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Abstract: 

This paper discusses the problem of providing a defini= 

tion for the "GOTO" statement within the framework of 

denotational semantics. The accepted approach to the 

problem is to use "Continuations". An alternative "Exit 

Formulation" is described in this paper. A small language 

is introduced which illustrates the difficulties caused 

by statements which terminate abnormally. For this lan= 

guage definitions based on both approaches are provided. 

A proof of equivalence of the two definitions is then 

given. In a closing discussion it is pointed out that 

continuations can define a wider class of languages than 

exits, although the latter have been shown to be adequate 

to define languages as complex as PL/I. 
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i. INTRODUCTION 

There exists by now a considerable body of work on the formal defini- 

tion of programming languages (see Lucas 78, in this volume, for a hi- 

storical review). Most of the work can be categorised as either "ab- 

stract interpreters", "denotational semantics" or "axiomatic"~ This 

paper attempts to make a contribution to the understanding of denota- 

tional semantics. This approach is particularly associated with the 

Programming Research Group at Oxford University. Evolving from the 

earlier work on abstract interpreters (see Lucas 69) the more recent 

work of the Vienna Laboratory has also used the denotational style 

(see Beki6 74). 

A language can be given by the set of its texts. To define the seman- 

tics of a language one must associate a meaning or denotation with 

each text in the set. Since the set of texts will, for interesting 

languages, be of infinite cardinality, this link will be shown by de- 

fining a function from the set of textstto a set of denotations. For 

such a definition of a large language to be comprehensible, it is re- 

quired that the denotation of a compound text should depend solely on 

the denotations of its component parts. (Clearly, this rule must be ap- 

plied ohly to a sensible level: ascribing meaning to single characters 

and then trying to construct the meaning of identifiers and keywords 

is unlikely to prove illuminating. The limit of sensible decomposition 

is usually indicated by the abstract synt~ of a language.) In order 

for a function from texts to denotations to define the semantics of the 

texts, it is obviously a pre-requisite that the denotations themselves 

should be objects with known meanings. One characteristic of denotatio- 

nal semantics is the use of mathematical objects (especially functions) 

as the denotations. This accounts for the alternative name of "mathe- 

matical semantics". In fact the functions chosen as denotations are 

of a very general form and it has been a considerable task to show 

that such functions do indeed have a consistent meaning (see Scott 71). 

There is, within the "denotational school", agreement as to the con- 

cepts required to provide definitions of simple languages. (However, 

a number of notatiQnal differences lead to differences in the appearance 

of conceptually similar definitions, see next section). Reme~nbering the 

"denotational rule" that denotations of composite objects should be 

built from the denotations of their components, the following observa- 

tions can be made. For a purely functional language it is easy to a- 

gree a definition; for a language which includes an assignment construct 
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the concept of a store (i.e. a mapping from identifiers to values) per- 

mits denotations to be defined which are functions from stores to 

stores; the generally accepted approach to block structured languages 

is to introduce locations and environments. Whilst refs Mosses 74 and 

Beki~ 74 build from this basic list of agreements and tackle similar 

large languages, an important difference can be found. 

The important difference between the Oxford and Vienna groups can be 

found in their approach to problems of abnormal termination. The ar- 

chetypal problem in this category is the "goto" statement. A defini- 

tion conforming to the denotational rule is difficult to construct for 

languages which include goto statements precisely because their effect 

is to transfer control across the structure over which the denotations 

are being constructed. (This power of goto statements has led to a 

movement for their elimination. This controversy is not entered into 

here. Rather, models are explained which are general enough to model 

goto. On such models one can then compare alternative language con- 

structs which might offer the desirable features, without the danger, 

of goto statements. Of course, a language feature may eventually be 

selected for which simpler models are possible. What the models here 

offer is a basis from which to work.) The Oxford group use "continua- 

tions" (see Strachey 74) to define goto-like constructs: the defini- 

tion in section 5 below is in this style. The same small example lan- 

guage is defined using the Vienna "exit" approach in section 4. The 

language itself is introduced informally in section 3 after some com- 

ments on notation. Given two definitions of the same language, the 

question of their relationship can be posed: equivalence is proved in 

section 6. Whilst both continuations and exits have been shown to be 

powerful enough to define commonly used programming languages, the 

two approaches are not of equivalent power, section 7 contains some 

concluding comments on this point. 

2. NOTATION 

The basis of the notation to be used in this paper is taken from logic 

and lambda calculus and will probably be familiar from the literature. 

