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Abstract. Locally catenative equations are defined in the free group. 

It is sho~ that if the free group generated by a DOL sequence is fini- 

tely generated then there exists a locally catenative equation in the 

free group which defines the DOL sequence. Am algorithm is given which 

finds the generators of the free group if it is finitely generated. 

A conjecture is stated in terms of the existence of a certain group. The 

conjecture implies the solvability of the DOL equivalence problem. 

I. Introduction. 

Techniques from the theory of free groups are in this paper applied to 

the study of Lindenmayer systems. These techniques have previously been 

used by the authors in the study of regular languages 192 . In the preli- 

minaries follow the basic notation and results in free groups. No pre- 

vious knowledge is assumed. In section 3 we consider locally catenative 

equations in the free group. See Rozenberg and Lindenmayer [95]. We de- 

fine an equivalence group of two DOL systems and show that if there 

exists a finitely generated equivalence group then we can decide if the 

two systems are equivalent. Here we consider the sequence equivalence 

problem. See Nogens Nielsen [70] for a proof that this problem is equi- 

valent to the language equivalence problem. 

I. Peter Johamsen~ A~Algebraic Normal Form for Regula r Events t Polytek- 

nisk Forlag, Lyngby 1972. 

2. J.Clausen, J.Ha~lerum, E.Meiling, T.Skovgaard~ Automata Theory in 

Free Grou~s, manuscript to be submitted to Aeta Informatica.° 
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We are not able to prove that a finitely generated equivalence group ex- 

ists in the general case, nor that it can be effectively constructed. In 

special cases, however, it can be found. It is conjectured that it can 

be found in the general case. Section 4 presents an algorithm which 

finds the generators of the group closure of a DOL sequence if it is 

finitely generated. 

We have, unfortunately, at present no way of deciding when ~his occurs. 

The algorithm is being implemented in LISP 1.5 on ~BM/360. 

2. Preliminaries. 

For definitions and basic results in Lindenmayer systems and free groups 

the reader is referred to Herman and Rozenberg [45] and Hall (1952)3. • 

In the following H = <~, h, Wo> and G = <2, g, Wo> will denote DOL 

systems, hi(wo) will be denoted w i when reference to H is implicit. The 

language generated by H is denoted L(H) ={Wo, Wl, ... ,wn, ..~The se- 

quence generated by H is denoted E(H) = Wo, Wl, ... ~wn, ... 

The free group F(2 ) is defined as follows: Let 2 =(a, b, ... , z} . 

Define a shadow alphabet ~ ={a, b, ... ,~ }. Define am equivalence 

relation D on the free semigroup ( ~ U ~)* as the transitive, symmetric, 

and reflexive closure of the adjacency relation A: 

xAy <=>3u, v ~ ( ~ U ~)*, 3 c~ such that 

x = uv and (.y = uc~v or y = u~cv) 

F( 2 ) is the set of equivalence classes of D. Group composition is 

D(x).D(y) = D(xy). The l-element is the class D( X ). The inverse of the 

class D(al, a 2 ... a n ) where ai~ ( 2 U ~) is the class D(~ ... a 2 a1~. 

Here ~i denotes a i. 

3. M.HalI. The Theory of Groups~ The Macmillan Company, New York, 1959. 
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It can be shown that each equivalence class contains precisely one word 

which does not contain any adjacent occurrences of a letter and its in- 

verse. This word is called a reduced word. An equivalence class is often 

denoted by its reduced representative. 

