn/Z

—_—tJ

M =—(1+ /)M, =—2M, ™",

(3.111g)

as reflected nearfield and propagating waves respectively. The principle of
phase continuity requires that after a roundtrip, comprising two reflections
with the conversions from propagating wave to nearfield as well as from
nearfield to propagating wave, the initial conditions are regained. Since a
single passage leads to a phase shlft of kI and hence a multiplication by e
for the propagating part and by e " for the nearfield, the former component
of amplitude M, yields
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M+ {e*zj'kz (_j)z +e Me (1+ j)(l h ])}

_M+ {e—2jk1j(1_j)+e—jkle—klj(1_j)} (3-1 1 1h)
subsequent on a complete roundtrip. If the abbreviations P and N are intro-
duced for the propagating wave and nearfield respectively, the separate
terms in the expression correspond to PPP, PNP, PPN and PNN. In these
combinations, the first letter denotes the initial wave, the second its form
after the first reflection whilst the last that resulting after completing the
roundtrip.

Employed on an initial nearfield of amplitude M, ; follows the combina-
tions NPP, NNP, NPN and NNN. This means that the roundtrip is de-
scribed by

M+,f {e—jk/e—klj (1 + ]) _ efzkzj (1 + ])}
~M, fe Mt (1= ) (1+ )+ e 2

—_—+j

(3.111i)

The wave-train-closure principle now requires that the sum of the
propagating field components (the first brackets in the above two expres-
sions) equal the initial amplitude A7, . Similarly, the sum of the nearfield
components (the second brackets) must equal the amplitude ]\;[H.. Accord-

ingly,
it [-e™ 20 ATt (1 ) (e - =0,
M+ [j(l—j)(e_zﬂd — g MK ):|+MA+>,’ |:ze—.jk[—kl LM _1:| =0,

for which the solution is obtained from the vanishing determinant. This
means that

L4 e 4 o2 4 o 2H=2K _ g ,~H=jk _ (3_1 1 1])
which can readily be rewritten as [3.1]
coshk/coski—-1=0. (3.111k)

One may observe that for large &/ this exact result reduces to
coskl =0,
which was used as the basis for the previous approximate analysis. As has
been noted, the difference between the exact and the approximate results is

of practical interest only in relation to the first zero, for which the exact re-
lation gives

kl=3n/2+0.0176,
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compared with the approximate value of A/ = 3m/2. Thus, the exact
wavenumber is about 0.37 % greater than that given by the approximation
of Eq. (3.111e), and the exact natural frequency is about 0.7 % higher than
the value obtained from the approximation. The exact fundamental natural

frequency is given by
f=38/ 2L G.1111)
m' [

Finally, it is instructive to consider the case of a cantilever beam but
without carrying out the corresponding analysis in full detail. In an analo-
gous way, the characteristic equation for the cantilever beam is found to be
given by

cosh klcoskl+1=0.

This means that the approximation

T E(Zn—l)z

3.112
8\'m' I ( )

I =
also holds for these boundary conditions and high eigenfrequencies. The
first eigenfrequency, which again is insufficiently determined from Eq.
(3.112), is found to be given by

/i =0.56 £i2 (3.112a)
ml

for n =1 in this case since no rigid body motion is possible.

3.5 The General Field Equations

The previous analyses have been based on postulating particular types of
deformations, and each has lead to new types of wave propagation. Thus,
one is led to inquire whether there exist arbitrarily many wave types, or —
conversely — whether one may analyse all possible waves in terms of a
limited number of basic types.

In order to answer this question, one must first determine what wave
processes can occur in an infinite solid medium, and then investigate what
effect free surfaces have on these processes.

Figure 3.17 indicates the most general deformation that a surface ele-
ment dx dy can have in the xy plane. For the sake of clarity, dx is shown
equal in length to dy. First of all, this element is displaced by an amount &
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in the x-direction and by an amount 1 in the y-direction. Because the dis-
placements, as already discussed after Eq. (3.3), must always be small
compared with the wavelength, their spatial derivatives 0 /dx, 0& /0y,
on/ox,on/dy always represent very small strains or angles. The deforma-
tions associated with these derivatives are shown in Fig. 3.17, exaggerated
by several orders of magnitude for the sake of clarity. It is useful to inves-
tigate separately the three different types of deformations, as also shown at
the bottom of Fig. 3.17.

1972
Y P
=
B y %ﬂ:"’?
I s ~ &
[ L~

ta— X f+a dx

3 I 19
Py _-1 ——
T T Il:’j 1
>, {5\ 2
i | e ] N
e—gx — - — X —= Ted- o i —= Fex
Edx b c

Fig. 3.17. Displacements and strains in two dimensions. a) pure extension in x-
and y-directions; b) pure shear deformation; ¢) pure rotation about x-axis

a)

b)

Extensionse, =0¢ /dx, €, =dn /0y .

Their sum corresponds to the fractional increase in the element’s area,
if one neglects the product &.&,. These strains need not be of the same
magnitude, and may even have opposite signs and therefore generally
imply a change in the shape i.e., a change in the ratio of length to width
of the element’s area.

Shear, corresponding to the shear angle v,,.

This leads to an additional change in shape, namely to distortion of the
original rectangle into a parallelogram. In Fig. 3.4, which dealt with a
pure transverse wave, this change in shape resulted only from an n
displacement, and the strain energy was due only to t,,. But because
the shear stress t,, must play exactly the same role as t,, in causing
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such a deformation, it is clear that one should define a pure shear de-
formation as one where the total shear angle y,, is equally divided over
two planes which originally are perpendicular to each other, as shown
in part b of Fig. 3.17. The distorted shape similarly should have been
shown in part @ as symmetric with respect to the original undistorted
shape. There, however, the strains were so small compared with the
displacements & and m that one could completely neglect the fact that
the deformations shown in part @ and b of Fig. 3.17 consist of a pure
extension by &, dx and ¢, dy plus a translation by & dx/2 ande dy/2.
But one must be careful concerning these components in analysing the
changes in the angles associated with deformations like that shown in
Fig. 3.4, where the deformation consist of a superposition of a pure
shear deformation and a pure rotation.
c) Rotations ..

As indicated in part ¢ of Fig. 3.17, y. typically take on only very small
values for elastic waves, such as pure transverse waves. One may
therefore take the rotations angle y. (about the z-axis) as proportional
to the components € /dy andon/ox.

As may easily be seen from Fig. 3.17, these differentials obeys

% = lY X
oy 29 7
ay (3.113)
n
— ==y _+
ox 2 Yo T A
Their sum thus determines the shear angle,
o8 on
=—+——, .
Yy y  ox (3.114a)
and their difference, twice the rotational angle,
_on_a%&
X- x (3.115a)

One observes that with a deformation in all three coordinate directions
there is associated also an additional displacement component C in the z-
direction, as well as an additional shear angle in the yz-plane,

_, %

Y= ey

(3.114b)

and one in the xy-plane,
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ac |, %8
=—+_, 114
Vo= (3.114¢)
and in general also rotations about the x-axis,
oC on
2y, =2 -—",
A o o (3.115b)
and about the y-axis,
_%& %
L= o (3.115¢)

If one writes the three displacement components in terms of a displace-
ment vector

s =it +jn+kC (3.116)

then also, the three Egs. (3.115) can be written as a single vector equation.
2% 2y, and 2y. are simply the components of the rotation of the dis-
placement vector,

iy, +jx, k. =%r0t s. (3.117)

The additional extensional strain componente, =06C / 0z, together with g,
and ¢,, determines the relative increase in volume of an element. This vol-
ume change is also known as the dilatation d, and corresponds to a well-
known differential operation on the vector s, namely its divergence,

d=¢,+¢g, +e, =div s. (3.118)

It is instructive now to determine the relations between the deformations
and the stresses. The shear stresses depend on the corresponding shear an-
gles through

Ty =T, = G(%+a—nj,

v oy Ox

T,=1,=G 6_n+% 5 (3.119)
! ! 0z Oy

T =T, =G(£+%j.
i . ox 0Oz

On the other hand, the normal stresses are coupled to each other, as a result
of the Poisson effect, as has already been pointed out in Sect. 3.1.2. By
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adding Eqgs. (3.24) of that section and replacing £ by G by means of Eq.
(3.48), one obtains

2G(1+p)d :(I—Zp)(cx +o, +Gz).

If one uses this result to express the sum of the normal stresses in terms of
the dilatation, then one finds from Eq. (3.24) that

6, =2G a—2+Ldiv s
! ox 1-2p

-

c. =2G a—n+Ldiv S
Loy 1-2p

(3.120)

c.=2G %+Ldiv S |
: | 0z 1-2pu

To complete the description, the previously in Egs. (3.29) and (3.45)
applied dynamic relations are required. In the present three-dimensional
case, are considered all normal and shear stresses acting on a volume ele-
ment as well as the inertia forces per unit volume. This means

o, Ot, Ot ot

Xz

+ + E
ox Oy oz ot

oc, Ot, Ot om
L2+ —E=p— 3.121
oy Ox 0z or* ( )
0. ot Ot ¢
R p >
0z Ox 0Oy ot

Upon substituting (3.119) and (3.120), making use of (3.116), results

1 . ol
G{st+l—2u grad div s}:pgzs (3.122a)
or, in terms of the velocity vector,
2 . o’v
G{V V+1—2M grad div v =P (3.122b)

where V? is the Laplace operator. By using the velocity components
=0E/0 1, v, =0n/0 t, vs = 0L/0 t, the same expression becomes

1 af@ o’
VI o (a:j gaz,zkﬂ,z,s (3.122¢)
k
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In the last version use is made of the summation convention i.e., to sum
over equal indices. This general differential equation, which all elastic os-
cillatory motions in the interior of a solid must satisfy, resembles the wave
equations discussed in Sections 3.1 and 3.2, only in that it is also of second
order with respect to space and time. It differs from them in its spatial
character, in that its argument (the displacement vector) contains three
components, and in that the differentiations corresponding to the vector
operators extend in all coordinate directions. The latter property is charac-
teristic of all wave problems in three-dimensional space. The fact that two
operators appear on the left-hand side is characteristic of solid bodies. This
indicates that the equation encompasses two wave equations simultane-
ously.

According to a general theorem of vector analysis, one may separate any
continuous vector field into an irrotational and a divergence-free (source-
free) part. If these parts are represented by s; and s, respectively, then the
first satisfies

rot s; =0, (3.123a)
and the second
div s, = 0. (3.123b)

The irrotational component therefore contains the same dilatation as the
entire field,

divs;=divs=95 (3.124a)
and the divergence-free part contains the same rotation as the entire field,
rot s, = rot s. (3.124b)

In terms of the vector of the angular velocity, the latter expression be-
comes

w:%rot v, :%rotv. (3.124¢)

If one applies the divergence operation to Eq. (3.122a) once more, taking
into account that

divw? = Vidiv |, div-"

=—div,
or*  or

then one obtains the three-dimensional wave equation for the dilatation:

2(1-1) os 08

G = .
(1-2p) = Par

(3.125)
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This equation includes the case where the same conditions exist on every
plane perpendicular to the x-axis. Then V* reduces to 8° /82, and one ob-
tains the one-dimensional wave equation, as has already been derived in
Sect. 3.1.1, as Eq. (3.11). The propagation speed obtained there, according
to Eq. (3.50), is the same at that obtained here, namely that of pure longi-

tudinal waves,
[26(1-p)
¢, = [———=. 3.126
YT ( )

Since a three-dimensionally infinite medium was also assumed in Sect.
3.1.1, the wave type discussed there must also be subject to the present
general representation. One may recognize that this previously treated
wave type corresponds to a plane dilatational wave. Therefore, “pure lon-
gitudinal waves” are often called “dilatational waves”. It must remem-
bered, however, that in finite media, other disturbances that include dilata-
tions can also propagate at different speeds. But “pure longitudinal waves”
are the only type that is “irrotational”.

A three-dimensionally infinite medium was also postulated for the pure
transverse wave discussed in Sect. 3.2.1. Therefore, such a transverse wave
must also satisfy Eq. (3.122a). One finds further that the two above-
mentioned types of waves are the only types of plane waves that can occur
in an infinite medium. By applying to Eq. (3.122a) the rotation operator
and making use of the relations

2 2
rotV? = V’rot, rot— =—rot,
o ot
as well as the identity
rot grad=0,

one obtains the three-dimensional wave equation for rot s,

2

GV’ (rots) = p%(rot s), (3.127a)

or

2

GV’w=p

= (3.127b)

which describe the behaviour of the source-free (non-divergent and in-
compressible) part of the wave field. For planar distributions of the vari-
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ables, this relation reduces to Eq. (3.46), and implies that all plane rota-
tional processes with the transverse wave velocity

o == (3.128)
p

Therefore, c7 is also known as the rotational wave velocity. Again, in finite
media there can occur other wave types with rotational components propa-
gating with other speeds. The solutions to Eq. (3.127) represent the only
possible “source-free (non-divergent) wave motions”.

At this point it should be supplemented that in theoretical physic in par-
ticular, the strains and stresses can be elegantly written by means of 3*3
tensors. If u; is the displacement component of the space co-ordinate x; i.e.,
uy =&, up =m, u3 = § and x; = x, x, =y, x3 = z in the classical notation, then
the strain tensor has the elements

1( Ou, Ou,
== —L+—L;i,j=12,3. .
& 2[6);]. Gx,-] b (3.1282)

The stress-strain relations in Eqs. (3.119) and (3.120) for isotropic materi-
als read
2G
o, =j(811+822+833)50+2(}8ij. (3.128b)
Herein, §; = 0 for i #j and §; = 1 is the Kronecker delta. In tensor formal-
ism, force equilibrium is written as

0G . o’u.

i i
& P (3.128¢)

Summation is here made for equal indices. A substitution of (3.128a, b)
yields the wave Eq. (3.122c).

Although the tensor formalism is elegant and offers many advantages
especially in the treatise of anisotropic and piezo-electric materials, the
classical notation will be retained in this book owing to its common usage
in the engineering science literature.

The question raised at the beginning of this section, concerning whether
all waves may be treated in terms of a few basic types, has so far been an-
swered only in part. It has been shown that in the interior of a solid body,
only pure longitudinal and pure transverse waves can occur as plane
waves. These two wave types are completely independent of each other,
and therefore can be excited separately. In practice, however, one usually
cannot avoid exciting both waves or, in more general terms, obtaining both
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an irrotational and a source-free wave field. But because these propagate
with different speeds, one can obtain separated “wave pulses” as the result
of short-duration excitation, provided that the dimensions of the solid body
are greater than the product of the speed difference (¢, — c¢7) and the pulse
duration. This requirement is satisfied, for example, for seismic waves in
the earth, or in the testing of thick structural parts by means of ultrasound,
in other words, whenever the “interior” of the solid body extends over
many wavelengths in all directions.

