
N e w Ins ights in to Pa r t i a l Evaluation:

the S C H I S M E x p e r i m e n t

Charte~ CONSEL

LITP - Universitd Paris 6
(Couloir 45-55, 2~me @rage)

4 place Jussieu, 75252 Paris CEDEX 05, FRANCE
uucp : . . . !mcvax!inrla!titp!chac

Universit@ Paris 8
2 rue de la Libertd, 93526 Saint Denis, FRANCE

Abstract

This article describes SCHISM: a self-applicable partial evaluator for a first order subset
of Scheme. SCHISM takes place in the framework of mixed computation, and is situated
along the line of the MIX project at the University of Copenhagen. The goal is automat-
ically to generate compilers from interpreters by self-application and we have done this
with an extensible and directly executable first order subset of Scheme.

SCHISM is an open-ended partial evaluator with a syntactic extension mechanism
(macro-functions written in full Scheme). Furthermore, the set of primitives is extensible
without any modification of the system.

Partial evaluation of functional languages relies on the treatment of function calls. We
have chosen to use annotations for driving SCHISM to eliminate a call (unfold it) or to
keep it residual (specialize it). They are local to each function rather than to each function
call. This solves the problem of multiple calls to the same function with different patterns
of static and dynamic arguments. Usually two pitfalls are possible in such a case: either
to make all of these calls residual and specialize the function exponentially; or to eliminate
the calls systematically and possibly start an infinite unfolding. Both are avoided by the
use of a filter expression attached to functions. These filters drive SCHISM.

In this article we first describe our first order Scheme both with its abstract syntax and
informally. Then we analyze the possibilities raised by keeping annotations local to each
function. Finally we propose a partial solution to the open problem of reusing the store:
the idea is to distinguish compile time and run time in the interpreter itself. In the end
some conclusions and issues are proposed.

K e y w o r d s

Program transformation, applicative languages, partial evaluation, Scheme, SCHISM,
mixed computation, program generation, specialization, unfolding, compiler generation.

237

Introduction

Partial evaluation [Futamura 82] is a general tech-
nique of program transformation. It is based on
Kleene's S-m-n theorem [Kleene 52] and in essence
consists of the specialization of a program with re-
spect to some known data. To some extent, this en-
courages to view these known data as static and the
unknown data as dynamic. The point is that all the
parts in the program which manipulate static data
can be processed statically. What remains then is a
residual program ready to operate on the dynamic
data or to be specialized further.

The idea of specializing programs is first used in
[Lombardi 67] to perform incremental compilation.
Applied to the triplet

< Interpreter, Program, Data >

it expresses that specializing an interpreter with re-
spect to a program leads to compiling this program.
[Futamura 71] generalizes that application by spe-
cializing the partial evaluator itself. This leads to
producing a compiler from a partial evaluator and an
interpreter, and to producing a compiler generator
by specializing the partial evaluator with respect to
itself. These applications are now known as the Fu-
tamura projections and require the partial evaluator
to be self-applicable, that is an autoprojector [Ershov
82].

Mix [Jones et aL 85] was the first actual self-
applicable partial evaluator. It is able to generate
stand-alone compilers as well as a compiler generator.

This article presgnts our self-applicable partial
evaluator SCHISMll ' it is homogeneously specified in
Scheme [Rees & Clinger 86] [Consel et al. 86] and of-
fers some new insights in the domain of partial eval-
uation.

SCHISM is built on top of Scheme and written
in Schismer: a first order ~ subset of Scheme. Schis-
met, as the language of an autoprojector, is self-
interpretable. It offers a syntactic extension mech-
anism [Kohlbecker 86] to use high level constructs
rather than only a language which sometimes reveals
to be a bit too low level. These syntactic extensions
are built in full Scheme and they generate Schismer
code. We have also built SCHISM to be extensible:
one can enrich the initial set of primitives 'with user
defined Scheme functions.

lWe have called it SCHISM because it operates on data
which have been separated into static and dynamic parts.

2We have made Schismer first order because it still is an
open problem to treat higher order languages, although we
hope to offer here a new insight towards that direction.

SCHISM processing consists of specializing a
Schismer program: it folds and unfolds function calls,
eliminates them or keeps them residual. Annotations
are the mean to drive partial evaluation during these
transformations by specifying what is static and what
is dynamic, that is: what to unfold, what to keep
residual, what to specialize. We have taken the choice
of keeping annotations local to Schismer functions.

