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PREFACE 

Various types of composites are used in engineering practice. The most important 
are fibrous compositesy laminates and materials with a more complicated geometry of 
reinforcement in the form of short fibres and particles of various properties^ shapes 
and sizes. 

The aim of course was to understand the basic principles of damage growth and 
fracture processes in ceramic, polymer and metal matrix composites. Nowadays, it is 
widely recognized that important macroscopic properties like the macroscopic stiffness 
and strength, are governed by processes that occur at one to several scales below the 
level of observation. Understanding how these processes infiuence the reduction of 
stiffness and strength is essential for the analysis of existing and the design of 
improved composite materials. 

The study of how these various length scales can be linked together or taken into 
account simultaneously is particular attractive for composite materials, since they 
have a well-defined structure at the micro and meso-levels. Moreover, the 
microstructural and mesostructural levels are well-defined: the microstructural level 
can be associated with small particles or fibres, while the individual laminae can be 
indentified at the mesoscopic level. For this reason, advances in multiscale modelling 
and analysis made here, pertain directly to classes of materials which either have a 
range of relevant microstructural scales, such as metals, or do not have a very well-
defined microstructure, e.g. cementitious composites. 

In particular, the fracture mechanics and optimization techniques for the design of 
polymer composite laminates against the delamination type of failure was discussed. 
Computational modelling of laminated composites at different scales: microscopic 
mesoscopic and macroscopic with application of suitable plate/shell elements for thin 
composites was presented. The application of fracture and damage mechanics 
approaches to the description of the complete constitutive behaviour of high 
performance fibre-reinforced cementitious composites was discussed. With regard to 
ceramic matrix composites (CMC) the damage and fracture processes was described 
in three scales. The important problem of damage process of interfaces surrounding 
particles, grains or fibres in composites was analysed for different properties of the 
components of composites and in different scales. 

The course brought together experts dealing with materials science, mechanics, 
experimental and computational techniques at the three mentioned scales. I 
acknowledge the commitment of Professors: H.Altenbach, R. de Borst, P.Ladeveze, 
B.Karihaloo and Z.Mroz in making the course possible in the nice atmosphere of the 
Palazzo del Torso in Udine. Lectures delivered by mentioned Professors presenting the 
latest achievements in the topic of the course and discussions with the course 
participants significantly enriched the scientific aim of this course. 58 participants 
PhD students, postdocs, senior researchers and engineers had good opportunity to 



listen to interesting lectures and discuss their on going research problems with leading 
persons in the field of the course. 

I thank to the Rectors and staff of CISM for help and co-operation in the 
organization of the course and printing these lecture notes. 

Tomasz Sadowski 
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Modelling of anisotropic behavior in fiber and particle 
reinforced composites 

Holm Altenbach 

Lehrstuhl Technische Mechanik, Fachbereich Ingenieurwissenschaften, 
Martin-Luther-Universitat Halle-Wittenberg, D-06099 Halle (Saale), Germany 

Abstract Fiber and particle reinforced composites are widely used in aircraft, spacecraft and 
automotive industries, but also in various branches of the traditional mechanical engineering. 
They substitute classical materials like steel, aluminium, etc. since their specific stiffness is 
significant higher. The optimal design of structures made of reinforced composites demands 
the mathematical description of the constitutive behavior of these materials characterized by 
anisotropic mechanical properties and inhomogeneities. This contribution is devoted to the 
phenomenological modelling of fiber and particle reinforced materials. 

After a short introduction the modelling principles are briefly discussed. For a realistic 
material description the anisotropic elasticity is necessary. The generalized HoOKE's law is 
introduced and the symmetry relations of the stiffness and compliance tensors are discussed. 
For the analysis of the limit state of composite materials various failure and strength criteria 
are presented. Finally, a short introduction into modelling of polymer suspensions is given. 

1 Introduction 

Fiber and particle reinforced composites are used as structural materials in many application 
fields: aircraft and rocket industries, mechanical and civil engineering, sport goods and auto­
motive industries, etc. The reason for this is a number of advantages in comparison with the 
traditional structural materials: high specific stiffness properties, small weight, etc. It must be 
noted that there are also disadvantages: for example, more complex design rules and failure 
analysis. The application fields, the advantages and disadvantages are discussed, for example by 
Altenbach et al. (2004); Altenbach & Becker (2003); Ashbee (1994); Chawla (1987); Ehrenstein 
(1992); Gay (2002); Gibson (1994); Hult & Rammerstorfer (1994); Jones (1975); Kim (1995) 
and Powell (1994). 

The design of structures made of composites is connected with two main problems: 
• the material behavior is usually anisotropic and 

• the inhomogeneous distribution of all properties must be considered. 
In the first case - anisotropic material behavior - one has to apply the anisotropic constitutive 
equations of continuum mechanics since the anisotropic behavior can be observed in the elastic, 
viscoelastic, plastic, etc. range. In addition, the classical failure and strength analysis based on 
the existence of an equivalent stress and a criterion, which allows to compare complex (multi-
axial) stress states with some experimental data based on uniaxial tests must be extended. The 
problem is that in the case of anisotropic material behavior various failure modes are existing and 
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a unique criterion for all cases cannot be established. The second item - the inhomogeneity of 
the material behavior - is more complicated. As is known from many practical applications for 
the general analysis of the stress or strain states one can use the overall properties assuming that 
the material is quasi-homogeneous and can be described with the help of effective ("smeared") 
properties. This approach works successfully in the case of structural elements made of com­
posites if only the global mechanical characteristics (for example, the deflections of plates or the 
eigenfrequencies) are to be computed. In this case the comparison with the experimental data 
is satisfying. A quite different situation one obtains if the local behavior plays the main role. 
Now the averaged properties cannot be applied and the heterogeneity of the material must be 
considered. 

Below the anisotropic analysis of composite materials and structures is discussed. The atten­
tion is paid to the elastic range and the limit state only. Both situations are mostly assumed in 
practical applications. In addition, two types of reinforcement are considered: the unidirectional 
continuous fiber and the short fiber (particle) reinforcements. They are assumed as a satisfying 
approximation in many practical cases. From the theoretical point of view the analysis of con­
tinuous fiber reinforced composites is much simpler - in the case of particle reinforcement the 
heterogeneity plays an important role. 

After this brief introduction the basics of modelling the material behavior and anisotropic 
elasticity are presented. Some remarks concerning the principles of the global failure analysis 
are presented. Finally, some models of particle reinforced composites are discussed. 

2 Materials behavior modelling 

The modelling of the material behavior is a necessary first step for the engineering analysis of 
any structure. Since the geometry, the loading cases, etc. are often very complex the analysis 
must be performed computer-aided mostly. For this purpose one needs mathematical expressions 
describing the material behavior. In this section some problems in material behavior modelling 
will be discussed. For further reading one can recommend, for example, Altenbach & Skrzypek 
(1999); Haddad (2000a,b); Hergert et al. (2004); Lemaitre (2001); Lemaitre & Chaboche (1985) 
and Skrzypek & Ganczarski (2003). 

2.1 Continuum mechanics background 

The basic equations in Continuum Mechanics of deformable bodies can be divided into to 
groups, see Lai et al. (1993) 

• the material independent equations and 

• the material dependent equations. 
The first group is following from the general balance equations, added by the statement of 
stresses and geometrical relations. As the main result one gets the equilibrium equations or 
the equations of motion. Since the material behavior can be reversible or irreversible from the 
energy and the entropy balance some statements of the physical admissibility of the deformation 
processes can be made. 

The second group of equations allows the description of the individual response of any mate­
rial on the applied stresses/forces or strains. The so-called constitutive equations (added, may be, 
by evolution equations) are related to some of the general balances (they describe the theoreti-
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cal and the mathematical framework), but the concretion must be performed without any general 
physical rules. The theoretical framework for the concretion is presented by Haupt (2002); Kraw-
ietz (1886) or Palmov (1998). 

In addition, the coefficients or parameters of the constitutive and the evolution equations must 
be identified by tests. There are different possibilities, discussed in Altenbach et al. (1995). Let 
us assume a macroscopic test, for example, the tension test. In this case one observes the stress-
strain curve assuming that the stress and the strain is acting in the same direction. The problem 
is now how to describe mathematically this curve. At first, it is impossible to find a general 
analytical function for all stress and strain values. At second, it is clear that such a description is 
acceptable only for a very specific situation (for example, some parameters like the temperature 
or the moisture are fixed, the stresses lie in a small range, etc.). So we get from the tension test 
only a special law of the constitutive behavior. 

It must be noted that this approach cannot be used for the modelling and simulation of the 
three-dimensional behavior, especially in the case of anisotropy since one needs experimental 
benefit from an infinite number of tests. In such a situation one has to perform a finite number of 
tests, that means one has to realize, for example, the tension test, the compression test, the shear 
test (torsion of a thin-walled cylindrical specimen), the two-dimensional tension test (biaxial 
tension test) and the hydrostatic compression test. In all these cases as a result one obtains 
stress-strain curves, but the curves can differ significantly. In addition, since the choice of tests 
is not unique the results depend on the kind of tests that are performed. Note that tests realizing 
homogeneous stress and strain states are preferred. 

Limiting our further discussions to pure mechanical performances the mathematical descrip­
tion of the material behavior can be simplified since for the formulation of the constitutive and 
evolution equations one needs only a few variables. Let us introduce these variables. 

At first let us focus our attention on the strains. In Fig. 1 typical strains are shown. One can 
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Figure 1. Possible strains: extensional (left) and shear (right) strains 
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consider that there are two types of strains: 
• Extensional strains e: The body changes only its volume but not its shape. 
• Shear strains 7: The body changes only its shape but not its volume. 

Concerning Fig. 1 in the one-dimensional case one can define the stresses and strains as follows. 
Assuming a uniform distribution of the forces F and T on the cross-section we introduce 

normal stress cr, 

6 = —;—- = -r— extensional strain £, 

shear stress r, 

7 ^ tan 7 = —— shear strain 7 

In the general case of the classical material behavior the stress state is characterized by the 
stress tensor cr. This is from the mathematical point of view a second rank tensor and assuming 
a orthonormal co-ordinate system (Cartesian co-ordinates Xi with the unit basic vectors ê  which 

F 

Ao 
l-lo 

k 
T 
Ao 

tan 7 = 

A/ 

h 

Av 

~k 

have to fulfil the following conditions: \ei\ — 1,6^ • 
z, j — 1,2,3). The following representation is valid 

Cj = Sij, 6ij is the KRONECKER symbol, 

cr = (7i (2.1) 

Using a we are applying the absolute or invariant notation, (TIJ are the coordinates in the index 
notation. The invariant notation used here is presented, for example, by Lurie (1990). 

Let us discuss the meaning of the components of the stress tensor. The normal stresses are 
related to i = j and the shear stresses to i ^ j . Note that cTij = aji and for this case the stresses 
are shown in Fig. 2 The three-dimensional state of strains is characterized by the strain tensor 
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Figure 2. Stress and strain tensor components for Cartesian coordinates 

Sij with the extensional strains in the case i = j and the shear strains for i 7̂  j . Note that Sij 
with i ^ j are the tensor shear coordinates, 2eij = ^ij ^i ^ j the engineering shear strains. The 
coordinates of the strain tensor are also shown in Fig. 2. 
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Any second rank tensor can also be presented as a [3 x 3] matrix. For the stresses we obtain 

(2.2) 
<Jii cri2 cr i3 

^ •̂21 cr22 cr23 

^̂ "31 cr32 cr33 

T21 Cr2 r 2 3 

^31 T32 Cr3 

Since the symmetry of the stress tensor is assumed (a = a^ or aij = GJI) the representation 
can be simplified as 

C^ll cri2 cri3 

^̂ "12 Cr22 <T23 

<^13 cr23 cr33 

<7l n 2 T l3 

T12 cr2 T23 

T i3 T23 cr3 

In addition, the following vector representation is possible 

(T = [ (Ji a2 (7s (J4 0-5 (76 ] 

(2.3) 

(2.4) 

Between the components of the stress tensor (2.1) or the stress matrix (2.3) and the stress vector 
(2.4) the following relations exist 

(711 = CTi, Cr22 = Cr2, cr33 = 0-3, ^ 2 3 = ^ 4 , (T13 = a^, Cri2 = a^ 

Considering small deformations the following strain tensor can be introduced 

£ = [Vuf^'^ = hvu+ {Vuf] (2.5) 

Here u denotes the displacement vector and V is the Nabla operator. Assuming again Cartesian 
coordinates one can write 

' duj dui 
2 V dxi dxj 

The strain tensor written down as a matrix 

e = 
^11 2 e i 2 2^13 

2^12 ^22 2623 

2^13 2^23 ^33 

1 / X 

^11 712 7 i 3 

712 ^22 7 2 3 

7 1 3 7 2 3 ^33 

or as a vector 
£1 £2 ^3 2^4 = 74 2^5 = 75 2SG = 76 ]^ 

(2.6) 

(2.7) 

(2.8) 

The components of the strain tensor are shown in Fig. 2. 
It can be established that the symmetry of the stress tensor results in a symmetry of the strain 

tensor. This is not a general statement in Continuum Mechanics, but writing down the elastic 
energy, for example, one can see that only the symmetric part of the strain tensor plays a role 
in further discussions if the stress tensor is symmetrically. From the symmetry condition of the 
strain tensor follows that the strains can be represented by (2.8). 

Remark: The starting point of discussion of the anisotropic behavior is connected with three 
principal assumptions: 

• classical continuum assumption (no polar continua), 
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• small strains assumption, and 
• elastic behavior assumption. 

For many composite material applications these assumptions are valid since composites are 
mostly brittle, that means they behave linear elastically with the exception of the limit state 
characterized by the failure. From the Material Science it is well known that brittleness can be 
observed at small strains and after the elastic range the fracture starts immediately. The assump­
tion of the stress tensor symmetry is under discussion, but using non-symmetric stress tensors the 
identification of the material properties is more complicated (Nowacki (1985)). So we decided 
for the main part of this contribution that the assumption of the stress tensor symmetry is valid. 

2.2 Elastic behavior 

The history of the theory of elasticity is presented in several monographs and textbooks (Tod-
hunter & Pearson (1886), Todhunter & Pearson (1893), Love (1927), Timoshenko (1953), Het-
narski & Ignaczak (2004) among others). In parallel the theory of strength and failure was 
developed. Some important steps in the development of models for the elastic behavior were 

• the establishment of HoOKE's law, 
• the introduction of the YOUNG'S modulus, 
• the stress and strain concepts, 
• the theory of linear elasticity, 
• the discussion related to the number of material parameters, 
• the anisotropic elasticity, 
• isotropic failure and strength criteria, 
• the anisotropic failure and strength, 
• the application of continuous fiber reinforced composites, and 
• particle reinforced composites. 

