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19.1 Introduction 

Water is often added to foodstuffs during processing. This is inevitable when the 
raw materials have to be cleaned. Furthermore the nutritiousness is retained and 
oxidation of the surface is reduced when the raw materials are wet. Because water 
is inexpensive it is sometimes added deliberately in order to increase the financial 
profit. For quality control purposes there is a need to measure the water content of 
the foodstuffs. Furthermore the determination of other constituents like protein, 
fat, and salt is needed. There are many measurement systems available to measure 
the composition of foodstuffs, but they have the disadvantage that they can only 
measure one constituent and they are relatively expensive. In addition they are 
very time consuming. A measurement in real time in order to control the 
production process is not possible. Generally these methods alter the materials or 
they are destructive. In short there is a need for inexpensive, fast, non-destructive, 
and compact systems for measuring the composition of foodstuffs. 

The method followed here to realize such a system uses the fact that a change 
in the composition of the foodstuffs also alters dielectric spectra in the microwave 
region. The problem is to relate changes in the dielectric spectrum to the 
composition of the material. Kent et al have already carried out investigations in 
this area. They used principal components analysis and regression [1, 2]. Other 
methods to described here are used for comparison purposes. At first a dielectric 
modeling is applied. Due to the high complexity of foodstuffs it is difficult to get 
precise results with this approach. Therefore multivariate calibration methods are 
applied. The measured dielectric data are used in a multiple linear regression. An 
orthogonalization of the measured data is carried out with partial least squares 
regression to improve the performance. Non-linear processing of the data is 
described using artificial neural networks. Finally all these methods are compared. 
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19.2 Experiments 

The water content of flesh can be increased by dipping it in polyphosphate 
solution and saline solution. The two treatment parameters are the dipping time 
and the concentration of the solution. Because they have a different influence on 
the dielectric spectra of the samples, both parameters have to be taken into 
account. For example, the ionic conductivity of the samples will increase with the 
concentration of the solution. 

19.2.1 Preparation of the Samples 

In the framework of a project financed by the European Commission (FAIR 
CT97-3020) many experiments with poultry, pork, and fish samples were carried 
out. Two test series were selected to demonstrate the methods which were utilized. 
For the first experiment prawns {Pandalus borealis) were peeled and treated in a 
polyphosphate solution with different concentrations (0%, 0.5%, 1%, and 2%) and 
for different times (0 h, 2.5 h, 24 h, and 48 h). The temperature of the solution was 
4-5°C. After the treatment the prawns were sieved and gently dried by dabbing 
with a paper towel. The amount of added liquid was determined by weighing the 
sample before and after the treatment. The samples were minced and halved. One 
part was used for the dielectric measurements while the other part was sent to an 
external laboratory which determined the composition of the samples using the 
conventional methods mentioned above. These measurements served as reference 
for the methods discussed here. 

In the second experiment herring (Clupea harengus) was treated with a solution 
with constant polyphosphate content (2%) while the NACl concentration was 
varied (0%, 0.5%, 2%, and 3%). The treatment time was 0 h, 2.5 h, 24 h, and 48 h 
again. In comparison to the prawn samples the herring samples had a naturally 
high variation of fat content. 

19.2.2 Dielectric Measurements 

The dielectric measurements were carried out using an open-ended coaxial line 
with a diameter of 3 mm. This sensor has been well investigated and has become 
the standard for measuring dielectric spectra with liquid and soft materials [3-5]. 
The dielectric probe kit HP85070 in combination with an HP8510 automatic 
network analyzer was used for the measurements. The dielectric spectra of the 
samples were measured in the frequency range from 200 MHz to 12 GHz at 31 
frequency points with logarithmic separation. Each measurement was repeated 
five times. Outliers caused by bad contacts between the probe and the sample were 
removed. The means of the permittivity values were calculated and used 
subsequently in order to remove the influence of any remaining inhomogeneities 
in the samples. 
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Generally the permittivity of a sample depends on its temperature. Therefore 
the dielectric measurements were taken at a sample temperature of 3°C, 8°C, and 
20°C and 30°C. A total number of 91 data sets were obtained in the prawn test 
series and 52 in the herring test series. 