This article is organized as follows. The first sec-
tion presents the abstract syntax of Schismer and its
informal description. The second section describes
the partial evaluator; we show an example of a Sehis-
mer program in concrete syntax and the residual pro-
gram produced by SCHISM. Section 3 makes a com-
parison of our strategy for handling function calls
with the Mix approach and illustrates it with some
examples. Section 4 describes how residual programs
at run time may use data structures other than those
available in a partial evaluator.

1 The language Schismer

Sehismer is a first order subset of Scheme. Its surface
syntax is almost familiar: it is the one from Scheme,
enriched with filters. Filters are si tuated before the
body of named functions and lambda-expressions. A
Sehismer program is basically a set of recursive, stat-
ically scoped equations.

Schismer has been conceived to be well-suited for
a self-applicable partial evaluator: as shown in the
abstract syntax below, the language is simple. How-
ever, we wanted to provide a language rich enough to
express both a non-trivial autoprojector and a wide
variety of interpreters. The idea has been to offer
syntactic extensions (macros): they make a program
more expressive and concise. Presently, one can ei-
ther use already existing syntactic extensions or write
his own ones in Scheme and with the full power of
Scheme. Furthermore, the initial set of primitives is
extensible with Scheme user defined functions.

1 . 1 A b s t r a c t s y n t a x

K ~ Con constants, including quotations
I 6 Ide variables

E e Exp expressions
F ~ Fun functional objects
L e Lam A-expressions
D ~ Def named definitions
P e Prg Schismer program

P----~ (program (I*) (D +) I)

238

D--~ (de f ine (I +) (f i l t e r E0 El) E2)

L---* (lambda (I*) (f i l t e r E0 El) E~)

F - -+ L t I

E - - * K I I i (F E*)
I (if Eo El E2)
I (e x t e r n a l I E*)

Figure 4 in section 2 displays a complete Schismer
program, performing the catenation of two lists.

1 . 2 I n f o r m a l d e s c r i p t i o n o f S c h i s m e r

T h e cons t an t s are the integers, the boolean values
! t r u e and # ! f a l s e , the null object () , the quoted
pairs and the quoted symbols.

A p r o g r a m is divided into three parts:

• A list of syntactic extensions files, They are
loaded by the system and used to produce a
pure Schismer source program. One can include
the system files as well as his own files.

• A list of user defined functions. Named defini-
tions cannot be embedded for the sake of sim-
plicity.

• A variable that is the name of the main function
of the program, i.e., the function which starts
the application.

A n a m e d def ini t ion has three parts. The first
part is a list of variables, whose head is the function
name and whose rest is the parameters list. The sec-
ond part is the annotation (filler) which drives the
partial evaluator for treating the function call. The
last part is the body of the function.

A h-express ion also has three parts. The first part
is the parameters list. The second part is the filter.
The last part is the body of the h-expression. It is
the body which is partially evaluated.

T h e if c o n s t r u c t is a ternary operator, The first
part is evaluated. If it yields a true value then the
second part is evaluated and its value is returned.
Otherwise, the third part is evaluated and its value
is returned.

(def~chismer-macro (nth n i)
(l i s t ~car

(le t loop ((n n))
(i f (eq? n O) i

' (¢dr ,(loop (-1+ n)))))))

Figure 1: A syntactic extension written in Scheme:
nth

T h e e x t e r n a l cons t ruc t allows one to include
functions that produce side effects in his programs
(this is analogous to the x - func t ions in Mix [Diku
87]).

1 . 3 S y n t a c t i c e x t e n s i o n s

The syntactic extension facility provides a powerful
language tool for building high level constructs by
macro-generation of Schismer code. Using this mech-
anism, we have implemented a subset of the Common
Lisp struelures [Steele 84]. The syntactic extension
defining a given structure generates a set of new syn-
tactic extensions to create the object; to access each
field; and to test whether an object is an instance of
the given structure. This has proven useful.

Figure 1 displays the syntactic extension n th tak-
ing as arguments an integer (a constant) and an ex-
pression and generating the right combination of car
and edr to access the n th element of a list.

The syntactic extension mechanism could be
viewed as a redundant feature together with a partial
evaluator which sometimes performs the same task.
However, it yields to constructs that may" generate
a complex combination of Schismer forms, uneasy to
write by hand, such as cond and ease. Moreover, a
simple preprocessing phase is mo~e reasonable than
using the partial evaluator for what is after all a triv-
ial program manipulation.