The usually employed method to solve Eq. (3.122b) consists of intro-
ducing a scalar potential ® and a vector potential y with the following

properties

\ (Z = grad®, VTz%zrot\y, V=V, +V, (3.129)

These potentials satisfy the wave Eqs. (3.125) and (3.127) respectively,
analogous to the quantities 6 and w. The problem hence, is returned to the
solution of two wave equations for which exists a battery of procedures. It
should be noted, however, that any boundary condition is given by the ve-
locity and stress. This means that since these quantities are linear combina-
tions of @ and v, there results a coupling of the two fields at boundaries of
solid structures. Such conversions from one wave type to another will be
further treated in the following sections.

Within the scope of this book, only plane problems will be analysed in
conjunction with elastic, isotropic continua. Therefore, the vectorial nature
of the vector potential can be omitted since its direction always will be
perpendicular to the plane of the field. This means that as in previously
studied examples, the solution of the wave equations can be constructed
from one or more plane waves i.e.,

v, =0, (k. ky ke Me e My i=1,2,3, (3.130)

The phasor notation is hereby directly introduced which means that pure
harmonic processes are understood at an angular frequency ®. The time
base ¢ and the prefix Re [...] are omitted as is usual. £, k, and k. are the
wavenumber components. Together they reveal the wavelength and wave
direction. The expression in (3.130), of course, is not a complete solution
to the wave equation. (3.122). Rather it constitutes a fundamental solution
with which all other solutions can be constructed by summation or integra-
tion as Fourier series or integrals respectively. With the fundamental solu-
tion in (3.130) inserted in (3.122c¢)
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[@—H——i—kqﬁ——l—kkﬁ—T%—hh%
~2p

1-2p ° 1-2p 777
. 1 . 1
Ekykxvl_[k;_kz —Ekijvz —mk)kv =0 (3131)
-l k kv, — ! kk v, —| k? - kz——kz P =0
1-2p 1-2u °° 1-2p

is obtained, where k* =k +k; +k? and k; =o”/c;. This homogeneous set
of linear equations has non-trivial solutions only when the determinant
vanishes. With a few manipulations, the condition

2(1-
@ﬁ—kﬁzkﬁ——i—fly )
1-2p
1s obtained, which means that the admissible wavenumbers are
ki =k +k; +k2 = k7, (3.132a)
and
PO LU LR ED b U S (3.132b)
ey 2-2u ¢ ’

As can be seen, Eq. (3.132a) corresponds to a propagation of transversal
waves whereas (3.132b) to that of longitudinal. Thus, the subdivision is
again possible in the two wave types.

From (3.131) furthermore, it is found that certain relations exist between
the phasors ¥,,%, and 7, . By letting £* =4, in (3.131),

kb +k Yy +k Yy =0, (3.132¢)
and by inserting &> = k;*

pd

T

Vor =

Vi %={%u (3.1324)

X

Thence, the complete, fundamental solution in Cartesian co-ordinates to
(3.122b) reads

v, _|: (k k}L,k ) /kﬂy (k\,k)r,k ) —/k}r,v:|efjk4\.x7jkzz;i:1’2’3. (3‘1333)
The additional conditions given by (3.132a, b) are

1-2
Ky =ki =kl =K. K =kio—-k-k =k -k =K. (3.133b)
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which have to be taken into account. The fact that the index y here happens
to be singled out lacks further meaning. The expressions could also have
been written differently. Important is only that the wavenumber compo-
nent of one direction is prescribed for (3.133a) to constitute a solution to
the wave equation. The expression in (3.132¢), moreover, does not reveal
more than rot vi, = 0 and, similarly, that in (3.132d) that div vy = 0. This
can readily be demonstrated since the spatial differentiations simply are
replaced by multiplications by jk,, jk, or jk. respectively.

3.6 Wave Field at a Free Surface

3.6.1 Reflection of Plane Waves

As the first application of the fundamental continuum-equations, is consid-
ered the reflection of a plane wave at a free surface. Without sacrificing
generality, it is assumed that the wave propagates in the x-y-plane such that
all field variables are independent of the z co-ordinate. The co-ordinate
system and the angles are indicated in Fig. 3.18. In this figure, are depicted
wave strips for the sake of clarity although the wave fronts are considered
infinite in the analysis.

The assumed two-dimensionality of the problem means that £, = 0 in Eq.
(3.133). Therefore, a reasonable form of the longitudinal waves — in the
following termed L-waves — is

_ 5 ikex ik
v=y,e e
kvL A —jkyx =ik, y
v, =—=7,e e (3.134)
kx
v, =0

in which k, =./k; —k; . Herein is k, = @/c, the wavenumber of L-waves
(see Eq. (3.132b)), which is a material property for a given frequency. The
relation in (3.132b) is already accounted for in (3.134).
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Fig. 3.18. Reflection of longitudinal and transversal waves at a free surface

In Eq. (3.134) is assumed a wave with angle of incidence 9;. This is so
since the wave fronts are given by the exponents i.e.,

hx+kwy:h{%ix+Jk{h/hfy}

L

(3.135)
=k, [xsin9, + ycos, | = const.+ 2nm.

These wave fronts are planes which are perpendicular to the direction of
propagation. The wave fronts are also perpendicular to the particle motion
(velocity vector), which is seen from a substitution of k, = k; sin 9, and
kyr, =k, cos 8, in Eq. (3.134).

3.6.1.1 Trace speed and angular relations

In the following, is required the trace wavelength A,. This length is the dis-
tance between two wave fronts at y = const. and thus establishes the period
in the x-direction. Alternatively, the wavelength is the projection of the
trace wavelength on the direction of propagation. Equation (3.135) yields

2n N
k,sin9, sin9,

k. sind, =2m; A = (3.135a)

Herein is A, = ¢;/f'the physical wavelength of the L-wave i.e., in the direc-
tion of propagation.

The used transformation in (3.135), k. = k; sin 9;, means that &, < k;
since otherwise k,; would be imaginary. That would correspond to an ex-

ponentially decaying near-field and not a propagating incident wave,
which is of primary interest here. Instead of &, < k;, the relation A, > A, can
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be used or, if the concept of trace speed is introduced, ¢, = A,f > ¢;. The
contradiction of either of the conditions above implies that the motion is
only possible as exponentially decaying near-field, which, however, real-
izes a solution to the wave Eq. (3.122).

At the incidence of the L-wave on the free surface, a reflection is antici-
pated that fulfils the boundary conditions together with the incident wave.
If it is assumed that the free surface coincides with y = 0 and that this sur-
face is free of external stress or other constraints, then the boundary condi-
tions can be expressed as

c,=0, t,=0, t =0, y=0andVy,

cf., Fig. 3.18. In view of Eq. (3.134), a comparatively simple solution for
the total field comprising incident and reflected waves can be written on
the form

A —jkox —ikuy ke —jkwy kx4 jkuy
v, =V, |:e e +7,e e +7,,e +e J,

k ) k . . k - -
- L —jkx —jk.y L jkax_—jkuy . ke
v, ="V, {—" e Mt Y Ly g eIy g —x g g g gt | (3.136)
k

x X T

It is thus assumed that beside the incident L-wave, exist a reflected L-
wave and, additionally, an inwards propagating transversal T-wave which
emanates at the free surface. The wavenumbers k. and ZX of these new
waves are still considered unknown. The remaining wavenumber compo-
nents must satisfy l}iL =k; —%. and k}TT =k; —k_f respectively since each of
the terms in (3.136) alone must be a solution to the wave equation. r;; and
rrr can be seen as reflection factors because the amplitudes of the inwards
propagating waves are given as fractions of that of the incident wave. In
the calculation of v, is used the relation (3.132¢) for the T-wave and

(3.132d) for the L-wave.
To proceed with the analysis, the stresses are required. They are ob-
tained from (3.119) and (3.120) and can be written as



3.6 Wave Field at a Free Surface 87

o,

%:G{%+%} (3.137)
T 22,

ot oz oy |

after conversion from displacement to velocity. Upon substituting Eq.
(3.136) expressions are obtained in the form

—jkx —Jkyy —jkax _jkay —jkex _jkyry
o, =Ae ey e + 4o e,

since the exponents remain unaltered in the differentiations as is the spatial
dependence. Moreover, 4, A, and 4; are independent of x and y. From the
boundary conditions in this case, all the stresses must vanish at y = 0. This
is possible if and only if k, = k. = k. such that

fow = k2 =k =k, ko =2 =K =k, (3.138a)

Accordingly, the fact that the boundary conditions apply for all of the free
surface, automatically implies equality of the wavenumber components in
the x-direction. This is equivalent to equality of trace wavelengths and
trace speeds in view of (3.135a). The equality of trace speeds and hence
also of k, could have been derived directly from the boundary conditions.
This is so since two or more waves can only satisfy a uniform, prescribed
boundary condition at a plane when they propagate with equal speed along
that plane.

Through (3.135), the angles of propagation can be found for the wave
field components. The spatial dependence of the incident wave leads to

—jkex —jkyy _ —jk;(xsin8; +ycos9;)
e e =e 5

and for the reflected L-wave follows from (3.138a) that

e*_]‘k}‘xejk)rLy _ e*jk,_ (xsin8; —ycos9, )

For the, at the free surface, emanating T-wave

e—jkxxejkyr,v _ e—jkr(xsinST—yCOSST)

b

whereby k7 sin 87 = k, and kr cos 37 = k,. The expressions reveal that the
angle of reflection equals that of incidence for the L-waves but that they

travel in opposite direction and that the T-wave propagates under an angle
of
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[ k, k k. k,
9, =arcsin =arcsin| —=—= | = arcsin| —=sin9,
kT kT kL kT

The relations above can also be written in the form

sin9, =nsing, , (3.138b)

in analogy with Snell’s law wherein

pof e 1220 (3.138¢)
ky ¢ 2-2p

is the index of refraction. From the range for Poisson’s ratio, it follows that
0.5>n">0.

3.6.1.2 Reflection of L-Waves

When a plane L-wave is incident on the free surface, it is partially reflected
with the reflection factor r;; and partially converted into a T-wave, the
relative amplitude of which is 7, . Hence, the velocity field is given by Eq.
(3.136) whereby

k. =k =k.=ksin®,, k,=ku =k cos,,
i L L L L L (3.139)

k,, =kyr =k, cos8,, sind, =nsinY,

from the discussion in the preceding section. Since the refraction index
squared, n* < 0.5, a real-valued angle 97 always exists.

With the expressions for the velocities in (3.136) introduced in (3.137),
the stresses at the free surface are obtained as

2 2

o, . kl Vi ik
51‘) =2jGv, li(l"'y)[ kL rLLk_L"'rLTkXJ"'Y (_kx_rLka_rLTkx)]e e

X X

k2
:2ijlL|: k +rLkaL k k +rLkaL+r k :| ke
T

o
whereby vy = p (1 - 2p). From (3.138c¢),

1+ H =1__M= !

1-2pu ) 1-2u 2#°

and making use of (3.138a) and (3.139)
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ry (b =267 )= 2r,, k7 = (k7 =2k} ),

(3.140)
2,k k1 (k7 =2k ) =2k, k

when the stresses at the free surfaces vanish. By solving for the reflection
factors it is found that

2
(kt —2k7) +4k%k, k,,  n’sin29, sin 29, —cos 29,

7, =

LL Det (k) Det(9) ’
=tk) (3.141a,b)
L 4k k., (kT —2kx) _ 4ncosY, cosY, cos29,
Y Det(k) Det(9)
Herein,
Det (k)= 4k%k, & , +(k2 — 2k,
(k) = 4klk sk, + (k7 ~2K7) (3.141¢)

Det(9)=n"sin29, sin29, +cos’ 9.

The second version of (3.141a, b) is developed from a substitution of
(3.139) into (3.140).

The reflection factors r;; and ;7 express the amplitudes of the reflected
waves relative that of the incident. In practice, also the reflection effi-
ciency is an important quantity representing the energy ratio. The intensity
in the direction of the wave propagation is given by Eq. (3.16) i.e.,

1 .2
Jp =€, 0 :EPCL |VL| 5

1 N
Jr =€, Cr =Epcr|vr|2:
in which [y, and [v,|" are the velocity magnitudes squared (peak value).
The factor 2 follows from the temporal averaging. For the energy flow
also the width of the strips of the L- and T-waves must be taken into ac-
count since these are different, cf. Fig. 3.18. If the power of the incident L-
wave is denoted W, the reflected L-wave W,; and the emerging T-wave
W,r, the efficiencies

A
pLL - - - rLL

w.

|2
il ']iL COSSL

o W Jycosd, pe | (1442 2 )5, | cos 9,
! W, Jcos9, pc; (1 + k}z,L /kf) \71L ’ cos9, (3'142)
|rLT|2 k’ cos9, > sin’ 9,
= 72 _a |rLT|

2
n k, cosd, cos9, cosY,
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It should be observed that p without index refers to the density and with

index to the reflection efficiency. Upon substituting (3.141a) and (3.141b)

into (3.142), it follows that

(n2 sin 29, sin 29, —cos” 29, )2
|Det ) )|2

_ 4n’sin29, sin 29, cos’ 29,
|Det (9

P =

>

(3.142a)

LT

respectively. By means of a few manipulations, it is readily corroborated
that the energy conservation is preserved i.e., p;; + prr= 1.

3.6.1.3 Reflection of T-Waves

If instead the incident wave is a T-wave, the analog to Eq. (3.136) reads

~ [ iky iy ey k.
v, =V, [e By e’ ‘”Je e
k. k .k . ,
_5 x_~Jkry x Jkyry VL Tk y | = jkex
Vo =Vir| — e + k V€ - k e e 5 (3143)
yT T x

_ —Jkyry Jkyry —jkx
V3 = VBT |:€ + 7'36 :|€ .

The two first terms relate to the incident and reflected T-waves respec-
tively whereas the third describes the emerging wave at the free surface,
which is converted into an L-wave. For the determination of the y-
component of the velocity field v,, again Eq. (3.132) is employed. The am-
plitude vs7 is given by the incident wave as is the case for v and for this
component of the field no L-wave will arise.

The wavenumbers and the associated angle relations are given by equal-
ity of trace speeds, as discussed in Sect. 3.6.1.1;

k, =k, sin®;; k, = Jk; —k] =k, cos9,; k, =k —k] . (3.143a)

In view of the law of refraction,

siny, = lsinST = k—TsinST (3.143b)
n k,
such that k,; = k; cos 3, which must be augmented by a restriction. Since
n* < 0.5, Eq. (3.143b) furnishes real-valued angles 9, only in the range
0 < §r<arcsin n. For the limiting angle
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9,, =arcsinn, (3.143c¢)

9, equals n/2. This means that the secondary L-wave runs parallel with the
free surface. The angular range is not wide for the secondary L-wave.
Typically the limiting angle is about 35° for a Poisson’s ratio of p = 0.25.
With a larger angle of incidence, the angle relations cannot be applied. The
expressions for the wavenumbers, however, are still applicable and show
that for 87> 8, k, is larger than &; and hence k,;, becomes imaginary, cor-
responding to a nearfield. In the following section this issue is considered
in some more detail.
If, again, Eq. (3.143) is introduced in (3.137), one obtains

21,k =1y (K7 =2k ) = =2k,
oy (k7 =2k )+ 203, e Ky = (7 = 2K7), (3.144)
n=1

at the free surface in a similar way as that leading to (3.140). From this can
be developed,
2
Ak kg + (K7 - 2K

x "yl
Iz - = -7

" Det (k) L
(K -K) |, sin’9, cos29, (3.145)
L — - — . <
Det (k) Det(3)
r,=1.