Let ScF( ~ ). [S] denotes the smallest subgroup of F( Z ) which contains 

S. S is called a generator set of IS]. IS] is called the group closure of 

S. Let TC F(~ ) be a subgroup. If there exists a finite set S such that 

[S] = T then T is finit~!y generated. Y(Sl, s2, ... ~s n) means an ele- 

ment of ~I' s2' "'" ~Sn]' 

The main result on free groups is the following: 

Let ACF(Z ) be a group. There exists a set of generators al, a2p ... , 

called free generators, such that [al, a2, ...] = A and such that any 

element from A can be written as a unique product of generators and 

their inverses,.Any set with this property has the sazle cardinality, 

called the rank of A. The cardinality of any set of generators is at 

least the rsr~ of A.{ai} can furthermore be chosen such that 

a i = uisi~i, i = 1,2... where no letters from s i or sj are cancelled 

in any products a Z1a ~I s i is called the significant factors of a i- 
1 j " 

Example I : 

FlZ) 

\ 

1 / 
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~xample 2: 

A = [abE, ac] = [abc, ac] =[abcac, ac] 

Significant factors are marked by A" 

Example 3 : 

F(E ) = [ a , b ]  S = [aa ,  aba ,  b] 
A A A A A 

2 n 2 n 
T = [aab, aaaabb, ... ,(aa) b , ... ] 

~c SCF(~- ). 

This example shows that the rank of a subgroup may be greater than the 

rank of the group itself: 

rank (F(E))= 2; rank (S) = 3; rank (T) =00. 

That rank (T) = ~can be seen this way: 

2 n 2 n 
Let s n = (aa) b . T = [So, Sl, ... ] 

Define t n = Sn~n_ I for n = 1,2, ... and t o = s o . 

-I 
This gives t n = (aa)2nb2nb2n (EE) 2n~I 

= (aa) 2nb2n- I (EE) 2n- I 

It is seen that T = [to, tl, ... ] because s n = tntn_itn_ 2 ... t o . 

Also it is seen that the occurrences of b in t n constitute significant 

factors. Hence rank(T) =Co. 

3. Locally catenative equations in the Free Group~ 

First the case is studied where [L(H )] is finitely generated. An equi- 

valence group of two DOL-systems is defined. Theorem 2 shows that if a 

finitely generated equivalence group can be found for two systems, then 

the equivalence problem is solved. Then it is conjectured that a finite- 

ly generated equivalence group always exists, and can effectively be 
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constructed. 

Theorem I: 

EL(H)] is finitely generated 
A 

There exists lak~llocally catenative equation in F([ ): 

w n = eq(Wn_1, ... ,Wn_r) for n~cut 

Proof: 

~: Let [L(H)] = ~I' "'" 'gn]" Each gk' k=1, ... ,n, is a product 

gk(Wo, w19 ... ~qk_j) for some qk" Let r be the maximum of all qk" Then 

EL(H)] = EWo, wj, ... ,Wr_1]. From this it follows that 

Wr~ [Wo, wj, ... ,Wr_j] and w r = eq (Wr_j, ... ,w o) Since h is a 

homomorphism of F([ ) this part follows by induction. 

~: From the recursion equation it follows by induction that [L(H)] is 

generated by {Wo, wl, ... ,Wr_1}. 

At this point a natural question arises: 

If the rank of [L(H)] is r, can we thenehoose the first r elements from 

E(H) as generators? We have been unable to prove this, but believe it to 

be true. 

Small conjecture. 

[L(H)] is finitely generated of rank r 

$ 
[L(H)] is freely generated by (Wo, Wl, ... ,Wr_1} 

This conjecture is mentioned again in section 4 in connection with the 

algorithm to find free generators of L(H). Here we shall point out a 

consequence of this small conjecture, which follows immediately from the 

unique factorization in the free group. 
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Consequence of small conjecture. 

[L(H)] is finitely generated of rank r 

T:~'~ exists a unique locally catenative equation in the free groups of 

minimal cut with cut = r and depth < r. 

Example 4: 

E(H) = ab, abab, ... 

E(H) = [ab ]  o f  rat/k: I 

w I = abab = WoW ° 

recurrence equation 

Exam~ol e 5: 

: < {a,b}, {a~a, b~ab}, b> 

E(H) = b, ab, aab, ... 

G = <~a, b) , {a,a, b~ba) , b> 

E(G) = b, ba, baa, ... 