19.3 Qualitative View on the Influence of the Sample 
Treatment 

Due to the fact that the investigated foodstuffs have relatively high losses in the 
measured frequency range, the dielectric spectra are complex. Before the 
processing of the measured data is discussed in detail a qualitative view on the 
influence of the treatment of the samples is presented. The dielectric spectra of 
some prawn samples are shown in Fig. 19.1. On the left hand side is the Cole-
Cole diagram while on the right hand side the curves of both the real and 
imaginary part (losses) of the permittivity are plotted vs. frequency. The selected 
samples are: 

1. The untreated sample (solid line), liquid uptake: 0%. 
2. Short treatment with weak solution (dashed line), liquid uptake: 5.5%. 
3. Long treatment with pure water (dot-dashed line), liquid uptake: 10.9%. 
4. Long treatment with strong solution (dotted line), liquid uptake: 1 !%>. 

The sample which was treated in pure water has lower losses at low frequencies 
in comparison to the untreated sample. This is explained by the fact that ions were 
diffused into the water. Hence the ionic conductivity decreases. With the highly 
treated sample (4) the opposite effect is observable: the losses increase at lower 

- 0% Oh, \m= 0.0% 
• 4%. 2 5h \m= 5.5% 
•• 0% 48h \m=10,9% 

4% 48h \m=11,0% 

Fig. 19.L Effects of the treatment of the samples on the dielectric spectra of prawns. 
The measurement temperature was 3°C 
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frequencies because ions diffuse from the solution into the tissue. With sample 2 it 
is observable that the polyphosphate accelerates the liquid uptake. With the real 
part of the permittivity it is difficult to detect any evident effects of the treatment. 

However, the treatment has an influence on the shape of the dielectric 
spectrum. Signal processing for the determination of the composition of the 
samples has to extract the hidden information from the changes in the shape. 
Remarkably the samples which were treated for 48 h, (3) and (4), have nearly the 
same amount of liquid uptake although their dielectric spectra have a different 
shape. The signal processiag has to tolerate such relatively great variations in the 
same prediction value. 

19.4 Dielectric Modeling 

Foods are generally complex stuffs. First of all flesh is inhomogeneous. It consists 
of different kinds of tissues like muscles, blood vessels, connective and fatty 
tissue. The main constituent of flesh is water. Part of it lies within the cells and 
part occurs in the extras cellular space. But flesh also consists of many other 
organic and inorganic substances, some of which have a complex interaction. A 
Parts of the water is bound by hydrophilic groups of organic molecules. The free 
water is rotationally hindered by other molecules. The dispersion of water lies within 
the range of microwave frequencies depending on its temperature. Smaller peptides 
and amino acids also have its relaxation frequencies in the microwave region [6]. 

The microwave dielectric spectrum is mainly formed by water. However, due 
to the complex interaction it is difficult to create a sufficiently accurate model for 
the dielectric behavior of flesh. Nevertheless, it should be possible to determine 
the existence of constituents which do not have its relaxation frequency in the 
measured frequency range - provided that they have an interaction with water. As 
mentioned above, salts increase the ionic conductivity. Hence at lower frequencies 
the losses also increase. In spite of this direct effect one cannot distinguish 
between the kinds of diluted salts. 

The first method discussed here tries to apply a dielectric model of the flesh. 
The model parameters are taken from the measurements. A correlation between 
these parameters and the ingredients is used to determine the composition of the 
samples. The model applied in the following text consists only of three 
components: the free water (/-dispersion), the bound water (^dispersion), and the 
salt content: 

p. — F. c — c rr 

X^UcOT.f-"'' l + UcOTsf-"'' S,CO ^^^^^ 

Where a^ is the permittivity at infinite frequency, s^ is the static permittivity, co is 
the angular frequency, z is the relaxation time, a describes the distribution of the 
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relaxation time, and G is the conductivity. Both the free and bound water are 
described by a Cole-Cole-relaxation and the salt content is considered in the third 
term. Soo is fixed at the value of 4.6 for both dispersions.. 

The seven model parameters are calculated from the measured dielectric 
spectra using a non-linear curve fitting procedure. This procedure is described in 
[6] and based upon the Gauss-Newton method. The computational effort of the 
curve fitting is relatively high («2x10^ floating point operations for one curve 
fitting). 