Since the z-component of the incident T-wave is totally reflected (r; = 1)
its influence is fairly straightforwardly encompassed. Hence, to keep the
mathematical description brief, the reflection efficiencies in the energy re-
lations will be developed only for the case in which v; = 0. After some
small manipulations is obtained

w 2
p = 1T =7,
" =y,
o, = W, _¢ cos3, cos9, |rLT|z’

22
W, ¢ sin"9,

such that, again, energy is conserved and pyr+ pr, =1.
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3.6.1.4 Reflection Factors and Efficiencies

Figure 3.19 shows the calculated reflection efficiencies for a Poisson’s ra-
tio of u = 0.25. With the graphical layout used, it is readily seen that en-
ergy is conserved in accordance with p;; + p,r=1 and prr + p7. =1 respec-
tively. Also, can be noted that p;;, = p,r which is a consequence of the
principle of reciprocity as well as the fact that the energy relations remain
unaltered by a time reversal (the film is played backwards). For practice, it
is facilitating that the reflection factors and efficiencies are independent of
frequency at the free surface and hence apply to arbitrary signals. The re-
flection of a z-component of an incident T-wave is complete with the re-
flection factor ;3 = 1. This part is therefore not considered in the power
considerations and discussions of the reflection efficiencies.

The question remains, however, what happens to an incident T-wave at
a larger angle than the limiting of Eq. (3.143c). In this case,

k,, = ki —k2 =—j k> =k} =—jk,\Jsin’ 8, - . (3.146a)

The last root is in the interesting range, 37 > 3y,, purely real. Its sign is
given by the physical requirement that the amplitude must decline for
growing negative y. Accordingly, the y dependence of the longitudinal
wave motion take the form

r, e = rTLe“kfszy; y<0. (3.146b)
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Fig. 3.19. Reflection efficiency at a free surface as function of angle of incidence;
pn=0.25. Top: Longitudinal wave. Bottom: Transversal wave
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This means an exponentially decaying nearfield, which already at a dis-
tance of 1/(k,> — k;*)""* has decayed an e” of the original. This type of wave
motion is also called “surface wave” owing to some resemblance with the
gravitational waves seen on the sea surface. The waves propagating
obliquely from the surface towards the interior in contrast are called
“body” or “bulk” waves.

The conditions for the occurrence of a nearfield — i.e., k;° < k,> — is iden-
tical to A; > Az/sin 97 = A,. The fact that an exponentially decaying near-
field arises whenever the trace wavelength of the excitation is smaller than
the “natural” or free wavelength of the medium will be encountered in
numerous air- and structure-borne sound problem.

Upon substituting the imaginary value of k,;, an expression is found for
prrin the form |(j4 + B)/(<jA + B)|*, which with 4 and B real gives prr= 1.
For an angle 87> Sy, a total reflection takes place of the incident T-wave.
In parallel there exists the exponentially decaying nearfield having the
character of a longitudinal wave motion but propagating no energy in the
y-direction. For wave trains of finite width, however, the surface wave
must first be developed. Therefore, the reflection at the left boundary can-
not be instantaneously complete as is also the case at the right where it
cannot be abruptly disengaged since the surface wave must be distorted by
radiation. This situation is not only qualitatively but also quantitatively
analogous to that of a mass-spring system by pulse excitation. The SDOF
system must first — in that case temporally — reach the resonance amplitude
and, subsequent to the disengagement of the excitation, have a gradual de-
cay.

Yet another feature of the surface wave should be pointed out. The
components in the x and y directions exhibit a phase difference of w/2.
From (3.132d)

% k

VoL v

=, 3.147
VIL kx ( )
which, for surface waves, is purely imaginary since k, is imaginary. This
means that v; and v, do not combine to a resulting velocity with an unam-
biguous direction but instead the particles exhibit elliptical orbits.

3.6.2 Excitation of an Elastic Half-Space

The reflection of L- and 7-waves treated in the previous sections are of
significant importance but of at least equal importance is the behaviour of
an externally excited elastic half-space. Considered is an isotropic elastic
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continuum, occupying the semi-infinite space y < 0, which is excited by an
external force distribution, see Fig. 3.20. For simplicity, it is assumed that
the force distribution takes the form of a plane wave of angular frequency
o and wavenumbers k, and &, with the associated trace wavelengths A, and
A respectively.

A=27/k,
p,,rx 2) ; py(x.2) i

/////////, 7000,

X

Fig. 3.20. Excitation of an elastic half-space by an external force distribution in
terms of a plane wave

At the surface y=0 hence, the exciting normal stress is

. ] s 2 kg
p, = bye e shear stress in x-direction p, = p,e*e’** and shear

stress in z-direction p. = p.e”"e’* . Owing to the equality of trace wave-
lengths and trace speeds, the Velocity field must have the same x and z de-
pendence and this not only at the surface but for all planes y < 0. Further-
more, since both L- and 7-waves are possible, the following velocity fields
are to be assumed

y Ty | —jkex - jk.
vl(x,y,z)=|:vlL e Je Htem e,

R le j/» Ly kx ~ kz Jkyry —jk.x _—jk.z
VZ(X,y,Z) —|:V|] k + VIT k»vT + Vi 2 e € ¢ ’ (31473)

x T

k . .
o z ./k)L) Jkyry —jk.x _—jk.z
vi(X,y,2) = {vm k + 7, e e

x

whereby the relations in Egs. (3.132c,d) have been used taking the signs
associated with the direction of propagation into account. The wavenum-
bers in the y-direction are given by

N R N s
L — 5 T 5
R VN R N VN R

of which the second form is valid when &’ + 47 is larger than k; and &; re-
spectively. Since there are no restrictions on the excitation wavenumbers

(3.147b)
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k. andk_, both forms of the radicals are possible. Also, those waves hav-
ing opposite signs of the wavenumbers k, and k, would be solutions to
the wave Eq. (3.122a) but since they represent waves propagating from in-
finity towards the surface, they are omitted in this case.

The three unknowns in Eq. (3.147a) can be determined from the condi-
tions at the surface where the elastic stresses of the half-space must equal
those externally applied, implying that

6,(x,0,2) =p, (x,2),
‘txy(x,O,z)=px(x,z), (31470)
1,.(x,0,2) = p.(x,2).
It is hence necessary to express the elastic stresses in the velocities via the
constitutive relations (3.137). After some manipulations, observing that

differentiations with respect to time corresponds to multiplication by jm in
the phasor notation, one finds that

Vi (_sz + kaz + 2kzz )+ Vi 2ka +Vy, 2k k, = (D(I;CX Dys
~ ~ 2 2 2 ~ (DkyT ~
ViL 2kykaT =V (kp 42k, + kD) =V k k. = Tprx > (3.148a)
ok,
{}IL 2kykaT I]‘;_Z_ {}ITkxkz - ‘:'37 (_kT2 + kf + Zkzz) = = ﬁTz‘
The determinant of this set of linear equations is
Det=— 2k, [ (k} —2k7 —2k2)" + 4k, k , (k2 + K2) . (3.148b)

From Egs. (3.148) the unknown amplitudes can be determined and thence
the velocities in (3.147a). As an example, the velocity component perpen-
dicular to the surface is obtained as

®Py 2

T

yL
G Det (3.148¢)
x [(k; — 2% = 2k2)e™ 4 2(k2 + k2)e™ ] e re i

Vz(stZ):_

in a case where the tangential excitation components are identically zero
i.e., p, = p. = 0. From this expression, the ratio of normal stress to normal
velocity component that is, the wave impedance, can be found to be given
by

p(x,z) G (kj —2k2 —2k2)* + 4k, k (kI +k2)

7= :
v,(x,0,z) ® k, k;

, (3.148d)
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for the excitation considered. With the procedure employed here, the struc-
ture-borne sound field in a half-space, excited by plane waves, can be
treated for arbitrary combinations of the excitation components p,, p,,
and p,. . Also other kinds of problems can be handled, in which partly the
stress and partly the velocities at the surface are prescribed. If, for instance,
it is requested that p, takes on a specific value and simultaneously the
shear deformation at the surface should vanish, then the resulting set of
linear equations to be solved consists of the first row of Eq. (3.148a) to-
gether with

v, (x,0,2)=(V, +\3]T)efjk‘xe"‘kfz =0V, +v, =0,

k.« o ax —is R R
v, (x,0,2) = (k—"v]L +9,)e e =0 < kD, +k D, =0.

The above procedure is also applicable when the boundary conditions are

given in terms of an impedance. The prerequisite is always, however, that

plane waves are present such that the same exponentials for x and z are

common for all expressions.

3.6.3. Surface Waves

From an examination of the impedance Z can be gained an impression of
the amplitudes resulting in the excited half-space. It is shown in Fig. 3.21
for a two-dimensional case i.e., where k. is set to zero. From this Figure
and the formulae in (3.148c, d), the following observations can be made:

e For k! <<k, ori, >>1,, the L- and T-waves propagates with the direc-
tion cosines cos9, =k, /k, and cosS; =k, /k, respectively. As a rough
approximation Z ~ pc, .

e For k2 =k or A, =L,, Z=0o irrespective of Poisson’s ratio and the
surface appears rigid.

o For k; <kl <k; i.e., A, >\, >, , the T-waves propagates whereas only
evanescent L-waves exist (near-fields). The wave impedance is com-
plex.

e For k! =k; ork, =2,, the T-waves are grazing (9, =90°) and the L-
waves are evanescent.

For k! >k; or A, <X\,, only evanescent waves occur and Z is purely
imaginary. In the vicinity of k. = k;, however, another feature arises ow-
ing to the vanishing impedance and this is briefly discussed in the follow-
ing since it is of great practical importance in conjunction with seismic and
ground-borne waves as well as in ultrasonic applications.

As for any set of linear equations, it has to be considered if the determi-
nant to Eq. (3.148a) will become zero for real-valued £, and k.. From Eq.
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(3.148Db), it is seen that in the range of propagating waves i.e., where &, or
k,r or both are real, the determinant is non-zero since either both terms
within brackets are positive or one is real and the other imaginary. When
both k,, and k,; are imaginary, however, the situation is different and a
zero-crossing is found for

(k2 —2k2) = aki iz k2 i k2

where k, = k> + k2. Upon squaring both sides of the expression, it is seen
that the condition for a vanishing of the determinant is given by the equa-
tion

16ky (k7 — k7 ) +8kg (27 k7 =3k )+ 8y =y =0 . (3.149)

/I :]
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Fig. 3.21. Wave impedance of an elastic half-space at the stress-free surface
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This third order equation in &, has a positive real root which is close to k; .
It thus exists a realizable excitation for which the determinant vanishes and
which leads to arbitrarily large amplitudes of a surface wave,
namely k> + k> = k;. After its discoverer, this wave is named the Rayleigh
wave [3.2]. Its wavenumber k, and its wave speed cj is found by solving
Eq. (3.149) and for some different values of Poisson’s ratio the following
relative wave speeds are obtained:

Table 3.3. Rayleigh wave speeds for some values of Poisson’s ratio

u 0 0.1 0.2 0.3 0.4 0.5

crlcr 0.874 0.887 0.91 0.928 0.943 0.955

Approximately, the Rayleigh wave speed is given by

. (0874+1.12p)

us e (3.149a)

and it can be noted that it is independent of frequency and only slightly
smaller than that of the transversal wave. The penetration depth of the
Rayleigh wave is given by the wavenumber components in the y-direction
2n/1/k,§ —k; and2n/1/k§ —k; . In Fig. 3.22 is illustrated the deformation
pattern for a Rayleigh wave and it can be seen that the displacements be-
come smaller with increasing depth.

B e Nl
U\ [ 3T _jj i
U EER
Eeoms EEEEE
| Py e
_._-._'-l"-'..,_
P pary . —
L
-y =
———— ~ ==
— e
{5 = 2N
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Fig. 3.22. Deformation pattern for a Rayleigh wave
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3.7 Free Plate Waves

3.7.1 Boundary Conditions and Types of Solutions

In mechanics, one defines a “plate” as a homogeneous isotropic elastic
continuum, bounded by two free parallel planes. The distance between
these planes is designated by /4 and to facilitate the mathematical treat-
ment, the origin of the co-ordinate system is set to coincide with the plane
of symmetry between the two free planes. This means that the plate sur-
faces are situated at y = £ A/2 respectively. For the treatment, moreover, it
is assumed that only plane waves are present of angular frequency ® and
that all processes are independent of the z co-ordinate. Therefore, the asso-
ciated wave number component k3 vanishes. This does not mean, however,
that no motions can occur in the z-direction.

For shear waves it might be the prevailing situation. It is merely to under-
stand that all quantities are equal in this direction and that the wave fronts
are perpendicular to the cross-sectional plane at z = 0 for the plane waves
considered here.

Since the plates of interest in this analysis can be arbitrarily big in x- and
z-directions and are limited only in the y-direction, waves (and near-fields)
can propagate in both positive and negative y-direction. This leads to the
general assumption for the velocity components

(o kv & Jkey a0 —ikpyas o —jkgy\ - jk.x
Y (x,y) = (vae +v,_ e +v,.e Ve )e ,

k . ke ) . )
v (x,y)z D5 gy +£‘; Y LG gy k, D ey e*/klz(j (3150)
’ k k

L- T- L+ k T+
x T x T

(o kv | —ikgy ) -jkx
vy (x,y) = (v}e +v,.e )e .