[ s ( ~ i ) ]  = [ s ( ~ . ) ]  = [ a , b ]  o f  rank 2 

recurrence equation in common: 

w n = Wn. lWn_2Wn_1 ,cut=2 

E(H) defined by w o = b, w I = ab 

E(G) defined by w o = b, w I = ba. 

Example 6: 

G = < {a, b, c}, { a~cba, b~a, c-~cc}, b> 

w = b 
o 

w I = a 

w 2 = cba 

Since a = Wl, b = Wo, and c = W2WlW o we know that [L(H)] ~F(~ ) and 
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therefore EL(H)] = F(Z ). 

w 3 = ccacba 

It then follows that w 3 can be expressed in terms of Wo, Wl, and w 2 by 

substitution: 

w 3 = (w2WIWo)(W2WiW o) w1(w2~lW o) WoW I 

- 2 

= (W2WlW o) WlW 2 

The recurrence equation becomes 

% = (~n_i~_2~_3) 2 Wn_2Wn_1 

Example ~: 

H--<{a,b}, {ataa, b~bb}, aab> 

~(H)] is of infinite rank as shown in example 3. By theorem I it fol- 

lows that there does not exist a locally catenative recurrence equation 

defining E(H).Ex~ple finished. 

We shall in what follows attempt to formulate a generalization of 

theorem I. We have to present it as a conjecture since we are unable to 

prove it. 

Definition: An equivalence group for the two DOL systems H and G is a 

group Q with the properties 

(i) Wo~ Q 

(ii) h(Q)C Q and g(Q)c Q 

(iii) (Vq~Q)[(Vi) hi(w o) = g (Wo) ] =>~Vi) hi(q) : gi(q)] i 

Lemma I: 

For any D0L systems such that 

group. 

[L(H)]: [L(G)], [L(H)] is an equivalence 
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Proof: 

(i) and (ii) are trivially fulfilled. To verify (iii), assume that H and 

G are equivalent. 

Let qe EL(H~. hi(q) = hi(q(w o, h(Wo), ..- ,hJ(wo), ...)) 

= q(hi(wo) , hi+l(wo) , ...) 

Since hJ(w e) = gJ(w o) for all j, we get 

= q(gi(Wo) , gi+l(wo) , ...) 

= gi(q(Wo, g(Wo), ...)) 

= gi(q(Wo, h(Wo), ...)) = gi(q) 

L emma 2 : 

There exists only one DOL-system H which generates E(H). 

F( [ ) is an equivalence group for all DOL systems G. 

Proof: 

~: Obvious because (iii) is vacuously fulfilled. 

~: Obvious because (iii) implies that g and h are identical on the 

generators of F([). 

Example 8 : 

The DOL-system from example 7 is uniquely determined by E(H). Hence 

[a,b] is an equivalence group for all DOL-systems G. 

The sigu~ificance of equivalence groups is due to the next theorem. 

Theorem 2 : 

If there exists a finitely generated equivalence group Q = [q1' "'"qn ] 

for two DOL-systems G and H then G and H are equivalent if and only if 

( * )  h ( q i ) ~ =  g ( q i  ) for i = t , 2 ,  . . . ,  n 

Proof: 

Assume G and H equivalent; then (iii) implies the theorem. 

• i w Assume (*). We are going to prove Vi_>o Eh1(Wo ) = g ( o)] . (*) implies, 

thatVqe Q ~n(q) = g(q)~ 

Since Q is closed under the homomorphisms G and H we conclude that 
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viZo v qs Q [hi(q) = gi(q)] 

The result follows now from the fact that Woe Q. 

Corollary I : 

I f  [L(H)] = [L(G)] = [Wo, h(Wo) , . . .  , h r - l ( W o )  ] 

then G and H are equivalent if and only if 

hi(Wo ) = gi(w o) i = o, I, ... ,r 

Proof: 

Follows from lemma I and theorem 2. 

Example 9: 

Using corollary I we can, with reference to example 6, deduce that two 

DOL-sequenees which have the common initial terms 

w =b 
o 

wl=a 

w 2 = cba 

w 3 = ccacba 

must be identical. 