After the calculation of the model parameters, the samples were divided 
randomly, two-thirds into the calibration group, and one third into the validation 
group. The model parameters of the calibration group are used as regressors in a 
multiple linear regression (MLR). A composition value (z ,̂ e.g. water content) is 
described as the linear combination of the model parameters: 

z^=Aß-^e^. (19.2) 

The error vector is 'e^ while the regressor matrix is built in the following way: 

A = 
^ ^syX ^yl ^Y^ ^sSl ^Sl ^Sl ^ l ^ l 

1 ^srt ^rt ^yt ^sst ^st ctst ^t ^ 

(19.3) 

Each row consists of the model parameters of one sample of the calibration 
group. The number of samples in the calibration group is t. A least squares 
estimation for the vector of coefficients can be estimated by [7] 

ß = (A^AJ-'AJ^. (19.4) 

The composition value of the samples in the calibration and validation groups 
is estimated by 

^c..=A.J- (19.5) 
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The calibration procedure described above has to be performed for each 
composition valued The quality of the prediction is evaluated by the root mean 
square error^ 

RMSE^ = 
e -e 

(19.6) 

and the coefficient of determination R-

R'=h 
e -e 

ZL(-c.-̂ )̂  
(19.7) 

The results obtained from the dielectric modeling are shown in Table 19.1. By 
examining R^ one can see that the performance of this method is disappointing. 
Only for the prediction of the salt content of the herring samples is R^ > 90% 
obtained. With the prawn samples only the water and protein content is predicted 
with moderate accuracy. 

Table 19.1. Results of the dielectric modelling procedure. 

Prawns 

Liquid uptake 

Fat 

Protein 

Water 

Salt 

Herring 

Liquid uptake 

Fat 

Protein 

Water 

Salt 

R̂  

0.745 

0.616 

0.889 

0.852 

0.771 

R̂  

0.634 

0.696 

0.650 

0.623 

0.955 

RMSEc 

2.75% of mo 

0.064 % abs. 

0.59 % abs. 

0.61% abs. 

0.047 % abs. 

RMSEc 

6.50% of mo 

1.35% abs. 

1.28% abs. 

2.19%) abs. 

0.125% abs. 

RMSEv 

3.37% of mo 

0.077 % abs. 

0.73 % abs. 

0.70 % abs. 

0.061% abs. 

RMSE^ 

5.89 of mo 

1.67% abs. 

1.06% abs. 

2.29 % abs. 

0.264 % abs. 

^ It is also possible to expand Eqs. 19.2, 19.3, and 19.5 to matrix equations. But for reasons 
of clarity this was not carried out here. 

^ The RMSE and R^ for the method described later are determined in the same way. 
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Obviously the poor performance can be explained by the simplicity of the 
model used, which considers only three components. Now one could expand the 
model to improve the accuracy. But there are many reasons why this strategy does 
not succeed: 

• Water has the most intense influence on the dielectric spectrum of flesh. All 
other polar molecules have only a minor influence on it. 

• The dispersions of the diverse small protein molecules are widely spread^ 
Hence there is no clear relaxation frequency despite its distribution is 
considered with the parameter a. 

• The interactions between the components are complex, possibly unknown as 
yet, and it is not possible to consider all of them. 

• The measurement accuracy is not high enough to acquire all the details of the 
model. The dominant source of error with the open-ended coaxial line is the 
contact between the probe and the sample. Furthermore the material is not 
homogeneous enough. 
For these reasons the determination of the model parameters of the bounded 

water is critical. In Fig. 19.2 the confidence intervals of all the model parameters 
of all the prawn samples are shown. They were calculated with a 95% level as 
described in [6]. This means the probability that the true model parameter is 
within the calculated confidence interval is 95%o. In the figure one can see for 
some samples that the distributions of the relaxation times (ciĵ and a^ are not 
determined reliably. Due to the numerical instability of the curve fitting procedure 
some of the determined relaxations times of the bounded water (zs) samples are 
useless. 

Another method to check the model parameters is to calculate the correlation 
between the them"̂ . If the correlation is high, although they are physically 
independent this is a warning signal of the low reliability of the determination of 
the model parameters. For example, the correlation factor between the dielectric 
increment of the free water (A^= s^^- £^) and the distribution factor of relaxation 
time of the bounded water (0:5) is unrealistic for one sample: y9=-0.99. In 
comparison to other polar molecules the bounded water i.e. has nevertheless a 
determinable influence on the dielectric spectrum. But it is already difficult to 
measure its model parameters. 

