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Abstract 

This article describes SCHISM: a self-applicable partial evaluator for a first order subset 
of Scheme. SCHISM takes place in the framework of mixed computation, and is situated 
along the line of the MIX project at the University of Copenhagen. The goal is automat- 
ically to generate compilers from interpreters by self-application and we have done this 
with an extensible and directly executable first order subset of Scheme. 

SCHISM is an open-ended partial evaluator with a syntactic extension mechanism 
(macro-functions written in full Scheme). Furthermore, the set of primitives is extensible 
without any modification of the system. 

Partial evaluation of functional languages relies on the treatment of function calls. We 
have chosen to use annotations for driving SCHISM to eliminate a call (unfold it) or to 
keep it residual (specialize it). They are local to each function rather than to each function 
call. This solves the problem of multiple calls to the same function with different patterns 
of static and dynamic arguments. Usually two pitfalls are possible in such a case: either 
to make all of these calls residual and specialize the function exponentially; or to eliminate 
the calls systematically and possibly start an infinite unfolding. Both are avoided by the 
use of a filter expression attached to functions. These filters drive SCHISM. 

In this article we first describe our first order Scheme both with its abstract syntax and 
informally. Then we analyze the possibilities raised by keeping annotations local to each 
function. Finally we propose a partial solution to the open problem of reusing the store: 
the idea is to distinguish compile time and run time in the interpreter itself. In the end 
some conclusions and issues are proposed. 

K e y w o r d s  

Program transformation, applicative languages, partial evaluation, Scheme, SCHISM, 
mixed computation, program generation, specialization, unfolding, compiler generation. 



237 

Introduction 

Partial  evaluation [Futamura 82] is a general tech- 
nique of program transformation. It is based on 
Kleene's S-m-n theorem [Kleene 52] and in essence 
consists of the specialization of a program with re- 
spect to  some known data.  To some extent,  this en- 
courages to view these known data  as static and the 
unknown data  as dynamic. The point is that  all the 
parts in the program which manipulate static data  
can be processed statically. What  remains then is a 
residual program ready to operate on the dynamic 
data or to be specialized further. 

The idea of specializing programs is first used in 
[Lombardi 67] to perform incremental compilation. 
Applied to the triplet 

< Interpreter, Program, Data > 

it expresses that  specializing an interpreter with re- 
spect to a program leads to compiling this program. 
[Futamura 71] generalizes that  application by spe- 
cializing the partial evaluator itself. This leads to 
producing a compiler from a partial evaluator and an 
interpreter, and to producing a compiler generator 
by specializing the partial evaluator with respect to 
itself. These applications are now known as the Fu- 
tamura projections and require the partial evaluator 
to be self-applicable, that  is an autoprojector [Ershov 
82]. 

Mix [Jones et aL 85] was the first actual self- 
applicable partial evaluator. It is able to generate 
stand-alone compilers as well as a compiler generator. 

This article presgnts our self-applicable partial 
evaluator SCHISMll ' it is homogeneously specified in 
Scheme [Rees & Clinger 86] [Consel et al. 86] and of- 
fers some new insights in the domain of partial eval- 
uation. 

SCHISM is built on top of Scheme and written 
in Schismer: a first order ~ subset of Scheme. Schis- 
met, as the language of an autoprojector, is self- 
interpretable. It offers a syntactic extension mech- 
anism [Kohlbecker 86] to use high level constructs 
rather than only a language which sometimes reveals 
to be a bit too low level. These syntactic extensions 
are built in full Scheme and they generate Schismer 
code. We have also built SCHISM to be extensible: 
one can enrich the initial set of primitives 'with user 
defined Scheme functions. 

lWe have called it  SCHISM because it operates on data 
which have been separated into static and dynamic parts. 

2We have made Schismer first order because it still is an 
open problem to treat higher order languages, although we 
hope to offer here a new insight towards that direction. 

SCHISM processing consists of specializing a 
Schismer program: it folds and unfolds function calls, 
eliminates them or keeps them residual. Annotations 
are the mean to drive partial evaluation during these 
transformations by specifying what  is static and what  
is dynamic, that  is: what to unfold, what  to keep 
residual, what to specialize. We have taken the choice 
of keeping annotations local to Schismer functions. 