The items of special interest within this paper are introduced below 

as required. A more complete explanation is available elsewhere in 

this volume (Jones 78a); Jones 75 provides a stepwise development of 

the exit concept. 
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One of the most dangerous traps when comparing two languages is to 

let the superficial syntactic differences confuse the real issue which 

is that of meaning. The difference in appearance between the Oxford 

and Vienna definitions is very striking. The former group has achiev- 

ed succinctness in order to facilitate formal reasoning about smaller 

definitions, whilst the tasks tackled by the Vienna group have led 

them to strive for readability. This paper, being based on a very small 

language, compromises a little for the sake of compactness. Thus short 

names are used for the syntactic classes and "<>" is used instead of a 

named (tree) constructor where context makes the choice clear (the con- 

vention for dropping semantic rules for syntax classes defined to be 

a list of alternatives is also followed). Other than this the defini- 

tions, even that by continuations, are given in a Vienna-style. The 

issue to be reviewed is the differences between the domains and func- 

tion types. Choices like the use of different bracket symbols, expli- 

cit versus implicit typing of functions and the degree of abstractness 

for the syntax might influence the number of characters in a definition 

but would, if used on one of the definitions, serve only to cloud the 

main distinction. 

3. A SMALL LANGUAGE 

This section introduces the language which will be used as the basis 

for the remainder of the paper. The basic statements of the language 

are "goto" and an unanalyzed class of elementary statements. About 

these latter all necessary knowledge is given by the function "el-sem" 

which associates a state-transformation (i.e. a function over the 

class Z) with each member of El-stmt. Statements can be optionally 

named and lists thereof can be formed into compomnd statements. Such 

compound statements are also statements and thus can be named and used 

as elements of other lists. The abstract syntax of the language is 

given, along with a full name for each class of objects to aid compre- 

hension, in f~g. I. The structure of the classes Id and El-stmt is not 

further defined. 

~: In this paper a superscript 0 is to be read as the functional 
composition operator. It is elsewhere represented by the fat 
dot: ,. 
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Program 

Compound statement 

Named statement 

statement 

Goto statement 

Elementary statement 

Identifiers 

Full name 

P :: C 

C :: s-b:Ns ~ 

N8 :: s-n:[Id] s-b:S 

s : cI IE 

G : : Id 

E1 : : El-stmt 

Id 

Abstract syntax 

Fig. I: The Language to be Defined 

In order to facilitate discussion of the identifier prefixes of state- 

ments, two predicates which check for the (direct and indirect) con- 

tainment of identifiers and a function yielding the index of that 

statement which contains an identifier (under the assumption that it is 

contained somewhere) are introduced: 

is~doontCid, nsI)~=> (Bi6{1 -lenr~sl}) Cs-nOnsl(i) = id) 

type: Id Ns* ~ Bool 

is-cont(id, ns l) ~ (is-dcont (id, nsl) v 

(Bi£~l:,,lennsl})(s-bO-nsl(i) E C & is-cont(id, s-bOs-bOnsl(i)))) 

type: Id Ns • ~ Bool 

ind( id, ns I )= 

is-doont(id, nsl) ~ (li) (s-nOnsl(i)=id) 

T ~- (li)(s-bOnsl(iJ £ C & is-cont(id, s-bOs-bOnsl(i))) 

type: Id N8~ ~ Nat 

pre: i8-eont(id, nsl) 
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It is assumed that well-formed programs satisfy the context condition 

that all label identifiers used in goto statements are contained exact- 

ly once within the program. With respect to the statement list within 

which the goto is placed, the target statement may be within the same 

list, within a containing list or within a compound statement which 

is a member of the same list~ The local "hop" and the abnormal exit 

from a list should require no comment. The ability to jump into a 

phrase structure is allowed, because it is included in many program- 

ming languages (cf. Algol 60 "goto" into branches of conditional state- 

ments.) 

The choice of features in this language has been made with some care 

in order to exhibit most of the complexity of large languages in a 

framework of reasonable size. Thus the ability to hop between elements 

of a list has been supplemented by permitting goto statements to enter 

and leave syntactic units. In fact if the reader compares this language 

to Algol 60 (see Henhapl 78 in this volume) only the ability to pass 

labels and procedures as parameters forces an extension of the ideas 

used here. Abnormal termination of a block via a goto statement is a 

straightforward extension and the problems associated with redefini- 

tion of names in a block-structured language can be solved in a uni- 

form way for variable and label identifiers (see Beki~ 74 for a dis- 

cussion of label variables). 

The elementary statements of the language are assumed to cause changes 

to a class of states (Z): 

el-sem: El-stmt ~ (Z ~ Z) 

Were it not for the inclusion of the "goto" construct, it would be 

straightforward to provide a definition which associated a transfor- 

mation with any elements of S. (The denotation of a list of statements 

being the composition of the denotations of the elements of the list.) 

