2 A Little Dynamics

2.1 Single-Degree-of-Freedom Systems

Precisely as for the treatment of fluid-borne sound, the kinematic and dy-
namic field variables constitute the primary ingredients in the treatment of
structure-borne sound. An important difference is, however, that in most
measurements of fluid-borne sound, the primary quantity is dynamic i.e.,
the sound pressure whereas it is a kinematic in measurements of structure-
borne sound i.e., the displacement, velocity or acceleration. The dynamic
quantities such as forces or stresses can be obtained via the constitutive re-
lations for the material in the latter case. The reason for this difference is
that the pressure is a scalar quantity and hence most manageable whilst the
vectorial motion quantities, despite their direction dependence, are simpler
to measure for structures.

As in classical dynamics, a corner stone for structure-borne sound is the
single-degree-of-freedom system, often called the mass-spring-damper
system. For such a system, the equation of motion can be written as

2
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where & is the displacement from equilibrium.
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Fig. 2.1. Single-degree-of-freedom system with excitation F and displacement &
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In this system, depicted in Fig. 2.1, the mass is denoted m, the viscous
damping » and the stiffness s. If there is no excitation such that ' = 0, the
general solution is

E(t)=Ce™" +C,e™.
Here the two constants C; and C, are to be determined from the initial

conditions at time 7 = 0. a; and a, are the eigen-values i.e., the two roots of
the characteristic equation

ma’ +co + 5 =0.

With an external excitation (F # 0) the particular solution must be added
such that

&(t)=|:cl+

1

a; =0,

" (,)}w {cz N (t>}azf,

o, =0y

where g; and g, represent the (indefinite) integrals

F(t
g = J-—ng )e’u"dz

F(t
&, = .[ ’i)e_az’dt,

and C; and C,, as before, are the integration constants which satisfy the
initial conditions.

Assuming now that the system is subject to a steady-state harmonic ex-
citation at the angular frequency ® such that the excitation is given in the
form

F(r)= Fe'™,
where F is the force amplitude and

Jjot

e’ =coswt+ jsinwt.

The use of the complex exponential ¢’ to describe the time dependence of
the physical force means that implicitly either is understood

F(r)=Re [ﬁe"‘“] = F cosot,
or, alternatively,

F(r)= Im[ﬁe-’mJ = Fsinot.
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The selection of the real or imaginary part is arbitrary as long as this
choice is retained throughout the analysis and the physical interpretation of
the results is made consistently. Herein, the first alternative will be em-
ployed.

Now, once the initial transients have faded, the steady-state response
must also be harmonic of the same frequency as that of the excitation and
one can assume that it can be written in the form

E(r)= D(co)ﬁ"ef"”,
where D(w) is the complex frequency response function of the system.
Upon substituting this into the equation of motion (2.1), it is clear that
(—m2m+jr03 +s)D(co) =1,
which means that

1

D =
(©) —mo’ + jro +s

If the undamped natural frequency squared is defined by

®, =—,
m

together with the damping ratio as

7

2mw, ’
the frequency response function can be re-written as

1

m[—co2 +2¢ joo, +c0§]

D(w)=

From this complex-valued function, the amplitude ratio between the re-
sponse and excitation can be developed to

1

2 N %2
o qu “’j +(1—°°2”
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and the associated phase relation

|D|=
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So far, all what has been discussed follows the classical presentation of
mechanical vibrations. For different reasons, however, use is made of ve-
locity instead of displacement in acoustics and structure-borne sound. One
such reason is that the scalar product of force and velocity yields the
power, which is a convinient measure for stationary processes. Therefore,
upon rewriting the equation of motion for the mass-spring-damper system
in terms of the velocity,

¢, =arctan

(jo)m+r+_ijv:F.