This article is organized as follows. The first sec- 
tion presents the abstract syntax of  Schismer and its 
informal description. The second section describes 
the partial evaluator; we show an example of a Sehis- 
mer program in concrete syntax and the residual pro- 
gram produced by SCHISM. Section 3 makes a com- 
parison of our strategy for handling function calls 
with the Mix approach and illustrates it with some 
examples. Section 4 describes how residual programs 
at run time may use data structures other than those 
available in a partial evaluator. 

1 The language Schismer 

Sehismer is a first order subset of Scheme. Its surface 
syntax is almost familiar: it is the one from Scheme, 
enriched with filters. Filters are si tuated before the 
body of named functions and lambda-expressions. A 
Sehismer program is basically a set of recursive, stat- 
ically scoped equations. 

Schismer has been conceived to be well-suited for 
a self-applicable partial evaluator: as shown in the 
abstract syntax below, the language is simple. How- 
ever, we wanted to provide a language rich enough to 
express both a non-trivial autoprojector and a wide 
variety of interpreters. The idea has been to offer 
syntactic extensions (macros): they make a program 
more expressive and concise. Presently, one can ei- 
ther use already existing syntactic extensions or write 
his own ones in Scheme and with the full power of 
Scheme. Furthermore, the initial set of primitives is 
extensible with Scheme user defined functions. 

1 . 1  A b s t r a c t  s y n t a x  

K ~ Con constants,  including quotations 
I 6 Ide variables 

E e Exp expressions 
F ~ Fun functional objects 
L e Lam A-expressions 
D ~ Def named definitions 
P e Prg Schismer program 

P----~ (program (I*) (D +) I) 
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D--~  (de f ine  (I +) ( f i l t e r  E0 El)  E2) 

L---* (lambda (I*) ( f i l t e r  E0 El) E~) 

F - -+  L t I 

E - - *  K I I i (F E*) 
I (if Eo El E2) 
I ( e x t e r n a l  I E*) 

Figure 4 in section 2 displays a complete Schismer 
program, performing the catenation of two lists. 

1 . 2  I n f o r m a l  d e s c r i p t i o n  o f  S c h i s m e r  

T h e  cons t an t s  are the integers, the boolean values 
# ! t r u e  and # ! f a l s e ,  the null object () ,  the quoted 
pairs and the quoted symbols. 

A p r o g r a m  is divided into three parts: 

• A list of syntactic extensions files, They are 
loaded by the system and used to produce a 
pure Schismer source program. One can include 
the system files as well as his own files. 

• A list of user defined functions. Named defini- 
tions cannot be embedded for the sake of sim- 
plicity. 

• A variable that  is the name of the main function 
of the program, i.e., the function which starts 
the application. 

A n a m e d  def ini t ion has three parts. The first 
part is a list of variables, whose head is the function 
name and whose rest is the parameters list. The sec- 
ond part is the annotation (filler) which drives the 
partial evaluator for treating the function call. The 
last part is the body of the function. 

A h-express ion  also has three parts. The first part 
is the parameters list. The second part is the filter. 
The last part is the body of the h-expression. It is 
the body which is partially evaluated. 

T h e  if c o n s t r u c t  is a ternary operator, The first 
part is evaluated. If it yields a true value then the 
second part is evaluated and its value is returned. 
Otherwise, the third part is evaluated and its value 
is returned. 

(def~chismer-macro (nth n i) 
( l i s t  ~car 

( le t  loop ((n n)) 
( i f  (eq? n O) i 

' (¢dr ,(loop (-1+ n ) ) ) ) ) ) )  

Figure 1: A syntactic extension written in Scheme: 
nth 

T h e  e x t e r n a l  cons t ruc t  allows one to include 
functions that  produce side effects in his programs 
(this is analogous to the x - func t ions  in Mix [Diku 
87]). 