In short, it is not reasonable to expand the model with other components. 
Although the three-component model is primitive not all its parameters can be 
determined reliably. On the other hand, the use of a very primitive model can lead 
to a loss of information during the curve fitting procedure. 

^ Leucine: 56 MHz; glycine: 3.23 GHz [6]. 
^ The calculation procedure is also described in [6]. 
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Fig. 19.2. Confidence intervals (95%) of all model parameters of all prawn samples. The 
determined parameters are shown as thin black lines while the confidence intervals are plotted 
as thick gray lines 
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19.5 Direct Processing of the Dielectric Data in a Multiple 
Linear Regression 

The measurement problem is generalized in the following text. It is necessary to 
find a function that describes the relationship between the dielectric spectrum and 
the composition values: 

z = f{s{coJ)). (19.8) 

It is preferable to use the dielectric data directly as regressors in a MLR instead 
of the tediously determined, but inaccurate, model parameters. The procedure is 
nearly the same as that described above (Eqs. (19.2-19.5)). Only the matrix of 
regressors has to be changed. It is now built from the real and imaginary parts of 
the dielectric data and the temperature: 

^ ^r\{o\) '" ^rl(co„) ^r\(ü)i) '" ^rl((o„) h 

^ ^rticoy) '" ^rt{co„) ^rt^co^) '" ^'rt(a„) U 

(19.9) 

The calibration equation Eq. (19.5) estimates a composition value by a linear 
combination of the dielectric data and the temperature. The problem here is that 
the dielectric data are too collinear, i.e. the adjacent frequency points are relatively 

complete A-Matrix optimized A-Matrix 

78 80 82 84 
water content [%]; R^;0.916 RMSEk: 0.0643 RMSEv: 2.59 

78 80 82 84 
water content [%]; R^O.aSS RMSEk: 0.389 RMSEv: 0.666 

Fig. 19.3. Determination of the water content of prawns using the dielectric data as 
regressors in MLR. Left hand side: overfitting caused by collinear data. Right hand side: 
reduced matrix 
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highly correlated. For this reason the matrix inversion in Eq. (19.4) is numerically 
unstable [8]. In this case overfitting occurs. (Overfitting means that the calibration 
equation only treats the calibration group and the performance is bad for the 
validation group.) The effect of the collinearity is shown in Fig. 19.3. 

A primitive method to reduce the collinearity is to thin out the matrix of 
regressors (19.9). That means only every second, third, etc. column is used. The 
optimum configuration is found when RMSEy has a minimum. This procedure is 
carried out for every composition value and the results are shown in Table 19.2. In 
comparison to the performance of the dielectric modeling a definite improvement 
results. However, the reduction of the collinearity has been taken arbitrarily. A 
more fashionable and precise method is used in the next section. 

Table 19.2. Results obtained from the optimized regressor matrix composed of dielectric 
data 

Prawns 

Liquid uptake 

Fat 

Protein 

Water 

Salt 

Herring 

Liquid uptake 

Fat 

Protein 

Water 

Salt 

R̂  

0.827 

0.394 

0.910 

0.905 

0.772 

R̂  

0.738 

0.817 

0.586 

0.792 

0.938 

RMSEc 

2.26% of mo 

0.080 % abs. 

0.53 % abs. 

0.48 % abs. 

0.047 % abs. 

RMSEc 

5.49% of mo 

1.05% abs. 

1.39% abs. 

1.63% abs. 

0.147% abs. 

RMSEv 

3.18% of mo 

0.086 % abs. 

0.65 % abs. 

0.58 % abs. 

0.052 % abs. 

RMSEv 

4.31% of mo 

1.13% abs. 

0.73% abs. 

1.44% abs. 

0.224% abs. 

19.6 Elimination of the Collinearity using Partial Least 
Squares Regression 

Kent et al [1, 9] proposed the use of principal components analysis (PCA) and 
principal components regression (PCR) for the processing of dielectric data. The 
principal components are an orthogonal transformation of the measured data. 
Hence the collinearity is removed completely. The criterion of the orthogonal 
transformation is to maximize the variance of the principal components, where the 
first one has the greatest variance, sorted in descending order. Normally the first 
few principal components have nearly the total variance of the data and the last 
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one contains only the influence of noise. Hence PC A can be used for data 
reduction purposes. After the transformation some of the first components are 
used as regressors in MLR. One problem is to make a good selection for this 
purpose. If too many components are used, overfitting can also occur. Another 
problem is that the transformation is done completely independently of the 
composition values. 