JO

In this case, the employment of the frequency response function leads to
the response

v(t) = Y(co)]:"e""’,

such that by means of a substitution into the equation of motion,

1
Y(o)=

jo)m+r—i-_i (2'2)
Jjo

In Fig. 2.2, the magnitude and phase of this version of the frequency re-
sponse function — conventionally termed the mobility — is plotted versus
non-dimensional frequency w/m, for some different damping ratios. As can
be seen, the low frequency region is featured by a positive slope, propor-
tional to frequency. This corresponds to a stiffness controlled behaviour of
the system 1i.e., the term s/jo in the denominator is the governing for small
®. Close to the undamped natural frequency ®,, the response grows mark-
edly, only constrained by the damping r. In this range, ®wm and s/® are
numerically quite close but of opposite signs, precisely to cancel at the un-
damped natural frequency. The fact that for the damped system, the maxi-
mum of the mobility is slightly shifted from ®, is related to the minimum
of the denominator. The maximum is shifted downwards from the fre-
quency where the imaginary part vanishes and the phase therefore has a
zero crossing. For the high frequency region, the mass term in Eq. (2.2)
dominates the denominator, which means that the mobility becomes in-
versely proportional to frequency, resulting in a negative slope.
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Fig. 2.2. Mobility of mass-spring-damper system for three values of damping ver-

sus non-dimensional frequency

In the phase, the stiffness controlled region is associated with a positive
sign — the velocity leads the force — whereas for the mass controlled range
the phase is negative — the velocity lags the force. As can be expected,
there in between is a region in which the phase approaches zero and the ve-
locity is in phase with the force. This is the resonantly or resistively con-
trolled region where the damper essentially dictates the behavior of the

system.

For the upside-down system, see Fig. 2.3, where the supporting structure
realizes a constant harmonic motion, the free body diagram gives
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Fig. 2.3. Resiliently suspended mass with a moving base

m
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k
- -y )—=F,
(v, =, ) r+(v, vm)jm (2.3)

jomv, =F. (2.4)
Upon equating these linear relations the velocity ratio

Jro

results, demonstrating that for frequencies below the undamped natural
frequency, the velocity of the mass is essentially that of the supporting
structure. For high frequencies on the other hand, the mass velocity is sub-
stantially smaller than that of the supporting structure. Only in the vicinity
of the undamped natural frequency ®,, the mass velocity exceeds that of
the supporting structure. Again the maximum is slightly displaced from the
undamped natural frequency, see Fig. 2.4
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Fig. 2.4. Transfer function H(w)=v, /v, for a resiliently suspended mass for
three values of damping

2.2 Lagrange’s Equations

Naturally, the approach of raising the equations of motion via force equi-
librium can be used also for more complicated configurations than the two
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previously discussed. Another possibility, which can be rather advanta-
geous, is that termed Lagrange’s equations of motion. Thereby, the explicit
need of the force is removed and since the terms involved are primarily
quadratic, the problem of sign errors markedly reduced. The Lagrange’s
equations are an alternative, energy based statement of Newton’s law of
motion and a derivation can start either from Newton’s laws or, as will be
seen in subsequently, from Hamilton’s principle [2.1]. The method for de-
riving the equations of motion using Lagrange's equations consists of two
steps:
1) Determination of the total kinetic and potential energies of the system
and
ii) differentiation of the energies with respect to velocities and displace-
ments.

To demonstrate the method, the system depicted in Fig. 2.5 will be con-
sidered. The total kinetic energy for the system can be written as

1 6
E/cin :Ezmvvvz' (25)

The potential energy is contained only in the springs in this case and it
can be obtained via the assumption that each spring is compressed in sev-
eral small steps of length Al After the ¢” compression step, the total com-
pression is /, = g-Al and at the end of the compression i.e., ¢ = Q, the total
compression is QA/l. For each step, the compression force can be found
from Hooke's law as F, = Al-s, where s is the spring stiffness and adding
all these steps the potential energy is given by

q=0 q=0

The potential energy stored in a spring, therefore, is proportional to the to-
tal compression squared. When this relation is applied to the system in Fig.
2.5, the potential energy is found to be given by

1

Ep =55 (& -8) + 58] +5, (6 &) +s,(6 &)
2 2 2 (2.6)
5y (8 =8+, (8 -8 +50 (& -5, )' -

It should be noted that the resulting energy is independent of whether,
for example, (§; — &) or (&, — &) is used and the sign does not cause a
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problem in this case. In the expression above are included the dummy
spring sy and its (zero) compression. This establishes a way to account for
a possible external force.