Whilst as a result of the context condition given above, the denotation 

of a whole program will be such a transformation, it is not possible 

to ~scribe such a simple denotation to "goto" statements. The next two 

sections offer different solutions to this problem. 
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4. DEFINITION BY EXIT 

The difficulty of finding a suitable definition for a language which 

includes goto statements is that its ability to cut across syntactic 

units forces changes on the semantics of all such units. A motivation 

of the exit approach to be defined in this section was to minimize the 

effect Of these changes on the overall appearance of a definition. The 

key to achieving the desired effect without writing it into all of the 

semantic equations is to define appropriate combinators. Thus in a 

simple language (i.e. one without goto statements) a combinator denot- 

ing functional composition might be written ";". If this same symbol 

is reinterpreted as the more complex combinator used below, a defini- 

tion for a language with goto statements can preserve a simpler ap- 

pearance except, of course, for those semantic equations which deal 

specifically with goto statements. 

The basic idea of definition by exit is to associate a denotation with 

each statement which is a function of type: 

E = Z~ZA 

where: 

A = Idl N~L 

Thus the denotation of a statement is a function from states to pairs: 

the first element is a state and the second is either an identifier or 

NIL. In the case that applying the denotation of a statement to a state 

results in no "goto", the respective range element will be the result 

state paired with NIL. If, however, a "goto" is encountered to a label 

not contained within the statement, the range element will pair the 

state reflecting state transition up to the time of the "goto" with 

the target label. 

The definition, using combinators whose meaning is made precise belowr 

is given in fig 2. The function names all begin with "x-" to signify 

that they are part of the exit-style definition. It is not difficult 

to provide an intuitive understanding of this definition. The func- 

tion x-g which defines the semantics of goto statements uses the "exit" 

combinator which simply pairs the argument state with the given 

(identifier) value. Wherever a simple (Z~Z) function is shown it is 

interpreted as yielding NIL paired with whatever the output state 
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x-p(<cp>) = x-c(cp) 

x-e(ep) = x-cp(NIL, cp) 

x-cp(ido,<nsl>) = 

tixe [ id~x-l(id, nsl) 

in x-l(ido, nsl) 

I ia-cont(id, nsl) ] 

x-l(ido, nsl) = 

ido=NIL 

i8-deont(ido, nsl)~ 

T 

x-nsl(nsl, i) 

x-nsl(nsl, ind(ido,nsl)) 

(let i = ind(ido, nsl) 

x-cp (ido, s-b (nsl (i) ) ); 

x-nsl(nsl, i+l) 

) 

x-nsl(nsl, i) = 

i<lennsl 

T 

(x-s (s-b (nsl(i) ) ) ;x-nsl(nsl,i+l) ) 

I 

x-g(<id>) = exit(id) 

x-el(<el>) = el-sem(el) 

fig 2: Definition using exit combinators 

would have been. This explains x-el and the second case of x-nsl (I 

is the identity on E). The fact that these denotations, and thus that 

of the excised x-s, are of type E force their combination with one a- 

nother to be more complex° The ";" combinator applies the second E 
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transformation only if the second component of the first result is NIL, 

otherwise the result of the two composed transformations is exactly 

that of the first. It remains only to explain x-cp. Here the combina- 

tor "tixe" (spell back-to-front~) is for the converse situation from 

";". If a normal pair (i.e. NIL second component) is the result of the 

in transformation nothing more is done; the first mapping defines, for 

some restricted set of exit values, the action to be taken if the i__nn 

transformation re£urns a non-NIL result. It is important to realize 

that this mapping covers a finite number of cases which can be deter- 

mined from the text being defined. 

The types of the semantic functions can be given: 

x-p: P ~ E 

x-c: C ~ E 

x-cp: [Id] C 

x-l: lid] Ns* 

x-nsl: Ns ~ Nat 

x-s: S~ E 

x-g: G ~ E 

x-el: E1 ~ E 

E 

E 

E 

(assumed) 

The formal meanings of the combinators is now given. The format used 

for these definitions is first to list any assumptions, then show the 

type of the combinator expression (after a ":") and finally to provide 

the definition (after "~"). 