The six unknown amplitudes of the velocity components are to be obtained
from the boundary conditions. If it is assumed that the stresses are pre-
scribed at the free surfaces then the boundary conditions are

—Jkex —Jjkx

7txy(xah/2’z)=ﬁxy+e ,
Ty (x,h/2,z) =p e

yz+

o (x.~h/2,z)=pe’™" 1, (x,~h/2,z)=p, e,

xy

o (x,h/2,z)=p.e

(3.151)

T, (x,~h/2,z)= f)},z_e'f""‘,
see Fig. 3.23. The analysis is similar also when other variables are pre-
scribed. Whenever the x-dependence is in the simple form used, it always
consists of solving a set of linear equations.
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In Eq. (3.151) the boundary conditions all have the same x-dependence
as of the assumed solution in (3.150). For other x-dependencies, the pre-
scribed conditions must first be Fourier transformed to be brought in the
form of the assumed solution, cf. Sect. 4.4.3. Intricate it would be, how-
ever, to taken into account any sideways boundary conditions. In this case
the boundaries are at infinity and hence not considered. With Eq. (3.150)
substituted into the fundamental stress relations (3.119) and (3.120), ob-

serving the boundary conditions in (3.151), emerges

op.k A A - A
Db AV, e +2k20, e — AV, e + 2k, e,
opk A -

pé L= AV, et + 2k, e — A, e + 2k, e,

®p,.. k, _
% =2k, kv, " + AV e =2k kv, e — AV, e

JT

op, k, s s L g
)2 =2k kv, e+ AV, e =2k kD, e — AV, e
wp, T, o
—= =k, (v3 el +7,e ’T),
G
wh,. o
Z- =k (v3 e ’T+v3+e’T)
G

Herein are introduced the abbreviations

k,hi2=L , k,h/2=T and A=k} -2k

¥

.,

P+ a B
xy+ yz+
I o kil
— . ——————————————————————————— - - y:Q
y=-h/2

i T S

pP-

Fig. 3.23. Normal and tangential stresses at the plate surfaces
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>

(3.152)



3.7 Free Plate Waves 101

3.7.2 Waves with Displacements only Parallel to the Surface

As in Sect. 3.6, the conditions are particularly simple when the displace-
ments are parallel to the surface i.e., there exists only the component vs.
Upon solving the two latter equations in (3.152) and substituting into the
last of (3.150) is obtained

sink,.h

(0]

[ boo.sink,, (y+h/2)-p_ sink,(y-h/2)] o (3.153a)

v (%)=

So-called free plate waves exist when a finite motion is possible also in the
absence of excitation provided a loss-free medium. Evidently, the condi-
tions are

sin k,th =0,
meaning that
kph=\Jk; —k>h=khcos9, =mn (3.153b)

where m = 0, 2, 4... establish a cross-sectionally symmetric field while
m=1,3,5... an anti-symmetric.

The case m = 0 implies a uniform velocity across the complete plate
thickness and thus also uniform shear stress. This corresponds to a slice of
thickness /# from a plane transversal wave. Also in view of the given
boundary conditions, such a slice is admissible since the shear stresses pre-
sent, T, and 1., only arise on surfaces x = const. and z = const. but not on
surfaces y = const..

With the exception of the case m = 0, these types of plate waves can be
considered as superpositions of two crossing transverse waves impinging
on the surfaces at an angle 3, . This gives the trace velocity for both

¢ ¢

€= = ’ 3.153
sinS, i~ (n, /1 20)’ (3.1530)

a relation which also encompasses the m = 0 case.
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Fig. 3.24. Dispersion diagram for free transversal waves with displacements paral-
lel to the surface (----) symmetric and (- - - -) anti-symmetric modes

Figure 3.24 shows the corresponding dispersion diagram. The fact that
the trace velocity in the x-direction ¢, can exceed the phase speed c7 is not
a contradiction of physics. The energy of a plate wave associated with pure
shear deformations propagates with the group velocity as was discussed at
the end of Sect. 3.3. In this case it means that

do (dk. '
ng:EZ(dO;J (3.154a)

Following from (3.153c¢), &, = [kﬁ —(mm / h)J% whereby k7 = w/cr such that

Cor :%:cr,ll—(m% /2h)" = ¢, sin8, <c,. (3.154b)

T

This enables a simple geometrical interpretation of the group speed in
the x-direction, given by Schoch [3.3] as the speed of an energy package,
which criss-crosses back and forth across the thickness of the plate thick-
ness under the incidence angle 97 like a billiard ball bouncing obliquely
between the walls. Such an illustrative interpretation, however, should not
mislead to thoughts that the rigorous wave theoretical treatise merely con-
firms observations made by elementary geometric ray tracing. Ray tracing
is not limited to a particular angle whereas plate waves at a given fre-
quency always propagate in discrete directions. Furthermore, the pair of
crossing waves form specific sinusoidal or cosinusoidal distributions over
the cross-section, which also must match those of an external excitation if
a single specific plate wave should be excited. This cannot be obtained
from ray tracing. On the contrary, ray tracing is only valid for the descrip-
tion of wave propagation when the wavelength is small in comparison with
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all geometrical dimensions involved i.e., the ray width and plate thickness
h in this case. For large h/As, trains of plane transversal waves of finite
width propagating at arbitrary angles, may be described by sets of super-
imposed plate waves, as discussed for infinite continua in Sect. 3.2.1.

3.7.3 Waves with Displacements Perpendicular to the Surface

Of much greater practical importance than the previously considered case
is when displacement components occur which are perpendicular to the
plate surfaces. This is so since such components can be excited by dy-
namic processes in the ambient medium as well as excite them also when
that medium cannot support shear stresses.

The general treatise of plate waves which exhibit displacements in the
xy-plane is complicated by the fact that two conditions at each boundary
have to be satisfied by two wave types. As was discussed earlier, the two
types, moreover, can appear as surface or volume waves [3.4]. For the dis-
persion diagram, which shall be developed, therefore, three ranges must be
distinguished, giving the following table, cf. Sect. 3.6.3

Table 3.4. Three regions for plate waves

Irrotational Part Divergence-Free Part

c.>cp Longitudinal volume waves  Transverse volume waves
2 2

kx < kL

cL>cec>er Surface waves Transverse volume waves
2 2 2

kL < kx < kT

cr> ey Surface waves Surface waves

kxz > sz

The dispersion problem consists of determining v,,,v, ,v,,,v,_ from the
first four equations in (3.152). In this pursuit, it is convenient to replace the
exponentials with the associated trigonometric functions. Then, the first
equation is added to and subtracted from the second respectively, the third
similarly added to and subtracted from the fourth. In this way is obtained

—A(V,_+V,, )eos L+2k (V,_ +7,, )cosT = O;Ié‘ (p.+P.)s

ok

T

2jG

2k ik, (9, +9,, )sin L+ A(P,_+9,, )sinT = (Do + P )

(3.155)

(B, 5, )sinL+ 2K (9, — ;. )sinT = ;{‘é(@ “h).
(’Ova A

2k,pk, (9, =V, )cos L+ A(V,_—V;, )cosT = 2j’G (Pm —f)xyf).
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Hereby, the equations are brought into two independent pairs, which read-
ily can be solved. In this context the study is confined to the free plate
waves, which means that those wavenumbers are sought leading to non-
trivial solutions. Mathematically, this is again found from the vanishing
determinants to the two pairs of equation

Det/ = sianinT[—(kﬁ -2k} )2 cot L—4kk  k , cot T},
(3.156a, b)

x"VyL

Det /I =cos L cosT[—(sz —2k? )2 tan L —4k’k  k , tan T}.

In the expressions above, 4=k, —2k’ is back substituted but the abbrevia-
tions L = k,; h/2 and T = k,r h/2 are retained.

Equating (3.156a, b) to zero furnishes the wavenumbers of the free plate
waves and

tan7 . 4k,3kykaT
tan L (kﬁ—2k2)2 ’

(3.156¢)

tan L _ 4k,§kvL VT

tanT (kﬁ_kaZ)z'

(3.156d)

The cosine and sine factors in Egs. (3.156a, b) results in no additional
roots of the determinant. Equations (3.156¢, d) therefore establish all the
roots and it is sufficient that one of the two equations vanishes for a free
plate wave to exist and propagate. If, for example, Eq. (3.156c) vanishes,
then the two first equations in (3.155) have non-trivial solutions for a van-
ishing right-hand-side. At the same time, trivial solutions can be chosen for
the latter two such that v, =v,, and v, =v, result. This means that for
those free plate waves governed by Eq. (3.156¢), the motion is given in the
form

—jk.x

v, (x,y):Z[ﬁL cosk, y+v; coskyTyJe ,
(3.157)

ky o k.. _
v, (x,y)zzj kLLﬁL sink,, y+—=7,sink .y s

x T

These waves represents the symmetric modes.

If, in contrast, (3.156d) vanishes, the same reasoning applies but with
cosine and sine interchanged in (3.157). In such a case the anti-symmetric
modes are promoted.

The dispersion equation, yielding the wavenumbers of the free plate
waves could have been developed also employing the wave train closure
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principle. For this, forwards propagating and reflected waves are assumed
as in Sect. 3.4.1 and the wavenumber and angles respectively sought, for
which the phase change due to reflection and propagation is multiples of
27. This approach is here not chosen as it is interest also to encompass the
case of forced vibration.

To further evaluate Egs. (3.156c, d) usually numerical methods are em-
ployed. An example, taken from [3.5] is presented in Fig. 3.25.
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Fig. 3.25. Dispersion diagram for free plate waves comprising displacements per-
pendicular to the surface, after [3.5]. (—) symmetric and (- - - -) anti-symmetric
modes

For specific values of the trace wavenumber in the x-direction &, = w/c, it
is easy to find the corresponding values of kr = w/cr. For k. = 0, for exam-
ple, are k,r = kr and k,;, = k;. Thereby vanishes the right-hand side of Eq.
(3.156¢) and hence, the governing equations for the free wavenumbers
read tan7 = 0 and tanL = oo for the symmetric modes whereas tanZ = 0 and
tan7 = oo for the anti-symmetric. The frequencies corresponding to this
trace wavenumber i.e., for a trace speed of ¢, = oo, are
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M=7tv:>co=—2ﬁcrv,

2 h

%h:%(zvﬂ):mz%(zvﬂ),

oh e, (3.1582)
—~L—=nv = ="—"Tv,

2 h

kh m e

5T oy 41 L N

T (v )0 = 1)

A closed form approximation is also possible for thin plates and low
frequencies. With the tangential functions series expanded to first order,

ko 4klkk,

x 7yl

ky h (kT —2kj)

and
(k2 —2k2) = —ak? (k2 - &%)
respectively. It follows that
k4
k2 — T
x —4(ki—kf) (3.158b)

leading to

x T 2
s =21-1* = \2/(1-p) s kph<<1.

It is easy to convince oneself that this means that ¢, > ¢, > ¢7 and that
¢ =cq1, see Eq. (3.34). For thin plates, the symmetric mode is hence iden-
tical to the tensional wave. It consists of a rotational free pair of surface
wave because of k, > k; or ¢, < ¢; and of two crossing transversal waves
since k, < kror ¢, > cr.

If also the cubic terms are taken into account in the series expansion of
the tangential functions then

ook 1( ﬁ)i
k‘_4(k§—k§)[l+3 k2 a(1-n)

or
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o (kA (e Y
cx—cull 6( 6 j (1_“” (3.158c¢)

respectively. With a typical Poisson’s ratio of pu = 0.3 it means that a phase
speed deviation of around 3% of that of ¢;; first then arises when A;; < 34.

To find an approximative solution for the anti-symmetric mode (3.156d)
at low frequencies, it is necessary to expand the tangential function to third
order already for the simplest approximation i.e.,

+l k, h
tanl k,h/2 3\ 2 Ahckyiky (3.159a)
~ =— . a
an?  k,hi2 1 (kﬂhj (k2 -2k2)
30 2

In this case it follows that,
k! +h—2[k§k;‘ I (3k; 4kl )+ 4k (k7 ~k7) =0
12 * *
For the approximation of interest where k2 >> sz, it sufficient to retain the
highest order of &, in the bracket, which yields
Lk ki1

k'=3-L =3 .
TR R (3.1596)

By using the relations (3.34), (3.48), (3.75), (3.83) and (3.138c), this
means that the trace speed approaches
, 1 o’’G 1 o’WE Bo’ o’h’

= =— = = skoh<<1
C» 6 p(l_l-l) 12 p(l—},l2) mﬂ CLI 2 T << (3159C)

Herein, B’ is the bending stiffness of the plate and m" the mass per unit
area.

From (3.159) is readily seen that for thin plates are k, > k7> k; such that
¢, > ¢y > ¢;. Therefore, the 7- and L-waves can only appear as near-fields.
These combine in such a way that an anti-symmetric motion results having
the form and propagation speed of the flexural wave. In this case also, the
approximation is limited to the range in which k” > k;” or ¢, < c¢z. An error
analysis will be presented in Sect. 3.8.2.

The flexural wave and the symmetric longitudinal wave are clearly rec-
ognized in Fig. 3.25 where they are denoted by 7j and L, respectively. Not
equally clear is that the 7, branch asymptotically tends to that of the
Rayleigh wave and not to that of the slightly higher shear wave.
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In this high frequency range, the dispersion diagram more and more re-
sembles Fig. 3.24 and one is almost inclined to assume that the type 7-
waves approach ¢, = cr whilst the type L-waves ¢, = c¢;. The latter is how-
ever not the case. Instead, is revealed by numerical calculations that all
curves for the high orders step-wise approach ¢, = ¢, whereby one curve
succeeds the other. These steps not only approach the asymptote ¢, = ¢, at
krh > oo but far earlier. The approach follows approximately the relation

CL

¢ = (3.160)

- . s
sin§,

which is analogous to that in Eq. (3.153¢) and which is a necessary condi-
tion for the formation of obliquely propagating waves as discussed in that
context.

The first dispersion curves of this kind i.e., 7}, L; and T;, obtained by
Gotz [3.6] from measurements (n = cy/c, = 0.53) and point-wise graphi-
cally collated, did not clearly reveal such a tendency. It became evident,
however, from the curves reaching 757 and L;, computed a couple of years
later by Firestone [3.7] for steel (# = 0.49). Most clearly, though, the ten-
dency is observed in the results of Naake and Tamm, here reproduced in
Fig. 3.25. This is not only because the dispersion curves are presented up
to Tys but also because they are calculated for the very small value of
n=0241e.,pu=047.

In contrast to Fig. 3.24, the curves in Fig. 3.25 clearly show that the
previously denoted 7- and L-type waves, in general do not consist of pure
transversal or longitudinal wave fields but are rather composed of both.

The fact that the flexural and Rayleigh waves do not reach the ¢, = ¢r
limit is not a contradiction. It simply becomes surface waves of the rota-
tional free part of the volume waves.

Tamm and Weiss [3.8], moreover, have calculated the group speeds for
the plate waves in Fig. 3.25, obtained from the dispersion diagram employ-
ing Eq. (3.154a). The results are presented in Fig. 3.26, for which the fol-
lowing remarks apply. No group speed exceeds the phase speed of the lon-
gitudinal wave c¢;. This wave speed appears only as the common asymptote
to the successive steps of the adjacent curves. The envelope to these steps
approximately obeys

¢, =c,sinY, . (3.161)

At very high frequencies accordingly, obliquely propagating longitudi-
nal rays may be constructed from plate waves. The same thing is true for
the curves, which approach from below the genuine asymptote represented
by the transverse wave speed cr, even if it is temporarily exceeded. The
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fact that the quasi-longitudinal and bending waves ends at the somewhat
lower Rayleigh wave speed which exhibits no dispersion, is shadowed in
the figure by the convergence of the many curve branches.