1 . 3  S y n t a c t i c  e x t e n s i o n s  

The syntactic extension facility provides a powerful 
language tool for building high level constructs by 
macro-generation of Schismer code. Using this mech- 
anism, we have implemented a subset of the Common 
Lisp struelures [Steele 84]. The syntactic extension 
defining a given structure generates a set of new syn- 
tactic extensions to create the object; to access each 
field; and to test whether an object is an instance of 
the given structure. This has proven useful. 

Figure 1 displays the syntactic extension n th  tak- 
ing as arguments an integer (a constant) and an ex- 
pression and generating the right combination of car  
and edr to access the n th element of a list. 

The syntactic extension mechanism could be 
viewed as a redundant feature together with a partial 
evaluator which sometimes performs the same task. 
However, it yields to constructs that  may" generate 
a complex combination of Schismer forms, uneasy to 
write by hand, such as cond and ease. Moreover, a 
simple preprocessing phase is mo~e reasonable than 
using the partial evaluator for what is after all a triv- 
ial program manipulation. 

1 . 4  T h e  e n v i r o n m e n t  

The initial environment used by SCHISM is built 
with two sets of functional objects. The low environ- 
'ment is the first set; it consists of all the primitives 
used by the interpreter. The high environment is the 
second set; it consists of all the user defined functions 
(named definitions). 

The low environment is extensible. It is inter- 
esting to put unary functions in the low environment 
rather than defining them. Specializing a unary func- 
tion with an unknown argument generally behaves 
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like the identity. Conversely, with known argument 
the primitive will be directly called rather than sym- 
bolically processed: its execution time is much faster. 

2 S C H I S M :  the  partial  evalu- 
ator 

SCHISM is written in Sehismer to be self-applicable. 
As in Scheme, the integers, the boolean values and 
the null object do not need any quotation since 
SCHISM considers the program and the partial eval- 
uation environment as distinct domains. This makes 
programs more readable. This section focuses on the 
key point of our system: the treatment of function 
calls. 

2.1 Funct ion  calls 

For each function call, SCHISM determines whether 
the operator is a primitive, an ex te rna l ,  a A- 
expression or a named definition. This section 
presents the way SCHISM treats each of them. 

2.1.1 A primitive 

Since primitives are written in Scheme, they can be 
compiled for efficiency (and they are of course). If all 
the arguments of the primitive are known, the Scheme 
function is directly called and executed. The return 
value is used by SCHISM to continue processing. If 
some of the arguments are unknown, SCHISM sub- 
stitutes all the known expressions by their values arid 
makes the function call residual. 

2.1.2 A A-expression 

Since Schismer offers only one side-effecting construct 
( ex te rna l ) ,  it may be interesting to make an almost 
systematic ~-reduetion. However, this approach may 
generate programs where the same expressions are 
recomputed several times. It is better to make a se- 
lective reduction that  avoids recomputation, as de- 
scribed in [Steele 78]. 

To make a selective/~-reduction, a A-expression 
includes a filter which drives the SCHISM treatment. 
Section 2.2 shows that  filters for A-expressions can be 
generated automatically. 

The filter of a A-expression consists of two ex- 
pressions. When SCHISM encounters a redex, it 
evaluates the first expression of the filter (which is 
a Schismer expression) with the known or unknown 

(define (fun a) 
((lambda (x y) 

(filter #!false 
(list (known? x) 

(cons (fl x) (f2 y))) 
a 11)) 

(known? y))) 

Figure 2: An simple example of A-expression involv- 
ing a filter 

(def:Lne (:fun a) 
((lambda (x) (cons ( f l  x) (f2 11))) a)) 

Figure 3: The effect of the filter to partially evaluate 
a A-expression 

value 3 of the arguments. This expression returns the 
truth value # ! t r u e  if the requirements are fulfilled 
to ~-reduce the A-expression, i.e., to substitute the 
parameters by the arguments and eliminate the A- 
expression. If the requirements are not fulfilled the 
first expression returns the truth value t !  f a l s e  and 
SCHISM activates the second expression. As the first 
one, this expression receives the arguments of the ap- 
plication and returns a list of boolean values by map- 
ping the list of arguments. For each # : t r u e  value the 
corresponding parameter is eliminated and the argu- 
ment is substituted. For each # ! f a l s e  value, the 
parameter and its corresponding argument are kept 
residual. This treatment gives to SCHISM a partic- 
ular piece of information for each parameter of the 
A-expression. 