1 . 4 T h e e n v i r o n m e n t

The initial environment used by SCHISM is built
with two sets of functional objects. The low environ-
'ment is the first set; it consists of all the primitives
used by the interpreter. The high environment is the
second set; it consists of all the user defined functions
(named definitions).

The low environment is extensible. It is inter-
esting to put unary functions in the low environment
rather than defining them. Specializing a unary func-
tion with an unknown argument generally behaves

239

like the identity. Conversely, with known argument
the primitive will be directly called rather than sym-
bolically processed: its execution time is much faster.

2 S C H I S M : the partial evalu-
ator

SCHISM is written in Sehismer to be self-applicable.
As in Scheme, the integers, the boolean values and
the null object do not need any quotation since
SCHISM considers the program and the partial eval-
uation environment as distinct domains. This makes
programs more readable. This section focuses on the
key point of our system: the treatment of function
calls.

2.1 Funct ion calls

For each function call, SCHISM determines whether
the operator is a primitive, an ex te rna l , a A-
expression or a named definition. This section
presents the way SCHISM treats each of them.

2.1.1 A primitive

Since primitives are written in Scheme, they can be
compiled for efficiency (and they are of course). If all
the arguments of the primitive are known, the Scheme
function is directly called and executed. The return
value is used by SCHISM to continue processing. If
some of the arguments are unknown, SCHISM sub-
stitutes all the known expressions by their values arid
makes the function call residual.

2.1.2 A A-expression

Since Schismer offers only one side-effecting construct
(ex te rna l) , it may be interesting to make an almost
systematic ~-reduetion. However, this approach may
generate programs where the same expressions are
recomputed several times. It is better to make a se-
lective reduction that avoids recomputation, as de-
scribed in [Steele 78].

To make a selective/~-reduction, a A-expression
includes a filter which drives the SCHISM treatment.
Section 2.2 shows that filters for A-expressions can be
generated automatically.

The filter of a A-expression consists of two ex-
pressions. When SCHISM encounters a redex, it
evaluates the first expression of the filter (which is
a Schismer expression) with the known or unknown

(define (fun a)
((lambda (x y)

(filter #!false
(list (known? x)

(cons (fl x) (f2 y)))
a 11))

(known? y)))

Figure 2: An simple example of A-expression involv-
ing a filter

(def:Lne (:fun a)
((lambda (x) (cons (f l x) (f2 11))) a))

Figure 3: The effect of the filter to partially evaluate
a A-expression

value 3 of the arguments. This expression returns the
truth value # ! t r u e if the requirements are fulfilled
to ~-reduce the A-expression, i.e., to substitute the
parameters by the arguments and eliminate the A-
expression. If the requirements are not fulfilled the
first expression returns the truth value t ! f a l s e and
SCHISM activates the second expression. As the first
one, this expression receives the arguments of the ap-
plication and returns a list of boolean values by map-
ping the list of arguments. For each # : t r u e value the
corresponding parameter is eliminated and the argu-
ment is substituted. For each # ! f a l s e value, the
parameter and its corresponding argument are kept
residual. This treatment gives to SCHISM a partic-
ular piece of information for each parameter of the
A-expression.

Figure 2 illustrates with a simple example the use
of a A-expression (the filter of the function has been
intentionally omitted). The first expression of this
filter is # ! f a l s e . It indicates to SCHISM that this A-
expression should never be E-reduced. The second ex-
pression builds a list where the first element is # ! t r u e
if the parameter x has a known value. Otherwise, it
is #!:false. The value of the second element of the
list (parameter y) is determined similarly. A value
! t r u e in this list indicates to SCHISM that the
corresponding parameter should be eliminated and
the argument substituted in the A-expression body.
A value # ! f a l s e keeps the corresponding parameter
and argument residual. Figure 3 is the residual pro-
gram generated by SCHISM if a is dynamic.

3A value is known when it is a list whose first element is
quote. Otherwise the expression is unknown.