In practice, most structure-borne sound problems only concerns the lim-
iting cases of quasi-longitudinal and bending waves when /4/\r is small.

L | ;« | 1
[ [ 7 15 20 25 30 15 &0 &3 50 55 60 65 0 75 &0
hidge by hr2a

Fig. 3.26. Dispersion diagram for the group velocities corresponding to Fig. 3.25
[2.10]

3.7.4 Equations of Motion for Thin Plates from the General
Field Equations

3.7.4.1 Quasi-Longitudinal and Shear Waves in Uniform,
Isotropic Plates

In the preceding section were determined the dispersion curves for arbi-
trary thick strata of homogeneous, isotropic media from the field equation.
In the following, these equations are employed for the derivation of the
equations of motion of thin plates i.e., plates of thickness small in com-
parison with the wavelength cf., [3.9]. The required equations are the con-
stitutive and the dynamic force equilibrium relations i.e., (3.119), (3.120)
and (3.121) respectively. For a prescribed harmonic motion of angular fre-
quency o, the basic equations read

9 =(a +1)a—§+om’+oc%,
2G ox oz
c,
—y:(x%+(oc +1)n’+oca—c’,
2G ox oz
(3.162a)

o % ' G

= =o—=+on'+(a+1)—=
2G Ox 0z

Txy:§,+8_n Tyz:§,+6n Te 08 OC
ox’

G % G & ox
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and
' a‘c
—0’pl =—*+41 =,
pE v T,
ton = oy O (3.162b)
— = +C, + , .
M=% 7% T
' aG
—0’pl =—= 41, +—=.
Pe = T g
Herein is introduced
i)
—_—=Q
—2n (3.162¢)

as an abbreviation. With the phasor notation, the time differentiation is re-
placed by a multiplication by jm. Differentiation with respect to y, more-
over, is abbreviated by a ‘prime’ owing to its special role and frequency in
the subsequent development.

Upon employing the above relations to the case of a flat plate of thick-
ness / as depicted in Fig. 3.23, the stresses at the surfaces y =& 4/2 can be
expanded in Taylor series such that

h ’ hz " h3 "
o,(h/2)=0c,(0)+=c, (0)+—0c, (0)+—0c " (0)+...= p,,
J) y 2 y 8 y 48 y
3 i W (3.163a)
Gy (—h/Z) :Gy (0)—56},, (0)+?G ”(0)—E6ym (0)+ e =p.

Herein, p, and p. denote the applied normal stress. By means of addition
and subtraction of the two lines in (3.163a) one obtains
h2 " p++p— 4 hz m p+_p—
Gy (0) = —?G), (0) +T,Gy (O) = —ﬁc}, (0) +T (3163b)

In the same manner, the shear stresses acting at the surfaces y = £ 4/2 yield

2 + 2 —
T, (O) _ —h—’tn,” + p,\’x+ pyx— T wl (O) _ —h—’E me ( )+ pyx+ pyx—
! 8 ~ 2 ! 24 - h
P b p 2 b —p (3.163¢)
1 (0)=—"—r "+ 2 T(0)=——1 " (0)+ 2
}Z( ) 8 yz 2 yz ( ) 24 yz ( ) h
With the abbreviations for the various stresses in Fig. 3.23,
P++P,:Pa P.—P_ =PDp> p-x++px7:p’
0 ot e (3.164)

p,Ver_pyxf:pZ’ pyz++pyz—=p3’ pyz++pyzf=p47
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introduced in (3.163a) to (3.163c) and the Eq. (3.162b) substituted, is ob-
tained

2 " 2 2
i ROty K _w KO 10p py 1o (3.165)
8 ox 24 8 82 20 h 208z

In order to establish a set of equations of motion from (3.165), it is suit-
able to rewrite the normal and shear stresses such that all differentials with
respect to y are eliminated at the final stage. Hereby, it should be observed
that in the plane y = 0, there can only occur displacements and stresses as
well as their x and z derivatives. For the sake of convenience, the argument
(0) appearing in Egs. (3.163b, c) is omitted in the following.

With the relation (3.163b) introduced in the second equation of (3.162a)
it follows that

2
_ c, "y Po oc%+(oc+1)n +oc%
16G ~ 4G ox 0z

which means that as 4 approaches zero

: (&J 5‘;) Po
n' = +
a+l\ox o0z 4G(oc+1)
-u (06 0 11-2
__H(_é+_<)+_ M,
Ox 0z) 8G 1+pn

(3.166)

Thereby, ' can be eliminated from the rest of the equations in (3.162a)
and after some manipulation it is found that

o, _L(%+ %}LP_D

G 1-plax "o ) 1-u2g
G, 2 s 6@ B Py
G ( ox 82] 1-u 2G’ (3.167)

+55)
G 0z Ox
Upon combining Egs. (3.165) and (3.167), the simplest form of equation

of motion for a flat plate emerges when all terms of order /” or higher are
omitted. This means that
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2 2 2 2
-0°p, 2 6&4_6& 1+u6§+ u L%+&

G &"_1—“¥ o l-poxdz 1-p2G ox  Gh'
2 2 2 2

0P, lruwdE 2 06 06, 1y, P
G l-uoxoz l-pozz ox° 1-u2G oz Gh

(3.168a)

A rearrangement of these expressions yields
2 2 2
La—2+a—2+kﬁ §+1+_Ha§ :_l K %4_& s
l-uox™ oz 1—p Oxoz G 2(1—p) ox h

2 2 2
l+p ¢ 2a—2+a—2+kﬁ§=—i P P
l-poxoz \1-paoz” ox G 2(1—u) oz h

(3.168b)

Herein, k7 is the shear or transversal wavenumber cf., Sect. 3.2.1. The fact
that shear and extensional waves combine can be seen by, for example, let-
ting 0/0z = 0, which means that all quantities are constant in the z-
direction. This leads to

2
La_2+k7% E_):_i o apD +& s
- ox G 2(1—].1) ox h

(3.169)

The second equation is seen to be the shear wave equation with the excita-
tion p4/Gh. Owing to

1-—p 2 1_H2 0)2p ) o> R
e O Py 1- =—=k ,
26 PG+ E (1-w')=">=ki (3.170a)

1-p
k—=t=op

LI

see Egs. (3.48) and (3.34), the first equation in (3.169) turns into
=, (3.170b)

whereby k;; is the wavenumber of the quasi longitudinal or extensional
wave in a thin plate. Thus, the one-dimensional extensional wave equation
is obtained. The first part of the excitation depends on the normal stress
and comes into play through cross-sectional contraction whilst the second
is associated with forces parallel with the plane of the plate cf., Egs. (3.39)
and (3.40) as well as Fig. 3.23. That also the two wave types combine in
the two-dimensional case is readily demonstrated by seeking those solu-
tions which represent free plane waves i.e., the excitation is removed. By
introducing
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€= éoefjk‘xefjkzz, ¢ = éoefjk‘xefjkzz , (3.171)
in Eq. (3.168b), it is found that

[likhkf }%0 TRk, =0
: (3.172)
1+“kk§0 [—k2+k2 Jq}:o.
These two equations have non-trivial solutions only when the determinant

of the coefficients vanishes. Rewriting 2/(1 - w) as 1 + (1 + p)/(1 - p), the
characteristic equation in &, and &, becomes

(kf+k2 K+ ifﬁkj[kukz K+ tﬁk] (tikk] 0. (3.173)

This expression is of the form (a + b) (a + ¢)—bc=a(a+b+¢c)=0
Hence, the pair of equations in (3.172) has non-trivial solutions if either
a=0or(atb+c)=0ie.,
Kk =k,
Kk (kz kzz)= 2 (3.174a)

(K +k) =k =kl +k =k
l—u I—pt - ) ’

LI>

respectively. The first of these solutions represents shear waves whilst the
second extensional waves. From the outcome of the analysis so far, it can
be concluded that the motions of the neutral layer of a thin plate are de-
scribed by Eq. (3.168b). Also is clarified that the (3.167) establishes the re-
lation between the forces F, = -c,4 in the x-direction see Eq. (3.35) and
F, = -0.h in the z-direction. This relation turns into (3.38) as expected.

The so called plate waves consist of shear and extensional waves having
free wavenumber and the phase speeds given by (3.174a, b). When also the
motion at the plate surfaces in the y-direction, resulting from the cross-
sectional contraction, is of interest, Eq. (3.166) gives

tuh (%+8_(;j+il—2u

£h12)=- .
)= a e ) s e

(3.175)

3.7.4.2 Bending Waves in Flat Isotropic Plates

To analyse the bending motion of a plate, it is necessary to determine the
displacement n of its neutral layer. As indicated by the middle expression
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in Eq. (3.165), the derivatives of the normal and tangential stresses are re-
quired

W ot 1 slop
—o’ph=-——|—L+—c/+—= [+2L,
p 3 { 5 T30 } (3.176)

For reasons of brevity it is here assumed that the normal stresses at the up-
per and lower surfaces are equal in magnitude and that all shearing stresses
P1, P2, p3 and py4 vanishes.

F ortunately, no principal difficulties arise in the determmatlon of 7,
etc. since these quantities are multiplied by the factor h and accordlngly
the stresses need be determined only up to the order 4°. In the following
development, one may furthermore set the plate thickness % equal to zero
to retain the precision desired i.e., Eq. (3.166) to (3.168) can be used to de-
termine t . In principle, it is then poss1ble to use the results recurrently to
obtain appr0x1rnat10ns up to order /4*. The drawback, however, is that the
expressions become rather lengthy and intractable.

The first derivative with respect to the y-direction of the stresses sought
immediately follows from (3.162b)

_ X Xz 2
T ST e O P
, arxy ot ) 5 (3.177)
o6 =— - —® b .
T T e 0P
, ot, 0o )
T =X @ .
- R PG

In order to carry out the next differentiation, first the &',m".¢ .0 'c." and
t.' must be determined. This is not difficult since t,, = 1,, = 0 to the re-
quired precision, which means that

oM L o
= ¢ az (3.178a)

follows from the last equation in (3.162a). Moreover, with p, = -p. i.e.,
pp =0 follows from Eq. (3.166) that

. o8 ag
= (ax azj (3.178b)

The condition pp = 0 in (3.167) furthermore implies that
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csx' -2 n 2 ( om oM
T ulae e e e e
—plox? 62 G l-pl ox° oz
Ty 25
G oxéz’

(3.179)

using Eq. (3.175). Upon introducing this in (3.177) together with (3.178)
one obtains

n_ 26 GVn phan
l—u Ox Ox

v 2
26 ovn +op 8_1]
1 n Oz oz

xy

(3.180)

zy

Herein,

0?8
Vie—4—
ox* 027

is the two-dimensional Laplace operator.
With a further substitution of (3.180) into the mid equation of (3.177),
taking into account that

" og' g [T
=—V
"= (Gx azJ Al (3.181)

it follows from (3.178a, b) that the third derivative of the normal stress in
the y-direction is

m 2G u 2 2,
(o -———0 pVm.
Y o V' A (3.182)

Finally, is obtained the equation for bending motion of a plate by substi-
tuting (3.182) and (3.180) in (3.176),

H2G 20, K34

4p h
(D (,0 —_N =
613 Mg, Py m-oipon= (3.1832)

or,

E K_, hK3-4p
— T Vin+— V2
w12 Uy - o’pVn-o’pm=p,. (3.183b)
In this equation, B'= ER*/[12 (1 - u%)] is the bending stiffness and m" = ph
the mass per unit area. ps = p+ - p. describes the external forces exerted
onto the plate. This means that Eq. (3.183b) can be rewritten in the form
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B’ -
—Vin-on= p*—”p’ — correction ~ p—f’ (3.184a)
m m m

As is seen from a comparison with Eq. (3.81), the first two terms corre-
spond to the ordinary flexural wave equation. The correction term on the
right hand side represents a portion of the effects of shear stresses cf., Sect.
3.8.2. These effects becomes significant when the bending wavelength is
smaller than six times the plate thickness and can therefore often be ne-
glected.

In order to enable the employment of Eq. (3.183) also for the solution of
boundary value problems where forces and moments are prescribed, it re-
mains to establish expressions also for these quantities. The cross-sectional
rotation is given by

g g M o M
Bo=g'=- B === (3.184b)

for the small amplitudes of interest. In view of (3.74), the moments are
analogously given by the product of local stress and distance from the neu-
tral layer

hi2 2G a 82 hi2 , 82 82
= chydy—i Jﬂtf jyzdy:—B Tnﬂt?,

/2 ox’® oz’ /2 ox’® o
2 n2 2 2
2G( om oM 5 [ om oM
G ydy=——|U—+— dy=-B'| n—+—1|, .

—hj:z S 1- (“ o* oz jh-[zy g " ox' oz’ (3 184C)

w2 w2 o
Mxx:_Mz:: Zdy——B'(l—u) )

—hJ/’Z Ox, 5 i 0Ox0z

In the above expressions ¢,,6." and 1" are introduced from (3.179) con-
sidering that ¢, =06y,6.=0c.y,1_=1_"y apply in the approximation
used here. Furthermore, is used the flexural stiffness of a plate

,_ E K _2G6 R
D) 1-;&' (3.1844d)
From the moments, the cross-sectional forces are obtained as
Qx :_a];xz _624:2 :Blaavn’
X Z X
oM. oM. ovn (3.184¢)
Qz == I — = B
oz ox oz

of,, Fig. 3.27.
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In summary, it can be stated that the motion of a thin plate is well de-
scribed by (3.168b) and (3.184a-e) whereby (3.168b) yields the in-plane
motions whilst (3.184a) those out-of-plane. The accuracy is satisfactory for
most engineering application provided the plate thickness is smaller than a
sixth of the wavelength.

'l 'l
| |
e | e |
L0, [ PR 20,
e ke +
Qz+—57dz v|wx 0, Q ;1_% Qx _fjx_dx
¥
— | 1 T
" aM‘zg o—dz— M MPXZ +—dx— aMI
Mat=sz % g = P M'sz‘j;de
oM M /’:aM‘—dz
My + jﬁdx z g,

Fig. 3.27. Velocities, moments and forces for a plate in bending

3.7.4.3 Flexural Waves in Flat, Orthotropic Plates

Plates are termed orthotropic when the bending stiffness differs in two or-
thogonal directions. Typical examples are corrugated plates and plates
with stiffeners in one direction as in the decks of a ship, cf. Fig. 2.28. The
analysis in this section concerns configurations, for which the corrugation
or stiffener distance is substantially smaller that the wavelength. If this
condition is not met, the structure is rather to be considered as a periodic
system, at least in the case of stiffened plates, see Sect. 6.5. The equation
of motion for orthotropic plates can be derived in precisely the same man-
ner as that of an isotropic plate; only the stress-strain relations have to be
slightly modified

, E. o™ om
Gx:Gx ~y:[—1_u2 axz —Eug y,

, on  E. o™m
om

1 =1_-y=-2G .
P74 Xz y yaxaz
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E, and E, are the Young’s moduli for the x- and z-directions respectively,
which can be measured using the conventional test on rod samples cut in
the two directions respectively. The cross-contractional modulus E,, and
the shear modulus are more intricate. Commonly, they are approximated or
assessed from the eigen-modes of an orthotropic plate i.e., from the eigen-
functions of (3.186).