Figure 2 illustrates with a simple example the use 
of a A-expression (the filter of the function has been 
intentionally omitted). The first expression of this 
filter is # ! f a l s e .  It indicates to SCHISM that  this A- 
expression should never be E-reduced. The second ex- 
pression builds a list where the first element is # ! t r u e  
if the parameter x has a known value. Otherwise, it 
is #!:false. The value of the second element of the 
list (parameter y) is determined similarly. A value 
# ! t r u e  in this list indicates to SCHISM that  the 
corresponding parameter should be eliminated and 
the argument substituted in the A-expression body. 
A value # ! f a l s e  keeps the corresponding parameter 
and argument residual. Figure 3 is the residual pro- 
gram generated by SCHISM if a is dynamic. 

3A value is known when it is a list whose first element is 
quote. Otherwise the expression is unknown. 
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(program 
(user-syntac%ic-extensions.h) 
( 

(define (fun i) 
(filter #!false (list I)) 
(append '(I 2 3) I)) 

(define (append 11 12) 
( f i l t e r  (known? 11) '(11 12)) 
( if  (null? 11) 12 

(cons (car II) 
(append (ccLv 11) 12)))) 

) 
fun) 

Figure 4: A program with filters in named definitions 

(define (ftm-O i) 
(cons (quote 1) 

(cons (quote 2) 
(cons (quoZe 3) I)))) 

Figure 5: A residual program where SCHISM has 
unfolded the function append 

2.1.3 A n a m e d  defini t ion 

One generally names a function to call it recur- 
sively. For this reason, SCHISM carefully treats 
named function calls in order to avoid infinite un- 
folding or infinite specialization. Furthermore, as for 
A-expressions, unfolding may generate inefficient code 
where expressions are recomputed several times. 

Figure 4 shows two named functions: they con- 
tain a filter consisting of two expressions. As for A- 
expressions, for each named function call, the first 
expression of the filter is evaluated with the values 
(known or unknown) of the arguments in the appli- 
cation. According to the values received~ the first 
expression returns # ! t rue  if it wants SCHISM to un- 
fold the call. If the first expression returns # !Salse, 
the second expression will be activated with the ar- 
guments. This second expression specifies how the 
function has to be specialized, i.e., what are the pa- 
rameters to be eliminated. A list of values containing 
a decision for each parameter (as above) is then re- 
turned. If a value is known, this constant will replace 
the corresponding parameter in the function body 
and the parameter will disappear. 

Figure 5 displays the residual program of figure 4. 
The function Sun has been renamed Stm-0 to distin- 

guish it from the original version. According to the 
filter, unfolding has been performed to treat the call 
to the function append, as the induction variable is 
known. 

2.2 Automat ic  genera t ion  of annota-  
t ions 

Experience in writing Schismer programs has shown 
that a number of program schematas have "obvious" 
aunotations (traversing a list tait-recursively, efc~). 
As a first attempt to automatically generate anno- 
tations, we have defined some of them as syntactic 
extensions. For example we supply a syntactic ex- 
tension let that macro-expands to the corresponding 
application of a ),-expression: a standard annotation 
is provided if none is specified. This generic filter 
produces code that allows SCHISM to eliminate a pa- 
rameter if it is known or if it is unknown but bound to 
another variable. Similarly for the named functions, 
if the filter is not included in the definition, a sys- 
tematic unfolding filter is inserted. Other cases may 
be treated. For instance we are currently developing 
the automatic generation of annotations for self re- 
cursive functions by providing some simple syntactic 
extensions implementing loop structures. 