Eg-Eq+Eg+Eq=-0?m &y, E1=84(51-55)

Eq-EptEs+Eg=-0?myds; Ep=$5;
? |Fs
s O-Ea=-e?maly Ea=sy(8a-&y)

0-E4=-aPmy&y . E4=54(E4-51)

0-Es=-0?msés ; Es=ss(é5-S7)

S : Eg=56(85-52)

Fig. 2.5. Multi-degree-of-freedom system

As is readily found from a textbook on methods of theoretical physics,
the procedure with the generalized Lagrange’s equation consists in form-
ing the expression

i a(Epol _Ekin) _ a(Evpol _Ekin

di ov, o,

). 0, 2.7)

fori =1, 2, 3, 4,... Here, v; and &; are the unknown velocities and dis-
placements respectively but not the prescribed and thus known displace-
ment &,. It must be pointed out that in these calculations, v; and &; are real,
time-dependent variables and no phasors.

In all cases treated herein as for many other problems in dynamics, it is
possible to choose the co-ordinates in such a way that the kinetic energy
depends only on the velocities whilst the potential energy only on the dis-
placements. Equation (2.7) can accordingly be rewritten as

kin

di dv, o,

OFE
i@E + pot =0 ; i:l, 2’ 3, 4, (28)

Upon substituting Egs. (2.5) and (2.6) into (2.7), the differentiations
furnish six linear equations, establishing the equations of motion
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a; = —s; =5, 0 0] _E.H_ _Soio_
=8 @y 00 —s; —s| [E, 0
—s; 0 a; 0 00 &,
-5, 00 a, 00 €,
0 —s; 0 0 a3 0 &s
0 -5, 0 0 0 ay | |&]
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in which the abbreviations

2 2
a, ml%+sl+s3+s4, azzzmzy+sl+sz+ss+s6,
J 4 2
a33=m3W+sg, a44=m14y+s4, Ass = Ms ——+5;
2
and ay = m; 12+S6

have been used. An external excitation of the system can readily be ac-
counted for by selecting the spring stiffness s, small so that s,&;> 0 and &,
such that the product s,&, equals the external force. By means of an inver-

sion of the matrix, the unknown displacements can be found.

As an example, the mobility ¥ = jog,/F at the excitation point is shown

in Fig. 2.6 for a set of given parameters.
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Fig. 2.6. Point mobility of the system in Fig. 2.4 at the position of . Parameters:
mz/ml = 1, }’VI3/I’}’Z] = 3, m4/m1 = 18, m5/m1 = 5, m6/m1 = 32, S2/S1 = 002, S3/S1 = 08,

sqfs1= 1.1, ss/s1 = 0.4, s¢/s1 = 0.76, (

)yn=0.01and (---)m=0.1
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The advantage of Lagrange’s equations is perhaps most easily seen
when the vibration of complicated system are considered. The finite ele-
ment method serves a suitable example whereby every part of the system
is modelled by small elements whose motion are obtained from Eq. (2.7)
or some of its derivatives. Without further pursuing the features of FEM,
the strength of Lagrange’s equations will be illuminated by another exam-
ple where the complexity is enhanced by allowing for different translatory
motions as well as rotations. Considered is the system depicted in Fig. 2.7,
which can translate in the x- and y-directions as well as rotate around the z-
axis. For the kinetic energy, therefore, the translatory velocities v., and v,
as well as the rotatory velocity ¢_ =do_/dt have to be taken into account,

which yields

1 1
E. =—m(Vv: +V2)+—-0¢>, 2.9
kin 2 ( ox cy) 2 (pcz ( )

where m is the mass and ® the mass moment of inertia of the rigid block.
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Fig. 2.7. Rigid body supported by several springs