240

(program
(user-syntac%ic-extensions.h)
(

(define (fun i)
(filter #!false (list I))
(append '(I 2 3) I))

(define (append 11 12)
(f i l t e r (known? 11) '(11 12))
(if (null? 11) 12

(cons (car II)
(append (ccLv 11) 12))))

)
fun)

Figure 4: A program with filters in named definitions

(define (ftm-O i)
(cons (quote 1)

(cons (quote 2)
(cons (quoZe 3) I))))

Figure 5: A residual program where SCHISM has
unfolded the function append

2.1.3 A n a m e d defini t ion

One generally names a function to call it recur-
sively. For this reason, SCHISM carefully treats
named function calls in order to avoid infinite un-
folding or infinite specialization. Furthermore, as for
A-expressions, unfolding may generate inefficient code
where expressions are recomputed several times.

Figure 4 shows two named functions: they con-
tain a filter consisting of two expressions. As for A-
expressions, for each named function call, the first
expression of the filter is evaluated with the values
(known or unknown) of the arguments in the appli-
cation. According to the values received~ the first
expression returns # ! t rue if it wants SCHISM to un-
fold the call. If the first expression returns # !Salse,
the second expression will be activated with the ar-
guments. This second expression specifies how the
function has to be specialized, i.e., what are the pa-
rameters to be eliminated. A list of values containing
a decision for each parameter (as above) is then re-
turned. If a value is known, this constant will replace
the corresponding parameter in the function body
and the parameter will disappear.

Figure 5 displays the residual program of figure 4.
The function Sun has been renamed Stm-0 to distin-

guish it from the original version. According to the
filter, unfolding has been performed to treat the call
to the function append, as the induction variable is
known.

2.2 Automat ic genera t ion of annota-
t ions

Experience in writing Schismer programs has shown
that a number of program schematas have "obvious"
aunotations (traversing a list tait-recursively, efc~).
As a first attempt to automatically generate anno-
tations, we have defined some of them as syntactic
extensions. For example we supply a syntactic ex-
tension let that macro-expands to the corresponding
application of a),-expression: a standard annotation
is provided if none is specified. This generic filter
produces code that allows SCHISM to eliminate a pa-
rameter if it is known or if it is unknown but bound to
another variable. Similarly for the named functions,
if the filter is not included in the definition, a sys-
tematic unfolding filter is inserted. Other cases may
be treated. For instance we are currently developing
the automatic generation of annotations for self re-
cursive functions by providing some simple syntactic
extensions implementing loop structures.

2.3 Reduct ions

Partial evaluation is based on constant propagation
and reduction of expressions. This propagation may
be stopped when one or several known data are com-
bined with one or several unknown data. A simple
example is (car (cons 1 (S a))) : this expression
cannot be reduced if the partial evaluator does not
know the semantics of car. To solve this problem we
have enhanced SCHISM with some rules:

(car (cons E0 El)) --+ E0
(cdr (cons E0 El)) --~ E1
(null? (conB So El)) -~ #!Saiso

Similady~ the conditional construct iS is reduced
by SCHISM according to the following rules:

(if Eo #!true #!false) -~ Bo
(if (equal? E0 #!false) E1 E2)

--+ (i~ E0 E2 El)
(i~ (equal? #~fais, E0) E1 E2)

~ (iS Eo E2 E~)

241

These rules may appear trivial, and they certainly
are. The point here is that a partial evaluator acts
as a program specializer and uses some very general
program transformation techniques. These simplifi-
cation rules are not surprising in themselves. What
is interesting is to know that they are present in a
partial evaluator and intervene here in SCHISM.

Figure 6 displays a source program where an as-
sociation list is used to represent an environment.
This program could be the beginning of an inter-
preter. The function make-env builds the associa-
tion list with a list of variables and a list of values.
The function lookup calls the function a s s e t with
the association list to find the value of the variable
VaT.

Figure 7 shows the residual program when
SCHISM knows that va r is bound to ' e and that
var* is bound to , (a b c d e). We can see that
the access to the value of the variable c has been to-
tally determined. Program specialization subsumes
program simplification.

3 Why keeping the annota-
tions local to the function?

This section compares our approach together with
the approach taken in Mix [Jones c t a l . 87]. The
goal is to decide for a function call whether it has to
be unfolded or suspended.

Mix makes the decision about this for each func-
tion call encountered in a program. This implies that
the annotation of a function call is made static. Fig-
ure 8 points out when this approach could be too con-
servative. It shows a classical function called twice
with two different pat terns of static and dynamic ar-
guments. The Mix annotations [Jones et al. 85] [Ses-
tort 86] for the function calls are used: a function call
marked ¢ a l l will always be unfolded (eliminated); a
function call marked ¢ a l l r will be residual (special-
ized).