2.3 Reduct ions  

Partial evaluation is based on constant propagation 
and reduction of expressions. This propagation may 
be stopped when one or several known data are com- 
bined with one or several unknown data. A simple 
example is (car  (cons 1 (S a ) ) ) :  this expression 
cannot be reduced if the partial evaluator does not 
know the semantics of car. To solve this problem we 
have enhanced SCHISM with some rules: 

(car (cons E0 El)) --+ E0 
(cdr (cons E0 El)) --~ E1 
(null? (conB So El)) -~ #!Saiso 

Similady~ the conditional construct iS is reduced 
by SCHISM according to the following rules: 

(if Eo #!true #!false) -~ Bo 
(if (equal? E0 #!false) E1 E2) 

--+ (i~ E0 E2 El) 
(i~ (equal? #~fais,  E0) E1 E2) 

~ (iS Eo E2 E~) 
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These rules may appear trivial, and they certainly 
are. The point here is that  a partial evaluator acts 
as a program specializer and uses some very general 
program transformation techniques. These simplifi- 
cation rules are not surprising in themselves. What  
is interesting is to know that  they are present in a 
partial evaluator and intervene here in SCHISM. 

Figure 6 displays a source program where an as- 
sociation list is used to represent an environment. 
This program could be the beginning of an inter- 
preter. The function make-env builds the associa- 
tion list with a list of variables and a list of values. 
The function lookup calls the function a s s e t  with 
the association list to find the value of the variable 
VaT. 

Figure 7 shows the residual program when 
SCHISM knows that  va r  is bound to ' e  and that  
var*  is bound to , ( a  b c d e).  We can see that  
the access to the value of  the variable c has been to- 
tally determined. Program specialization subsumes 
program simplification. 

3 Why  keeping the annota- 
tions local to the function? 

This section compares our approach together with 
the approach taken in Mix [Jones c t a l .  87]. The 
goal is to decide for a function call whether it has to 
be unfolded or suspended. 

Mix makes the decision about this for each func- 
tion call encountered in a program. This implies that  
the annotation of a function call is made static. Fig- 
ure 8 points out when this approach could be too con- 
servative. It shows a classical function called twice 
with two different pat terns of static and dynamic ar- 
guments. The Mix annotations [Jones et al. 85] [Ses- 
tort 86] for the function calls are used: a function call 
marked ¢ a l l  will always be unfolded (eliminated); a 
function call marked ¢ a l l r  will be residual (special- 
ized). 

In figure 8, the function append has an induction 
variable 11 [Abe et aL 86]. If l l  is known, unfolding 
can be performed safely. If this variable is unknown, 
unfolding cannot take place and the only possible op- 
eration is specializing this function with respect to 
12. A problem occurs if the function append is called 
once with the known induction variable, and a second 
time with the unknown induction variable. Since the 
recursive call in append is annotated to be residual 
both cases cannot be treated in an optimal way and 
the result is far too conservative. 

(program 
(user-syntactic-extensions. h) 
( 

(define (lookup vat veer* val*) 
(filter #!false 

( l i s t  vat  vat* val*)) 
(cdx (ussoc var 

(make-ear vaz* val*)))) 

(define (make-env vat* val*) 
(filter (known? veer*) 'void) 
(if (null? vat*) 

'0 
(con8 

(cons (car vaz*) (car val*)) 
(make-env (cdv var*) 

(cdr va l* ) ) ) ) )  

(define (assoc key alist) 
(filter (known? alist) 'void) 
(cond 

((null? alist) 
# ! false) 

((equal? (car (car alint)) 
key) 

(car a l i s t ) )  
(else 

(assoc key (cdr alist))))) 
) 
lookup) 

Figure 6: A program representing an environment 
with an association list 

(define (loolmp-0 val*) 
(car (cdr (cdr va l* ) ) ) )  

Figure 7: Effects of reduction rules 

One may annotate the function append to make a 
systematic specialization: this is safe, but  the resid- 
ual program is huge, as each recursive call to append 
produces a residual function. 

On the  other hand, a s trategy based on a system- 
atic unfolding produces infinite loops at  partial evalu- 
ation time. If in figure 8 the recursive call to append is 
annotated to be unfolded when the induction variable 
is unknown, the function will be unfolded infinitely. 

In figure 9 (the Schismer version), the function 
fun  is (locally) annotated to be always unfolded 4. 