Example 10: 

H = < {a, b~ c~ d} , {a-~aa, b~o, c-~c, d->bd}, acd> 

: < {a, b, c, d~, {a~aa, b->b, c~cb, d~d}, acd> 

E(G) = E(H) = acd, aacbd, aaaacbbd, o.. , (aa)2ncbnd, ... 

We notice that the occurrences of c constitute significant factors. 

Hence the rank of [L(H)] is infinite and the equivalence group [L(H)J 

is infinitely generated, Lemma 2 tells us that La, b, c, d] is not an 

equivalence group. 

All powers of h and g coincide on a and on b, and 

hi(cd) = gi(cd) = cbid for i = o, I, ... 

From this follows that T = ~a, b, cd, cbd, cbid, ...~ is an equivalence 
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group.. 

T = [a, b, cd, cb~] since cbld = 
A A A A 

cb~)Icd 

We have found a finitely generated equivalence group for G and H even 

i f  [L(G)] = [L(H)] i s  i n f i n i t e l y  g e n e r a t e d .  

We proceed to formulate a conjecture. 

Main conjecture: 

For any two DOL-systems H and G a finitely generated equivalence group 

can be effectively constructed. 

Because of theorem 2, a proof of this conjecture will solve the equiva- 

lence problem for IX)L-systems. 

A consequence of the conjecture is that for any D0L sequence H the set 

of all free group elements x, with the property that if G is equivalent 

with H then < ~ , h,x> is equivalent with <~ ,g,x,>~is a finitely gene- 

rated group. This follows because the intersection of two finitely ge- 

nerated subgroups of F(~ ) is finitely generated, and because there 

exists only a finite number of DOL systems equivalent to H. (N. Nielsen 

[7o] ) 

4. An algorithm to find [L(H)]. 

This section presents an algorithm which finds a set of generators for 

[L(H)] if this group is finitely generated. If this is not so, the al- 

gorithm yields a still larger subset of an infinite set of free genera- 

tors with significant factors. We have at present no available test to 

decide between the two possibilities. It is no surprise that this algo- 

rithm exists~ Nielsen's algorithm is known from free group theory. It 

finds a set of free generators with significant factors from a finite 

set of generators. 

Let Nielsen (W) be a procedure which has a finite set W as argument 

and which as result delivers a set of free generators with significant 

factors of [W]. 
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Our algorithm is then as follows: 

b e~in 

Yo := {We] ; 

n :: I; 

while 

begin Yn := Nielsen (Yn-IU {Wn~) ; 

n :: n+1 

end 

end 

At exit from the algorithm, WnE[Yn_1].It follows that [L(H)] : pfn_1]. 

It is believed, and stated as the small conjecture in section 3, that 

the rank of EL(H)] equals n at exit from the algorithm. The sore point 

is of course that if [L(H)] has infinite rank then the algorithm never 

exits In this case EL(H)] : ~ [Yi] An adaptation of the aigorit~= 
• i=o " ' 

which takes into account that the sequence is generated by a homomor- 

phism is being implemented in LISP 1.5 on IBM/360. In the next examples, 

Z n denotes [Yn]. 

Example 11: 

This example shows the successive values of Z n for the following DOL- 

system 

H : ,{a->ab,b->ca, o->ac } ,ac> 

The first elements of the sequence are 

ae 

abac 

abcaabac 

abcaacababcaabac 
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Zo = [~] 
Z 1 = D ' c '  a b a c i  = JaR, a~]  

z 2 = E a c , a b , a b e a a b a @  = E a £ , a ~ , £ ~  

Z 3 = [ a c , a b , c a ,  a b c a a c a b a b c a a b a o ]  = [a£,a~,R~,k ] = Z 2 

Now t h e  c h a i n  ZoC Z 1 c  Z 2 . . .  w i l l  s t a y  c o n s t a n t  f o r e v e r  and  [L(H)]  = Z 2. 