In figure 8, the function append has an induction
variable 11 [Abe et aL 86]. If l l is known, unfolding
can be performed safely. If this variable is unknown,
unfolding cannot take place and the only possible op-
eration is specializing this function with respect to
12. A problem occurs if the function append is called
once with the known induction variable, and a second
time with the unknown induction variable. Since the
recursive call in append is annotated to be residual
both cases cannot be treated in an optimal way and
the result is far too conservative.

(program
(user-syntactic-extensions. h)
(

(define (lookup vat veer* val*)
(filter #!false

(l i s t vat vat* val*))
(cdx (ussoc var

(make-ear vaz* val*))))

(define (make-env vat* val*)
(filter (known? veer*) 'void)
(if (null? vat*)

'0
(con8

(cons (car vaz*) (car val*))
(make-env (cdv var*)

(cdr va l*)))))

(define (assoc key alist)
(filter (known? alist) 'void)
(cond

((null? alist)
! false)

((equal? (car (car alint))
key)

(car a l i s t))
(else

(assoc key (cdr alist)))))
)
lookup)

Figure 6: A program representing an environment
with an association list

(define (loolmp-0 val*)
(car (cdr (cdr va l*))))

Figure 7: Effects of reduction rules

One may annotate the function append to make a
systematic specialization: this is safe, but the resid-
ual program is huge, as each recursive call to append
produces a residual function.

On the other hand, a s trategy based on a system-
atic unfolding produces infinite loops at partial evalu-
ation time. If in figure 8 the recursive call to append is
annotated to be unfolded when the induction variable
is unknown, the function will be unfolded infinitely.

In figure 9 (the Schismer version), the function
fun is (locally) annotated to be always unfolded 4.

4Since fun is never to be specialized, the second part of the

242

(define (fun 1)
(cons (ca l l append 1 ' (1 2 3))

(cal l append ;(a b c) 1)))

(define (append 11 12)
(i f (null? 11)

12
(cons (car 11)

(callr append (cdr ii) 12))))

Figure 8: A too conservative annotation using MIX
notations

(define (fun 1)
(f i l t e r #!true 'void)
(cons (append 1 ' (x y z))

(append '(a b c) i)))

(define (append 11 12)
(filter (known? 11) (list '11 12))
(if -(null? 11)

12
(cons (ear 11)

(append (cdr 11) 12))))

Figure 9: The equivalent program in Schismer

The filter of append makes a call unfolded when its
first argument is known. If not, the second part of the
filter drives the specialization of the call with respect
to 12.

Our strategy allows the annotations to drive
SCHISM according to quantitative criteria, which is
strictly more powerful than a boolean annotation.
Figure 10 presents the same function append as fig-
ure 4 but with a new filter. It indicates that a call
to append should be unfolded first if the parameter
11 is known and second when the length of the list
is not greater than 20. Otherwise, a call to append
is kept residual and only specialized with respect to
12 (if known). This last example shows that keeping
annotations local to each function makes it possible
to tune SCHISM precisely.

filter will not be activated. We note it as void for readabillty
because tl~s second part is to be ignored.

(define (append ii 12)
(filter

(and (knovn? Ii)
(<= (length II) 20))

(list 'II 12))
(if (null? ii)

12
(cons (car i i)

(append (cdr 11) 12))))

Figure 10: The equivalent program in Schismer

4 Extra data s t ruc tures in
res idual p r o g r a m s

To be self-applicable a partial evaluator must be
expressed with the same objects that it treats.
Presently they are lists: one represents objects such
as the environment in an interpreter with lists. In
particular, an assignment in the interpreted language
is commonly implemented by rebuilding the environ-
ment. The reason is that the interpreter is written
without assignment. This is a problem because the
naive specialization of an interpreter with respect to a
target program with assignments leads to a program
that rebuilds entire pieces of the interpretation envi-
ronment. Then it may happen that the specialized
program is not as efficient as could be expected.

We propose an approach for designing interpreters
that makes it possible to generate residual programs
where only the allocations of the program remain and
not the allocations required by the interpreter.