Firstly the exit combinator: 

for id E Id 

exit(id) : E 

exit(id) A = ~ a . < ~ , i d >  

The promotion of a simple transformation to one of type E is governed 

by context: 

for t : Z~Z in a context requiring E 

t : E 

In particular: 
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I ~- I~.<s, NIL> 

The semicolon combinator is defined as: 

for t I and t 2 : E 

(tl;t 2) : E 

(tl;t ~) ~ (l~,ido.(ido=NIL~t2(s),T~<a, ido>))Ot I 

The most interesting of the combinators is "tix~": 

for t I : Id ~ E, t 2 : E, p : [Id] ~ Bool 

(tixe [a~tl[a) Ip[a)] i__nn t 2) : E 

(tixe [a~t1(a) Ip(a)] i__nn t 2) 

(let e = [a~t1(a) Ip(a)] 
0 let r(e, ido) = (ido6dome ~ r e(ido)(s),T~<~,~do>) 

rot2 ) 

Notice that r is used recursively, thus the effort to resolve an ab- 

normal exit with t I continues until p is not satisfied. 

Fig 3 provides a rewriting of the exit definition with the above com- 

binator definitions applied to provide a definition in almost-pure 

lambda notation. Although this is more convenient for the proofs of 

section 6, the combinators have considerable value in providing a 

shorter and more intuitive definition of a large language (compare 

refs Beki6 74 and Allen 72). 

Notice that the only labels which are returned from (non-NIL second 

components of the function) "x-l" are those which are not contained 

in the text argument. Thus it can be proved: 

pre-x-l(ido, nsl) <=> (ido=NIL ¥ is-aont(ido, nsl)) 

post-x-l(~do, nsl,~,~',ido') <=> (ide'=NIL v ~is-contCido',n~l)) 

and because of the context condition it is possible to show that x-p 

is of type: 

~ ~ NIL 

and from this extract a denotation of type: Z ~ 
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x-cp(ido,<nsl>) = 

let e = [id ~ x-l(id, nsl) lis-cont(id, nsl)] 

let r(a, ido') = (ido'£dome ~ rOe(ido')(c), T ~ <s, ido'>) 

fox - 1 (ido, ns l) 

x-l(ido,nsl) = 

ido=NIL ~ x-ns I (ns l, 1 ) 

i8-dcont(ido, nsl) ~ x-nsl(nsl, ind(ido, nsl)) 

T ~ (let i = ind(ido, nsl) 

(la, ido '. (ido '=NIL ~ x-nsl(nsl, i+l) (s) , 

T ~ <s,ido'>))Ox-cp(ido, s-bOnsl(i)) 

) 

x-nsl(nsl,i) = 

i<lennsl ~ ((l~,ido'. (ido'=NIL ~ x-nsl(nsl, i+l), T ~ <e, ido'>)) 0 

x-s(s-b(nsl(i)))) 

T ~ h~.<S,NIL> 

x-g(<id>) = la.<a,id> 

x-el(<el>) = h~. <el-sere(el) (~),NIL> 

x-p, x-c unchanged 

Fig 3: Definition by exit mechanism with combinators expanded 

5. DEFINITION BY CONTINUATIONS 

This section introduces the more widely used continuation approach for 

the definition of languages which include goto statements. As with 

exits, this approach recognises that denotations of type Z~Z will not 
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suffice. While continuations themselves are: 

T = Z ~ Z  

the denotations of statement-like constructs become: 

T~T 

The question of the meaning of goto statements is handled by associat- 

ing continuations with identifiers. The denotation of a goto state: 

ment for any continuation is then the continuation associated with the 

contained identifier. In a complex language definition, block struc- 

ture would anyway force the use of an explicit environment argument to 

the semantic functions and this can be used to record the associated 

continuation for labels. Thus, in the current case: 

Env = Id ~ T 

Intuitively, one can consider statement denotations as yielding, for 

a given subsequent computation (i.e. continuation), the overall compu- 

tation starting at this statement. Notice that this is not simply the 

composition of two functions of type Z~Z because of the possibility of 

"goto". The label denotations are the transitions resulting from start- 

ing execution at that label and executing to the end of the program. 

Thus a function of type Z~Z is associated with a text given a particu- 

lar environment and continuation. A more complete description of the 

method of continuations is given in Strachey ?4. The definition by con- 

tinuations is given in fig 4. (The use of braces to bracket arguments 

which are continuations is adopted for the benefit of the reader.) 

Since there are no combinators to be explained in this definition, no 

intuitive explanation is offered. The reader who is unfamiliar with 

this style of definition is, however, advised to study this definition 

carefully (possibly with the aid of an example) to be sure he has 

grasped the rather back-to-front construction of denotations. The 

types of these semantic functions are: 

c-p: P ~ T 

c-c: C ~ (Env ~ (T ~ T)) 

a-nsl: Ns ~ Nat ~ (Env ~ (T ~ T)) 

c-8: S ~ (Env ~ (T ~ T)) (assumed) 
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c-p(<cp>)= 

let env 0 = [id~c-l(id, s-b(cp))(enVO){I} 

c-c(cp) (enVo){I } 

I is-cont(id, s-b(cp))] 