Partial least squares regression (PLSR) performs the calibration more directly. 
The composition values are considered during the orthogonalization. Originally 
PLSR was developed to process economic data, and it was more or less developed 
intuitionally. But Martens and Naes have used this technique also for near infrared 
spectroscopy [8]. In [10] PLSR is also used to determine the water content of 
wheat using microwave transmission measurements. 

PLSR reduces the data to a set of data what is called "hidden path variables." 
The PLSR algorithm used here is called "PLSl" and is described in [8]. The 
structure of this method is as follows: 

1. After subtracting the means the measured data are weighted in such a way 
that the covariance between them and the composition values is maximal. 

2. A factor is defined as the projection of the data onto the vector of weights. 

3. There then follows a regression analysis between the input variables and the 
composition values and the factor. The parts described by this linear 
regression are subtracted from the input data and composition value. These 
new data are used in the next iteration. 

4. The algorithm is repeated until a specific number of factors are calculated. 

10 15 
no. of used factors 

Fig. 19.4. Relationship between the RMSE of the calibration and validation groups for 
the determination of the water content of the prawn samples and the number of factors 
used in the PLSR. 
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Hence the only degree of freedom is the number of factors to be calculated. If 
too many are used overfitting occurs again. This effect is shown in Fig. 19.4. The 
RMSE of the calibration group decreases with the number of factors used. First, 
the RMSE of the validation group also decreases, and a minimum is reached at 12. 
But if more than 12 factors are used the RMSEy increases. That means overfitting 
appears. The optimal number of factors has to be determined empirically for each 
composition value. However, in comparison to the more or less arbitrary deletion 
of columns of the regressor matrix described in the previous section, the 
determination of a minimum is much easier. This optimum can be determined 
more reliably the greater is the number of available data sets in the calibration and 
the validation groups. 

The results obtained with PL SR are shown in Table 19.3. They are better than 
those obtained with the dielectric modeling but comparable to those of the 
dielectric data used directly as regressors described in the previous section. For the 
herring test series high values of R^ are observable with PLSR, but this is only 
because of a higher overfitting. 

Table 19.3. Comparison of the results obtained with PLSR 

Prawns 

Liquid uptake 

Fat 

Protein 

Water 

Salt 

Herring 

Liquid uptake 

Fat 

Protein 

Water 

Salt 

RMSEc RMSEv 

0.744 

0.436 

0.936 

0.942 

0.845 

R̂  

0.968 

0.914 

0.955 

0.981 

0.945 

2.76% of mo 

0.078 % abs. 

0.45 % abs. 

0.38% abs. 

0.039 % abs. 

RMSEc 

1.92%) of mo 

0.72 % abs. 

0.46 % abs. 

0.49 % abs. 

0.139% abs. 

3.27% of mo 

0.086 % abs. 

0.66 % abs. 

0.57 % abs. 

0.052 % abs. 

RMSEv 

3.79% of mo 

1.19% abs. 

0.80 % abs. 

1.48% abs. 

0.228 % abs. 
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19.7 Non-linear Data Processing Using Artificial Neural 
Networks 

Apart from the curve fitting procedure of the dielectric modeling all calibration 
equations are a linear combination of the input variables. But the unknown 
function z=f(s((D,T)) may be non-linear. One method to approximate an 
unknown function is the use of artificial neural networks (ANNs). Bartley et al 
used ANNs for the determination of the water content of wheat using free-space 
transmission measurements from 10 to 18 GHz [11]. Before such networks can be 
used successfully, a suitable architecture has to be chosen. Even if such a 
fundamental architecture is found many degrees of freedom still remain. For a 
functional approximation the use of multi-layer feed forward (MLFF) networks is 
recommended in the literature [12]. 

The architecture of the MLFF ANN used is shown in figure 19.5. The 
configuration of the displayed network proves very well suited for the application 
discussed here. It has one hidden layer which contains 5-10 neurons. The 
activation functions of the neurons in the hidden layer are non-linear (tansig 
function) while those of the output layer are linear. 

It has been shown by Kreinovich and other authors that such types of ANNs are 
able to estimate unknown functions with a limited number of discontinuities at any 
desired accuracy [14]. 

If this architecture is chosen various degrees of freedom are left: 
• The number of hidden layers. 
• The number of neurons of the hidden layer. 
• The kind of activation function of the neurons of each layer. 