This approach is based on splitting the bindings
of identifiers to values [Jones el aL 87]. We use the
same strategy as in denotational semantics, where the
values of some variables are not given until run time.
This creates frozen expressions [Gordon 79] [Schmidt
86]. The primitives that manipulate the store are
changed according to the data type used to imple-
ment the store. Then compilation phase and run time
phase are totally separated. As an example (see Ap-
pendix A) we have adapted the MP interpreter de-
scribed in [Sestoft 85]. Unlike the residual program
produced by Mix with respect to the r e v e r s e pro-
gram, SCHISM has generated a residual program (see
Appendix B) where the primitive cons is only used
where it is needed in the program and not because it
is needed in the interpreter (see figure 11). This is a
first contribution to the open problem of reusing the
store.

243

;;; variable i = offset 1
;;; variable res = offset 0

(defL~e (execute-mp-O input store)
(store-tel

(mp-uhile-i
(store-set! store (quote I) Lupu¢))

(quote 0)))

(define (mp-while-I store)
(if (null? (store-ref store (quote 1)))

store
(mp-while-1

(mp-block-2
(store-set!

store

(quote O)
(coll~

(car (store-tel
store
(quote 1)))

(s tore- ref
store
(quote 0))))))))

(define (mp-block-2 store)
(store-set!

store
(quote 1)
(cdr (store-ref store (quote 1)))))

Figure 11: A residual program reusing the store

5 Conclusions and Issues

We have built a partial evMuator operating homoge-
neously on a first order subset of Scheme. We believe
that it offers some new insights into partial evalu-
ation engineering: the whole system is open-ended;
annotations can partly be generated automatically;
the set of primitives is extensible; local annotations
allow to drive SCHISM with a high precision.

After this article has been written, we have
achieved complete self-application. SCHISM gener-
ates small sized and readable compilers, and is cur-
rently experimented both at LITP and at DIKU.

Next stage in our work is to process a fully imper-
ative language with SCHISM. We are now elaborat-
ing a new methodology that describes an imperative
language together with its interpreter. The idea is
to make the interpreter ready to be specialized. The
variety of concepts is already raising problems and
this experience is already enriching SCHISM.

Acknowledgements

Thanks to Anders Bondorf, Nell Jones, Torben Mo-
gensen and Peter Sestoft for their welcome at DIKU
and their close interaction during the workshop on
Partial Evaluation and Mixed Computation. Special
thanks to Olivier Danvy for many suggestions a~d
discussions about nay work and this paper.

Bibliography
Aho, A. V., Sethi, R. and Ullman J. D.
Compilers: Principles~ Techniques and Tools,
Addison- Wesley [1986]

Bondorf A.
Towards a Self-Applicable Partial Evaluator for Term
Rewriting Systems,
North Holland Publ. proceedings of the Workshop
on Partial Evaluation and Mixed Computation, Den-
mark [1987]

Consel C., Deutsch A., Dumeur R. and Fekete J-D.
Skim Reference Manual,
Rapport Technique 86/09 Universitd de Paris 8,
France [1986]

Diku, University of Copenhagen
The Mix System User's Guide Version 3.0
Diku internal report, University of Copenhagen, Den-
mark [1987]

Ershov, A. P.
Mixed Computation: Potential Applications and
Problems for Study,
Theoretical Computer Science 18 (41-67) [1982]

Emanuelson, P. and Haraldsson A.
On Compiling Embedded Languages in Lisp,
Lisp Conference, Standford, California, (208-215)
paso]

Futamura, Y.
Partial Evaluation of Computation Process - an Ap-
proach to a Compiler-Compiler,
Systems, Computers, Controls 2, 5 (45-50) [1971]

Futamura, Y.
Partial Computation of Programs,
In E. Goto et al (eds.): RIMS Symposia on Software
Science and Engineering, Kyoto, Japan.
Lecture Notes in Computer Science 147, 1983, (1-35)
pgse]

244

Gordon, M. J. C.
The DenotationaJ Description of Programming Lan-
guages,
Springer- Verlag [1979]

Jones, N. D., P. Sestoft, and H. Sendergaaxd
An Experiment in Partial Evaluation: the Genera-
tion of a Compiler Generator,
Rewriting Techniques and Applicalions, Dijon,
France.
Lecture Notes in Computer Science 202, (124-1~0)
Springer. Verlag [1985]

Jones, N. D., P. Sestoft, and H. S0ndergaard
Mix: a Self-Applicable Partial Evaluator for Experi-
ments in Compiler Generation,
Diku Report 87/08, University of Copenhagen, Den.
mark [~ 987]