For the potential energy a few extra steps have to be taken since the
components of motion are coupled. In view of Eq. (2.6), a spring of stiff-
ness s connecting the coordinates (x,, y,) with (x,, y,) gives
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N 2
Epot =5(ltf _le)

where /. means the length of the spring after deformation and /, is that at
equilibrium. Relying upon Pythagoras, a virtual movement as shown in
Fig. 2.8 means that

2

=

I :{[(xv e~ (x, +5, ) +[0n )~ (o, +m)]2}

The length of the spring at equilibrium is given by

L=l ) o))

After substitution into the expression for the potential energy, it is found
that

B B 12 2
L lzxu (& _é“)ﬂyvl_zyu(nv —n,)
E =1 ’ ‘ ~1]. (210
’ 2 (gv -5, )2 (nv M )2

+

e e

Fig. 2.8. Co-ordinates of a spring at equilibrium and in a tensioned state
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Since |xv —xu| <1I, and [, —§H|<< [, as well as the corresponding for y
and n, all the terms with /,” in the denominator are much smaller than unity
and accordingly the asymptote

L €
1 ~l+—,
(1+¢)2 +2

is valid. Thus, the potential energy simplifies to

2
K X, —X y
B38| S 8 A )R o,
wherein the remainders R: and R, represent second order terms of the mo-
tion which can be viewed as “geometric non-linearities”. Such non-
linearities appear even when the spring material is completely linear. Ob-
viously, they would play an important role whenever |§v —§“|2 X, —xu| or
n, —M,|>|% — yu| i.e., when the movement is of the same order of magni-
tude as the smallest dimension of system. This means that for very oblique
springs and large displacements the geometrical non-linearities do play a
role. For instance, the geometrical non-linearities are definitely present
when the displacements of a plate movement are of the same order of
magnitude as the plate thickness [2.2]. Also, the amplitude dependence of
the contact stiffness described by Hertz [2.3] is of this type.

In this textbook, the focus is on linear oscillations, which means that the
remainders R: and R, can be omitted such that the potential energy, stored
in a spring, in a two-dimensional configuration can be written as

2
X =X, N =W
Bu=3E e 5 ) 2 o)

e

The next step is to express the displacements &, 1 relative to an arbitrary
origin for the system co-ordinates. With the assumption that the centre of
gravity at equilibrium is situated at (x,, y.) and its displacement is (&., M),
see Fig. 2.9, then the rotational part of the translation is obtained from

& =(x—x,)cosp —(y—y,)sing —(x—x,)

Mg =(x—x,)sing +(y -y, )cosp —(y-y.). (2.11)

The trigonometric functions in Eq. (2.11), indeed, realizes a non-linear re-
lationship between the rotation and the translation. For the oscillations of
interest in this context, however, the approximations cos ¢ ~ 1 and sin
¢ = @ are applicable and yield
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Er=—(y-x)0,
Ne = (x_xc )(P'

One can note that this kind of non-linearity comes into play by amplitudes,
which are certainly larger than those associated with Eq. (2.11).
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Fig. 2.9. Rotation and translation of a rigid body

By adding the translatory and rotatory parts, the net displacement of any
position (x, y) on the rigid body becomes
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=8 +& =& —(y-2.)0
2.12
n:nc +nR :nc+(x_xc)q')' ( )

With these components introduced in the expression for the potential en-
ergy stored in a spring and summing over the individual springs, the total
potential energy of the system considered is obtained as

2 2

S|y S, | X —X y

E =224 422028 My L 0B
ot 2{11 m} 2{ L s ; ng}

2

2 2
510 Sa| XaTXp Ya (2.13)
+ + +
2|:Z3 n3:| 2|: l, €, I, nA:|

So,

+ S;x [ap _E.so ]2 +%[‘1p M ]2 .