From t h e o r e m  I we know t h a t  t h e  s e q u e n c e  i s  l o c a l l y  c a t e n a t i v e .  From 

lemma 1 we know t h a t  [L(H)]  i s  an e q u i v a l e n c e  g r o u p  f o r  any  o t h e r  DOL- 

system that generates the same sequence. 

From an algor~hmic point of view it would be convenient to find genera- 

tors for Z n as an extension of the generators found for Zn_I, and this 

is always possible since Z n is an extension of Zn_ I. In this example 

it is even possible to obtain significant factors in the extended set 

of generators. This is not always possible as will be shown in example 

12. 

We know that the IX)L-system H is locally catenative but we have not 

found a locally catenative formula. Such a formula can be found by keep- 

ing track of the relation between the generators of Z n (in the follo- 

wing denoted w' w' I ) and the elements of the sequence 
0 ~ ' ' '  ~ n-- 

(We, ... ,wm, ..). We will also use the fact that 

: w' h(wn_~)]  Z n 0 0 ~ . . .  W n_1 ~ 

Using this method we get 

step 0 

W = ac 
o 

z o =  Ewg] = [~] 
step, t 

h(wg)  = abac 

w~ = h(w~)w[~ v = ab 

= Fw' w'1 Z I b O' 1J = [aR'a~] 

W t = W 
0 0 

w~ = wt~  ° 
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step 2 

h ( w ~ )  : a b c a  

w,, = ~ h ( w ~ )  : c a  

z 2 = [Wo,W~,W ~1 = F a ~ , a , ~ , ~ ]  

step 3 

h(w~) : acab 

From the calculations in step 3 we get 

},, = WoWIT~'oW17,'2wS," 2 <=> 

w3= w2"Z'lWoW 1WoW 2 

Hence the locally catenative formula 

w =w w w w w w cut=3 n n-1 n-2 n-3 n-2 n-3 n-1 

Notice that the example agrees with the small conjecture. 

w~ = WoWl.W2~ 1 

w~ = Wo~1.~o.W1~2w3~ 2 

Example 12: 

This example shows the methods used in example 11 on the DOL-system 

H : < { a , b , c ] , { a - > a b c , b - > a , c - > c } , a b >  

step 0 

W'o = a b  W'o = Wo 

Z 0 = ~]~]  

step 1 

w~ = ca w~ : WoW1 

z I = [ ~ , ~  

step 2 

h(w~) : cabc 

w~ = b c  w~ = ~lWo~lW2 
z 2 : [~,~,~] 
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step 3 

h(w ) = ac 

w~ = ac w' ~=w2wlw2w~ 
3 3 

Z 3 = Fa~,~,~c,ac] 

At this point w~ has no significant factors, and we have to change some 

of the previously found generators to obtain significant factors. 

This situation occurs exactly in the case where the new generator is a 

catenation of an initial subword and a final subword of the generators 

previously found. We mention, without stating the proof, that [L(H)] 

in this case is finitely generated. According to the algorithm we now 

should change the generators to obtain significant factors. But since 

we know that the group is finitely generated we might as well carry on 

until we get the locally catenative formula. Notice that although the 

generators found do not contain significant factors they are still free 

generators of the group in agreement with the small conjecture. 

step 4 

h(w ) = abet 

w' = co w' =~o ~ w2~ w. 4 4 3 34 

z 4 = Ea ,c , e,ac,ec] 

step 5 

h(w' 4) = cc 

w' = k  
5 

w~=~.w~w~w • 
P 4j~3o 

WlW4W3W4W5 

From this we get 

4 3 4 7 0 3 ~ 3 4  

And the locally catenative fo~ula 

~=w W w w ~ W w ~ w 
n-1 n-2 n-1 n-4 n-5 n-2 n-3 n-2 n-1 

Notice, that althou~ w4 i s  o f  l e n g t h  24 we o ~ y  h a v e  t o  o p e r a t e  on a 

word w~ of length 2. ~e c~ say that we for each word have extracted 
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the new information, and the methods used in these examples reduce the 

hard work involved dealing with fast growing systems. 
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