With Eq. (3.185) inserted in the relations (3.176), (3.177) and (3.180),
which are valid also for orthotropic, thin plates, then with the exception for
the o *p-term, the flexural wave equation for an orthotropic plate is ob-
tained as [3.10-3.13]

,84 ’ ' 64 184 n
BX a—x?-‘rz(Bu +2BG )TQZZJ’_BZ g?-(i)zmn ZP(X,ZJ) . (3186)

Herein, B,' is the bending stiffness in one direction, B, that in the perpen-
dicular direction, B! denotes to the stiffness relating to E, whereas B,
takes the shear stiffness into account. For a plate of thickness /# and of
orthotropic material with the moduli E,, E., E,, and shear modulus G, it fol-
lows from (3.185) that

, E K _, E I _, A
x T Xz_’ z = zz_’ u:Eu_’BG =G
1-p® 12 1-pu® 12 12 12

(3.186a)

As an example can be mentioned that for a three-layer plywood laminate
the following approximate values apply

E ~130,E ~11,E, =3,G~7.5GPa.

For corrugated or stiffened plates of homogeneous material with
Young’s modulus £, Poisson’s ratio u the formulae in Fig. 3.28 are found
in the literature. With the exception of the term ®’pm, all other terms in-
volving ’p in Eqgs. (3.177), (3.180) and (3.182) are omitted in the devel-
opments since the thereby expressed shear stress corrections anyhow
would be incorrect for corrugated and stiffened plates.



3.7 Free Plate Waves 119

h
hw;% S : \7

1 /

opr gl ER po 2geS_EM
B.=E B"*slz[l—p?)’ Bu =0 26”@12(1“1)

. (nhY hh? 0,81
mts=l{|——|; [=—"*]-—0———
2/ 2 l+2,5[hu,!2ff)'

‘

;
nwrlj _JL ', vt

h

- . ’_Eh3 a,

Bl =El. B == a,—a (1= /1)
, E

B! =~ 0; G=6(1+u)(h3+hi~aze/aa>

1= (st -5+ s )

W —a,\h*
:la” w+(aa aR) L s =8~k s, =h —s,
2 ah, +(aa —aR)h

Sy

Fig. 3.28. Bending stiffness of corrugated and stiffened plates (/ and a, must be
substantially smaller than the flexural wavelength)

3.7.4.4 Thin Prestressed Plates on Winkler Bed

The methods of the previous sections can be employed to develop the
equations of motion for a plate of bending stiffness B’, prestressed with a
(positive) tensile or a (negative) compressional stress and when this plate,
possibly also rests upon a soft layer (Winkler bed) of stiffness s” per unit
area. Simpler still, Hamilton’s principle [3.14] can be used as discussed in
the next section. The result, given here without proof, reads

2,
BV —T'Vn + 5™ +m27" = p(x2.1) (3.187)

for the motion out of the plane of the plate. The units of the quantities used
are: B' [Nm], 7' [N/m], s" [N/m’], m" [kg/m’], n [m] and p [N/m].
p (x, z, ) is the externally applied pressure.
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It is clear that Eq. (3.187) combines the plate Eq. in (3.184a) and a
membrane equation. Included is also an additional reaction force s” . By
introducing the conventional exponential solution, the dispersion equation
is found for p (x, z, 1) = 0 to be

Bk +k2) +T' (k2 + k) ~(0*m" ~s") =0, (3.187a)

revealing the possible free wavenumbers. A closer scrutiny of this expres-
sion leads to the following findings:
e Propagating waves are only possible when

o> s"-T*/4B'

" 4

m

which, for vanishing prestress, means that the frequency must be higher
than+/s"/m" . For lower frequencies only evanescent waves exist.

e A consequence of the limiting frequency just defined is that, in contrast
to the plate without a Winkler bed, the wave speed does not decrease be-
low a certain limiting value, also for very low frequencies. For plates
without prestress (7' =0), the limiting phase speed is
Cmin = (25"B'/ m")l/4 which is reached at @,;,> = 2s"/m". For railway
rails the minimum phase speed is typically some 100 m/s and the cut-on
occurs in the range 50 to 100 Hz.

e When the plate is compressed (7' < 0), it appears somewhat more flexi-
ble. Theoretically, a vanishing wavenumber is possible but has to be
ruled out on physical grounds since the plate will buckle.

e Upon combining a membrane equation comprising the prestresses 7
and 7. with the equation of motion for orthotropic plates in (3.186) the
applicability of Eq. (3.187) can be further extended.

3.8 Hamilton’s Principle for the Derivation of the
Equations of Motion

3.8.1 Fundamentals

As was already stated in Sect. 2.5.1, Hamilton’s principle realizes one of
the most important relations of physics. It is therefore to be anticipated that
it is applicable also in structure-borne sound. As far as discretizations of a
structure are concerned, the use of Hamilton’s principle has experienced a
renaissance in recent years since the application of the finite element
method (FEM) can be seen as an employment of the principle. Despite
this, FEM will not be a topic in this book because a large number of publi-
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cations is devoted to the method. Instead, the wave equations will be de-
veloped from Hamilton’s principle in Chapters 3 and 4 whereby the plate
and the shell serve as examples, cf. Sect. 4.6.3. In Sect. 6.6, moreover, a
further use will be demonstrated.

Naturally, also the wave equations employed in previous sections could
have been derived from Hamilton’s principle but besides the physics of
structure-borne sound, also different methods should be presented.

In mechanics the Hamilton’s principle reads, cf. Sect. 2.5.1

SI](E,U." —Em)dt+t]6 wdt=0. (3.188)

Herein, Ey;, and E,, are the total kinetic and potential energies of the sys-
tem respectively. W is the externally supplied work. The symbol & means
that a variation is undertaken. Equation (3.188) thus states that a mechani-
cal system adjusts itself such that the variation vanishes of (£, — E,,,) and
W respectively. In particular, (Ey, — E,,) is @ minimum when no energy is
imparted on the system externally. The task consists of expressing Ej,, £,
and W in terms of the field variables e.g., &, n and { and to perform the
variation — a kind of differentiation.

3.8.2 Flat Plate with Shear Stiffness (The Corrected Bending
Wave)

In conjunction with the bending wave equation in Sect. 3.3, it was pointed
out that the simple bending theory loses its validity at high frequencies be-
cause the phase speed according to (3.85) would exceed all limits. This de-
ficiency can partly be remedied by introducing a finite shear stiffness in
the y-direction and, in addition, taking the rotational inertia into account.
The co-ordinate system used in this case is shown in Fig. 3.29. Assumed is
only that the motion 1 is constant over the thickness of the plate and that
the displacements in the plane of the plate are composed of a displacement
in the mid-plane &, and rotational motions with angles ¢, and ¢.. For the
displacements &, n and C of a volume element with co-ordinates x, y, z one
has

E=Ey+o.y, n=m, £=C,+q.y. (3.189)

The kinetic energy thereby becomes
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By, = % I(Vf + V; +v7 )dxdydz
:%j[gqusx]z +112 +[€, + v | drdyaz (3.190a)
e TR Y %(qu +67)did.

In the last version of (3.190a) the integration across the cross-section is
undertaken from —4/2 to +h/2.

y=-h/2

Fig. 3.29. Co-ordinate system for the derivation of the ‘corrected bending wave’
equation

For the potential energy of a volume element, the different stresses with
the accompanying strains ¢ and y are to be multiplied and added, cf.
(3.115) and (3.120). Generally,

E, = J. G.8,+G &, +G & +T v +T.7,. +rxzyxz]dxdydz . (3.190b)

1
2
For thin plates with stress-free surfaces, , can be set to zero for the com-
plete cross-section. Thence, (3.178b) follows from (3.120) which resubsti-
tuted in (3.120) gives

Tol-p?ox e ) 1-p’ Mox o ) (3.190¢)

Regarding the shear stresses, the general expressions in Eq. (3.119) are
used. The strains and shear angles read
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With these expression inserted in (3.190b), results after integration over
the cross-section

1

EpUI:21 (éwr+2“éwV€wz+€w )dXdZ

+ 7 I(E.!M,: + C.! M ,x )2dXdZ

1 Eh W -

+— — +2 + +— + dxdz
21_ 212 (pXY H(P )(‘P (pzz 2 ((Pvz (pzv):|

+—j[ (px ’X (p M. ) }dxdz.

(3.190¢)

(T3]

In this expression the notation is used in indices to denote differentia-
tions with respect to the subsequent co-ordinate.

The first and second lines in (3.190e), relate to the potential energy of
the in-plane waves. The third line describes the potential energy of the or-
dinary Kirchhoff’s bending theory whereas the last line gives the Ti-
moshenko-Mindlin correction [3.15], stemming from the finite shear stiff-
ness.

Upon undertaking the variation after substitution in (3.188), a set of ex-
pressions results in the following form:

6]( éMj ddzdt = jz(aéMj [a‘t’M]d dzdt
_Iz[aéMjESéMddt —2]{

) j ( a@iy )Sédedzdt.

j S &, dxdzdt

Herein, first, the variation is performed according to the product rule
(analogous to that in a differentiation). Then, an integration by parts is
made and finally, it is assumed that the field quantities vanish at the limits
of integration, equivalent to a vanishing variation.

By means of the corresponding procedure is obtained
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2 2
8 ja‘%M GCM dxdxdt = ja Su 5¢  dvdedt - [ OCuse dvdeat,
oz OxCz (3.1901)
on _ %9, on '
5 fo, — dvdedt =~ J.ESndxdzdt— jaé(pxdxdzdt,

and a set of similar expressions.

Regarding the external work W, it is assumed that it is solely due to dis-
tributed forces i.e., pressure. Since work is the product of force and dis-
placement,

W= [(Pn+ poboys + PGy ) e (3.191)

As in Fig. 3.23 and in Eq. (3.164), pp is the external pressure in the y-
direction and p, and p, are the pressures in the x- and z- directions respec-
tively. Upon undertaking the same manipulation as in Eq. (3.190f), it is
found that

[5war = [(p,on+ p,5t,, + pdC.,, ) dxdzd. (3.192)

where the pressure need not be varied since it is prescribed.
By combining all equations, beginning with (3.188), is obtained an ex-
pression in the form

[[438,, + 430 + ABC ,, + A0, + 43¢ + p,dn + pdE, + p,5C, dxdzdt =0

This formula reveals why all variations in (3.190f) are transposed to the
quantities &y, M, Cup Or, @.. Pivotal is namely that Hamilton’s principle
must be valid for any variation. For instance, also for the variation &&,,# 0
but on = 8y, = 6, = 0@, = 0. It follows that 4; + p, must vanish since d&,,
is arbitrary. This argument, applied on on etc., shows that the factors in
front of the variations &), on and the other must vanish independently.
With the expressions for 4, to 45 introduced, from Eq. (3.188) to (3.190),
result
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where B' = EI/(1 — n?) is the bending stiffness of the plate and I = 4°/12
the second area moment. As can be observed, the two first equations are
fully decoupled from the rest. Owing to the fact that these are identical to
the equations of motion for the in-plane waves, cf. Eq. (3.186b), they will
not be discussed further in this context.

The three remaining equations form relations between the displacement
1 and the two rotations ¢, and ¢,. They hence describe the bending mo-
tion. It would be possible to retain them in the present form as a system of
differential equations. This would indeed give the advantage that the rela-
tionship is seen between the cross-sectional force, established from the
variation dmn, and the moments from the variations of the rotations. It is
customary, however, to bring them together in one differential equation of
higher order. Therefore, the expressions are rewritten as

op, acp
Gh| Vn +—= =
[ M a 62] pm —p,

’

B az az(px an N
7{(1 w) Vo, +(1+M)[avaJrax—QH—Gh((Px+g]=PI(Px (3.194a)

B’ o’ ok .
7{(1—H)V2(Pz (1+u)[ Ll S %H—Gh(wﬁ?—z}pm

ox0z 0Oz

where use is made of the relation G/ = B’ (1 - p)/2. By differentiating the
penultimate equation with respect to x and the last with respect to z, a sub-
sequent addition yields

Gh(Vn+y )= p/i - p,,

B'Vy —Gh(Vn+y )= phj,
where the abbreviation,

(3.194b)
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P (3.194c)

is introduced for clarity. From an elimination of vy it is found that

B'V*n —(B—Gp+ pljvzfﬂ P+ pl%ﬁ =Py +%V2ps —2—21’?’3 (3.195)
This formula, which in the one-dimensional case dates back to Ti-
moshenko [3.12] and to Mindlin [3.15] in the two-dimensional, furnishes
an improvement of the simple bending wave Egs. (3.81) and (3.184a) re-
spectively. It takes the shear stiffness into account via terms involving /.
Of the two, the latter, already derived by Rayleigh, is the least important.

Often, the modified shear stiffness G* cf., Sect. 3.2.2, is introduced in
Eq. (3.195) instead of the ordinary shear modulus G. In this way, the flex-
ural wave speed approaches the Rayleigh wave speed at high frequencies.

To assess how much (3.195) deviates from (3.81) and (3.184a) respec-
tively, a one-dimensional case without external excitation can be consid-
ered, Upon letting n ~ e*'e™**, the dispersion equation results as

T CLII CL]I CT

1 1 4
ké —mzké{—2+7}—k;+ ;0 3 =0 (31963.)

Herein, kg is the non-corrected flexural wave number according to (3.83)
and k¢ the free wave number of flexural waves in thick plates. This means
that the wave speed of the corrected flexural wave is approximated by

1 1 1

Ce zCB|:1—EC§[C—2+CTj:|zCB |:1—4(h/}\«3)2:| (3196b)
T Ll

A 10% deviation is accordingly first then approached when the wave-

length A5 becomes smaller than six times the plate thickness; Az < 6/4. Fur-
ther aspects of plates with finite shear stiffness are given in Sect. 4.4.3.1.