4Since fun is never to be specialized, the second part of the 
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(define (fun 1) 
(cons (ca l l  append 1 ' (1 2 3)) 

(cal l  append ;(a b c) 1))) 

(define (append 11 12) 
( i f  (null? 11) 

12 
(cons (car 11) 

(callr append (cdr ii) 12)))) 

Figure 8: A too conservative annotation using MIX 
notations 

(define (fun 1) 
( f i l t e r  #!true 'void) 
(cons (append 1 ' (x y z)) 

(append '(a b c) i))) 

(define (append 11 12) 
(filter (known? 11) (list '11 12)) 
(if -(null? 11) 

12 
(cons (ear 11) 

(append (cdr 11) 12)))) 

Figure 9: The equivalent program in Schismer 

The filter of append makes a call unfolded when its 
first argument is known. If not, the second part of the 
filter drives the specialization of the call with respect 
to 12. 

Our strategy allows the annotations to drive 
SCHISM according to quantitative criteria, which is 
strictly more powerful than a boolean annotation. 
Figure 10 presents the same function append as fig- 
ure 4 but with a new filter. It indicates that  a call 
to append should be unfolded first if the parameter 
11 is known and second when the length of the list 
is not greater than 20. Otherwise, a call to append 
is kept residual and only specialized with respect to 
12 (if known). This last example shows that keeping 
annotations local to each function makes it possible 
to tune SCHISM precisely. 

filter will not be activated. We note it as void for readabillty 
because tl~s second part is to be ignored. 

(define (append ii 12) 
(filter 

(and (knovn? Ii) 
(<= (length II) 20)) 

(list 'II 12)) 
(if (null? ii) 

12 
(cons (car i i )  

(append (cdr 11) 12)))) 

Figure 10: The equivalent program in Schismer 

4 Extra  data  s t ruc tures  in 
res idual  p r o g r a m s  

To be self-applicable a partial evaluator must be 
expressed with the same objects that  it treats. 
Presently they are lists: one represents objects such 
as the environment in an interpreter with lists. In 
particular, an assignment in the interpreted language 
is commonly implemented by rebuilding the environ- 
ment. The reason is that  the interpreter is written 
without assignment. This is a problem because the 
naive specialization of an interpreter with respect to a 
target program with assignments leads to a program 
that  rebuilds entire pieces of the interpretation envi- 
ronment. Then it may happen that  the specialized 
program is not as efficient as could be expected. 

We propose an approach for designing interpreters 
that  makes it possible to generate residual programs 
where only the allocations of the program remain and 
not the allocations required by the interpreter. 

This approach is based on splitting the bindings 
of identifiers to values [Jones el aL 87]. We use the 
same strategy as in denotational semantics, where the 
values of some variables are not given until run time. 
This creates frozen expressions [Gordon 79] [Schmidt 
86]. The primitives that manipulate the store are 
changed according to the data type used to imple- 
ment the store. Then compilation phase and run time 
phase are totally separated. As an example (see Ap- 
pendix A) we have adapted the MP interpreter de- 
scribed in [Sestoft 85]. Unlike the residual program 
produced by Mix with respect to the r e v e r s e  pro- 
gram, SCHISM has generated a residual program (see 
Appendix B) where the primitive cons is only used 
where it is needed in the program and not because it 
is needed in the interpreter (see figure 11). This is a 
first contribution to the open problem of reusing the 
store. 
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;;; variable i = offset 1 
;;; variable res = offset 0 

(defL~e (execute-mp-O input store) 
(store-tel 

(mp-uhile-i 
(store-set! store (quote I) Lupu¢)) 

(quote 0))) 

(define (mp-while-I store) 
(if (null? (store-ref store (quote 1))) 

store 
(mp-while-1 

(mp-block-2 
(store-set! 

store 

(quote O) 
(coll~ 

(car (store-tel 
store 
(quote 1))) 

( s tore- ref  
store 
(quote 0)))))))) 

(define (mp-block-2 store) 
(store-set! 

store 
(quote 1) 
(cdr (store-ref store (quote 1)))))  

Figure 11: A residual program reusing the store 

5 Conclusions and Issues 

We have built a partial evMuator operating homoge- 
neously on a first order subset of Scheme. We believe 
that  it offers some new insights into partial evalu- 
ation engineering: the whole system is open-ended; 
annotations can partly be generated automatically; 
the set of primitives is extensible; local annotations 
allow to drive SCHISM with a high precision. 