c-c6<nsl>) = c-nsl(nsl, 1) 

c-nsl(nsl,i) (env) {c}= 

i<lennsl -~ c-s(s-b(nsl(i) ) ) (env){c-nsl(nsl, i+l) (env){c} } 

T ~ c 

c-g(<id>)(env){c} = env(id) 

c-el(<el>) (env){c} = cOel-sem(el) 

e-l(id, nsl)(env){e}= 

is-dcont(id, nsl) ~ a-nsl(nsl,ind(id, nsl))(env){c} 

T ~ (l#t i = ind(ido,nsl) 

c-1 (id, s-bOs-bOns 1 (i)) (env) { c-ns I (ns l, i+1) (env) { c} } 
) 

fig 4: Definition using continuations 
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(Env ~ (T ~ T)) 

(Env ~ (T ~ T)J 

(Env ~ (T ~ T)) 

6. EQUIVALENCE OF THE TWO DEFINITIONS 

Sections 4 and 5 have both provided mappings from programs to functions 

(Z~Z) : the aim of this section is to show that the definitions are e- 

quivalent in the sense that they associate the same transformation with 

any well-formed program. It is possible to discern three important 

differences between the exit and continuation definitions: 

(i) The continuation definition associates with each label identifier 

a denotation (i.e. continuation) which reflects the effect of starting 

execution at that label and continuing to the end of the entire pro- 

gram. On the other hand, the exit definition provides (see point (ii)) 

different denotations for label identifiers at each nested compound 

statement: in each case the denotation captures the meaning of execu- 

tion from any contained label to the end of the current compound state- 

ment. 

(ii) Whereas the continuation definition passes the denotations of 

label identifiers to semantic functions explicitly in the environment, 

the meaning of labels (an E) in exit definitions is used (by the tixe 

combinator) at the level of the containing compound statement. 

(iii) The mode of generation of the respective denotations in the two 

approaches differs: in the exit-style the denotation of a label is 

derived by starting at that label and "composing" forwards (via the 

semicolon combinator); continuations are built up from the final trans- 

formation composing backwards. 

The proof style adopted below is to show a sequence of definitions 

(each with different prefixes for the function names) and show that 

each is equivalent to its predecessor. Since the point of departure 

is the "c-" definition of section 5 and the last step shows the equi- 

valence of the "f-" definition to the (expanded form of the) "x-" de- 

finition of section 4 a complete proof of equivalence is given. A good 

overview of the reasoning can be obtained by understanding the inter- 

mediate definitions without following the details of the individual 
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equivalence proofs. 

The first step (i.e. the "d-" definition) is purely preparatory, as, 

in a sense, is the second ("e-") although this relates specifically 

to difference (i)° The step to the "f-" definition completes the reso- 

lution of differences (i) and (ii). The final step from the "f-" to 

the "x-" functions resolves difference (iii). 

The first step in our equivalence is trivial. Looking at the "c-" 

functions, it is obvious that e-c and c-l are both special cases of a 

more general function which takes an optional identifier as its first 

argument. 

d-l: [Id] Ns ~ ~ (Env ~ (T ~ T)) 

Since a combination of these two tasks has been employed in the "x-" 

definition the difference must be resolved somewhere and early resolu- 

tion will shorten some of the inductive arguments to be used below. 

In fact the definition given in fig 5 could have been presented in 

section 5: equivalence with that actually given follows from: 

is-cont(id, nsl) ~ d-l(id, nsl) = c-l(id, nsl) 

d-l(NIL, nsl) = c-c( <nsl>) 

d-c(<nsl>)=d-l(NIL,nsl) 

d-l(ido, nsl)(env){a}= 

ido=NIL 

i8-dcont(ido, ns1)~ 

T 

d-nsl(nsl, 1) (env) {c} 

d-nsl(nsl, ind(ido, nsl) ) (env) {c} 

(let i = ind(ido, nsl) 

d- l ( ido , s-bOs-b Onsl( i) ) (env) {d-nsl(nsl, i+ l) (env) {c}i 

) 

d-p,d-nsl, d-g~d-el: models of respective "c-" functions 

fig 5: Definition using continuations with merge of c-c and c-1. 
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The next step in the proof also changes very little. The types of the 

"e-" functions are the same as those of the "d-" functions. The differ- 

ence is that some elements of the environment (i.e. contained label 

denotations) are recomputed at each compound statement level. What has 

to be proved is that the recomputed values are exactly the same as 

those already stored (the usefulness of this step will become appa- 

rent later). A good intuitive confirmation of this claim can be ob- 

tained by viewing the "e-" functions as a macro-expansion and observ- 

ing that the continuation argument of e-cp(NIL,<nsl>) is ~dentical 

with that used to generate the denotations (in env 0 of d-p) of all 

labels contained in nsl. 