In this expression s; to s4 are the stiffnesses of the individual springs and /;

to /4 their length at equilibrium. so, and s, are the auxiliary springs for the

external excitation. The explicit calculation is principally quite simple but

somewhat tedious. Facilitating is a mathematical computer application

with symbolic capabilities. The individual steps are:

e Substitution of (2.12) into (2.13) with x = x4, ¥ = y4, X = x5, ¥y = yp and
X =Xr, ¥y = yrrespectively.

o Substitution of the resulting total potential energy as well as the total ki-
netic energy in (2.9) into (2.8).

e Differentiation with respect to vey, Vey, ¢, Ec, N and @.

e Transformation to phasor notation.

e Letting the stiffnesses sox and s¢, approach zero with a simultaneous in-
crease of the displacements such that the products &;s,, and n,s,, yield
the forces F, and F, respectively

The resulting set of equations can be written on the form

All AIZ Al} Eﬁc F,

0x
4, 4, Ay N =15

0y i

4, A, Ay (@ F,.+F,

whereby A4,, are the rather lengthy expressions containing the geometrical
information.

In Fig. 2.10 are exemplified the point mobilities for two excitation posi-
tions. Observed is the strong dependence on excitation position since rota-
tions are easily excited for this configuration. Observed are also the two
‘side-resonances’, which appear on either side of the main resonance. Al-
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though they are clearly visible for both excitation positions, they become
particularly pronounced when the excitation is remote from the centre of
gravity. This is a consequence of the fact that the springs are neither sym-
metrically arranged nor equal. The coupling of the different degrees of
freedom and thereof resulting multiple resonance’s (maximum six) are of-
ten overlooked by measurements on quasi-rigid bodies and can be the rea-
son for errors.

The procedure with the Lagrange’s equations is not only a very useful
tool to establish the equations of motion but is also most suitable for deriv-
ing important general theorems for linear multiple-degree-of-freedom sys-
tem. Owing to the fact that those theorems are thoroughly treated in text-
books on mechanical vibration, the most important theorems are herein
given without proofs.

| Y,wml| | Y, @m]|
A
=
T

102

103

4 s s 21l L i s aaal L R
102 10! 100 10!

10

Non-dimensional frequency, @(ms,)!/2

Fig. 2.10. Point mobilities at different positions of a rigid body. ( ) above cen-
ter of gravity and (- - -) at the edge. Parameters: s, = 0.1 sy, 53 = 51, 54 = 0.2 51,
ro=0231, Q=mry

2.3 Reciprocity and Mutual Energy

Owing to the quadratic forms of the in this context interesting energy rela-
tions, the systems of equations are consistently symmetric. One of the con-
sequences is the reciprocity principle. This principle establishes a relation
between the field variables such that the excitation and response positions
can be interchanged. The prerequisite is that the product of the variables to
be interchanged yields the power or energy. A generalization of the recip-
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direct reciprocal

ES=FE'S
or
E/E'=§/§' (Force excitation)

E
Eqg'1 +Eaf'2 +E3l's + Magy =
E'sgs + Esés + E7&7

(mutual energies)

4

iU =F'y (i=curren,

U = wransducer voltage)

Fig. 2.11. Reciprocity and mutual energies

m

rocity principle is the theorem of the mutual energies [2.4]. In Fig. 2.11 are

exemplified the corresponding relations in phasor notation.

For systems comprising reciprocal transducers, the mutual product of
current and voltage can be comprised in the reciprocity relations. The
proof can be obtained via Hamilton’s principle when this is employed on

electrical energy reservoirs, see Eq. (8.53).
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2.4 Modal Synthesis

From linear algebra it can be shown that multiple-degree-of-freedom sys-
tems exhibit a sequence of eigen-frequencies and that those frequencies are
given by the singularities of the coefficient matrix [2.5]. Corresponding to
every resonance frequency are one or more characteristic amplitude distri-
butions termed eigen-vectors or modes. Furthermore, it can be shown that
any amplitude distribution can be described as a sum of modes. For low
frequencies, often only a few modes suffice to give a good approximation
of the vibration. The advantage is that with a knowledge of the eigenfre-
quencies and eigen-vectors, e.g. from an FE-analysis or an experimental
modal analysis, the descriptions of the low frequency behaviour is readily
established [2.5, 2.6].