After this article has been written, we have 
achieved complete self-application. SCHISM gener- 
ates small sized and readable compilers, and is cur- 
rently experimented both at LITP and at DIKU. 

Next stage in our work is to process a fully imper- 
ative language with SCHISM. We are now elaborat- 
ing a new methodology that  describes an imperative 
language together with its interpreter. The idea is 
to make the interpreter ready to be specialized. The 
variety of concepts is already raising problems and 
this experience is already enriching SCHISM. 
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Appendix A: The MP Interpreter in Schismer 

;; ; This MP-int is almost the same as the Mix version 
;; ; Activation: (program parameter locals block) 

(program 
(rap.h) 
( 

(define (exeeute-mp program input store) 
(filter #!false (list program input)) 
(let ((vat-shy (make-var-env (nth 2 program) (nth 1 program)))) 

(let ((newstore (update-env (car (nth i program)) input vat-shy store))) 
(filter #:false (list (known? newstore))) 
(mp-block (nth 3 program) var-env newstore)))) 

(define (make-var-env local-name* par-name*) 
(filter #!true 'void) 
(if (null? local-name*) 

par-name* 
(cons (ear local-name*) 

(make-var-env (cdr local-name*) par-name*)))) 

(define (run-rap expr var-env store) 
(filter #!true ~void) 
(cond 

((and (pair? expr) 
(or (equal? (car expr) ~:=) 

(equal? (car expr) 'while))) 
(run-command expr var-env store)) 

(else 
(run-expression expr var-env store)))) 

(define (run-command expr var-env store) 
(filter #!true 'void) 
(case (car expr) 

((:=) 

(update-env (nth I expr) 
(run-mp (nth 2 expr) ver-env store) 
v~32-env 
store)) 

(else 
(mp-while (nth I expr) (nth 2 expr) var-env store)))) 

(define (run-expression expr var-env store) 
(filter #!true ~void) 
(cond 

((not (pair? expr)) 
(fetch expr var-env store)) 

(else 
(case (c~r expr) 

((cons) 
(cons (run-mp (nth i expr) var-env store) 

(rtm-mp (nth 2 expr) var-env store))) 
((car) 

(car (run-mp (nth i expr) var-env store))) 
((cdr) 

(cdr (run-mp (nth 1 expr) var-env s t o r e ) ) )  
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((equal?) 
(equal? (run-mp (nth I expr) var-env store) 

(run-mp (nth 2 expr) var-env store))) 
((quote) 

(n th  1 e r p r ) )  
((if) 

(if (not (null? (run-mp (nth I expr) var-env store))) 
(run-mp (nth 2 expr) vex-env store) 
(run-mp (nth 3 expr) var-env store))) 

(else 
'lunkno,n f o rm l ) ) ) ) )  

(define (mp-block expr* var-env store) 
(filter.#!true ~void) 
(if (null? (cdr expr*)) 

(run-mp (car expr*) var-env store) 
(mp-block (cdr expr*) vex-env (run-mp (car expr*) var-env store)))) 

(define (mp-while condition body var-env store) 
(filter #!false (list condition body var-env 'store)) 
( i f  (not (null? (rtm-mp condition v a r - e n v  store))) 

(mp-while condition body var-env (mp-block body var-env store)) 
store)) 

(define (fetch vex var-env store) 
(filter #!true 'void) 
(store-tel store (give-offset v a r  var-env))) 

(define (update-env vat val var-env store) 
(filter #!true 'void) 
(external store-set! store (give-offset vex var-env) val)) 

(define (give-offset vat var-env) 
(filter #!true 'void) 
(cond 

((null? var-env) 
~)undefined variable)) 

((equal? vat (car vax-env)) 
O) 

(else 
(+ 1 (give-offset var (cdr var-env)))))) 

) 

execute-mp) 

A p p e n d i x  B: reverse  wr i t t en  in M P  

(program 
(i) 
(res) 
( 

(while 1 ( 
(:= r e s  (cons (cax 1) res) )  
(:= i ( c ~  l ) )  ) ) 

res 
) )  