It is easy to see that both the theory of elasticity and the failure/strength theories were developed 
by the inductive way (the generalization was made step by step). Only during the last fifty years 
the deductive theory was formulated by Truesdell & Noll (1992) and others. 

Let us now discuss the elasticity condition more in detail. The starting point is the intro­
duction of two second rank tensors (the stress tensor a and the strain tensor e) which are sym­
metrically and characterize the stress and the strain state. Now the question is how to formulate 
a constitutive equation for the elastic behavior. 

The simplest case is the HOOKE'S law 

a = Ee (2.9) 

containing only one material parameter. From the mathematical point of view the HoOKE's law 
is an algebraic linear equation of two scalar variables (the stress a and the strain e). The general 
form of a linear function of two variables is 

or = ae ^h 

The coefficients can be estimated as follows: a is equal to E (the YOUNG'S modulus) and h in 
many applications can be assumed to be 0 otherwise h characterizes the eigenstress. The result 
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6 = 0 is identical to the statement that from the stress free state assumption follows no strains 
and vice versa. 

The HOOKE'S law is a special constitutive equation connecting the mechanical variables only. 
So, for example, isothermal conditions must be considered. The basic idea is coming from the 
original HoOKE's proposal that the loading state and the deformation state are proportional. At 
present this statement can be formulated for the normal stresses and strains as (2.9). For the shear 
stresses and shear strains the following relation is valid 

r = G7, G = - , G shear modulus (2.10) 
7 

From the mathematical point of view (2.9) is, as was mentioned, a linear function of two 
variables. By this equation eigenstresses and eigenstrains cannot be described, and the nonlinear 
behavior cannot be presented. Since the stress and the strain states in the three-dimensional 
case are presented by the stress tensor and the strain tensor one has to built up a linear function 
between second rank tensors 

a - ^^^E-e, aij=Eijkieki;k,l = 1,2,3 (2.11) 

The role of the proportionality factor plays the fourth rank HoOKEan tensor ^"^^E. Now the 
main problem is the analysis of the fourth rank tensor ^"^^E = EijkieiCjekei which must be 
related to the material properties of the linear-elastic anisotropic continuum. The experimental 
identification of the components of this tensor is non-trivial. 

Considering the three-dimensional space M^ the number of the elasticity tensor components 
Eijki is 3^ = 81 with 3 as the dimension of the space and 4 as the rank of the tensor. With 
respect to the experimental effort one has to reduce this number. There are three main ideas for 
the reduction: 

• to use general statements of the theory like the statements of symmetry for the stress and 
for the strain tensor or the statement of the elastic potential, 

• to use symmetry considerations for the material behavior like the statement of monoclinic, 
orthotropic or transversally-isotropic material behavior and 

• the statements of approximative stress or strain states (plane stress or plain strain condi­
tions). 

Let us focus our attention to the first and the second item. From the first item, see for example 
Altenbach & Altenbach (1994), aij = cjji results in Eijki = Ejiki and Ski = sik in Eijki — 
Eijik. Using both assumptions the number of tensor components is reduced to 36. In addition, 
further reduction one gets from the existence of the elastic potential W. In this case one can 
write down 

1 1 1 1 
W = -a-e= -£" ^^'>E •• £, W = -orijSij = -EijkieijSki (2.12) 

Calculating the first and the second derivatives with respect to the strain tensor 

de ' de^ 
or 

dW d'^W 
osij oeijdski 
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one can conclude that Eijki = EkUj. So finally, from the statements of the first item we obtain a 
reduction of the number of independent components Eijki from 81 to 21. 

The discussed possibility of reducing the number of components allows to use a second re­
presentation of the elastic behavior. Considering the six stresses and the six strains as vectors 
(2.4) and (2.8) a linear functional relationship between these vectors can be formulated with the 
help of a [6 X 6] matrix (instead of the fourth rank elasticity tensor) 

[(Jr] = [E^j][ej]- z,j = l , 2 , . . . , 6 

with the elasticity matrix Eij. Assuming again the existence of an elastic potential one gets 
further reduction of the number of independent coordinates of the elasticity tensor. The elastic 
strain energy can be expressed by the strain energy density function 

W{ei) = -^GiEi = -EijEjEi 

Let us calculate once more the first and the second derivatives of this function with respect to the 
strain vector 

dW 
dsi dsidcj 

— Eij^ 
dsjdsi 

= E^ 
d^W d^W 

dsidsj dsjdei 

From the last equation one can make the conclusion that the elasticity matrix must be symmetri­
cally 

•l^ij — -t^ji 

and the number of the independent material coefficients is only 21. 
The generalized relations in the contracted vector-matrix form in the case of the linear aniso­

tropic elastic behavior can be written as follows 

CTl 

(^2 

CTS 

(74 

(^5 

ere 

En 

S 

E\2 

E22 

Y 

Ei3 

E23 

E33 

M 

Ei4 

E24 

E34 

E44 

El5 

E25 

E35 

E45 

E55 

Eie 
E26 

E36 

E46 

E56 
EQQ 

£1 

e2 

^3 

£4 

^5 

SQ 

(2.13) 

Let us summarize the basic formulae for transformation of the stress, the strain and the elasticity 
tensors in the relevant vectors or matrices. In Table 1 the transformation rules for the stress and 
the strain tensor coordinates are shown. Table 2 summarizes the transformation rules for the 
elasticity tensor. 

In some cases it is more convenient to use the elasticity equation in the inverse form 

^ 1 

^2 

^ 3 

54 

^ 5 

^6 

5 l l 

S 

S12 

S22 

Y 

Sl3 

S23 

S33 

M 

5 i 4 

5'24 

5'34 

S44 

Sl5 

S25 

S35 

*S'45 

S55 

S16 

S26 

S36 

'S'46 

S56 

*5'66 

^ 1 

(^2 

(T3 

cr4 

^ 5 

(^6 

(2.14) 
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Table 1. Transformation of the tensor 
coordinates aij and Sij to the vector co­
ordinates ap and Sp 

(Tij 

^ 1 1 

C»"22 

C^33 

^ 2 3 = ^2Z 

C^31 = ^ 3 1 

C 1̂2 = n 2 

Gp 

(Tl 

^ 2 

(^3 

^ 4 

CTs 

CTe 

^ U 

^11 

^22 

^33 

2^:23 = 723 

2^31 = 731 

2^12 = 7 l2 

Op 

£ l 

£2 

£3 

£4 

£5 

£6 

Table 2. Transformation of the tensor coordi­
nates Ej-jki to the matrix coordinates En -'ijkl pq 

Eijki 

ij : 

kl: 

11, 22, 
23, 31, 
11, 22, 
23, 31, 

33 
12 
33 
12 

Epq 

p: 

Q • 

1, 2, 
4, 5, 
1, 2, 
4, 5, 

3 
6 
3 
6 

It is easy to show that 

[Eij][Sjk] 

and 

[Sik] = 
1 i = k 
0 i^ /c 

ij,k = 1,...,6 

<J = J5J£, cr̂  = EijEj, € = 5(7, Si = SijCFj] i, j = 1, . . . , 6 

with E = [jEĴ j] as the stiffness matrix and S = [Sij] as the compliance (flexibility) matrix. 

2.3 Material science background 

Further reduction of the number of independent components is possible if we take into ac­
count the material symmetry, see Nye (1992) among others. In dependence of the scale size 
each material has a special kind of symmetry. For example, metals have a crystalline microstruc-
ture. In this case each crystal has an individual orientation and the symmetry of each crystal 
can differ. In addition, they are oriented arbitrarily. On the macroscopic level the materials are 
polycrystalline materials with a huge number of crystals. Averaging the properties and the indi­
vidual orientations over the volume one obtains an isotropic behavior on the macroscopic level 
in contrast to the anisotropic behavior on the microscopic level. 

Another situation follows from technological treatment of materials. For example, aniso­
tropic behavior can be established for initially isotropic materials after rolling processes. In 
the case of reinforced materials the situation is more complicated. The individual response of 
the matrix and the reinforcement can be isotropically, but the combination of both results in 
a macroscopic anisotropic behavior. The analysis of possible reductions of the number of the 
fourth rank material tensor components which are related to the independent material properties 
will be shown for special cases of the anisotropic behavior later. 

In material science structural materials are classified as follows: metals, ceramics, and poly­
mers. It is difficult to give an exact assessment of the advantages and disadvantages of these three 
basic material classes, because each category covers whole groups of materials within which the 
range of properties is often as broad as the differences between the three material classes. But at 
the simplistic level some obvious characteristic properties can be identified: 

• Most metals are of medium to high density. They have good thermal stability and can be 
made corrosion-resistant by alloying. Metals have useful mechanical characteristics and it 
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is moderately easy to shape and join. Metals became the preferred engineering material, 
they posed less problems to the designer than either ceramic or polymer materials. 

• Ceramic materials have great thermal stability and are resistant to corrosion, abrasion, etc. 
They are very rigid but mostly brittle and can only be shaped with difficulty. 

• Polymer materials (plastics) are of low density, have good chemical resistance but lack 
thermal stability. They have poor mechanical properties, but are easily fabricated and 
joined. Their resistance to environmental degradation, e.g. the photomechanical effects of 
sunlight, is moderate. 

The main problem in modelling the material behavior is the necessity to describe the similar 
behavior (for example, the elastic behavior) using similar equations. This is the reason for the 
introduction of some basic terms. 

A material is called homogeneous if its properties are the same at every point and therefore 
independent of the location. Homogeneity is associated with the scale of modelling and the 
so-called characteristic volume. In this sense the definition can be useful only for the average 
material behavior on a macroscopic level. On a microscopic level all materials are more or 
less inhomogeneous but depending on the scale, materials can be described approximately as 
homogeneous, otherwise as inhomogeneous. A material is inhomogeneous or heterogeneous 
if its properties depend on location. But in the average sense a material can be regarded as 
homogeneous, quasi-homogeneous or heterogeneous. 

A material is isotropic if its properties are independent of the orientation, they do not vary 
with direction. Otherwise the material is anisotropic. A general anisotropic material has no 
planes or axes of material symmetry, but some special cases of material symmetries like or-
thotropy, transverse isotropy, etc., will be discussed later in detail. 

Furthermore, a material can depend on several constituents or phases, single phase materials 
are called monolithic. The above three mentioned classes of conventional materials are on the 
macroscopic level more or less monolithic, homogeneous and isotropic. 

3 Composites 

3.1 Classification 

The group of materials which can be defined as composite materials is extremely large. Its 
boundaries depend on definition. In the most general definition one can consider a composite 
as any material that is a combination (composition) of two or more materials (constituents) and 
have material properties derived from the individual constituents. These properties may have 
the combined characteristics of the constituents (for example, established by the weighted mix­
ture rules) or they are substantially different. Sometimes the material properties of a composite 
material may exceed those of the constituents. 

This general definition of composites includes natural materials like wood, traditional struc­
tural materials like concrete, as well as modem synthetic composites such as fiber or particle 
reinforced plastics which are now an important group of engineering materials where low weight 
in combination with high strength and stiffness are required in structural design. 

In the more restrictive sense a structural composite consists of an assembly of two materials 
of different nature. In general, one material is discontinuous and is called the reinforcement, the 
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other material is mostly less stiff and weaker, but continuously distributed. It is called the matrix. 
The properties of a composite material depend on 

• the properties of the constituents, 
• the geometry of the reinforcements, 
• their distribution, orientation and concentration usually measured by the volume fraction 

or fiber volume ratio, and 
• the nature and quality of the matrix-reinforcement interface. 
In a less restrictive sense, a structural composite can consist of two or more phases on the 

macroscopic level. The mechanical performance and properties of composite materials are supe­
rior to those of their components or constituent materials taken separately. The concentration of 
the reinforcement phase is a determining parameter of the properties of the new material, their 
distribution determines the homogeneity or the heterogeneity on the macroscopic scale. The most 
important aspect of composite materials in which the reinforcement are fibers is the anisotropy 
caused by the fiber orientation. It is necessary to give special attention to this fundamental char­
acteristic of fiber reinforced composites and the possibility to influence the anisotropy by material 
design for a desired quality. 

The reinforcement constituent can be described as fibrous or particulate. The fibers are con­
tinuous or discontinuous. Continuous fibers are arranged usually uni- or bidirectional, but also 
irregular reinforcements by continuous fibers are possible. The arrangement and the orientation 
of continuous or short fibers determines the mechanical properties of composites and the be­
havior ranges between a general anisotropy to a quasi-isotropy. Particulate reinforcements have 
different shapes. They may be spherical, platelet or of any regular or irregular geometry. Their 
arrangement may be random or regular with preferred orientations. In the majority of practical 
applications particulate reinforced composites are considered to be randomly oriented and the 
mechanical properties are homogeneous and isotropic. The preferred orientation in the case of 
continuous fiber composites is unidirectional (UD) for each layer or lamina (UD-lamina). Ex­
amples of composite materials with different constituents and distributions of the reinforcements 
are shown in Fig. 3. Various classifications of composites are presented in the literature. One 
possibility is shown in Fig. 4. 

Composite materials can also be classified by the nature of their constituents. According to 
the nature of the matrix material we classify organic, mineral or metallic matrix composites. 

• Organic matrix composites are polymer resins or thermoplastics with fillers. The fibers 
can be mineral (glass, etc.), organic (Kevlar, etc.) or metallic (aluminium, etc.). 

• Mineral matrix composites are ceramics with metallic fibers or with metallic or mineral 
particles. 

• Metallic matrix composites are metals with mineral or metallic fibers. 
The use of composites is connected with several functional requirements of fibers and matrices: 

• fibers should have a high modulus of elasticity and a high ultimate strength, 
• fibers should be stable and retain their strength during handling and fabrication, 
• the variation of the mechanical characteristics of the individual fibers should be low, their 

diameters uniform and their arrangement in the matrix regular, 
• matrices have to interface the fibers and protect their surfaces from damage, 
• matrices have to transfer stress to the fibers by adhesion and/or friction, and 
• matrices have to be chemically compatible with fibers over the whole working period. 
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Q ^ Q 

Figure 3. Classification of laminates, a Laminate with uni- or bidirectional layers, b irregular re­
inforcement with long fibers, c reinforcement with particles, d reinforcement with plate strapped 
particles, e random arrangement of continuous fibers, f irregular reinforcement with short fibers, 
g spatial reinforcement, h reinforcement with surface tissues as mats, woven fabrics, etc. 