A more complex function to be approximated requires a greater number of 
neurons, hidden layers, and training data sets. Unfortunately the only guidelines 

Input Layer Hidden Layer Output Layer 

z 

^h 

s 

E 

Post-
proc. 

Composition 

Fig. 19.5. Architecture of the MLFF network 
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known are to choose all these parameters. Therefore one has to evolve intuition in 
designing such a network by using trial and error. 

19.7.1 Training of the Artificial Neural Network 

After a ftindamental architecture has been chosen the ANN has to be trained. That 
requires the determination of the weights (w and v) of the connections between the 
inputs and neurons in order to minimize the error of the fimction approximation. The 
ANNs discussed here are trained with back-propagation, which is a descent gradient 
algorithm. It uses a performance fimction which delivers the sum of the squared 
residuals as output values. The absolute minimum of this performance fimction has to 
be found by moving the network weights along the negative gradient of the 
performance function. The new calculated weights are used in the next iteration. 

If, for example, five complex values and the temperature are used as input 
variables and a network consists of one hidden layer with eight neurons and one 
output variable is used, the performance function is a surface in a space with 88+1 
dimensions. The surface may have a complex curvature which generally increases 
with the size of the network. Therefore the gradient algorithm may converge only 
to a local minimum or it may not converge at all. 

Another problem is the requirement of random numbers to be used as starting 
values of the weights. Hence the success of a training exercise depends on those 
starting values. From that point of view this kind of ANN is not strictly 
deterministic. A further disadvantage is that ANNs have the tendency of 
overfitting. That means the network imprints only the training data and loses its 
required properties of generalization. The more complex the network, the higher is 
the risk of overfitting. To avoid overfitting the method of "Early Stopping" [13] 
was used. With this method the network output is observed if the validation set is 
used as the input. If its performance decreases while that of the calibration data 
output still increases the training is stopped. 

The training was performed using the efficient Levenberg-Marquardt algorithm 
which is implemented within the "Neural Network Toolbox" of MATLAB. The 
different network parameters were varied in order to find an optimal configuration. 
Because of the sensitivity of the training with respect to the randomly selected 
starting values, the training was repeated 60 times in order to find a good pass. 

19.7.2 Optimal Architecture Found 

Using an oversized network is punished by a bad convergence of the training. For 
the application discussed here one hidden layer is sufficient. The number of 
neurons in the hidden layer should be between 5 and 10. If the number is below 5 
the performance is not optimal. If it is increased above 10 the training becomes 
unstable again, the calculation effort rises, and the risk of overfitting increases. 
Quoting a range rather than a precise number is deliberate. The reason is that there 
is not a clear optimum. As mentioned above because of the random starting values 
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of the weights the results also have variations. Apart from this, small changes in 
the number of neurons in the hidden layer have no dramatic effects on the results. 
Such a general robustness is also an appreciated quality of the ANN. 

The use of a non-linear activation function is necessary if an MLFF network is 
required to approximate non-linear functions. Predominantly the tansig functions 
are used as non-linear activation functions [13]. 

The experiment results in the experience that a linear activation function is the 
best choice for the neurons of the output layer. If the tansig function is used for 
the output layer the convergence of training and performance is worse in 
comparison to the application of the linear activation function. 

19.7.3 Results Obtained with ANN 

The results obtained using the best found configuration are given in the diagrams 
of Fig. 19.6 (prawn), Fig. 19.7 (herring), and Table 19.4. On the abscissa of the 
diagrams the composition values determined by the reference methods are plotted 
while the predicted values by the ANN are shown on the ordinate. Hence a perfect 
prediction would hit the quality line. 

With the prawn test series an improvement of the RMSEy is observable. 
Especially with the estimated liquid uptake the accuracy is conspicuously higher. 
But with the herring test series the training of the ANN was not stable. Therefore the 
coefficient of determination R^ is relatively poor. This is explainable by the low 
number of calibration data sets of this test series (herring: only 52; prawn: 92). In 
short the training of an MLFF ANN needs more effort and more calibration data 
sets. But the higher effort leads to a better prediction of the composition values. 

Table 19.4. Results obtained with ANNs 

Prawns 

Liquid uptake 

Fat 

Protein 

Water 

Salt 

Herring 

Liquid uptake 

Fat 

Protein 

Water 

R̂  

0.919 

0.800 

0.939 

0.933 

0.792 

R̂  

0.503 

0.304 

0.366 

0.605 

RMSEc 

1.55% of mo 

0.046 % abs. 