Proceeding more formally, from the substitutivity of equal values it 

is obvious that: 

(is-cont(id, nsl) ~ env(id)=d-l(id,nsl)(env){c)) & 

(ido=NIL v is-cont(ido, nsl)) 

d- l (ido, nsl ) (env+[ id-~-l(id, nsl) (env) { c} l is-cont( id, nsl ) ] ) {c} 

= d-l(ido, nsl)(env){a} 

It is now necessary to show that for all 

d-l(ido, nsl) (env){a} 

it is true that: 

is-cont(id, nsl) ~ env(id) = d-l(id, nsl)(env){c} 

Observe that this is true for the reference to d-1 from d-p. For re- 

cursive calls of d-1 consider: 

id n such that is-cont(idn,nsl) & li8-dcont(idn, nSZ) 

its denotation is given by: 

env(id n) = d-l(idn, S-b 0 s-bOnsl(~n))(env){d-nsl(nsl,in+1)(env){c}} 

where i n = ind(idn, nSl) 

but for recursive references to d-l in d-nsl(nsl,in)(env){c} 
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d-nsl(nsl, i )(env){c} 

= d-s(s-b nsl(i ))(env){d-nsl(nsl,i +1)(env){c}} 
_n o n 

= d-l(NIL, s-bas-b nsl(in))(env){d-nsl(nsl, in+1)(env){c}} 

sO for: 

is-cont(idn, s-bOs-bOnsl(in )) 

the required property still holds since the continuations match. 

This concludes the argument and the definition in fig 6 can be seen 

to be equivalent to the "d-" functions because e-cp is introduced 

just to "recompute" some label denotations; other functions are changed 

accordingly including the fact that ~-p need no longer generate an en- 

vironment: 

e-cp : [Id] C ~ (Env ~ (T ~ T)) 

The next stage of the proof is the most interesting. Before coming to 

the "f-" functions a useful lemma on continuations will be given. In- 

tuitively this lemma states that in order to achieve the same effect 

as composing some function with the denotation of a statement, that 

function must be composed with both the contination and each label de- 

notation used in deriving the given denotation. 
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e-p(<cp>) = e-c(cp) ([ ]) {I} 

e-c(cp) = e-cp(NIL, cp) 

e-cp(ido, <nsl>) (env) {c}= 

le t env' = env+[id~e-l(id, n~l)(env'){c}lis-cont(id, nsl)] 

e-l(ido,nsl) (env') {c} 

e-l(ido,nsl)(env){c}= 

ido=NIL 

is-dcont(ido, nsl) 

T 

e-ns l (ns l, I ) (env) { a } 

e-nsICnsl, indCido, nsl) ) ( env) {c} 

(let i = ind(ido, nsl) 

e-cp( ido, s-bOnsl(i) ) (env) {e-nsl(nsl, i+l) (env) {c}} 
) 

e-nsl, e-g,e-el: models of respective "c-" functions 

fig 6: Definition using continuations recomputed 

at each compound statement 



297 

Lemma I 

define: me(c, env) = [id~cOenv(~d) lidEdomenv] 

show for: et is e-s(s),e-nsl(nsl,i),e-iCido,n~l) or e-cp(ido,cp) 

that: c20et(env)~el } = et(me(c2, env)){c20Cl } 

Proof: 

The argument is by induction on the structure of the text, as a basis 

consider statements of G and E: 

0 0 a 2 e-g(<id>)(env){c} = c~ env(id) 

e-g(<id>)(me(c2,env)){c 2 c 1} = me(e2~env)(id) 
= e20env(id) 

a2Oe-el~<el>)(env){cl } = c20clOel-sem(el) 
0 0 

e-elC<el>)(me(c2,env)){a20Cl } = a 2 c I el-sem(el) 

next in the basis consider elements of Ns ~ where no element contains 

a C, here a subsidiary inductive proof (on lennsl-i) is made. For the 

basis, consider i>lennsl: 

c20e-nsl(nsl, i)(env)~01 } = c20c 1 

e-nsl(nsl,i)(me(c2, env)){c20Cl } = a20c I 

for the inductive step i<lennsl: 

0 
c 2 e-nsl(nsl,i)(env){e I} 

= c20e-s(s-b(nsl(i))) (env){e-nsl(nsl,i+1)(env){Cl} } 

= e-s (s-b (ns l (i)) ) (me (c2, env) ) { c20e-ns 1 (ns l, ~+1) (env) { c I } } 
0 = e-s (8-b (nsl (~)) ) (me (c2, env) ) .e-ns 1 (ns l, i+1) (me (e2, env) ) { c 2 c I ~ 

e-nsl(nsl, i)(me(c2, env)){c20cl } } 

= e-s(s-b(nsl(i)))(me(c2, env)){e-nsl(nsl,i+l)(me( c 

l.H.onS 

l.H.onN8 • 

2, envJ{c2Oel}} 

For elements of N8 ~ where no element contains a compound statement, 

the results for e-l(ido, nsl) and e-cp(idojcp) are immediate from the 

above. 