At present the main topics of composite material research and technology are 
• investigation of all characteristics of the constituents and the composite material, 
• material design and optimization for the given working conditions, 
• development of analytical modelling and solution methods for determining material and 

structural behavior. 

COMPOSITE 

fiber reinforced particle reinforced 

random 
orientation 

preferred 
orientation 

continous fiber reinforced 
(long fibers) 

discontinous fiber reinforced 
(short fibers) 

unidirectional bidirectional spatial random preferred 
reinforced reinforced reinforced orientation orientation 

Figure 4. Classification of composites after Agarwal & Broutman (1990) 
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Fiber-matrix interface 

Laminae 

Laminate interface 

Figure 5. Hierarchical modelling of laminates 

• experimental methods for material properties, stress and deformation states, failure, etc. 
characterization, 

• modelling and analysis of creep and damage behavior of composites and their life predic­
tion, 

• development of new and efficient fabrication and recycling procedures. 
The most significant mainspring in the composite research and application was weight saving 
in comparison to structures of conventional materials such as steel, alloys, etc. However, to 
have only material density, stiffness and strength in mind when thinking of composites is a very 
narrow view of the possibilities of such materials like fiber-reinforced plastics because they often 
may score over conventional materials like metals not only owing to their mechanical properties. 
Fiber reinforced plastics are extremely corrosion-resistant and have interesting electromagnetic 
properties. In consequence they are used for chemical plants and for structures which require 
non-magnetic materials. Further carbon fiber reinforced epoxy is used in medical applications 
because it is transparent to X-rays. 

3.2 Modelling 

Composite materials consist of two or more constituents and the modelling, analysis and 
design of structures built up of composites are different from conventional materials such as 
steel. There are three levels of modelling (Fig. 5): 

• At the micro-mechanical level the average properties of a single reinforced layer have to 
be determined from the individual properties of the constituents, the fibers and the matrix. 
The average characteristics include the elastic moduli, the thermal and moisture expan­
sion coefficients, etc. The micro-mechanics of a lamina does not consider the internal 
structure of the constituent elements, but the heterogeneity of the ply is regarded. The 
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micro-mechanics is based on some simplifying approximations. These concern the fiber 
geometry and packing arrangement, so that the constituent characteristics together with 
the volume fractions of the constituents yield the average characteristics of the lamina. 

• The calculated values of the average properties of a lamina provide the basis to predict the 
macrostructural properties. At the macro-mechanical level, only the averaged properties 
of a lamina are considered and the microstructure of the lamina is ignored. The properties 
along and perpendicular to the fiber direction, these are the principal directions of a lamina, 
are recognized and the so-called on-axis stress-strain relations for a unidirectional lamina 
can be developed. Loads may be applied not only on-axis but also off-axis and the rela­
tionships for stiffness and flexibility, for thermal and moisture expansion coefficients and 
the strength of an angle ply can be determined. Failure theories of a lamina are based on 
strength properties. This topic is called the macro-mechanics of a single layer or a lamina. 

• A laminate is a stack of laminae. Each layer of fiber reinforcement can have different 
orientations and in principle each layer can be made of different materials. Knowing the 
macro-mechanics of a lamina, one develops the macro-mechanics of the laminate. Average 
stiffness, flexibility, strength, etc. can be determined for the whole laminate. The structure 
and orientation of the laminae in prescribed sequences to a laminate lead to significant 
advantages of composite materials when compared to a conventional monolithic material. 
In general, the mechanical response of laminates is anisotropic. 

When the micro- and macro-mechanical analysis for laminae and laminates are carried out, the 
global behavior of laminated composite materials is known. The last step is the modelling on 
the structure level where the global behavior of a structure made of a composite material is to 
analyze. 

By adapting the classical tools of structural analysis on anisotropic elastic structure elements 
the analysis of simple structures like beams or plates may be achieved by analytical methods, 
but for more general boundary conditions and/or loading and for complex structures, numerical 
methods are used. For laminated composites, assumptions are necessary to enable the mathema­
tical modelling. These are an elastic behavior of fibers and matrices, a perfect bonding between 
fibers and matrices, a regular fiber arrangement in regular or repeating arrays, etc. Summarizing 
the different size scales of mechanical modelling of structure elements composed of fiber rein­
forced composites it must be noted that, independent of the different possibilities to formulate 
beam, plate or shell theories, three modelling levels must be considered: 

• The microscopic level, where the average mechanical characteristics of a lamina have to 
be estimated from the known characteristics of the fibers and the matrix material taking 
into account the fiber volume fracture and the fiber packing arrangement. The micro-
mechanical modelling leads to a correlation between constituent properties and average 
composite properties. In general, simple mixture rules are used in engineering applica­
tions. If possible, the average material characteristics of a lamina should be verified exper­
imentally. On the micro-mechanical level a lamina is considered as a quasi-homogeneous 
orthotropic material. 

• The macroscopic level, where the effective (average) material characteristics of a laminate 
have to be estimated from the average characteristics of a set of laminae taking into account 
their stacking sequence. The macro-mechanical modelling leads to a correlation between 
the known averaged laminae properties and effective laminate properties. On the macro-
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mechanical level a laminate is considered generally as an equivalent single layer element 
with a quasi-homogeneous, anisotropic material behavior. 

• The structural level, where the mechanical response of structural members like beams, 
plates, shells etc. have to be analyzed taking into account possibilities to formulate struc­
tural theories of different order. 

4 Elastic composites as anisotropic solids 

4.1 Basic assumptions 

The classical theory of elastic solids is based on the following assumptions: 
• The material behavior can be approximated as ideal linear elastic. 
• All elastic properties are the same in tension and compression. 
• All strains are small. 
• The stress and the strain tensors are symmetric. 
• The material behavior is homogeneous and isotropic. 

All these assumptions are fulfilled in a satisfactory manner in the case of modelling and ana­
lysis of structure elements made of conventional monolithic materials like steel. The structural 
analysis of elements composed of composite materials is more complicated and based on the the­
ory of anisotropic elasticity (see, for example, Ambarcumyan (1991), Berthelot (1999), Decolon 
(2002), Lekhnitskij (1981), Malmeisters et al. (1977) and Rabinovich (1970)) since the elastic 
properties of composite materials now depend on the direction. In addition, the material is not 
homogeneous at all. The material is piecewise homogeneous and only after averaging it can be 
regarded as quasi-homogeneous. 

For materials with isotropic and anisotropic behavior the governing equations are mostly 
the same. The equilibrium equations, the kinematic equations and the compatibility equations 
are identical because they do not depend on the behavior of the material. Let us summarize 
the material independent equations (see Altenbach & Altenbach (1994), Hahn (1985), Lai et al. 
(1993) among others). At first, we have the dynamic equilibrium equations 

V • cr + p = pix, aij^i -h Pj = puj (4.1) 

with p as the density and p being the body force vector. In the index notation the spatial differ­
entiation is written as (...) ^ (differentiation with respect to the coordinate xi). At second, in the 
case of small strains the Eqs. (2.5) or (2.6) are valid. And last but not least the compatibility can 
be expressed as 

V X s X V = 0, Sij^ki + Ski.ij - Siijk - Sjk.ii = 0 (4.2) 

All these equations are independent of the elastic properties of the material. Only the constitutive 
equations differ significantly for an isotropic and an anisotropic body. 

Let us now consider that the material behavior can be anisotropically. Below the anisotropic 
elasticity in the most general form of the linear constitutive equations will be assumed. In ad­
dition, special cases of elastic symmetries are deduced (for example, the classical HoOKE's law 
for an isotropic body and the plane stress and plane strain cases). The final constitutive equations 
are applied in the analysis of the laminate stiffness and compliances. 
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4.2 Elastic constitutive equations, transformation rules 

The composite material engineering modelling neglects the real on the microscopic scale 
discontinuous structure and considers on a macroscopic or phenomenological scale the material 
models as continuous (quasi-homogeneous). Fiber and particle reinforced composites are highly 
heterogeneous materials as the consequence of the two constituents (fibers/particles and matrix). 
It must be defined a representative volume element of the material on a characteristic scale at 
which the properties of the material can be averaged and such a procedure results in a good 
approximation. If such an averaging is possible the composite material is macroscopic homoge­
neous, the designing structural elements composed of composite materials can be solved in an 
analogous manner as for conventional materials with the help of the average material properties 
(effective properties concept). 

Let us present the main approaches in averaging material properties. We assume that a pris­
matic bar is composed of different materials as shown in Fig. 6. The starting point of the 

El li 

En 

El 

\/ / 

E. 

Figure 6. Prismatic bar composed of different materials 

analysis of the mechanical behavior of such a bar is the stress definition a — F/A and the one-
dimensional elastic law a = Ee, From this follow aA = F ^ EAe and finally e — {EA)~^F. 
EA is the tensile stiffness and {EA)~^ the tensile flexibihty or compliance. Now we assume 
that the different materials of the prismatic bar are arranged in parallel or series. 

In the first case the arrangement is in parallel (VoiGT's model) that means 

The Fi are the loading forces on Ai and the strains si are equal for the total cross-section 

n n 

F = EAe => Fi = EiAiS, Xl ^̂  = ^ = X^ ^^^^^ 

By coupling the equations for the stiffness EiAi one observes the effective stiffness 

Y.E,A, i=l 
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X2 

Figure 7. Rotation of the coordinate 
system. Reference system: 61,62,63, 
rotated system: e\, 63,63 

Figure 8. Rotation of the coordinate 
system around the direction 63 

The second case is the arrangement in series (REUSS' model). With A/ — Yll^=i ^^i ^^^ 
F = Fi one gets 

Al = le = 1{EA)-^F, Ali = ksi = li{EiAi)-^F 

and 

Y^Ak 
2 = 1 

Y,k{EiAi)-' 
2 = 1 

By coupling the equations for the stiffness EiAi one observes the effective stiffness as 

n 

EA = 
Y^kiEiAi)-^ 

{EA)-' = 
1 _ 2 = 1 

The averaging in the VoiGT's or REUSS' sense can be applied as a first approximation for the 
properties of unidirectional reinforced layers. This is demonstrated, for example, by Altenbach et 
al. (2004). But it is well-known that the agreement with experimental data is partly not satisfying, 
see Hult & Rammerstorfer (1994) and Malmeisters et al. (1977). So there are many proposals 
for improvements of the effective properties. 

4.3 Transformation rules 

Let us consider the rotation of the coordinate system as shown in Fig. 7. In this case the 
following transformation rules 
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and 
Re, e = R-^e'=R^e 7T^f 

are valid. R is the transformation or rotation matrix. R is symmetric and unitary (Det R = 
\R,^\ = 1,R-^=R^). 

Considering the special case of rotation 0 around the direction 63 (Fig. 8) the transformation 
matrix takes the form 

R^ 
c s 0 

-s c 0 
0 0 1 

7 

3 
Kij 

- 1 3 
Hij 

T 

Now the transformation rules are 

\e[] 
e'2 

L ^ J 
= 

c 
-s 
0 

s 0 
c 0 
0 1 

e i 

62 

es 
5 

e i 

62 

es 
= 

= 

c 
s 
0 

c —s 0 
s c 0 
0 0 1 

-s 0 ' 
c 0 
0 1 

i 

i 

i 

with c = cos 0, s = sin 0. 
After the introduction of the transformation rules for the coordinate axes one has to discuss 

the transformation rules for the tensors. Let us start with the second-rank tensors. For the stress 
tensor one gets 

^ij — RikRji^kU o-ij = RkiRijCr^i (4.3) 

The transformation rules for the contracted notation result in 

(7; = r;^(7„ ap = ( T ; j ' < , p , ^ = i , . . . , 6 (4.4) 

The transformation matrices Tp^ and (T^^) ^ follow by comparing (4.3) and (4.4). By analogy 
one gets for the strain tensor (contracted notation) 

Summarizing all derivations the following equations can be established 

a' = T"(7, e' - T'e, a - (T^ ) " ' a', e = (T^)"^ e' (4.5) 

Considering these equations the transformation relations for the elasticity matrix can be deduced. 
The starting point is the HoOKE's law 

Ee, 

With Eqs (4.5) one can write down 

(T-)- a = Ee = E{T')-^e' 
-- E'e' = E'T'e T^a = a 

and the transformation relations for the stiffness matrix are 

E' = T'^EiT")'^, E = {T^)'^E'T^ 

E'e' 

a' = T''E{T')-^e' = E'e', 
a = {T'')-^E'T^e = Ee, 
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or in index notation 
771/ rpa rpcr rp rp rpe rp£ rpf 

^ij — -^ik-^jl^kU ^ij — -l-ik-'-jl^kl 

Analogically the transformation relations for the compliance matrix can be formulated. The 
starting point is now 

e = Sa, e' = S'a' 

and after some calculations 

( T ^ ) - V = £ = S'a = 5 ( T ^ ) - V =^ e' =T'S{T^)-^(T' = S'(7', 

one finally gets 

or in index notation 

S' = T^SiT'Y, S = {T'^y S'T^, 

nf rp£ rpe Q Q rpa rpcr Qf 

^ij — •^ik-^jl'^kh ^ij — J-ik-^jl^kl 

The complete estimation of the transformation rules is presented in Altenbach et al. (1996) and 
Altenbach et al. (2004). 

For the special case of a rotation (j) around the es-direction (Fig. 8) the transformation matri­
ces take the form 

3 1 
rpcr 

pq = 

3 1 
rpe 

pq = 

• c 2 

s^ 
0 
0 
0 

—cs 

• c 2 

s^ 
0 
0 
0 

-2cs 

s^ 
c^ 
0 
0 
0 
cs 

s^ 
c^ 
0 
0 
0 

0 
0 
1 
0 
0 
0 

2cs 

0 
0 
0 
c 
s 
0 

0 
0 
1 
0 
0 
0 

0 
0 
0 
c 
s 
0 

0 
0 
0 

- 6 

c 
0 ( 

0 
0 
0 

—s 
c 
0 

2cs 
-2cs 

0 
0 
0 

2^-S^ 

cs 
—cs 

0 
0 
0 

c^-s 

PQ 

- 1 

PQ 

PQ 

- 1 3 
rpa 

PQ 

4.4 Symmetry Relations of Stiffness and Compliance Matrices 

The most general case of the three-dimensional generalized HoOKE's law is connected with 
the stiffness and the compliance matrices containing 36 non-zero material parameters Eij or Sij, 
but due to the potential assumption only 21 are independent constants. In many cases the material 
show symmetries in their behavior. Important material symmetries are 

• monoclinic material behavior, 
• orthotropic material behavior, 
• transversally isotropic material behavior, and 
• isotropic material behavior. 
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Figure 9. Example of monoclinic 
material behavior. 20 non-zero el­
ements Eij or Sij, 13 independent 
elements 

Figure 10. Example of orthotropic material behavior. 
12 non-zero elements Eij or Sij, 9 independent ele­
ments 

In all these cases the number of independent components of the stiffness or compliance matrices 
can be reduced. 