0.43 % abs. 

0.41% abs. 

0.045^%jbs. 

RMSEc 

6.45% of mo 

1.61% abs. 

1.42% abs. 

1.64% abs. 

RMSEv 

2.59% of mo 

0.076 % abs. 

0.53 % abs. 

0.46 % abs. 

0.047^%^._^ 

RMSEv 

5.04% of mo 

1.15% abs. 

0.92 % abs. 

1.62% abs. 
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Fig. 19.6. Results obtained with ANNs for the prediction of the composition of prawn 
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Fig. 19.7. Results obtained with ANNs for the prediction of the composition of herring 
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19.8 Comparison of Methods 

For the comparison of methods for the prediction of the composition of foodstuffs 
using dielectric spectra three criteria are used: 

1. Accuracy. 
2. Calculation effort for calibration and validation. 
3. Number of data sets needed for calibration and training. 
In order to measure the calculation effort the flops function of MATLAB was 

used. In figure 19.8 the calculation effort for the complete calibration procedure of 
all methods is displayed versus the RMSEc. One can see that the dielectric 
modeling has the worst performance although the calculation effort is relatively 
high. This high effort is caused by the curve fitting procedure. The highest 
calculation effort has to be done during the traiaing of the ANN. But here the 
effort pays because the performance has the best results. In comparison, the direct 
processing of the dielectric data in a MLR is relatively effortless. 

However, for the practice it is more important to know how costly the 
prediction of the composition values of a sample is. While the calibration does not 
have to be done in real time, a realized system may be controlled by a relatively 
simple microcontroller which has less computational power. In Fig. 19.9 the 
calculation effort for the estimation of the water content of one prawn sample is 
plotted versus the RMSEy. Here the dielectric modeling also has the highest 
computational effort while the performance is relatively low. The performance of 
the direct processing of the dielectric data in a MLR and PLSR is similar. The 
effort of the MLR is lower. But with PLSR the orthogonalization proceeds more 
directly. The best results are taken with the ANN. The computational effort is 
higher but lower than with the dielectric modeling. With nearly 2,000 floating 
point operations it should be possible to use ANN in real time. 

With all methods expect the ANN it is possible to make a successful calibration 
with fewer calibration data sets. If only a relatively small number of calibration 
data sets are available the internal cross-validation may be used [8]. But ANNs 
need a relatively high number of calibration data sets. However, the higher effort 
leads to better results. 

19.8.1 General Evaluation of the Methods Discussed 

The enforced experiments and discussed data processing methods showed that it is 
in principle possible to determine important composition values of foodstuffs 
using microwave dielectric spectra in combination with a multivariate processing 
of the measurement data. But because this method works in an indirect way two 
requirements have to be fulfilled: 

1. The range of a composition value has to be wide enough. 
2. The reference methods have to be accurate and should have a high resolution. 
For example, these requirements are not given for the prediction of the fat 

content of the prawn samples. The range was only from 0.7% to 1.0% and the 
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resolution of the reference method^ was 0.1%. The results are accordingly 
moderate. This is the same case for the prediction of the salt content of prawns. 
The range was only 0.1% to 0.4% and the resolution of the reference method^ was 
0.1% too. But with the herring test series these requirements are fulfilled for the 
prediction of the fat and salt content. The fat content of the herring samples varied 
between 6% and 14.1%). Due to the treatment with different saline solutions the 
salt content varied between 0.1% and 2%. Hence the performance is 
comparatively better. 

The quality of the reference methods has a key role for the methods discussed 
here. An indirect measurement method cannot be better than its reference method. 
But for complex items like food it is also difficult to make accurate measurements 
with the reference method. For example, the reference method for the prediction 
of the protein content may be disputed. Proteins are a whole class of constituents 
with multifaceted properties. The determination of the protein content by the 
reference method works with the measurement of the nitrogen content^. The protein 
content is then estimated using a more or less arbitrary factor (the nitrogen factor). 
The prediction of the water content is also criticaP. Not only does water vaporize 
during the procedure, but so too do other volatile substances. The results obtained 
with ANN reach the accuracy of the reference method but they cannot better it. 