3.8.3 Cylindrical Shells
3.8.3.1 Fundamental Equations

In Figs. 3.30 and 3.31 are depicted, the polar co-ordinates and the dis-
placement variables — & tangential, 1 radial and ¢ axial — appropriate for
cylindrical shells. The conversion to Cartesian co-ordinates for very large
radii is given by r8 > x, r >y, L > z.
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To be able to employ Hamilton’s principle, the potential energy is re-
quired, given by the stresses and strains. This means that the general
stress-strain relations have to be developed in polar co-ordinates. As can
be seen from Fig. 3.30, the strain in radial direction is

1 on on
=— —Ar |-m |=—
€, e Kﬂ + o ”j n} o (3.197a)

el

<z

/

/

b ¢

Fig. 3.30. Deformation (a) of a volume element in polar co-ordinates and normal
and shear stresses (b)

The tangential strain consists of two parts. The first occurs for pure radial
motion because the element is elongated,

1
& =
R AVALSY

_n
[VZS (r+n)—rV28J =

The second comes about due to motion in tangential direction whereby

_ 1 9 g g |18
SSZ_rVZSK§+aSV9j i} 09
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Accordingly, the tangential strain becomes

168
—g, te,, =4 )
€9 =&y TEg, - 709 (3.197b)
By a similar consideration for the shear deformation, it is found in analogy
with (3.162a) that the stress-strain relations in polar co-ordinates are given
by [3.9, 3.16-18]

;—é (o +1)g, +og, +ag, —(a+1)( lggj oaa—+oc2—€,
r r r z

&:a89+(a+1)a +og, —oc[ 6&) (oc+1)a—n+0ta—g,

2G rorod or 0z

G—Z:ocag +ag, +(o+1)e, :a(n L% j+oc—+(a +1)6—C,

2G . rrod or 0z (3.198a)

S TEANT S8 ST

G 'Y “oa\r) roeS o r rog’

T"Z _%_i_a_'l’]

G "o &

Ty, %Jrl%

where o = p/(1 — 2p). Henceforth, it is assumed that the thickness of the
shell / is substantially smaller than the radius of curvature and the wave-
length, see Fig. 3.31. For such a case, o, can be set to zero when the shell

is free of external stresses i.e., a state of plane stress. In analogy with
(3.190¢) it follows that

(e +pe, )= £ (Tl_‘_lﬁ_k 6_Qj

5 ,
1-p’ 1-u*\r ro9 0z
A
n 108 8(;) (3.199)

c —L( g, +E )—L( -+
Tol-p? HEs T8 1-p? s Mr@S 0z

whilst the shear stresses remain unaltered.
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Fig. 3.31. Displacement co-ordinates for a thin-walled shell

The proceeding analysis follows that of the preceding section. Thus, the
radial component 1) is constant over the cross-section whereas the tangen-
tial and axial motion will consist of an “in-plane” part and bending part,
which depends linearly on the radius cf., (3.189),

r
E_, —;§M+(r—a)(p9,

¢ :CM +(r_a)(Pz'

Accordingly, there are again five independent variables i.e., the motion of
the mid-plane of the shell &, n and {,, and rotations ¢g and @,. The shell
radius is a assumed constant in this analysis, Fig. 3.31. With (3.200a) sub-
stituted into the equations for the strain (3.197) and approximating

(3.200a)

1 1 -
= peg[1n2) faet e (3.200b)

a a r a r a

the strains and shear angles become
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_l(l_ljn+laé’_]\”+za& e :an_M_’_y%

89 - ) z b
a a a 09 a 09 oz oz
Yy L y)on o
={1-= +—|1-=|—, =p. +—, .
YVS ( aj(pS a[ ajag ’er (pL 62 (3 201)
- :(sz% +y%+l[l_xj@€_mz%,
a) oz 0z a a) oy add

Thereby are terms involving y* omitted. Furthermore, since &, and ¢, are
constant across the cross-section, their derivatives vanish in the radial di-
rection. It should also be noted that 0&/or = 1.

The next step to use Hamilton’s principle for the derivation is to express
the energies. The kinetic energy is obtained as

2n h/2 L
E, =% [ ] J(g+4* +¢*)adsdyez =
h(’z,[hf’f | . (3.202a)
pT | j{g; i+ +I'(q592 +¢2 +2E,,6, Had&dz,
0 -L a
and the potential energy
l 2n h/2 L
b = I j(csas O, +T 4V o T, 0 +T5Y 1 )adSdydz =
(3.202b)

L
LfLEz(aé +87+2Uug,E, )+ G (v +v] +y:29):|ad9dydz
LT H

1

2 (J‘—h/z—
In Eq. (3.202a) is /' = h*/12 introduced.

By substituting Eq. (3.201) in (3.202b) and integrating with respect to y,
a lengthy expression results, which contains the displacements &,, 1 etc. as
well as their spatial derivatives. The subsequent treatment is as for (3.190)
to (3.192) i.e., the variation is undertaken and an integration by parts such
that the variation refers to the field variables. Use is also made of the fact
that the values of the integrand at the limits 0 and 27 are equal due to the
periodicity and that +L and —L are so remote that all field variables have
decayed and the variations vanish. As in Eq. (3.193), a system of linear
differential equations results in the independent variables &y, 1, Cys, @y and
¢.. Abbreviated, this reads
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Herein, the coefficients are

o N0 1+p* o7
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Os 0
3.8.3.2 Special Cases

The rather extensive system of Eq. (3.203) permits the following conclu-

sions:

a) The system is symmetric as usual for wave equations derived by means
of Hamilton’s principle for stationary or uniformly moving media.
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b) As the wall thickness tends to zero # > 0, B = 0 and /' =0 and
@, =—0n/0s as well as ¢. = —0n/0z. Thence, Eq. (3.203) turns into the
membrane equation [3.18].

+ —_—=
os> 2 o o, o 2 0s0z aOs

1+u 0%, o l-pn 62 1o non
| - -——=0,
ozt 2 o5 cu o S a oz (3.2042)

>

1og, wec, [1 18] pl(i-w)

ads a oz a2 ¢, o | Eh

which is fully valid for numerous applications.

¢) When the radius grows large i.e., a > o, all terms involving 1/a and 3
disappears. The remaining expressions are identical to those for in-
plane waves (3.168b) and the Mindlin-Timoshenko bending wave de-
scription (3.195).

d) Upon approximating #/a ~ 0 in Eq. (3.203) for non-vanishing 4, all
terms involving 3 and ['/a vanish while those with /' remains. If, in
addition, the terms representing the rotational inertia i.e.,
(I'/ey) 0%/0 £ as is the case for the simple bending theory, one obtains
the “Donell-Mushtari equation” [3.19, 3.20]. It differs from Eq.
(3.204a) merely in that the 1 term in the last relation takes the form

1 o° 0 1 ¢
—+1'| —S+— |+———=—n.
le [asz 822J c;, or }1 (3.204b)
Thereby, is taken into account the bending of the cylinder wall.

e) For a transition to a ring, 0/0z = 0 is employed and c;; as well as
E/ (1 —nz) are replaced by ¢y and E respectively owing to the cross-
sectional contraction in axial direction cf.,, Eq. (3.32) to (3.34).
Thereby, two independent expressions result: Shear in axial direction

0C, 2 0%, 0%, 10¢,

e et |
o (I-p)g, o o5 o or (3.204c¢)

and motion in tangential and radial directions
o 1+p* & 10 1’ o
ZB 7 G| -+ n=0,
as> c;, Ot ads ac, asor

L Ll O N A
ads ac ﬁsot M s’ c;, 0t ¢, osor’ 1 Eh’

III

(3.204d)
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To arrive at these expressions, the last three equations in (3.203) are
added to account for the rotational energy. Moreover, the approxima-
tion (g = -0n/0s is introduced as employed in simple bending theory.

f) Besides the shell Eq. (3.203) presented and the simplified versions in
Egs. (3.204), the literature comprises a suite of other formulae, which
differ in the terms involving B > [3.21]. As long as the wavelengths and
the radius of curvature are larger than six times the shell thickness,
however, no significant differences arise.

3.8.3.3 Phase Speeds

To better understand the shell equations it is suitable to consider their fea-
tures for the special case of plane waves spiralling along a cylinder. It is
thus assumed that the field variables &, 1, &, ps, ¢, and @g take the form

Jns/a

(EM.C.pussy Je oo e, (3.205)
Herein, index M is omitted for brevity. For an infinitely long cylinder, the
associated waves propagate with the speed ¢, =  /kz in the axial direction
and exhibit 2n nodes over the perimeter, see Fig. 3.32a. They can be imag-
ined as screw-formed propagating disturbances of “threading” A, = 2m/kz.
In the literature appears often cos ns/a or sin ns/a instead of ¢ but also
cos nJ or sin nY for symmetric and antisymmetric problems. For the gen-
eral case, however, the notation ¢’ "' is most suitable and for the dispersion
diagrams and wave impedances this does not lead to any differences.

Upon inserting (3.205) in Eq. (3.203) and simultaneously letting
@, =—0n/0s and @, =—0n/0z as is customary in conjunction with simple
bending theory, is obtained

a, —a, —ja, g 0
—dp a, —Jjay |G |=|0 . (3.206a)

A

Jays  jay as J|M DV /o’ ph

The manipulations required to arrive at this system of equations consists in
differentiating the fourth equation with respect to s, the fifth with respect
to z and adding the last three of the resulting expressions. In Eq. (3.206a),
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a,=n"+o kla v’ +B’ (ocfkfaz —vz),

a, =a, nk.a+ B o_nk.a,

a,=n+ an(2a7kfa2 -v? ),

a, =k’a’ +a_n’ —v’ +B’a_n’, (3.206b)
a,, =—pk.a+2B% _n’k.a,

and

ay,=1-v>+ Bz[l —2n’ —2ukla’ + (kfa2 +n’ —\/2)(kzza2 + nZ)J

In addition, v = wa/ci1 = ®/ying, 18 @ non-dimensional frequency based on
the ring frequency ®ying = cr1/a = 27 fring.
The determinant of (3.206a) is given by

2 2 2
Det = ay, (allazz _aIZ)_ 2"12"13"23 T 0y Gy — Ay dy (3-2O6C)

and its vanishing furnishes the wave numbers of the free waves, which can
exist in loss-free media also in the absence of excitation. With (3.206b) in
(3.206¢), a fourth-order polynomial in (k.a)” is obtained. Accordingly, four
free waves can exist at most at every frequency. At least one thereof, does
not propagate implying an exponentially decaying nearfield. For the re-
maining three propagating waves, the dispersion diagram in Fig. 3.32 is
obtained by equating (3.206¢) to zero. Shown is the phase speed for the ax-
ial direction instead of the associated wavenumber for a Poisson’s ratio of
p = 0.3 and normalized with respect to ¢;;. The following conclusions can
be drawn from the curves.

a) The branches denoted by 7 which come down from infinity at
v =n’ (1-p)/2 approach asymptoticallyc. =c,,/(1-p)/2 . They cor-
respond to pure transversal waves (no compression of the material,
see Sect. 3.2.1).

b) The branches denoted by L which come down from infinity at
v'=1+n" approach asymptotically c. = ¢;.. They correspond to
quasi-longitudinal waves (see Sect. 3.1.2).

c¢) For low frequencies is obtained the relation

_af2 2 2
c. =3{w’a’/2c;,

for n = 1. Since a*/2 is the square of the radius of gyration of a thin-
walled cylinder, this relation constitutes the flexural wave speed of a
cylindrical shell vibrating as a beam.

d) A fundamental role plays the non-dimensional frequency v =1 i.e.,
the ring frequency fn, = cri/2na where the cylinder perimeter equals
one wavelength of the longitudinal wave.
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e) For n =0 there exist at low frequencies longitudinal waves of speed
c.=c,\1-pn’ =E/p and  torsional waves of speed
c. =c, \J1-1u/2=4G/p . In the first case, a volume element of the

cylinder wall moves in radial direction — breathing mode — neglect-

ing the comparatively much smaller cross-contraction. In the sec-
ond, the motion is torsional.
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Fig. 3.32. Spatial displacements of modes » = 0, 1, 2, 3 and dispersion diagram
according to (3.206¢) for a = 15 and p = 0.3
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f) For n > 2, the characteristic Eq. (3.206) yields three groups of disper-
sion curves. The first two — long and short dashed curves in Fig. 3.32
— were discussed in a) and b). The third group — solid curves — is only
possible above the associated ring-resonance frequencies, see Eq.
(3.210c). All the solid curves approach that of the bending wave
speed of a plate of thickness /# — also drawn solid — at high frequen-
cies.

g) At frequencies above v > 2, the dispersion curves are practically iden-
tical to those of a flat plate of thickness /# and width ma exhibiting
bending and in-plane waves. The boundary condition for the strip are
those shown in Fig. 3.15 top left or bottom right. In this frequency
range, therefore, the cylinder wall can be treated as a flat plate. The
dispersion curves obtained from the characteristic Eq. (3.206) are cor-
roborated by experimental results.

3.8.3.4 Wave Impedances

In addition to the phase speeds, Eq. (3.206a) also furnishes the so-called
wave impedance, cf. Sect. 5.4. It is defined by
z =P Ps (3.207)
v, jon

i.e., the ratio of the exciting pressure amplitude p, to the resulting radial
velocity amplitude v, for an infinitely extended cylinder. For discrete 7,
Eq. (3.206a) gives

(3.208)

2 2

7 - ph |: _ 2ap,a5a, + a0, +a22a13:|

~n .2 33 2 >
v a,ay —dp

from which a good approximation is found to be [3.21]

Z zm.ph{—vz+[3{(n2+k12a2)2_”2(4“)2”}
JV

R 2(1-w)

(1- Hz){l_T“kfaz —vz}kfaz —[I‘T”(kjaz +n2)—vz}v2 (3.209)
[I_Tu(kfa2+nz)—vz}[kfa2+nz -v’]

The wave impedance indicates whether a cylinder will be strongly or

weakly excited by a pressure of the form (3.205); small and large Z_, re-
spectively. From Z_, = 0, the wavenumbers of the free waves can be de-

+
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termined and, in turn, the dispersion curves can be generated by using
¢, /¢, =v/k.a for given values of n.

3.8.3.5 Resonance Frequencies

The resonance frequencies of a circular ring can be obtained from Egs.
(3.204c, d) by setting pp = 0 and employing the solution given by (3.205).
From Eq. (3.204c) it is found that

2 2
n ()]

-—+—5=0,
a ¢

giving the possible resonance frequencies for the particle motion in axial
direction

2

o, =nclad. (3.210a)

For the other, important motion components, the dispersion equation is ob-
tained in a similar manner as (3.206). It is sufficient to put &, = 0 since no z
dependence exists. Some further manipulations yield the characteristic
equation

v4[l+[32(1+n2)}—v2[n2+1—2[3(n2—1)2:|+n2[32(1—n2>2 =0.

By focussing on thin-walled cylinders (B * << 1), the approximations

2

o)
v =—ad’ ~n’ +],
CLI
NV (3.210b, ¢)

o> n (n —1)

2 — nil az ~ BZ

11

" n +1

result for the quasi-longitudinal and flexural motion respectively. Thus, the
resonances are determined.

It should be pointed out, however, that the ring resonances are not accu-
rately predicted by means of the approximation for the wave impedance in
(3.209) for k, = 0. The error amounts to 14 % forn=2,4 % forn=3,2 %
n =4 and is smaller than 1.5 % when n > 5.