Let us assume monoclinic (monotropic) material behavior. If we have one plane of symmetry 
(for example, Fig. 9) the elasticity matrix takes the form 

[E^, iMC 

En 
E\2 

Eis 

0 
0 

Eie 

Ei2 

E22 

E23 
0 
0 

E26 

Ei3 

E23 

E33 
0 
0 

E36 

0 
0 
0 

E44 

E46 
0 

0 
0 
0 

E45 

E33 
0 

^ 1 6 

E26 

E36 
0 
0 

^ 6 6 

Assuming orthotropic material behavior (for example, Fig. 10) the elasticity matrix takes the 
following form 

[̂ ^ 
1O 

iji 

En 
E12 

El3 

0 
0 
0 

E12 

E22 

E23 
0 
0 
0 

^ 1 3 

E23 

E33 
0 
0 
0 

0 
0 
0 

E44 
0 
0 

0 
0 
0 
0 

E55 
0 

0 
0 
0 
0 
0 

^ 6 6 

The next example is the transversely isotropic material behavior. Now one obtains 12 non-zero 
elements and 5 independent elements 

En 
E12 

E12 
0 
0 
0 

E12 

E22 

E23 
0 
0 
0 

E12 

E23 

E22 
0 
0 
0 

0 
0 
0 

2 (£'22 — E23) 
0 
0 

0 
0 
0 
0 

E35 
0 

0 
0 
0 
0 
0 

E35 



Modelling of Anisotropic Behavior in Fiber and Particle Reinforced Composites 21 

Table 3. Compliance matrix elements 

Material model 

Anisotropy: 
21 independent 
material parameters 

Monoclinic: 
13 independent 
material parameters 

Orthotropic: 
9 independent 
material parameters 

Transversely isotropic: 
5 independent 
material parameters 

Isotropy: 2 independent 
material parameters 

Compliance matrix [Sij] 

5 l i 5i2 5i3 5i4 5i5 5i6 

522 523 524 525 526 
533 534 535 536 

544 545 546 
S Y M 555 556 

566 

Symmetry plane X3 = 0 : 
5i4 = 5i5 = S24 = 'S'25 = S'34 = S'ss = 5'46 = S^Q = 0 
Symmetry plane X2 = 0 : 
5i4 = ^le = S24 = S2Q = Ss4 — 536 = 545 = 556 — 0 
Symmetry plane xi = 0 : 
5l5 = 5i6 = 525 — 526 — 535 = 536 = 545 = 546 — 0 
3 planes of symmetry x\ = 0,3:2 = 0, X3 = 0 
5l4 = 5i5 = 5i6 — 524 = 525 — 526 = 534 
— 535 — Sse = 545 = 546 = 556 — 0 
Plane of isotropy X3 = 0 : 
5 l i = 522, 523 = 5 i3 , 544 = 555, 566 = 2 (5 i i — 5i2) 
Plane of isotropy 2:2 = 0 : 
5 i i = 533,5i2 = 523,544 = 566,555 = 2(533 — 5i3) 
Plane of isotropy xi — 0 : 
522 — 533, 5i3 = 5i2,555 = See^ S44 = 2(522 — 523) 
all other Sij like orthotropic 
5 l l = 522 = 533, 5i2 = 5i3 = 523, 
544 = 555 = 566 = 2(5 i i — 5i2) 
all other Sij = 0 

The classical isotropic material behavior can be represented by 

[Eij]^ = 

with E^ = ^{Eii — E12). There are 12 non-zero elements, but only 2 independent parameters. 
The results for the tree-dimensional compliance matrices are shown in Table 3. The results for 
the three-dimensional stiffness matrices can be summarized as shown in Table 4. 

The structural analysis in engineering is mostly based on the so-called engineering constants. 
Considering orthotropic material behavior with material parameters Ei, Gij and Vij one can write 

Ell 

Ei2 
Ei2 

0 
0 
0 

Ei2 
Ell 

Ei2 
0 
0 
0 

Ei2 
Ei2 
Ell 

0 
0 
0 

0 
0 
0 

E^ 
0 
0 

0 
0 
0 
0 

E^ 
0 

0 
0 
0 
0 
0 

E. 



22 H. Altenbach 

Table 4. Stiffness matrix elements 

Material model 

Anisotropy: 
21 independent 
material parameters 

Monoclinic: 
13 independent 
material parameters 

Orthotropic: 
9 independent 
material parameters 

Transversely isotropic: 
5 independent 
material parameters 

Isotropy: 2 independent 
material parameters 

Elasticity matrix [Eij] \ 

£ 1 1 £12 £ 1 3 £14 £15 £ i 6 

£22 £ 2 3 £24 £25 £26 

£ 3 3 £34 £35 £36 

£44 £45 £46 

S Y M £55 £56 
£66 

Symmetry plane xs = 0 : 
Ei4 — Ei^ = E24 = E25 — Es4 = Es3 — E^e — E^e = 0 
Symmetry plane ^2 == 0 : 

El4 = EiQ = E24 = -£̂ 26 — E^4 = ESQ = E4S = £"56 = 0 
Symmetry plane xi = 0 : 
£"15 = ^ 1 6 = ^ 2 5 = E26 = £^35 = ESQ = £^45 = E4Q = 0 

3 planes of symmetry xi = 0, X2 = 0, X3 = 0 

£'14 = £15 = EiQ = E24 = £25 = E26 = Es4 
= £35 = ESQ = £45 = E4Q — ESQ = 0 
Plane of isotropy X3 = 0 : 

£ 1 1 = £ 2 2 , £ 2 3 = Eis, E44 = £ 5 5 , £"66 = 2 (^11 ~ ^ 1 2 ) 
Plane of isotropy X2 = 0 : 

£ 1 1 = £33^ £12 = E2S, £44 = EQQ, £ 5 5 = 2 (-^33 — £ 1 3 ) 
Plane of isotropy x i = 0 : 

£22 = £ 3 3 , £12 = £135 £ 5 5 = £667 £ 4 4 = 2 (^22 — £23) 
all other Eij like orthotropic 

£ 1 1 = £22 = £337 £12 = £ 1 3 = £235 
£44 — £ 5 5 = £56 = 2 ( ^ 1 1 ~ ^ 1 2 ) 
all other Eij = 0 

down 
(^i = EiiSi -h £12^2 + £13^37 

(72 = £12^1 + £22^2 + £23^35 

o's — EisSi -\- £23^2 + £33^3? 

The inverted generalized HoOKE's law takes the form 

Sl = Siiai + Si2(J2 + 513(73, 

^2 = Si2(Jl + S220'2 + S2SO'S^ 

^3 = Sis(Jl 4- *S'23Cr2 -h 533(73, 

(74 = E44S4, 

(75 = £55^55 

(76 = £66^6 

64 — 5^44(74, 

^5 — ^55 (75, 

^6 = 566^6 

Let us now identify the constants. 
At first, we perform the tension test. The uniaxial tension in x^-direction, ai 7̂  0, ai 

i = 2 , . . . , 6 can be presented by 
0, 

£1 — ^iiCTi, €2 = Si2Cri, Ss = 513(71, £4 — £s — £Q — 0, 
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Physical 

or 

tensile tests yield the elastic constants Ei,ui2^ 

Ei-- - ^ 
^ 1 

1 

^ 1 1 

i^l2 = 

1 

£2 _ 

Sl2 — • 

—Si2E^ 

Z^12 

Z^13 

L, I 

Sl3 

.El 

Analogous relations resulting from uniaxial tension in X2- and X3-directions and all Sij are re­
lated to the nine measured engineering constants (3 YOUNG'S moduli and 6 PoiSSON's ratios) 
by uniaxial tension tests in three directions xi , 0:2 and X3. From the symmetry of the compliance 
matrix one can conclude 

1̂2 _ ^21 ^23 _ 3̂2 i^ __ Y}1 
El E2 E2 Es Es El 

or 
1^ = ^ , ^ = # , i,j = 1,2,3 (i^j) 

^3 '^3'^ ^3 

Remember that the first and the second subscript in PoiSSON's ratios denote stress and strain 
directions, respectively. 

At second, one can perform the shear test 

£4 = 544(74, (S5 = 555 cr5, £6 — S'eeCTe 
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Let us now estimate the components of the elasticity matrix. The following trivial relations 
between stiffness and compliance matrices can be obtained 

^ 4 4 = -5— = ^ 2 3 , 
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In addition, a symmetric [3x3]-matrix must be inverted 

^ij - Sij = Det[5i, 
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S i i 
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The [/jj are submatrices of S to the element Sij 
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Finally, the stiffness matrix can be expressed by engineering constants as follows 
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The most general case of monoclinic material behavior with the plane of elastic symmetry 
{xi — X2) results in 
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The /j^ij are the shear-shear stress coupling parameters, the rjij the normal-shear stress coupling 
parameters (Lai et al. (1993)). 
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4.5 Two-dimensional Material Equations 

A thin lamina can be considered to be under the condition of plane stress with all stress com­
ponents in the out-of-plane direction being approximately zero (Fig. 11). The two-dimensional 
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Figure 11. Plane stress statements 

t ^3 

generalized HoOKE's law for the plane stress state with respect to the xi — X2 plane can be 
formulated as follows 
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In this equation is assumed ^3 = cr4 = 0-5 = 0. In addition we ignore the shear strains £4 ^ 
£5 ^ 0. Based on these statements so-called reduced constitutive equations can be set up. Three 
in-plane constitutive equations can be established 

^1 = Siiai + S'i2Cr2 + SIQGQ 

£2 = Si2Cri -h S220'2 + 5'26<^6 5 ij — j^ 

and an additional equation for the strain £3 in X3-direction can be formulated 
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or again three in-plane equations 

(Ji = EiiSi -h Ei2£2 + -£^13^3 + -£-16^65 

a2 — Ei2£i -\- £"22^2 + £^23^3 + ^26^65 

(J6 = ^16^1 + E2QS2 + £^36^3 + ^66^6 

^ij — ^ji 

The reduced stiffness can be deduced taking into account the condition 

C3 "= EisSi -f ^23^2 + ^33^3 + -£"36^6 ~ 0 

Now the strain 63 can be eliminated 

^3 
£ 3 3 

{Ei^Sl + ^23^2 + -£^36^6) 

and the three in-plane equations can be rewritten 

Eij -
E33 

Sj =Qij£j, ij = 1 , 2 , 6 

Qij denotes the reduced stiffness matrix since the values of the elasticity (stiffness) matrix will 
be partly reduced. The number of unknown independent parameters of each of the matrices Sij, 
Eij or Qij is six. In Table 5 the elements of the compliance matrix are shown. The results for 
the reduced stiffness matrix are presented in Table 6. Similar discussion one can perform for 
the plan strain state. In this case a reduced compliance matrix with the components Vij can be 

Table 5. Compliance matrix representation (plane stress state) 
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Table 6. Stiffness matrices (plane stress state) 

Material model Qe 
Anisotropy: 

6 independent parameters 
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Table 7. Number of non-zero elements 

Material model 

Three-dimensional 
stress- or strain state 

Anisotropic 
Monotropic 
Orthotropic 

Transversely isotropic 
Isotropic 

Plane stress state 
[xi — X2)-plane 

Anisotropic 
Orthotropic 

Isotropic 
Plane strain state 
(xi — 0:2)-plane 

Anisotropic 
Orthotropic 

Isotropic 

Non-zero parameters 

hJ = l , . - . , 6 
36 
20 
12 
12 
12 
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introduced. All details are presented in Altenbach et al. (2004). Finally, the number of non-zero 
elements for the three-dimensional and the two-dimensional equations are presented in Table 7. 

5 Failure and strength criteria 

5.1 Introductional remarks 

The description of the material behavior which is the basis of the engineering analysis of 
structural elements, etc., should be mathematically correct and correspond to some physically 
based experiences. Due to the complexity of the behavior of real materials the establishment of 
suitable equations for the material behavior description is sometimes connected with difficulties 
and increasing effort. At present the models of isotropic and anisotropic elastic behavior are 
well established, but the formulation of models for the inelastic and failure behavior is under 
discussion. This statement is valid for all materials including composites. 

In this section we pay our attention on the failure behavior. In the literature one can find 
various proposals for modelling the failure behavior, see Paul (1968); Altenbach et al. (1995); 
Yu (2004) among others. The main problem is the selection of the description level reflecting 
adequate the knowledge of the physics of solids and/or material science. Concerning this fact 
one can classify again the proposed models as microscopic, mesoscopic, macroscopic, etc. (cp. 
Sect. 3.2). Note that the use of microscopic models in the analysis and calculation of struc­
tural elements, which geometry is much larger in comparison with the characteristic size of the 
microstructure, is impossible since the computer power till now has been limited. On the other 
hand, there exist various phenomenological (engineering) models which are unable to reflect all 
details of the microstructure but they are a powerful tool for engineering calculations. 

Limiting the discussion below by failure analysis two phenomenological models are intro­
duced and discussed. The starting point of both is the assumption that a limit stress can be estab­
lished. For example, in the case of the loss of the overall stiffness this is the ultimate strength, 
which is a material characteristic specific for the given material. It must be underlined that its 
experimental estimation is connected with difficulties but the accuracy is enough for engineering 
applications. 

Modelling the limit behavior the use of the equivalent stress concept allows to compare the 
multi-axial limit states with uniaxial experimental data. For many materials and loading con­
ditions the classical proposals of HUBER, VON MiSES and HENCKY or TRESCA describe with 
the necessary accuracy the failure condition or the beginning of yielding. In addition, for the 
case of monolithic materials such as metals it is sufficient to use one observable characteristic 
such as the ultimate tensile, compressive, or shear stress to describe the failure, see Vinson & 
Sierakowski (1987). Taking into account non-classical effects like different behavior in tension 
and compression a generalization of the classical limit criteria must be introduced. In this case 
like in the case of composites one has to select a suitable failure criterion based upon a number 
of observable characteristics. 