Kleene, S. C.
Introduction to Metamathematics,
Van Nostrand [1952]

Kohlbecker, E. E.
Syntactic Extensions in the Programraing Language
Lisp,
PH.D. thesis, Teehnical Report No 199, Indiana Uni-
versity, Bloomington, Indiana [1986]

Lombardi, L. A.
Incremental Computation,
Advances in Computers 8 (ed. F. L. Att and Rubi-
noff), Academic Press, (247-333) [1967 I

Rees, J. and W. Clinger (eds.)
Revised 3 Report on the Algorithmic Language
Scheme,
SIGPLAN Notices 21, 12, (3%79) [1986]

Schmidt, D. A.
Denotational Semantics: a Methodology for Lan-
guage Development,
Allyn and Bacon, Inc. [1986]

Sestoft, P.
The Structure of a Self-Applicable Partial Evaluator,
Diku report 85/11, University of Copenhagen, Den-
mark. [1985].

Steele G. L° Jr.
Rabbit: a Compiler for Scheme,
MIT AIL TR 474, Cambridge, Mass. [1978]

Steele G. L. Jr.
Common Lisp,
Digital Press [198~]

245

Appendix A: The MP Interpreter in Schismer

;; ; This MP-int is almost the same as the Mix version
;; ; Activation: (program parameter locals block)

(program
(rap.h)
(

(define (exeeute-mp program input store)
(filter #!false (list program input))
(let ((vat-shy (make-var-env (nth 2 program) (nth 1 program))))

(let ((newstore (update-env (car (nth i program)) input vat-shy store)))
(filter #:false (list (known? newstore)))
(mp-block (nth 3 program) var-env newstore))))

(define (make-var-env local-name* par-name*)
(filter #!true 'void)
(if (null? local-name*)

par-name*
(cons (ear local-name*)

(make-var-env (cdr local-name*) par-name*))))

(define (run-rap expr var-env store)
(filter #!true ~void)
(cond

((and (pair? expr)
(or (equal? (car expr) ~:=)

(equal? (car expr) 'while)))
(run-command expr var-env store))

(else
(run-expression expr var-env store))))

(define (run-command expr var-env store)
(filter #!true 'void)
(case (car expr)

((:=)

(update-env (nth I expr)
(run-mp (nth 2 expr) ver-env store)
v~32-env
store))

(else
(mp-while (nth I expr) (nth 2 expr) var-env store))))

(define (run-expression expr var-env store)
(filter #!true ~void)
(cond

((not (pair? expr))
(fetch expr var-env store))

(else
(case (c~r expr)

((cons)
(cons (run-mp (nth i expr) var-env store)

(rtm-mp (nth 2 expr) var-env store)))
((car)

(car (run-mp (nth i expr) var-env store)))
((cdr)

(cdr (run-mp (nth 1 expr) var-env s t o r e)))

246

((equal?)
(equal? (run-mp (nth I expr) var-env store)

(run-mp (nth 2 expr) var-env store)))
((quote)

(n th 1 e r p r))
((if)

(if (not (null? (run-mp (nth I expr) var-env store)))
(run-mp (nth 2 expr) vex-env store)
(run-mp (nth 3 expr) var-env store)))

(else
'lunkno,n f o rm l)))))

(define (mp-block expr* var-env store)
(filter.#!true ~void)
(if (null? (cdr expr*))

(run-mp (car expr*) var-env store)
(mp-block (cdr expr*) vex-env (run-mp (car expr*) var-env store))))

(define (mp-while condition body var-env store)
(filter #!false (list condition body var-env 'store))
(i f (not (null? (rtm-mp condition v a r - e n v store)))

(mp-while condition body var-env (mp-block body var-env store))
store))

(define (fetch vex var-env store)
(filter #!true 'void)
(store-tel store (give-offset v a r var-env)))

(define (update-env vat val var-env store)
(filter #!true 'void)
(external store-set! store (give-offset vex var-env) val))

(define (give-offset vat var-env)
(filter #!true 'void)
(cond

((null? var-env)
~)undefined variable))

((equal? vat (car vax-env))
O)

(else
(+ 1 (give-offset var (cdr var-env))))))

)

execute-mp)

A p p e n d i x B: reverse wr i t t en in M P

(program
(i)
(res)
(

(while 1 (
(:= r e s (cons (cax 1) res))
(:= i (c ~ l))))

res
))