2.5 Energy Considerations

In the previous sections, the kinetic and potential energies were used to
develop the equations of motion. This section aims at demonstrating that
the energy expressions also are highly suitable for the treatment of vibra-
tion problems.

The energy flow can be predicted from the equations of motions, which
represent the equilibrium of forces, through a multiplication with the ve-
locities of the oscillators. This is readily seen for the damped mass-spring
system excited by an external force F. Upon multiplying the equation of
motion

me +1E + 56 =F (2.14)
with the velocity € , the power balance

WEE +rE? 4 SEE %%(mg)%%@g)”gz _FE

is obtained. By re-writing it as
d(1 ., 1 _, Y .
—| = +— + =F¢,
msr st fori = re

it is seen that this is equivalent with

%(Ekin-’_Epot)JrWd =W. (2.15)
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This expression reveals that the transmitted power to the system W =F-v
is either dissipated by the damper or serves as to change the total energy
combined of the kinetic and potential parts. In stationary state, the part
preceded by d/dt i.e., any change in total energy vanishes per definition
and the power transmission equals that dissipated. In Eqgs. (2.14) and (2.15)
the instantaneous values are used which means that for the employment of
phasor notation, it has to be observed that power or energy are products of
field variables. Therefore,

W =FE=F-v=Re{Fe™ |Re{ve™ |,

since the operator Re { } and the time base ¢ cannot be omitted.
Letting F = |F| ¢® and v = |v| € respectively, the power can be rewrit-
ten as

w=|E| Y Re{e’(‘"”‘”}Re{e’(”“‘”}
which is equivalent to
W =|F| |y cos(w+¢)cos(wr+y)
or
W =] 1 [cos(201+0+v)+cos(o—v)].
For harmonic vibrations accordingly, the power consists of a part with the

double frequency and a part that is time invariant. This means that for the
usually most interesting temporal average

1 1 (o 1 . .
W =L1E| 4 coslo~v) =1[E| [fRe(e’ )} = LRef|Flen e,
which clearly is equivalent to
W= RelEv¥, (2.16)

where * denotes the complex conjugate. With this relation applied to Eq.
(2.15)

1 - repe o rype 1
7rRele £ = =3l =g Re{E 7).

An extension to multiple-degree-of-freedom systems is rather simple
starting from Eq. (2.7) and performing the same steps after introduction of
the damping terms and external forces.
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2.5.1 Minimization of the Average Energy Difference
(Hamilton’s Principle)

One of the most important laws in physics is Hamilton’s principle. When
applied in classical dynamics it states that the motion of the different com-
ponents of a system always adjust themselves so that an extreme value of
the temporally averaged difference between kinetic and potential energy is
obtained. For the cases studied in this context the extremum is always a
minimum. It is astonishing that so simply stated a principle can represent
such a multitude of physical processes. Furthermore, it is noteworthy that
by employing Hamilton’s principle, all physical processes can be de-
scribed without the concept of force i.e., “without pressure or enforce-
ment/constraint” albeit transcriptions might be required in some cases.
Some implicit problems associated with the force concept are discussed in
[2.7].

The mathematical representation of Hamilton’s principle can be written
as
L3
I( E,-E,, )dt = Extremum (Minimum) . (2.17)

)

1
L -1

Since a minimum or an extremum of a smooth, well-behaved function is
featured by no or smaller than linear variations of the ordinate in its vicin-
ity, the statement in Eq. (2.17) is equivalent to a vanishing variation of the
energy difference i.e.,

5 Jf(Em ~E,,)dt=0. (2.17a)

The constant factor #, — # thus disappears. 6 denotes the variation and in
the next example will be shown how it can be obtained through differentia-
tions. Again, a single-degree-of-freedom system is considered, excited by
a prescribed deformation &, of a spring sy as shown in Fig. 2.12. Clearly,
the expression

5 Jjjems}—%séz—%so(ao—é)z)dﬁo (2.18)

is to be manipulated. For the variation, the fact that small changes (varia-
tions) of an arbitrary function g(x;, x,, ...) can be obtained from the
changes of the arguments as

0 0
5 {g(x,x,,....)} :6Tgéxl +67g§ Xy F o
1 2
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Herein, dx;and dx;, etc. are the variations of the arguments. Application on
Eq. (2.18) yields

[ (08 525 + 5,2, ~£ 8¢ )t =

EL o ,
S0 Ekin="/2m&2

Epot="12562+1350(50-6)?