For the inductive step, the only additional case to be considered is 

the construction of elements of C, thus: 



~8 

0 0 
c 2 e-c(cp)(env){c I} = c 2 e-cpCs-b(cP)J(env){c I} 

0 
e-c(cp)(me(e2, env)){c 2 c 1} = e-cp ~-b(cp))(me(c2, env)){c20cl} 

which are equal by induction hypothesis. 

This concludes the proof of Lemma Z. 

Lemma I will now be used to justify change from passing in label deno- 

tations in environments to composing them with the revised meaning of 

the basic statement list. The revision to the meaning of a statement 

list changes it to type E and makes any goto statement cause a label 

to be returned as the second component of the result. The composition 

of the label denotations is now (recursively) applied only if this in- 

dication of abnormal exit is present. Intuitively the proof which fol- 

lows shows that any environment is equivalent to a composition of a 

test and a constant environment, and any continuation is equivalent to 

a composition of a test and a constant function. Since both of these 

tests are the same, lemma I can be used to factor out the test. 

Proceeding more formally, it is observed that though the used types 

of the "e-" functions are: 

e-e: 0 ~ ((Id ~ T) ~ (T ~ T)) 

they are perfectly general in that they also fit: 

e-Q: e ~ ((Id ~ (S ~ ~)) ~ ((~ ~ ~) ~ (S ~ ~))) 

Writing: 

xe(nsl) = [id ~ X~.<~,id>Jis-cont(id, nsl) ] 

xt(env, c) : ~,a.(a=NIL~c(s),T~env(a)(s)) 

it is immediate that: 

domenv = {idjis-cont(id, nsl)} 

[id~xt(env, c)Oxe(nsl)lid£domenv] = env 

and: 

0 
xt(enV, c) I~.<~,NIL> = c 
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But then: 

e-l(ido, nsl) (env'){c} = e-l(ido, nsl) ([ id~xt(env ',e)Oxe(nsl) lidEdomenv']) 

{xt (env ', c) Oks. <~, NIL> } 

= xt(env ~ c)Oe-l(ido, nsl) (xe (nsl)) (ke. <e, NIL>} 

SO : 

e-cp (ido, <n8 l>) (env) {c} 

= (let env '=e~+ 

[ id~ (ks, a. (a=NI~a (~), T~env ' (a) (a) J ) 0 

e-l (id , ns l) (xe ( ns l) ) { ks. <~, NIL>} I is-cont (id, ns l) ] 

( ks, a. (a=NIL-~ (s), T~env' (a) (s)) ) 0 

e-l( ido, nsl) (xe (nsl) ) {hs. <s, NIL> } ) 

= (let e=[id~e-l(id, nsl) (xe(nsl)){ls.<c, NIL___>} lis-cont(id, nsl) ] 

let r(s,a) = (aEdome ~ rOe(a) (s),T~env(a) (~)) 

roe -1 (ido, ns l) (xe (ns l) ) ( kg. <a, NIL>} ) 

Strictly, the whole definition has now become: 

e-p: P -~ (Z -~ T [Id] ) 

(and this was why it was necessary to observe above that T could be re- 

placed by 7.~). But, as with the exit definition in section 4, it can 

be shown that only non-contained labels can be returned. Thus at the 

program level it can be shown for well-formed programs that the second 

element of the result must be NIL. 

But all env arguments now give constant denotations for labels! Be- 

cause the definition only considers well-formed programs these con- 

stant functions can be moved into the semantic definition of goto. 

Furthermore, since the environment argument is now used nowhere, it 

can be omitted. This results in the definition in fig 7. 
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f-p(<cp>) = f-c(cp){la.<~,NIL>} 

f-c(cp) = f-cp(NIL, c p) 

f-cp(ido,<nsl>){c}= 

let e = [id~f-l(id, nsl){l~.<~,NIL>}lis-cont(id, nsl)] 
0 

let r(~,a) = (aCdome~r e(a)(s),T~Xc.<s,a>) 

rOf-l(ido,nsl){hs.<s, NI__kL>} 

f-l(ido,nsl){c}= 

ido=NIL ~ f-nsl(nsl, 1){c} 

is-dcont(ido,nsl) ~ f-nsl(nsl, ind(ido, nsl)){c} 

T ~ (let i = ind(ido, nsl) 

f-cp(ido, s-bOnsl(i) ) {f-nsl(nsl, i+l) {c}} 

J 

f-nsl(nslji){c} = 

i~lennsl ~ f-s(s-bOnsl(i)){f-nsl(nsl, i+l){c}} 

T ~ e 

f-g(<id>){c} = Xs.<a, id> 

f-el(<el>){c} = cOel-sem(eIJ 

fig ?: Definition using (E) continuations without environments. 