Let us assume that the stress estimated cTestimated (from the calculations) must be compared 
with a critical stress (from tests) cTcriticai 

^es t ima ted _:: CTcritical 
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The problem is that the three-dimensional stress state is characterized by the stress tensor a. 
How to compare this tensorial quantity with any scalar-valued critical stress (Jcriticai'? There 
is one engineering solution: the definition of an equivalent stress (Jeq = creq(a,...) which is 
scalar-valued 

This method is well-established in the case of classical isotropic structural materials like steel. 
For composites one has to consider the anisotropy and the existence of various, quite different 
failure modes (see, for example, Vinson & Sierakowski (1987); Puck (1996)). So the question 
is how to define the equivalent stress. A similar situation we have if we introduce strain based 
criteria. 

From the strength of materials we know that we have to make at first some engineering 
assumptions, after that we have to formulate a criterion (hypothesis), and last but not least we 
have to perform an experimental proof. The anisotropy can be included if we are able to extend 
the classical isotropic criteria. The extension of the classical criteria can be based mathematically, 
but the identification of the material parameters can not be solved in a satisfying manner since 
relevant tests can not be performed. 

Let us briefly discuss the main classical isotropic limit criteria which are summarized, for 
example, in Paul (1968); Altenbach et al. (1995); Lemaitre (2001); Yu (2004): 

• Maximum principal stress criterion 

^eq CTi 

Assuming this criterion the solution steps are: solving the eigenvalue problem for the stress 
tensor, estimation of CFI which is the maximum of the eigenvalues. 

• Maximum strain criterion 

Here the solution steps are: solving the eigenvalue problem for the strain tensor, estimation 
of the maximum strain, recalculation of the stresses assuming the HoOKE's law. 

• Maximum shear stress criterion 
C êq = CTi — (73 

Now the solution steps are: solving the eigenvalue problem for the stress tensor, estimation 
of the maximum eigenvalue and the minimum eigenvalue. 

• Distorsion energy criterion 

-[((Ji - a2Y -h {(T2 - CF^Y + (0-3 - (TlY 

After calculating the eigenvalues the criterion can be applied. 
The use of isotropic failure and strength criteria is connected with the following statements: 

• the comparison of the estimated stresses and the critical values must be performed for each 
point of the structure, 

• the first and the second criterion are suitable for very brittle materials, 
• the third and the fourth criterion are more suitable for ductile materials. 
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• the experimental verification must be performed with respect to the material behavior (duc­
tile, brittle), the loading and other conditions, and 

• the anisotropy is not taken into account. 
With these statements one can make the conclusion that the introduced criteria can be used also 
in the case of yielding. 

5.2 Failure mechanisms and criteria for composites 

The failure of structural elements can be defined in a different manner: 
• As in the case of buckling, a structural element may be considered as failure though the 

material is still intact, but there are excessive deformations. 

• Here failure will be considered to be the loss of integrity of the composite material itself. 
In the case of monolithic materials stress concentrations, e.g. around notches and holes, cause 
localized failures. For brittle materials local failure may lead to complete fracture and therefore 
to a total loss of load-carrying capability. For ductile materials local failure may be in the form 
of yielding and remains localized, i.e., it is tolerated better than brittle failure. Since composites 
are not monolithic materials now we have to consider a more complex situation. 

The fail-safe philosophy has been employed in the design of metallic structures and is stan­
dard in engineering applications. Similar procedures for composite materials are not well defined 
and are the object of intensive scientific research up to now, see Puck (1996); Christensen (1997). 
Main causes of failure are design errors, fabrication and processing errors or unexpected service 
conditions. Design errors can be made in both material and structure. The stress level carried 
by each lamina in a laminate depends on the elastic moduli. This may cause large stress gradi­
ents between laminae which are oriented at considerably large angles to each other (e.g. 90°). 
Such high levels of internal stresses in adjacent laminae may develop a result of external applied 
loads but also by temperature and moisture changes. Service anomalies can include improper 
operation, faulty maintenance, overloads or environmental incurred damage. 

If structural loadings produce local discontinuities inside the material we speak of a crack. 
Micro-cracking is considered as the nucleation of micro-cracks at the microscopic level starting 
from defects and may cause the initiation of material fracture. Macro-cracking is the propagation 
of a fracture by the creation of new fracture surfaces at the macroscopic level. For composite 
materials the fraction initiation is generally well developed before a change in the macroscopic 
behavior can be observed. If in a laminate macro-cracks occur, it may not be catastrophic, for 
it is possible that some layers fail first and the composite continues to take more loads until all 
laminae fail. The failure of a single layer plays a central function in failure analysis of laminates. 

Composite fracture mechanisms are rather complex because of their anisotropic nature. Fail­
ure modes depend on: 

• the applied loads and 

• the distribution of reinforcements in the composites. 
Continuous fiber reinforced composites show 

• intralaminar fracture, 

• interlaminar fracture, and 

• translaminar fracture. 
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Intralaminar fracture is located inside a lamina, interlaminar fracture shows the failure developed 
between laminae and translaminar fracture is oriented transverse to the laminate plane. The frac­
ture of a UD-lamina is the result of the accumulation of various elementary fracture mechanisms: 

• fiber fracture, 
• transverse matrix fracture, 
• longitudinal matrix fracture, and 
• fracture of the fiber-matrix interface. 

Elementary failure mechanisms are shown in Fig. 12. How to estimate the basic strength 

CTT < 0 

Figure 12. Elementary failure mechanisms, a Fiber fracture by pure tension CTL > 0 or compres­
sion CTL < 0 (micro-buckling), b Matrix fracture by pure tension a^ > 0, pure shearing CTLT and 
pure compression CTT < 0 

parameters can be seen in Fig. 13. The in-plane shear failure modes are shown in Fig. 14. 
Besides the basic failure mechanisms for a single layer another fracture mode occurs: delam-

ination (separation of layers). The matrix material that sticks the laminae of a laminate together 
has substantially smaller strength than the in-plane strength of the layers. Stresses perpendicular 
to the interface between laminae may cause breaking of the bond between the layers in mostly lo­
calized, small regions. They may affect the integrity of a laminate and can degrade their in-plane 
load-carrying capability. 

The definition of failure may change from case to case and depends on the composite mate­
rial and the kind of loads. For composite materials, such as UD-laminates, the end of the elastic 
domain is associated with the development of micro-cracking. But in the first stage, the initi­
ated cracks do not propagate and their development changes the stiffness of the material very 
gradually but the degradation is irreversible. 
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^L > 0 CTL > 0 CTL < 0 
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TCTT > 0 d icTT < 0 
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i t 
material 
property: 
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Figure 13. Definition of basic strength parameters, a Longitudinal tensile strength crLt, b lon­
gitudinal compressive strength CTLC, C transverse tensile strength crxt, d transverse compressive 
strength axc, e in-plane (intralaminar) shear strength rs 

Let us now discuss failure criteria for composites. This must be done with respect to the 
following items: 

• The simplest form of such criteria is similar to those used for isotropic materials. 

• The major difference between isotropic materials and unidirectional fibrous composite ma­
terials is the directional dependence of the strength on a macrosopic scale. 

• The criteria presented here are purely empirical with the minimum of test data. 

• The failure criteria are usually grouped in literature into three different classes: limit crite­
ria, interactive criteria, and hybrid criteria. 

In the following we discuss only selected criteria of the first two classes. 
Laminate failure criteria are applied on a ply-by-ply basis and the load-carrying capability 

of the entire composite is predicted by the laminate or sandwich theories. A laminate may be 
assumed to have failed when the strength criterion of any of its laminae is reached (first-ply 
failure). However, the failure of a single layer not necessarily leads to a total fracture of the 
laminate structure. The following criteria are mostly applied (note that here the English terms 
are used, in the Russian literature are similar criteria proposed, but named by other scientists, 
Malmeisters et al. (1977); Tamuzh & Protasov (1986)): 

• maximum stress theory, 

• maximum strain theory, 

• deviatoric or distorsion strain energy criteria of TsAl-HiLL, and 

• interactive tensor polynomial criterion of TSAI-Wu (1971). 
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Figure 14. In-plain shear failure, a Positive and negative shear stresses along the principal ma­
terial axes, b positive and negative shear stresses at 45^ with the principal material axes 

Other criteria which are completely different are presented, for example, in Hashin (1980), but 
they are not discussed here. 

Let us present criteria for UD-laminates considering plane stress state and assuming 
• orthotropic material behavior, 
• thin layers, and 
• quasi-homogeneous behavior. 

The maximum stress and the maximum strain criteria assume no stress interaction while the other 
ones include full stress interaction. The maximum stress theory assumes that failure occurs when 
at least one stress component along one of the principal material axes exceeds the corresponding 
strength parameter in that direction 
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C^Tt 

C^Lc 

( 7 T X\ = XL 

C^Tc 

Figure 15. Maximum stress criterion 
Figure 16. Off-axis tension or compression of 
a UD-lamina 

For a two-dimensional state of normal stresses, i.e. CTL T̂^ 0, CTT ^ 0, CTLT = 0. the failure 
envelope takes the form of a rectangle (Fig. 15). Note that the formulated criterion contains 
the assumption of different behavior in tension and compression. Such a behavior is typical for 
composites. 

In the case of off-axis loading (Fig. 16) the strength properties must be recalculated. 

CTL = CTi COS^ 0 

(JT = (Ji sin^ 6 
(TUT = —aisinOcosO 

= aic^ 
2 

= (TiS^ 

= —aisc 
ai = (JT/S'^ 

Gx = -aurlsc 

-CTLc < CTiC^ < CTLt, 

- C T T C < (y\S^ < CTTt, 

- T s < aiSC < Ts 

Ultimate strength for ai corresponds to the smallest of the following six values 

CTlc = C T L C / C ^ , 

ĉ it = ^Tt/s^, CFit = rs/sc, Gi > 0, 

The failure modes depend on the corresponding ultimate strength ai^ 

CTLt/c^ 

Ts/sC 

fiber failure, 
transverse normal stress failure, 
in-plane shear failure 

Because of the orthotropic symmetry, shear strength is independent of the sign of CTLT and there 
are five independent failure modes. There is no interaction among the modes although in reality 
the failure processes are highly interacting. The maximum stress criterion can be applied to 
brittle failure modes. 

Maximum strain theory is similar to the maximum stress theory 

kLTl 

> 
< 

0, 
0, 

ST > 
< 

0, 
0, 

The lamina failure does not occur if 
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Figure 17. Maximum strain criterion 

The engineering moduli in the principal directions £^L, ^ T , GLT, Z^LT, ^TL can be introduced 

^L = -Trie - Z/LT5 )c r i ,£T 
E^ 

- ( s^ - Z ^ T L C ^ ) C ^ I , £ L T = -
1 

GLT 
SC(Ji 

The maximum strain and stress criteria must lead to identical values in the cases of longitudinal 
loading and ^ = 0° or transverse unidirectional loading and 0 = 90^. The identity of the shear 
equations is given in both cases. This implies that 

, ^s 
rs 

G LT 

_ CTLt _ CTLC _ CTTt _ ^ T c 

su - -^, £Lc - —^, £Tt - -^, exc - - ^ 

and the maximum strain criterion may be rewritten as follows 

- C T T C < Cri{s^ - UTLC^) < CTTt, 

—Ts < aisc < rs 

By comparing maximum stress and strain theories we establish that the two criteria differ by the 
introduction of the PoiSSON's ratio Ẑ LT in the strain criterion. In practice these terms modify 
the numerical results only slightly. In the special case of a two-dimensional stress state CTL ^ 0, 
CTT ^ 0, CTLT = 0 the failure envelope takes the form of a parallelogram for the maximum strain 
criterion (Fig. 17). 

The next criterion is the distorsion strain energy criterion of TSAl-HiLL (Hill (1950)). This is 
an interactive criterion applied to anisotropic materials and was introduced by HILL. The starting 
point is the classical isotropic HUBER-VON MISES-HENCKY criterion 

or in a general reference system 

^1 + ^2 ~ ^1^2 + 3crg = CTeq 

with aj^aji as the principal stresses. HILL'S modification can be formulated as 

Aal + Bal + Caia2 + Daj = 1 
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A,B,C,D 2iYQ material parameters. Note, in in the case of anisotropy distorsion and dilatation 
energies cannot be separated like in the isotropic case. The proposed criterion was applied to 
UD-laminae by TSAI et al. 

Aal + Bcj\ -h CCTLCTT + Dal^ = 1 

A,B,C,D must be identified by tests 

ĉL = CTLU, CTT = 0, CTLT = 0 ^ ^ = ^ - , 

(JL = 0, CTT = 0, CTLT = TU ^ D = -^ 

T 

In dependence on the failure mode, the superscript u must be substituted by t, c or s and denotes 
the ultimate stress value at failure under tension, compression or shear. The remaining parameter 
C must be determined by a biaxial test. Under identical biaxial normal loading CTL = CTT ^ 
0- CTLT = 0 it can be assumed that the failure follows the maximum stress criterion, i.e failure 
will occur when the transverse stress reaches the transverse strength CTTU which is much lower 
than the longitudinal strength CTLU 

(TLuJ \CrTuJ Kn 

The TSAl-HiLL criterion in the case of plane stress state and on-axis loading can be formulated 

^ y+f z^y _ ^ + f ^ y=1 
CTLu/ yCTTuJ (Tl^ \ ^u J 

In the case of tension or compression off the principal material directions the TSAl-HiLL criterion 
becomes 

cric^\ / a i g ^ \ / a i c g y /^jgc^ ^ ^ 

and the strength parameter aiu in xi-direction is 

CTlu/ K^LuJ \CrTnJ V^u ^Lu / V ^ L u / V ^ T u / V'^u 

The approximated form presumes aLu ^ ^w The TSAl-HiLL criterion is a single criterion 
instead of the three subcriteria required in maximum stress and strain theories. 

Another suggestion for an anisotropic failure criterion was made by GOL'DENBLAT and 
KOPNOV (1968): the tensor polynomial criterion. TSAI and Wu modified this criterion by 
assuming the existence of a failure surface in stress space. The general statement is that fracture 
of an anisotropic material occurs if 

(^ijO-ij + CLijklCTijakl = 1 



Modelling of Anisotropic Behavior in Fiber and Particle Reinforced Composites 37 

or in a contracted notation 
aiai + aijaiGj — 1 

For an orthotropic composite material one gets 

ttLCTL + axCTT + asCTs + aLL<7L + ô TT^T + ^ss^s + 2(aLT<^LcrT + ^LSC^LC^S + ^TSC^TC^S) = 1 

Here Z/LT = ^s • 
In a similar way the VON MiSES-HiLL criterion can be introduced. Now the representation 

is made for the principal stress axes 

Eia\ + E2GI + ^3(cri - 02f + 2E^TI^ = 1 

E l , . . . , £̂ 4 are material parameters. The first application of this criterion was made by NORRIS 
(1950). His formulation can be given as 

^ u l cru2 cruicru2 T^ 

Here CTUI, cru2 are the tension strength in the principal direction 1 and 2, respectively, r^ is the 
shear strength for the plane 1,2. The problem in application of this criterion is the identical 
behavior in the case of tension and compression (the principal axes are symmetry axes). 