77 2

Fig. 2.12. Mass-spring system excited by means of a prescribed displacement via
a spring

By means of integration by parts, the first term can be brought onto the,
in this case, more useful form of

mjzzé'é‘)&dt:mj:z%é(%jdt: {&ag} f ééidt

If the integration limits are chosen such that the velocity d&/dt is zero at
those points, the term in the bracket vanishes and hence Eq. (2.18) be-
comes

[ [—m d2§ —sE -5, +s0§0j6§dt =0
4 dt

The expression above must be equal to zero for all, possibly time depend-
ent, variations 6&. This is only possible if the expression with the parenthe-
sis is identically zero and accordingly

i? +5E +5.8 =5,

which is the equation of motion sought for the system in Fig. 2.12. With
several masses and springs involved, the procedure is principally the same
but since the corresponding operations are identical to those described pre-
viously in conjunction with the Lagrange’s equations (Eq. (2.7)) it is here
refrained from such developments. Subsequently, Hamilton’s principle
will be employed on other interesting cases.
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2.5.2 The Rayleigh Quotient

So far, the important relations discussed have been derived from sums and
differences of energies. In this section is described a procedure based on
equality in energies [2.8, 2.9].

A prerequisite for the application of the Rayleigh quotient is the as-
sumption that at all resonances (but not outside resonances) and free vibra-
tions

E_=E (2.19)

pot — kin

is valid whereby the over bar denotes averaging over one or more periods
of vibration.

If, for example, a multi-degree-of-freedom system vibrates at one of its
eigen-frequencies ®, then the displacement and the velocity of the v-th
mass have the time dependencies

g ()=¢, cos(m,t+9,); v, (1)=-k  sin(®1+0,),

respectively. Upon averaging over one or more periods is obtained

1.,

1
EgvA 5 Vv (t)2 =

g0 = Eﬁ)fiﬂ :

Accordingly, the eigen-frequency squared (eigen-value) of a multi-degree-
of-freedom system, where the v -th mass has a displacement amplitude &,
is given by

E

— pot
w1 .,
2 Z 2 mv&vA

Owing to the temporal average, no phase information is required and the
potential energy is also a function of the amplitude &, only.
The advantages of the expression in Eq. (2.20) for the estimation of ei-
gen-frequencies (resonance frequencies) are that
e surprisingly good approximations are obtained for the first few eigen-
frequencies when realistic assumptions for the amplitudes are intro-
duced and
e expression (2.20) has the character of a minimum such that when
guessed amplitudes are employed, an upper limit is found for the eigen-
frequency. Indeed, this minimum character of the Rayleigh quotient can
be used to find the true amplitude iteratively by means of variation until
the eigen-value o, becomes a minimum [2.1].

2
(Dn

(2.20)
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To highlight this, a simple mass-spring-mass system can be considered
where the two masses have the amplitudes &, and &,, respectively. The
temporally averaged kinetic and potential energies are thus given by

1 — 1
E,, = ZO‘)Z(MIE"IZA + mz‘:zzA) > Epot = Zs(‘tle _‘tva)z >
which substituted into Eq. (2.20) yields
(Df —y (< —§2A)2 — (1_0‘)2

2 2 20
(m&, +ms&; ) m, + m,o

in which a =§,,/¢,, is introduced in the last equality. To find the eigen-
valuew?, oo must be chosen such that a minimum is established. As can be

readily demonstrated from a vanishing first derivative, there are two ex-
tremes. Those are obtained for

a=1<8,,=¢,
and
a=-m/m < mé,, =még,, .
The associated eigen-frequencies are thus found to be given by
2 _ Iy

2_0- -
o, =0; o =s
mm,

respectively, both of which are in agreement with classical results.
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