The "f-" functions have the types: 

f-p: P ~ E 

f-c: C ~ (E "~ E) 

f-cp: [Id] C ~ (E -~ E) 

e: Id ~ E 
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r: ~ [Id] ~ E 

f-l: [Id] Ns ~ ~ (E ~ E) 

f-nsl: Ns • Nat ~ (E ~ EJ 

f-s: S ~ (E ~ E) (assumed) 

This definition presents one in which the earlier differences (i) and 

(ii) have been eliminated and which only requires the equivalence of 

the alternative directions for computing denotations to be established 

to complete the equivalence proof to the "x-" functions of section 4. 

The approach to this last difference is similar to that taken at the 

previous stage. Firstly a lenhma is introduced which shows that the 

"f-" functions are equivalent to a composition of a test and the cor- 

responding "x-" function. Whereas in the previous stage the test was 

a simulation of the "tize" combinator, this stage is simulating the 

"., " combinator. Applying this lemma generates a set of functions (which 

could be written out as "g-" functions) which pass the same constant 

contlnuation" of lo.<o, NIL> to all functions. Once again this constant 

can be dropped and written directly in the two places where the argument 

had previously been used. We then have precisely the expanded form of 

the "x-" functions from section 4. 

Formally, the lemma is 

define: 

show for: 

that: 

t(c) = la, a.(a=NIL ~ c(~),T ~ <s,a>) 

ft(xt) is f-s(x-s),f-nsl(x-nsl) or f-l(x-1) respectively 

t(c)Oxt(s) = ft(s){c} 

the proof (not given here) is by a similar induction to that of Lemma 

I. 

Using Lemma II: 

f-nsl(nsl, i){c}= 

i<_lennsl ~ t(f-nsl(nsl,i+l)~c})Ox-s(s-bOnsl(i) ) 

T ~ c 
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and: 

f-l(ido,nsl) {c}= 

. . .  

T ~ (let i = ind(ido,nsl) 

t(f-nsl(nsl, i+l) {o})Ox-cp(ido, s-bOnsl(i) ) ) 

rewriting the second case of f-nsl as: 

Ic.<c, NIL> 

and the definition of f-el as 

lq. <el-sere(el) ( q ) ,NIL> 

the continuation arguments to all functions can be dropped and the 

"x-" functions remain. 

7. DISCUSSION 

Two different definitions of a language have been given and proved e- 

quivalent. It is important to realize that this is a limited proof in 

the sense that nothing has been established about the power of the two 

mechanisms in general. In fact continuations can be stored and passed 

in a way which cannot be simulated by exit. Thus, co-routines or like 

features can be defined using continuations but not exits (see Rey- 

nolds 74). However, both approaches have been used to define major pro- 

gramming languages (cf. Mosses 74, Beki6 74, Henhapl 78) and there is 

experience from the work on abstract interpreter definitions to argue 

that where a more powerful construct is not necessary, its use should 

be avoided. 

The choice of which technique is most appropriate might well depend 

on the intended use of a definition. For general clarity it could be 

that the ability of the exit combinators to hide the effect of a goto 

in most parts of a language definition is valuable. On the other hand, 

proofs about the meaning of programs will anyway have to expose the 

combinators and a continuation definition may be more directly usable. 

Even here there is one important advantage of the exit approach and 
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that is the ability to localize the effect of goto statements within 

the syntactic unit containing the goto and the label. Thus in: 

begin 

begin 

begin 

9oto l ,  

end~ 

l :  . ° .  

end 

end 

the second nested block will have a denotation of type: 

-~ ~ NIL 

This closing-off of the semantic effects of goto cannot be simulated 

with continuations. 

Both the Oxford and Vienna groups have made experiments with using de- 

finitions to provide a starting point for systematic (justified) com- 

piler development (see Milne 76, Jones 76a). It is in this area that 

a more meaningful comparison of continuations and exits should be 

sought. 

Hopefully the proof in section 6 has been presented in an intuitively 
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clear style. For more interesting approaches to such proofs see Rey- 

nolds 74, Reynolds 75. 
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