The performance could be improved with another sensor. Because it is not easy 
to make a good contact between the open-ended coaxial line and the sample, and 

1 

0.9 

0.8 

Ü 0.7 
LU 

0=^0.6 

0.5 

0.4 

0.3 

-

-

" OMLR 

-

0 
PLSR 

-

Diel, modeling 

~ 
MLFF-ANN 

0 

10 10 10° 10" 
Floating point operations 

10" 

Fig. 19.8. Comparison of the complete calculation effort of the calibration (water 
content of prawn) 

5 Fat: NMR (SLV 195:9). 
^ Salt: conductometry. 
^ Protein: AOAC No. 999.15 and 990.03. 
^ Water: oven drying (104X, 104 h). 
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Fig. 19.9. Comparison of the calculation effort of the validation respectively the 
application of the methods for one dataset (water content of prawn). 

because flesh is an inhomogeneous material, it is desirable to have a sensor with a 
higher sensitive area. The multivariate methods do not necessarily need the 
permittivity as an input variable because various other arrangements are possible 
as sensors. Because the measured ^'-parameters could be used as input variables 
directly, there is no need to create a model of the arrangement. It is only important 
that the sensor is unambiguously sensitive enough to changes in the composition. 

Another aspect is the question of how far the prediction of the protein and salt 
content is independent of the prediction of the water content. The treatment of the 
samples leads to the addition of water. This means that the other components are 
diluted. Water has a dominant influence on the microwave dielectric spectrum of 
flesh. Hence there is a risk that the protein and fat content is only apparently 
predicted by the use of the negative correlation between the water content and the 
fat and protein content. Furthermore, there is a complex interaction between the 
water and the other constituents as mentioned above. This complex interaction 
could make it possible to detect other components if they modify the dielectric 
behavior of the water. 

In Fig. 19.10 the correlation between water and protein and between water and 
fat is shown. The correlation factors are p = -0.75 and p = -0.9 approximately. In 
order to test how far the prediction of the protein and fat content depends on the 
negative correlation they were determined using the predicted water content 
(PLSR) and a linear regression only. In this case the coefficient of correlation 
decreases to R^ = 0.64 (protein) and R^ = 0.53 (fat). That means not only does the 
negative correlation deliver information about the fraction of protein and fat, but 
the hidden information in the dielectric spectrum is also effective. 
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Fig. 19.10. Correlation between the water and the protein and fat content (herring). 

Because the salt content causes higher losses at lower frequencies it has a direct 
and strong influence on the dielectric spectra. Hence the problem discussed above 
does not exist with the prediction of the salt content. 

19.9 Conclusions 

The determination of the composition of foodstuffs using conventional methods is 
time consuming, alters or destroys the samples, and needs many expensive 
devices. Therefore these methods are not applicable on the whole for the control 
of production processes. The approach suggested here is based on the influence of 
the ingredients on the microwave dielectric spectrum. The samples of two test 
series were diluted with water and their dielectric spectra were measured in the 
frequency range between 200 MHz and 12 GHz using an open-ended coaxial line. 
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A qualitative view on the measurements data showed that the dielectric spectra 
change with the amount of added water. Several methods were investigated to 
extract the hidden information about the composition of the samples from the 
dielectric spectrum. 

The first method used a simple dielectric model. However, the performance of 
this method was not satisfactory and the computational effort was relatively high. 
Statistical analyses result in the perception that it is not reasonable to expand the 
dielectric model because the measurement accuracy is not good enough to detect 
small details of a more complex model. It was easier and more accurate to process 
the measured dielectric data directly with multiple linear regression (MLR). Due 
to the fact that the data have a high collinearity there is the problem that numerical 
instability occurs. 

This problem can be avoided by the use of principal components analysis 
(PCA) or partial least squares regression (PLSR). If it is assumed that the 
unknown function which describes the relation between the permittivity and the 
composition of the samples might be non-linear the use of multi-layer feed 
forward artificial neural networks (MLFF ANNs) can be used to approximate it. 
The computational effort during calibration and training is relatively high and 
more calibration data are needed. But the best results were obtained with this 
method. If the number of calibration data sets is below approximately 50 the use 
of PLSR should be preferred. 

It was also shown that besides water other important ingredients like protein, 
fat, and salt can be determined. In fact the reference methods cannot be exceeded. 
But all constituents can be measured in one step and in a short time by the 
multivariate processing of the microwave dielectric spectra. 
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