Another criterion for composites was introduced by ZAKHAROV (1961; 1963). The starting 
point is the 6-dimensional stress space 

6 6 

1,3 = 1 3 = 1 

with cji,a;2, CJ3 as normal stresses and a;4, a;5,c^e as shear stresses. aij,/3j are material parame­
ters estimated by tension, compression and shear tests. 

MALMEISTER (1966) also discussed a polynomial criterion 

Poc(3<^oc(3 + Paf3^60-af30--fS + . • . = 1 

The matrix representation can be given as 

PiO-i -i-pij(Ti(Jj + . . . = 1 

In the plane stress state one obtains 

PlO-i +P2Cr2 - h p 6 ^ 6 + P i i C r i + P 2 2 ^ 2 + 2pi2CriCr2 + ^P66(^6 + ^Pl6(^1^6 + 4p26^2Cr6 = 1 

Assuming the invariant form (no linear contribution of ae) one gets 

Pi(^i + P2cr2 + PiiCTi -f P22cri -f- 2pi2cria2 + 4|?66C |̂ = 1 

Let us now discuss the interactive tensor polynomial criterion of TSAI-Wu. The linear terms 
take into account the actual differences between composite material behavior under tension and 
compression. The term aurai^aT represents independent interaction among the stresses CTL and 
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CTT and the remaining quadratic terms describe an ellipsoid in stress space. Since the strength of 
a lamina loaded under pure shear stress rs in the on-axis system is independent of the sign of the 
shear stress, all linear terms in as must vanish 

The TSAI-Wu criterion for a single layer in on-axis system can be expressed as 

aLCTL + a x ^ T + ^LL^L + CLTTCTT + ^SS^S + 2aLTCrLCrT = 1 

The four quadratic terms correspond to the four independent elastic characteristics of orthotropic 
materials, the linear terms allow the distinction between tensile and compressive strength. The 
coefficients of the quadratic TSAI-Wu criterion are obtained by applying elementary basic load­
ing conditions to the lamina 

CTT = - C T T C , 

ĉ s 

( JT = CTg = 0 

( JT = <JS — 0 

CTL = crs = 0 

a-L = crs = 0 

(7x ^^ 0 

1 1 
aL = 

1 1 
ax = 

CI XX — 
CTXtC^Tc 

1 

The remaining coefficient ^LX niust be obtained by biaxial testing 

(JL = ax = cru, fTs = 0 => (aL + ax)^u + («LL + CLTT + 2aLx)cru = 1 

ajj is the experimentally measured strength under identical biaxial tensile loading CTL = crx- In 
many cases the interaction coefficient is not critical and is given approximately, e.g. 

1 
«LT ~ - ^ \ / « L L « T T 

Summarizing the considerations on interactive failure criteria leads to the conclusion that the 
TSAl-HiLL and the TSAI-Wu failure criteria are quadratic interaction criteria which have the 
general form 

FijCJiGj + FiCJi = 1, i,j = L, T, S 

Fij and Fi are strength parameters and GI, CFJ the on axis stress components. For plane stress state 
six strength parameters FLL , ^ T T , ^ss, ^LT , ^ L , ^ T have to be implemented into the failure 
criterion, FLS = î TS = ^s = 0. Five of these strength parameters are conventional tensile, 
compressive or shear strength terms which can be measured in a conventional experimental test 
programme. The strength parameter FLX is more difficult to obtain, since a biaxial test is ne­
cessary and such a test is not easy to perform. The two-dimensional representation of the general 
quadratic criterion in the stress space can be given in the equation below 

Ĉ LtCTLc CTxtCTXc Tg VCJLt CTLC / V^Txt ^T. 
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The general form is reduced, e.g., for 

ĉ Lt = ^Lc, cTTt = (TTC, Fur = ~w-T~ 

to the TSAl-HiLL criterion, for 

1 

to the HOFFMAN criterion, and for 

2crLtCrLc 

2^CrLtCrLcC^Tt<^Tc 

to the TSAI-Wu criterion. HOFFMAN'S criterion is a simple generalization of the HILL crite­
rion that allows different tensile and compressive strength parameters. Using the dimensionless 
stresses 

and the normalized strength coefficients 

î L* = ^ L / \ / ^ , F T = FT/^/F^, Fl^ = FI^T/VFLLFTT 

one gets 

For isotropic materials with (jLt == CTLC — ^Tt = <̂ TC follows F£ = Frĵ  = 0. For the principal 
stress state CTLT = ^LT = 0 is valid. A reducing with F£rp = -^ leads to the known VON MiSES 
criterion. 

5.3 Generalized Criteria 

Considering classical and non-classical material behavior (Altenbach et al., 1995, 1999) the 
following statements can be given. The classical material behavior equations are based on several 
assumptions: 

• identical behavior under tension and compression, 
• the identity of the equivalent stress-equivalent strain diagrams in the case of tension and 

torsion, 
• the independence of the inelastic material behavior from hydrostatic pressure, 
• etc. 

If we ignore one or more of these assumptions the mathematical expressions of the constitutive 
equations and the limit conditions must reflect non-classical effects. 

The classical approach of formulating a limit state criterion is connected with the following 
items: the stress state in the material or in a structural element will be represented by the stress 
tensor a, based on the stress tensor one can construct an equivalent stress cTgq = F{a), this 
equivalent stress will be compared with an experimental limit value by deq < CTI^H (^u^it î  a 
material characteristic for the description of the limit case). This approach is not restricted by 
the assumed limit state of the material and can be extended to the non-classical cases. 
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For the classical material behavior one assumes 

'̂ limit (Tension) « -a^^t (Compression), a^Zt(Tension) « ±V3T^Zt (Torsion) 

and the influence of the hydrostatic pressure can be ignored. 
Non-classical behavior is named the material behavior if different behavior in tension and 

compression is obtained. The strength-differential effect is well known 

<im^it(Tension) ^ -0,9(7^^^^,(Compression) 

In addition, the material behavior is called non-classically if the tension behavior cannot be 
described by torsion tests (experimentally observed for some polymers, graphite, etc.), since 
a fixed relation between both states cannot be established, etc. Several experimental results 
manifest non-classical behavior, an overview is given, for example, by Altenbach et al. (1995). 

Let us formulate generalized limit criteria which are able to reflect non-classical effects of 
the material behavior. The first one is based on three basic invariants of the stress tensor (see, 
for example, Zyczkowski (1981)) and is more suitable for ductile materials. The second one 
is based on the NovozHlLOV's invariants, Novozhilov (1951), and is suitable for a satisfying 
description of the loss of stiffness which is more characteristic for brittle materials. In both 
cases we assume monotonic quasi-static loading under isothermal conditions, isotropic material 
behavior, non-polar material, stress based criteria presuming an equivalent stress deq > 0. 

Let us introduce the invariants. The basic invariants are 

h{a)=a-I, I2{(T)=(T'(T, Is{(T) = {a'a)"a (5.1) 

The NOVOZHILOV's invariants can be introduced as 

3 . ^ . 27det5 . , , . , . TT 

vM 
h{(T)=a"I, a,.M = \I^S"S, sin3C = - y ^ 3 - with |^| < - (5.2) 

with s as the stress deviator. Using these invariants two 6-parameter criteria can be formulated: 
• using the basic invariants / i (a), /2 (cr), /s (o-) 

+ /i5A/2 +^6-^3 (5.3) 

• using the NovozHlLOV's invariants / i (a) , cr^;M(^), C(^) 

cTeq = AiCTvM sin ^ + A2(7vM COS ^ + ^sO'vM + A4/1 + A5/1 sin ^ + Xeh cos^ (5.4) 

In both cases one gets as a special case the VON MiSES-criterion. The unknown parameters /li 
and Â  must be specified. 

The identification can be performed as follows. As an example we show the identification for 
the criterion based on the NovozHlLOV's invariants. In this case one can perform the following 
tests: 

1. uniaxial tension an > 0 
an = CTT 

CTT is the limit stress in tension. 
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2. uniaxial compression a n < 0 
an = -ac 

(jQ is the limit stress in compression. 
3. torsion cri2 / 0 

TL is the limit stress in torsion. 
4. thin-walled tube under inner pressure 

CTB 
CTii = — , (722 = CTB 

with 
pR 

p is the inner pressure, R the radius of the tube and h the tube thickness. From this follows 
2<Jii = (722 = ^B and a^ plays the role of a limit stress. 

5. thin-walled tube under inner pressure and tension 

F at 
c îi = -T + y , cr22 = ax 

with the tensile force F and 
pR 

The tensile force and the inner pressure are controlled by the limit stress a^ 

O'li = cr22 = CTE 

6. uniaxial tension in a high pressure chamber 

F 
cTu ^ — - p, a22 = CTss = -p 

The pressure and the tensile force are controlled by the limit stress an 

2 1 
O'li = o ^ H , Cr22 = CTss = - - C T H 

As a result of the tests one estimates the limit stresses CTT, crc, TL, CTB, OE and (JH. 
The mathematical analysis of these tests results in 
1. uniaxial tension 

-Ai + y3A2 + 2A3 + 2A4 - A5 + VSAe = 2 

2. uniaxial compression 

Ai + \/3A2 -h 2A3 - 2A4 - A5 - VSXQ = 2 — 
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3. torsion 
A2 + A3 

\ /3rL 

4. thin-walled tube under inner pressure 

V3X2 + V3A3 + 3A4 + 3A6 = 2 — 
CTB 

5. thin-walled tube under inner pressure and tension force 

Ai -h V3A2 + 2A3 + 4A4 H- 2A5 -h 2\/3A6 - 2 — 

6. uniaxial tension in a high pressure chamber 

-Ai + V3A2 + 2A3 = 2 — 

Solving the last six equations with respect to the unknown coefficients Aj one obtains 

A, = 1 ( 2 ^ - 3 ^ + ^ 
3 \ crc CTH CTE 

3(2 - \/3) V ^c TL CTH CTE 

A3 = L _ f 2 ^ _ 3 ^ + 3 ^ + ^ ^ 
3(2 - V3) V ^c TL CTH O-E 

A4 ^ , . . ^ ^ . f 3 - ^ + y 3 ^ - 2 x / 3 ^ - 3 ^ ' ^^ 
3(2 - V3) V ^c TL CTB CTH (JE 

A5 == " o H " ' '̂  

Xe = L _ f 3 - ^ + 2 ^ - 4 ^ - 3 ^ + ^ 
3(2 - \/3) V ^c TL CTB CTH CTE 

From this system we can make the following conclusions: 
• If one can perform the six tests and estimate the material properties CTT , ac , TL , CTB , (JE , CTH 

the coefficients Â  can be established in a unique way. 
• By changing the tests and estimating other material properties one gets other coefficients. 

An example is given in Altenbach et al. (1993). The choice of the basic tests is connected 
with technical feasibilities in the laboratories, with the kind of material, with the kind of 
loading conditions, etc., Altenbach & Zolochevsky (1996). 

• In addition, fixing the Â  one can find the needful conditions for the practical use of special 
criteria. 

The last item can be explained as follows. For example, from the generalized criterion (5.4) the 
VON MiSES-criterion can be deduced setting Ai = A2 = A4 = A5 = Ae = 0, A3 = 1. Taking 
into account these values one can calculate the relations for the material properties 

^ = 1, ^ = Vs, ^ = -V3, ^ = 1, ^ = 1 
(Jc TL (JB 2 CTE CTH 
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If these relations are fulfilled the use of the VON MiSES-criterion can be recommended. That 
means a material must show a behavior which is connected with identical properties in tension 
and compression and a fixed relation between the tension and the shear limit stress. The last 
statement is a standard statement in several textbooks on solid mechanics and agrees with exper­
imental results, see e.g. Kachanov (1974). 

5.4 Outlook 

The use of limit criteria is till now under discussion. The reason for this is that the designer 
want to predict the safety of structures in the early stage of the design process. For this purpose 
extensions of classical strength and limit criteria can be recommended. The problem is that 
in contrast to the case of classical structural materials not only one failure mode must taken 
into account. That means in some cases for composite materials an unique criterion cannot be 
applied. Considering polymer and composite materials on the application of the generalized 
criteria is reported, for example, in Altenbach et al. (1996); Altenbach & Zolochevsky (1996), 
on some improvements in Altenbach & Tushtev (2001). 

6 Polymer Suspensions 

6.1 Introductional Remarks 

Let us now discuss the mechanical behavior of polymers reinforced with short glass fibers. 
An example of such a material is DuPont Zytel® PA66ZYTEL 70G43L with a polyamide matrix. 
The typical geometrical and mechanical properties are shown in Fig. 18. With the fiber length / 

Polymer: 

Ep - 2.8 • 10^ MPa 
/ ~ 0.2 mm, ; ^ ~ 2 5 

^ f - 7 2 - 1 0 ^ M P a - 2 6 £ ^ p 

Composite: fiber volume fraction V{ ~ 0.25 

J ^ - 6 . 5 - 1 0 ^ M P a - 2 . 3 £ ^ „ 
E± 

12 • 10^ MPa 
5.3 • 10^ MPa 

4.3 Ep 
1.8 E , 

Figure 18. Example of a short fiber reinforced material 
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and the fiber diameter d one gets for the given material a fiber length to diameter ratio of about 25. 
In addition, it must be noted that the YOUNG'S moduli of the fiber Ef and the polymer matrix Ep 
are quite different (the modulus of the fibers is 26 times higher). With respect to this difference 
the effective mechanical behavior is different: if one obtains an arbitrary distribution of the fibers 
an isotropic behavior can be assumed, otherwise for the regular distribution as shown in Fig. 18 
on the right hand side we get transversally isotropic behavior. For a fiber volume fraction Vf of 
about 25 % the isotropic modulus E ranges between the moduli for the direction parallel to the 
fiber E^\ and the direction perpendicular to the fibers E±. The geometrical and the mechanical 
properties of the fibers and the matrix material assumed here were taken from the data basis of 
the commercial code Moldflow Plastic Inside®. On the application of this material is reported, 
for example, in Glaser & von Diest (1988), MichaeH (1995) and Whiteside et al. (2000). 