As for slender beams, the calculation of the eigen-frequencies of a cy-
lindrical tube of length /, can be readily made only for two ideal boundary
conditions. This means that the eigen-functions
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£(9,2)=¢,, sin?sinn&

z

n(S’Z) :nm,n Sin mch COSnS, (3‘211)

z

cosng,

£(9,2)=¢,, cosmln

apply or the corresponding ones in which the terms cos(mmnz/l,) and
sin (mmnz/l,) are interchanged.

The eigen-functions in (3.211) imply that the tube wall at x = 0 and
x = [, are simply supported and, simultaneously the axial motion is uncon-
strained, see Fig. 3.15, top-left. With the sine and cosine functions inter-
changed the eigen-functions satisfy guided tube ends and blocked with re-
spect to axial motion & (p, 0) = (o, I.) =0, see Fig. 3.15, bottom-right.

A similar analysis as that of the preceding section can be used also in
this case to determine the resonance frequencies. The only modification
necessary is that k.a is replaced by mmna/l.. The resonance frequencies then
correspond to those values of v for which the wave impedance in Eq.
(3.208) vanishes. This means that the resonance frequencies correspond to
the intersections of the dispersion curves c./c;; in Fig. 3.32 with curves
v I./mma since

c. wa I o

e 22k o= =kl < mh, =21
¢, ¢, mna c,

at these points. For the flexural motion of primary interest, the resonance
frequencies are closely approximated by [3.22]

2 2 / 4
Vim :(D,;ma ~ (nma/zz) : . +B2{|:(ma/lz)2+n2:|2
LI |:(mna/lz) +n ] (3 2123_)
n’(4-p)-2-p
2(1-p) '
whereas for the other types of motion,
vf’m z]_—u[(mﬂ:a/lz)2+n2],

2 (3.212b)

v zl+[(mna/lz)2+n2].

The formulae in (3.212) encompass for n» = 0 the very important ring fre-
quency v = 1 as mna/l, tends to zero. Other expressions for resonance fre-
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quencies as well as comparison of different shell equations can be found in
[3.21].

From the results of a few calculated examples, it is clear that the reso-
nances for long tubes (/, > 10 a) tend to occur just above the corresponding
ring frequencies of Eq. (3.210b). Additionally, it is realized that
Oul,m > Oy, even if n; < mp. Thus, it is possible that two modes of the
same number m of nodes in axial direction but of differing nodes in
circumferential exhibit the highest resonance for the smaller .

Fig. 3.33. Notations for a cylinder segment

Equations (3.212a, b) also apply for segments of cylindrical shells ow-
ing to the fact that the basic differential equations are the same. For a cy-
lindrical segment of arc and edge lengths 5 and /, as sketched in Fig. 3.33,
the eigen-functions

mnz . mms
sin

é = émLmZ sin

>

. b
. mMTZ M,
N =M w2 SN cos b (3.213)
z
mmnz . mms
C - le,mZ COs sm b >

apply for m; , =1, 2,3 ... provided that the boundary conditions fulfil
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2 2,
T8 _ M _g E_g =0y

= = 0, - — Y, 5 2%z
E) n aZZ aZZ aZ
aZé 621,1 aC,

— :0’ —:—:0’ —ZO; S=O,b~
Eﬁ n aSZ 852 as

This means that the supports present no moments with respect to radial and
axial motions and no forces to the tangential. It is readily verified that the
eigen-functions in (3.213) satisfy the spatial dependencies of the cylindri-
cal shell equations and lead to a characteristic equation of the same form as
that for a complete cylinder, the only alteration being that » is replaced by
myna/b and m by m;.

It is easy to demonstrate that as the radius of curvature tends to infinity,
a > o, the expressions for flexural as well as shear and extensional reso-
nances given above collapse into those of a flat plate.

Unfortunately, no simple expressions are available for other boundary
conditions but it can be mentioned that the resonance frequencies rise con-
siderably as the tangential motion at edges x = 0 and x = b are restrained
[3.23]. In this context, it is of interest to consider also doubly curved
shells. Without derivation [3.24], are given the resonance frequencies for
bending waves for a rectangular patch with radii of curvature a, and a,
having simple supports along all edges,

(3.214)
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3.9 Structure-Borne Sound Intensity

3.9.1 Fundamental Equations

The well-thumbed definition of the intensity vector for air-borne sound can
readily be extended to the structure-borne sound case [3.25-3.27],

me=p-v=(pvx,pvy,pvz)- (3.215)

In the structure-borne case, however, it is necessary to take into account
that the dynamic quantities are not represented by the pressure but the
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stress tensor. In Cartesian co-ordinates, therefore, the general definition of
the three components of the intensity vector reads

J, = —[vax TV, +'cxzsz

x

J,==[t v o v 41, ] (3.216)

J. = —[szvx +T,.9, +G_,v_,]

In this text only the temporal average of the stress and velocity product
will be considered and referred to as the intensity. Instantaneous intensity
as well as the imaginary intensity will not be treated [3.28, 3.29].

As can be observed, the intensity is formed by the scalar product of the
force acting on a surface element and the velocity at that surface. The
overbar denotes that each term is temporally averaged. The negative sign
in front stems from the fact that o and t are defined positive as extensional
stresses and hence act like elemental forces opposite a positive velocity cf.,
Egs. (3.27), (3.28) and (3.35).

A special case of Eq. (3.216) was treated previously in Sect. 3.1.1
whereby the intensity was given in a pure longitudinal wave, for which
v,=v. =0 and J, = -c,v,. Also shown in this context was that the intensity
equals the power transmitted through a surface element. This statement
also holds in the three-dimensional case for the separate directions. It
should be noted, however, that the vector resulting from the components
J., J,, J-, not necessarily is perpendicular to the wave front, in contrast to
the analogous airborne intensity cf., [3.29].

3.9.2 Intensity in this Plates

Due to the severe difficulties to measure stresses and velocities interior to
a structure without detrimentally disturbing the field, the following treatise
is confined to thin plates and thin-walled shells for which the measure-
ments can be undertaken comparatively easy at the surfaces. The analysis,
moreover, is confined to the x-component of the intensity since the y-
component vanishes and the z-component readily is obtained from a re-
placement of x by z for homogeneous media. The notation is the same as in
Sect. 3.8.2 and is found in Fig. 3.29 as well as in Egs. (3.189-3.190d).
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Upon substituting these expressions into Eq. (3.216) is obtained

E (& op,. ¢ o9, /. .
-J = Myt M +
x 1_ Hz ( ax y ax l"l' a a (E.’M y(pr)

s o DB s B, B, )|

Herein, the differentiation with respect to time is denoted by a dot i.e.,
v, =E, + VP,V . =1 andv, =, +»9.. Equation (3.217) furnishes the 1n-
tensity in a plane y = const. Of greater practical interest, however, is the
cross-sectionally integrated power per unit width,

(3.217)

hi/2

W) == [ J.dy. (3.218)

hl2

With Eq. (3.217) inserted in (3.218), the power per unit width becomes

z;z E (aaM ac;Mja [aaM az;Mjc
M aZ M

h ox
. . —— (3.219)
El' (39, 3o, anj [ o, 09 j
+ —=+ +Glo. +— M+GI +—=
l—uz[ﬁx are j(p (‘p ox ) oz ox )

In this expression /' = 4*/12 is the radius of gyration squared and stems
from the integration of y*-terms whereas all y-terms vanish.

The terms of the first line in Eq. (3.219) both depend only on the motion of
the neutral layer of the structure and thus represent the power carried by
the in-plane waves cf., Sect. 3.7.4.1. In contrast, those of the second line
are all associated with the flexural motion and can be rewritten such that
only the translatory motion perpendicular to the surface 1 appears. Also, it
is suitable to alter the factor G (¢, + dn/dx) to improve on its present ap-
pearance as oo - 0.

Upon back-tracking this expression it is seen that

on). 1 '— o
G((px +g)n _Z Txyn dy - _Z ‘[Tx_ydy

(3.220)

In this, the fact is used that the cross-sectionally integrated shear stress
equals the total force at the cross-section O, given by Eq. (3.184e), see Fig.
3.27. Another possibility to arrive at this form would be to rewrite the first
line in Eq.(3.193) as
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on N l+n 0. .
Gl o, + = 61 BT o, + R C0= ),
((PX j ( oz* ox® }Px 2 Ox0z PI9. (3.221)

With the approximations ¢, = -6n/0x and ¢, = -0n/0z, applicable for thin
plates, the right hand side of (3.221) turns into (3.220) with the negligible
difference of the small term p/¢_ associated with the approximation, and
Eq. (3.219) finally becomes [3.26]

s
X oz ox

S > (3.222a)
B'|( o™ om o om o 00 am 0’ on
A F(1op) 2 .
h|\ ox 82 ox 0x0z 0z 6x ox* 62

For the one-dimensional case and pure bending, it is readily found that

W _B(@@_ﬁ j

B o ox ox’

is in agreement with the previous results in (3.91) or (3.91a).

Equation (3.222a) demonstrates that measurement of structure-borne
sound power is not so simple even for thin plates. This is due to the aver-
aging of lateral motions &, C and their derivatives measured at the plate
surfaces y = = h/2, which yield the quantities &,, and ;. Moreover is re-
quired the translation n to its third order spatial derivative with a high de-
gree of accuracy cf., Figs. 8.42 and 8.43.

If bending wave nearfields are disregarded, then

‘2‘] - k= o \F (3.223a)

applies in the one-dimensional case, for regions more than half a wave-
length away from structural discontinuities and excitations. This means
that (3.222b) becomes

W, :—(ox/m'B[ a—”—a—”n’} (3.223b)
ox Ox

which can be further simplified by making use of the chain rule

o( om\) om o o’ 611 o
—In—=|===+ —+n— 3.223
ot (n 8xj axor Vaxar Vax ) ox (3.223¢c)
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and observing that every arbitrary function of time g(#), oscillating around
zero will vanish when averaged,
0 170

~el=7 ag(t)dt%[g(tz)—g(a)}zO. (3.223d)

Implicit is that the average is taken over a long time. With this relation,
then

g(na_njzozﬁa_nﬂla_n PN ﬁa_n:_na_n (3.223¢)
X X X
From Eq. (3.223b) [3.25] therefore
W, = 20-m BV = —20-/m BN (3.223f)
’ Ox Ox
applies for the farfield in the one-dimensional case.
Upon employing two accelerometers with identical amplitude and phase

characteristics, placed a small distance Ax apart, a good approximation for
the power transmitted is given by

W, =—2m\/m'3%i [(a,=a)ds, (3.224)

—0

provided that Ax << A,/10. Herein, n;, 1, are the measured displacements
and ay, a, the accelerations. Use is also made of the approximation

. . . t
a_nzu’ T]' =y = J‘adr_
ox Ax ;

For a narrow frequency band, 0 ~ -a/w’, such that

W, =~ V’ZIOB i(al +a,) J(az —a)du (3.224a)

—o0

With the exception of the factor in front, this is the same formula as is
used in the airborne sound case, with the acceleration substituted instead of
pressure. Outside regions with significant, nearfields, it is thus possible to
assess the power carried by bending waves applying the same signal proc-
essing equipment as is used for airborne sound intensity. Also, as in the
airborne sound intensity context [3.28], it is finally possible to put

' 0
Ialdt =g (t):> a, :6_(?’

—o0
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which means that

w :Vm’B{% % o8 fﬁ}

xB oAx ot &> ot &g, ot g~ ot 8

Bl 3o 0(g.g) 100> :
_JmB| 08, %) 10g 13 (3.224b)
OAx | Ot ot 20 2 0t
=2 mBa] Iazd‘r.
oAx

—o0

As in Eq. (3.223d), the averaged time derivatives cancel.

From a transition to power-spectral densities, it is possible to show that
the power spectrum W,z (®) is proportional to the imaginary part of the
cross-power spectrum between the two accelerations. This is most readily
demonstrated in that a single frequency is considered i.e.,

a, = Re[&lejw] = %[&leﬂ”’ + al*e'j“”],
a, = Re[&zejw] = %[&ze‘jmt +ae J
Substitution into Eq. (3.224a) yields

W, ()= L8

0OAx
in which (¢, - @;) is the usually small phase difference between the two
accelerations.

a

a,|sin(¢, —9,), (3.224¢)

3.9.3 Power Transmission in Thin-Walled Cylindrical Shells

In cylindrical co-ordinates, the general expressions for the components of
the intensity vector read

Jy = _[ng +m+'tsz(;.:|>

J = —[r,,sg ton +rrzg}, (3.225)

JZ :_|:TSZE.>. +‘E+62C:|’

and are analogous to those in Eq. (3.216). The following analysis is con-
fined to thin-walled cylinders, free from excitations on the cylinder wall.
For such cases, there is no power transmitted in the radial direction i.e.,
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J,= 0. The stress and strain relations in Eqgs. (3.198) to (3.201), moreover,
can also be employed in this context owing to the vanishing radial stress,
o, = 0. With those expressions introduced in (3.225), some manipulations
yield the principal power transmission in axial direction as

w' E (éc, ot N 0C, )
7221_ ( g’z 2 j(;M+G(<1+[3 ) SZ +(1—[3 )C_}:M

EI' (0o, 0p, ) . on . {00, Op, ).
+ — 0. +G|o.+— M+Gl'| —+——=
(62 o j‘p‘ (‘p‘ oz ) as oz )0

EI' I'
+ = (néM ——mo ]
1-p’

Lo (% ngji (az;_M_ag_Mj .
{ as oz )M 0Os 0z P |
The first line of this expression describes the in-plane intensity in the ab-
sence of radial motion of the cylinder. In the second, is contained that as-
sociated with bending motion. This is clearly seen from a comparison of
Egs. (3.226) and (3.219) whereby it is taken into account that the power in
z-direction is considered in the latter. The last two lines, finally, represent
mixed terms which vanish as the radius a tends to infinity, a > oo.

To proceed with the analysis, the cross-sectional force is in this case ob-
tained from the equation of motion for the system i.e., from (3.203). By
calculating G (9. + 0n/0z) from the last of the expressions and subse-
quently introducing the approximations ¢. = -0n/0z and @g = -0n/0s, the
power transmitted is obtained as

W!_E |, | 0 3%, 0,
A —1_“2{ P Cutu s :‘ i: &M s ‘gM:i

EI' [(&  dm|oq (oVm 1 an |, o o
+ —+ - +(1-
-’ M oz’ e os* ) oz oz ¢, ozot’ i u)ﬁsaz Os (3.227)

{nCwIIZnan] FCM@H—MM}.

+

1-p? oz O0s o0s  os

Practical measurements according to this expression are highly compli-
cated and time-consuming. Most often, therefore, the simplified one-
dimensional formulae (3.224) to (3.224c) are employed to assess the order
of magnitude and, above all, the direction of the intensity.

As in the case of airborne sound intensity, structure-borne intensity due
to multiple tonal coherent sources must be treated cautiously. Any phase
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shift between the sources may result in highly differing directivity of the
intensity.
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