Thin-walled structural elements based on particle reinforced composites are manufactured, 
for example, by injection molding. This technology has a number of advantages compared with 
other manufacturing techniques: short cycle time of the manufacturing, high degree of automati­
zation, excellent possibilities of manufacturing structural elements with complex geometries. In 
addition, the injection molding technology allows to improve the stiffness and strength proper­
ties of the composite by changing the technological conditions like the temperature, the injection 
pressure, the injection point, etc. The basic steps of the injection molding technology are shown 
in Fig. 19 (after Michaeli (1995), Menning (1995) and Altenbach et al. (2003b)). 

mold cavity 

mold plates 

Figure 19. Basic stages of the injection molding processing cycle, a filling stage, b packing 
stage, c cooling stage, d ejection 

The mechanical properties of a particle reinforced composite depend significandy on the ori­
entation of the fibers during its manufacture process. During the filling stage the flow translates 
and rotates the fibers. As a result the distribution of the fibers becomes nonuniform and the 
overall stiffness characteristics are anisotropically. There are a lot of influence factors like the 
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viscosity of the polymer melt, the filling conditions, the geometry of the cavity, and so on (Hegler 
(1984)). All these features must be taken into account during the design process and even then 
the estimation of the distribution of the reinforcement is possible and the degree of anisotropy 
can be predicted. The microstructure of the composite is formed during the filling and the estab­
lished microstructure remains the same after solidification (see, for example, Hegler (1984), Bay 
& Tucker (1992) and Vincent & Agassant (1986)). Micrographs of the cross section of moldings 
(Bay & Tucker (1992), Saito et al. (2000)) show that the orientation pattern of fibers has a lay­
ered structure. In the core layer, the fibers are oriented predominantly perpendicular to the flow 
direction. In contrast, in the skin layers close to the mold wall they are oriented mainly parallel 
to the flow direction. Finally, in the neighborhood to the wall lower fiber concentration and a 
random orientation can be observed. An example of such a micrograph is presented in Fig. 20. 

Flow direction 

Figure 20. Section of injection molded part (after Saito et al. (2000)) 

The conditions of the flow of polymer suspensions is discussed in detail by Altenbach et al. 
(2003b), Dupret & Verleye (1999) and Tucker & Advani (1994). Let us summarize the main 
items: 

• non-isothermal flow with phase transitions, 
• non-stationary flow with free surfaces, 
• the average volume content of particles is 15 - 45 %, and the local concentration of fibers 

can vary within the flow region, and 
• since the mold cavity is usually thin, its walls affect the movement of fibers considerably. 

All these factors play an important role in the design process since the formation of the mi­
crostructure (or with other words the arrangement of the fibers) is influenced by them. However, 
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we do not know of any theory which takes into account all these items mentioned above. 
The existing theories can be divided into two classes. The first group includes models based 

on the concept of an "anisotropic viscous medium". The presence of fibers and their local orien­
tation are taken into account only in the constitutive equations by introducing orientation tensors 
(see, for example, Dupret et al. (1999), Tucker & Advani (1994) and Dupret & Verleye (1999)). 
The second group can be related to the so-called micropolar theories, which are based on the 
assumption of a continuum with independent rotational degrees of freedom (see Altenbach et al. 
(2003b) or Eringen (2001)). The first approach is the basis of the commercial software Moldflow 
Plastics Insight® (MPI), which allows to model the complete cycle of the injection molding pro­
cess. As a result one can determine the particle orientation. The injection molding simulation can 
be combined with a Finite-Element-Analysis and the stress-strain estimation can be performed. 
Below this approach will be discussed in detail. Finally some examples are presented. 

6.2 Modelling of the microstructure based on Moldflow Plastics Insight® 

Let us briefly present the approach realized in the MPI program complex. For details we refer 
to Tucker & Advani (1994), Dupret et al. (1999) and Dupret & Verleye (1999). The suspension 
is modelled as a quasi-homogeneous anisotropic medium. According to this approach, the main 
problem is the formulation of a rheological equation allowing to relate the stresses caused by the 
liquid flow to local characteristics of the motion V (velocity vector of the particles). For a slow 
motion of a viscous liquid can be assumed (cp. Batchelor (1970)) 

(T = -pE + (^V - A , A - V y , (6.1) 

where p is the pressure in the medium and ^̂ /̂x is the fourth-rank viscosity tensor. The deter­
mination of the viscosity tensor is discussed in the review on suspension rheology published by 
PETRIE (1999) and in the monograph by Huilgol & Phan-Thien (1997). The applied approach is 
based on the method of orientational averaging. 

As an example, we will consider the model for describing semiconcentrated suspensions (cp. 
Dinh & Armstrong (1984)) 

a = -pE-+-fi{A + A') ''>E+^^(/"A (6.2) 

n is the number of fibers in a unit volume, / the length of fibers, /i the polymer viscosity, Cp an 
empirical coefficient determined as 

27r/i/ 
Cp \n{2h/d)' 

where d is the fiber diameter, h = (nl) ^1^ for oriented fibers and h = (n/^) ^ for a random 
orientation. The fourth-rank tensor ^^^A represents the current fiber orientation 

^^^A= \ ^(m)m^m^m®mdA, (6.3) 

{A) 

^(m) is the distribution density of the fiber orientation, m the unit vector along the particle axis, 
dA the differential element on the unit sphere. For the orientation density one can write (cp. Doi 
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& Edwards (1988) and Tucker & Advani (1994)) 

^ + V A • (^o; - drVA^) = 0 (6.4) 

a; is the angular velocity of a particle, dj- the empirical coefficient of rotational diffusion, (...) 
the material derivative and V^^ the tangential differential operator on the unit sphere 

V A ( . ..) = ekeijkrrii-^^, mm=l 

Cijk denotes the LEVI-CIVITA symbol. For uj the JEFFERY-solution can be assumed, Jeffery 
(1922), which was obtained as the angular velocity with which an ellipsoidal particle rotates in 
an infinite field of a viscous liquid. For an ellipsoid of revolution one gets (Altenbach et al. 
(2003b)) 

a; = (0 +Am X D - m ) , X=--——-, (6.5) 

a and h are the semi-axes of the ellipsoid, D the strain rate tensor and (f> the spin vector of the 
undisturbed flow. For the strain rate tensor D one can consider 

D = hvv + vyT), trvy = o, (/> = - i v X V 

The moments of the distribution function ^(m) are defined as 

W A = I ^(:m)m®''dA, n = 2 ,4 , . . . 

{A) 

^^M denotes the nth rank orientation tensor, (.. .)^'^ is the nth tensor product. Equation (6.4) 
with regard to the angular velocity (6.5) is transformed into an infinite system of coupled equa­
tions. The first two equations of the infinite system of coupled equations are 

<̂ U = ""'A.W -W •'''A^\ip.''''A^'''A.D-e'A..D) 
(4) (4) 

- ei^W' A'ei-\-ei' A-W ^ei 

+ xUi^D' "̂̂ k • ê  -h ê  • ̂ "̂ U • D 0 ê  W 2 4 [E 0 ^ ^ ^ 
(2) (2) (2) 

-h A^E^ A'Ck^E^ek+ek^ A^Ck 
(2) (2) (4) \ 

+ A ' Ci ^Ck ^Ci <S>ek -^ ei <S)ek <S>Ci ^Ck ' A-10 A) 

W = <̂  X JE? is the flow vorticity tensor. The two equations are presented in Advani & Tucker 
(2) 

(1987) in the coordinate form. In practical calculations A is usually found from the first evo-
(4) 

lution equation and A from the closure approximation. Mostly used is the hybrid closure 
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approximation which is incorporated in the MPI code 

(2) (2) \ 

+ A-Ci^ek^ei^ek+ei^ek^ei^ek^ A\ 

+ — {E®E-\-ek^E®ek^ei^ek^ei^ek) 
00 

Finally, let us summarize the governing equations for the filling stage: 
• the balance of momentum 

const =^ V -y = 0 

PCp^=(T"VV^VikVT) 

• the balance of mass 

• the energy balance 

• the constitutive equation 
(2) 

• the evolution equation for the structure tensors A 
(4) 

• the closure approximation for the tensor A 
• the conditions on the boundary F 

• and the initial conditions on a given part of the domain 

y ( x , 0 ) = y ^ ^%x,0) = '^A' 

Here Cp,k,T,T and V denote the heat conductivity at constant pressure, the thermal expansion, 
the temperature, the given temperature on the boundary and the given velocity on the boundary. 

The elastic properties of a short-fiber reinforced composite strongly depend on the volume 
content and the orientation of the fibers. In the case of randomly distributed and oriented fibers 
the elastic properties differ significantly. For estimating the influence of the orientation on the 
elastic properties one can use the method of orientational averaging, Lagzdins et al. (1992). First 
we write the constitutive equation for the transversely isotropic unidirectional elastic composite, 
see Boehler (1987), 

a{m) = XtreE + a€"NE~\-2fiTe-\-atTeN-{-(3e"N^N + 2{fii^-fiT)[N'e-{-e'Nl (6.6) 

where N = m^m and a, (3, A, /iL and /XT are five invariants which must be determined from 
the engineering constants. The second step is connected with the averaging over all directions of 
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the vector m 

a = '^{m)a{m)dA 

(A) 

with 

a* = A -h ;5 1 - / 
35 ' ^ _ "'̂  ^ ' " 7 

1 - f 1 - f 
35 

B.-A-IE. 
7 

( 2 ) . 
/ = l - 2 7 d e t A 

Let us discuss the representation of the 2nd rank structure tensor. In Fig. 21 the visualization 
of the fiber orientation is presented. Any second rank tensor can be represented by an ellipsoid 

^Xi 

0 
0.5 
0 

0 1 
0 
0 

^'^A = 
' 1 0 0" 

0 0 0 
0 0 0 

Figure 21. Visualizing the fiber orientation 

with the principal values as the semi-axis. Three examples of the structure tensor are shown. 

6.3 Examples 

Uniformly filled thin strip The first example is related to the filling of a thin strip (Fig. 
22). The geometrical parameters of the mold are (Bay & Tucker (1992)): L = 203.2 mm, 
b - 25.4 mm and /i - 3.18 mm. The material is DuPont Zytel® PA66ZYTEL 70G43L 43 % 
with a relative volume content 25 % of glass fibers of length 0.2 mm and a diameter-length ratio 
1/25. The processing conditions are: the inlet temperature of the material Tiniet = 550 K, the 
temperature of the mold walls Twaii = 297 K, and the filling time tm = 0.4 s. Figures 23 
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Figure 22. Geometry of a thin strip 

Fiber orientation tensor 
Nornnalized thickness = 1.000 
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yvoWfloW 

Scale (100 mm) 

Figure 23. First principal value of the orientation tensor - skin layer 

and 24 show the orientational distribution of fibers after the filling stage, as well as the first prin­
cipal value of the second rank orientation tensor on the skin layer and the core of the strip. 
In the skin layer one obtains a homogeneous orientation (except the injection part, where the 
orientation is along the flow direction). In the core layer one gets a significant inhomogeneous 
orientation. In addition, let us investigate the bending problem under a line load q = 2560 N/m 
(Fig. 25). The unidirectional composite has the following elastic constants (plane of isotropy 
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Figure 24. First principal value of the orientation tensor - core layer 

2,3): El ^ 8980 MPa, E2 = 5420 MPa, 1/12 = 0.42,1^23 = 0.54, and Gu = 2260 MPa. The 
results of the stress analysis are shown in Figs 26 and 27. The calculations were performed 
considering large displacements. On the details of the numerical analysis (for example, conver-

L/2 L/2 

Figure 25. Strip with line load 
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Figure 26. Distributions of normal stresses (in Pa) on the top side of the strip, a anisotropic 
behavior, b isotropic behavior 
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Figure 27. Distributions of shear stresses (in Pa) on the top side of the strip, a anisotropic 
behavior, b isotropic behavior 

gence) is reported in Altenbach et al. (2003a). The analysis of stresses demonstrates a significant 
distinction between the anisotropic and the isotropic solution in the case of shear stresses. 

Thin rectangular plate In Fig. 28 the geometry and the loading conditions for a thin simply 
supported plate are presented. The geometrical properties are L = 150 mm and h — 3.18 mm. 
The material is the same as in the first example. The processing parameters are: the inlet temper­
ature of the material Tiniet = 563 K, the temperature of the mold walls T^aii = 338 K, and the 
filling time tfin == 1.5 s. The filling was performed in different ways: uniformly filling the mold 
along one edge (injection case a), filling by means of a point gate located in one comer (injection 
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Figure 28. Simply supported plate 
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Figure 29. First principal value of the orientation tensor. Case a 

case b) and filling by a point gate at the middle of one mold sides (injection case c). Figures 29, 
30 and 31 show the distributions of the first principal value of the second rank orientation tensor. 

From the analysis of case a (Fig. 29) one can make the conclusion that in the skin layer the 
fibers are oriented mainly in the flow direction, whereas in the core layer they are perpendicular 
to the flow direction (except the near-edge zones). In case b (Fig. 30) one obtains a similar situa­
tion. In Fig. 32 the stresses for the three filling cases are shown. The load was q = 10.000 N/m^. 
For the same loading situation the deflections were estimated too (Fig. 33). The analysis show a 
significant influence of the processing conditions on the stresses and deflections. One can clearly 
see that the best results (minimum of stresses and deflections) one gets in the case of the injection 
along the edge. 

Thin-walled shell of revolution In the next example let us consider the manufacture of a thin-
walled shell of revolution. The geometry is given in Fig. 34. Let us assume the same material 
as in the previous cases. The manufacture conditions are: the inlet temperature of the material 
^iniet = 563 K, the temperature of the mold walls T^aii = 368 K, and the filling time t^\\ = 1 s. 
In Fig. 37 the distributions of circumferential (a) and axial stresses (b) are shown. The shell was 
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|i . > \ \ ^ V ^x^ x̂  ŝ  0 ŝ  \ \ S S S S S S S \ \ x^X 'i 
i' O - x ^ x ^ X X W \ S S S S S S S S S S S S \ \ \ 'i 
II C' X X X X X X x̂ K S. ^. \ \ S H \̂ S S S S S \ \ 'i 

Figure 30. First principal value of the orientation tensor. Case b 

Skin layer Core layer 

Figure 31. First principal value of the orientation tensor. Case c 



Modelling of Anisotropic Behavior in Fiber and Particle Reinforced Composites 55 

-.280E+07 .lOOE+08 .2Z8E+08 .3S6E+08 .484E+08 
.360E+07 .164E+08 .292E+08 .420E+08 .S48E+08 

Figure 32. Distribution of stresses a^ (in Pa) in the surface layer of the plate for the three cases 
of filling 

loaded by internal pressure q = 1.000.000 N/m^. From the analysis one can conclude that the 
axial stresses are less dangerous to this shell than the circumferential ones, since the fibers in the 
surface layers of the shell are oriented mainly in the axial direction. The strength will be higher in 
this direction. However, for the circumferential stresses an opposite situation is observed: these 
stresses are acting perpendicularly to the fibers. Thus the stresses GQ are dangerous and can lead 
to the crack formation on the shell surface. 

Comparison with experimental results In Fig. 35 the model of the filling of a center gated 
disk is presented. Geometrical parameters of the model are following Bay & Tucker (1992): 
R = 76.2 mm, /i = 3.18 mm. The material is again DuPont Zytel® PA66ZYTEL 70G43L. The 
processing conditions are: the inlet temperature of the material - 550 K, the temperature of the 
mold 347 K, time of filling 2.5 s. Experimental results for this problem were published by Bay & 
Tucker (1992). The simulation performed by Pylypenko (2003) is compared with the experimen-
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Figure 33. Distribution of deflections (in mm) for the three cases of filling 
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Figure 36. First principal value of the orientation tensor, a skin layer, b core layer 
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Figure 38. Comparison of MPI results for the first principal value ^^^ A\ of the orientational 
tensor with experimental data Bay & Tucker (1992) 

tal results. This comparison is shown in Fig. 38. The figure illustrates the distributions of the 
first principal value of the fiber orientation tensor A across the thickness direction z in different 
radial zones of the disk. The analysis shows a good agreement of experimental with calculated 
data in zones far from the gate. A non-satisfying agreement was observed in the gate region. 
This can be explained by the model assumptions of a planar flow used in the simulations. 
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Abstract The contribution starts with a discussion of various phenomena in lami­
nated composite structures that can lead to failure: matrix cracking, delamination 
between plies, and debonding and subsequent pull-out between fibres and the matrix 
material. Next, the different scales are discussed at which the effect of these non-
linearities can be analysed and the ways to couple analyses at these different length 
scales. From these scales — the macro, meso and micro-levels — the meso-level is 
normally used for the analysis of delamination, which is the focus of this chapter. At 
this level, the plies are modelled as continua and interface elements between them 
conventionally serve as the framework to model delamination and debonding. After 
a brief discussion of the cohesive-zone concept and its importance for the analysis 
of delamination, various finite element models for the plies are elaborated: three-
dimensional, generalised plane-strain and solid-like shell models. This is followed 
by a derivation of interface elements and a discussion of advanced techniques for 
solving the nonlinear equations that ensue after discretisation. In the last part of 
this chapter a new, recent method to numerically model delamination is discussed. 
It exploits the partition-of-unity property of finite element shape functions. The 
approach offers advantages, since interfaces — and more generally, discontinuities 
— can be inserted at the onset of delamination only and not a priori, as in the 
conventional approach. As a consequence, artificial elastic compliance of the in­
terface prior to onset of delamination, spurious traction oscillations ahead of the 
delamination front, and spurious wave reflections because of the presence of a high 
stiffness value are avoided. Moreover, unstructured meshes can be employed. 

1 Introduction 

Failure in composites is governed by three mechanisms: matr ix cracking, delamination, 
and fibre debonding and pull-out. Often, matr ix cracking occurs first when loading a 
specimen. Together with stress concentrations tha t occur near free edges and around 
holes, matr ix cracks trigger delamination. Normally, delamination is defined as the sep­
aration of two plies of a laminated composite, although it has been observed tha t delam­
ination not necessarily occurs exactly at the interface between two plies. For instance, in 
fibre-metal laminates delamination rather resembles a matr ix crack in the epoxy layer 
near and parallel to the aluminium-epoxy interface. 
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An important issue when modelling physical phenomena is the proper definition of 
the scale at which the (failure) mechanism under consideration is modelled. This holds a 
fortiori for composites, since the in-plane dimensions of a laminated composite structure 
exceed the length scale at which delamination, matr ix cracking and fibre debonding take 
place by one to several orders of magnitude. This complicates an efficient, accurate and 
meaningful analysis. Typically, the in-plane dimensions of a laminated structure are 
in the order of meters, while its thickness can be just a few millimeters. Each ply is 
then less than a millimeter thick. Since, at least in conventional finite element analysis, 
each ply has to be modelled separately in order to capture delamination between two 
plies, and since the aspect ratio of finite elements is limited if one wishes to obtain a 
reliable stress prediction, the maximum in-plane dimension of a three-dimensional solid 
element will be around one centimeter. It is obvious tha t the number of elements tha t is 
needed to model each layer is already big, and the total number of elements required to 
model the entire structure, including possible holes and stiffened areas, can easily exceed 
computational capabilities when the analyst wishes to simulate nonlinear phenomena, 
such as delamination. 

The same reasoning holds when considering matr ix cracking. For most laminated 
composites, matr ix cracks reach a saturat ion distance, which is in the order of the ply 
thickness. This implies that , when this phenomenon is to be included in the analysis in a 
truly discrete format — tha t is, matr ix cracks are modelled individually and not smeared 
out over the plane — the in-plane discretisation must even be somewhat finer than for 
an analysis tha t includes delamination only, roughly one order of magnitude. 

A further refinement of the discretisation of several orders of magnitude is required 
when individual fibres are to be modelled with the aim to include debonding and pull-out 
of individual fibres. It is evident, tha t such a type of modelling exceeds computational 
capabilities even of the most powerful computers nowadays available, if the analysis would 
consider the entire structure. 

Multiscale approaches provide a paradigm to by-pass the problems outlined above. 
In these methods, the various aspects of the entire structural problem are considered at 
different levels of observation, each of them characterised by a well-defined length scale. 
The different levels at which analyses are carried out, are connected either through length 
scale transitions^ in which the structural behaviour at a given level is homogenised to 
arrive at mechanical properties at a next higher level (Ladeveze and Lubineau , 2002), or 
through (finite element) analyses which are conducted at two levels simultaneously and 
in which are connected by matching the boundary conditions at both levels (Feyel and 
Chaboche , 2000). In the former class of methods, the Representative Volume Element 
(RVE), the volume of heterogeneous material tha t can be considered as representative 
at a given level of observation and is therefore amenable to homogenisation, plays an 
important role. 

This chapter will not address methods for length scale transition or approaches for 
carrying out multi-level finite element analyses. Instead, we shall focus on so-called meso-
level approaches, in which delamination is assumed to be the main degrading mechanism. 
For this purpose, the different levels of analysis — macro, meso and micro — are defined 
in the context of laminated composite structures. At the meso-level as well as at the 
micro-level, fracture along internal material boundaries, delamination and debonding. 
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respectively, governs the failure behaviour. While constitutive relations for such inter­
faces are treated elsewhere in this Volume, most of them have in common that a so-called 
work of separation or fracture energy plays a central role. For this reason, a succinct 
discussion of cohesive-zone models, which are equipped with such a material parameter, 
follows the discussion. 

Next, we shall formulate the three-dimensional finite element equations for arbitrarily 
large displacements gradients, but confined to small strains. Both the continuum ele­
ments for the plies and the interface elements will be treated. For the continuum elements 
thermal and/or hygral strains, which are relevant because of the manufacturing process, 
will be included. Since delamination in strips can often be analysed using a generalised 
plane-strain formulation, the equations will be elaborated for this case. Furthermore, 
solid-like shells will be introduced, which can be used to model the plies in a 3D-like 
manner, but allowing for much larger aspect ratios (up to 1000) than standard solid ele­
ments would allow. This section will be concluded by a discussion on solution techniques, 
where the importance of selecting the proper control parameter is emphasised. 

The final part of this chapter discusses a recent development in numerical models 
for fracture. It exploits the partition-of-unity property of finite element shape functions 
and allows discontinuities to be inserted during a finite element analysis, either within 
a matrix, or, as used here, along interfaces between two materials. The concept will 
be elaborated for large displacement gradients, for the solid-like shell element discussed 
before and will be complemented by illustrative examples. 

• geometrical node 
• internal node 

Figure 1. Shell element for macroscopic analysis of a laminated composite structure 
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Figure 2. Finite element model of a laminated composite. The individual layers are 
modelled with three-dimensional, generalised plane-strain or shell elements. Interface 
elements equipped with a cohesive-zone model are applied between the layers 

2 Multi-Level Analysis of Composite Structures 

2.1 Levels of Observation 

At the macroscopic or structural level the plies are normally modelled via a layered 
shell approach, where the different directions of the fibres in the layers are taken into 
account through an anisotropic elasticity model, Figure 1. If this (anisotropic) elasticity 
model is augmented by a damage or plasticity model, degradation phenomena like matrix 
cracking, fibre pull-out or fibre breakage can also be taken into account, albeit in a 
smeared manner. At this level, the in-plane structural dimensions are the length scales 
that govern the boundary-value problem. 

Indeed, discrete modelling of delamination, matrix cracking and fibre-debonding is 
not possible at this level, as also argued in the Introduction. The level below, where the 
ply thickness becomes the governing length scale, allows for the modelling of delamination 
and matrix cracking. At this meso-level the plies are modelled as continua and can either 
be assumed to behave linearly elastically or can be degraded according to a damage 
law. In the approach suggested by Schellekens and de Borst (1993, 1994a), elastic 
anisotropy and curing of composites are taken into account by including possible thermal 
and hygral efi"ects, but eventual damage which can evolve in the plies is lumped into the 
interface. This approach is reasonable as long as the energy dissipation due to processes 
like matrix cracking is small compared to the energy needed for delamination growth, 
as for mode-I delaminations and for mixed-mode delaminations where the fibres are 
(almost) parallel to the intralaminar cracks. If this condition is not met, the interface 
delamination model must be supplemented by a damage model for the ply, which has 
been proposed by Allix and Ladeveze (1992). A drawback of existing damage approaches 
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for modelling intralaminar cracks, fibre breakage and debonding is that no localisation 
limiter is incorporated, which renders the governing equations ill-posed at a generic stage 
in the loading process and can result in a severe dependence of the results on the spatial 
discretisation (de Borst , 2004). 

At the meso-level, delamination as a discrete process has conventionally been mod­
elled as shown in Figure 2, where the plies are considered as continua — and are discre-
tised using standard finite elements — while the delamination is modelled in a discrete 
manner using special interface elements (Allix and Ladeveze , 1992; Corigliano , 1993; 
Schellekens and de Borst , 1993, 1994a; Allix and Corigliano , 1999; Alfano and Crisfield , 
2001). Generalised plane-strain elements are often used to model free-edge delamination 
as in Schellekens and de Borst (1993, 1994a), while stacks of solid or shell elements and 
interface elements are applicable to cases of delamination near holes or other cases where 
a three-dimensional modelhng is necessary, e.g., (Hashagen et al. , 1995; Schipperen and 
Lingen , 1999). 

6.4 [//m} 

Figure 3. Layer which is unidirectionally reinforced with long fibres (above) and finite 
element discretisations for three different levels of refinement of a representative volume 
element composed of a quarter of a fibre, the surrounding epoxy matrix and the interface 
between fibre and epoxy (Schellekens and de Borst , 1994b) 

The greatest level of detail is resolved in the analysis if the fibres are modelled indi­
vidually. In such micro-level analyses the governing length scale is the fibre diameter. 
Possible debonding between fibre and matrix material is normally modelled via interface 
elements, equipped with cohesive-zone models, quite similar to models for delamina­
tion. An example is given in Figure 3, which shows an epoxy layer, which has been 
reinforced uniaxially by long fibres, together with three levels of mesh refinement for a 
Representative Volume Element of the layer. 
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Figure 4. Stress-displacement curves for ductile separation (left) and quasi-brittle sep­
aration (right) 

2.2 The Cohesive-Zone Concept 

Delamination in the interfaces between the plies is modelled using a discrete relation 
between the interface tractions t̂  and the relative displacements v: 

ti = ti{v,hi) (2.1) 

with K a history parameter. After linearisation, necessary to use a tangential stiffness 
matrix in an incremental-iterative solution procedure, one obtains: 

t, = Tv (2.2) 

with T the material tangent stiffness matrix of the discrete traction-separation law: 

(2.3) 
dti dti OK 

dw OK dv 

Whichever type of modelling is used, plasticity or damage, a key element is the pres­
ence of a work of separation or fracture energy, Qc, which governs delamination growth 
and enters the interface constitutive relation (2.1) in addition to the tensile strength ft. 
It is defined as the work needed to create a unit area of fully developed crack: 

adu (2.4) 
u=0 

with a and u the stress and the displacement across the fracture process zone. It thus 
equals the area under the decohesion curves as shown in Figure 4. Evidently, cohesive-
surface models as defined above are equipped with an internal length scale, since the 
quotient Gc/E, with E a stiffness measure for the plies, has the dimension of length. 

3 Standard FE Approach to Debonding and Delamination 

3.1 Three—Dimensional Framework 

We denote the material coordinates of a point in the undeformed reference configu­
ration by X = (Xi, X2, X3), while in the deformed configuration the spatial coordinates 
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of the point become x = (xi, X2, X3). Between x and X we have: 

X = : X + U (3.1) 

with u the displacement vector. The deformation gradient F is obtained by differentiating 
X with respect to X 

F = ^ = i + ^ (3.2) 

with i the second-order unit tensor. In the formulation of constitutive relations an ob­
jective strain measure is required. Because of its computational convenience the Green-
Lagrange strain tensor is often selected: 

The incremental strain tensor is then given by: 

'^~2(^ax^Vaxy) ^ \dx) ' ~dx ^ \~dx) ' dx^\dx ) ' dx ) 
(3.4) 

The incremental strain tensor consists of a part that is linear in the incremental dis­
placement field and a part that is quadratic in the incremental displacement field. For 
computational convenience we introduce 

A7 = Ae + AT] (3.5) 

with 
ifdAu fdAu\^ fdu\^ 5Au f dAu^ du\ 

^ ^ = 2 ( ^ - ^ ( ^ j "-[ox] • ^ ^ ( - a x j -ox) ^'-'^ 

1 / 9 A u \ ^ (9Au 
^^=2 [-ax) - ^ ^'-'^ 

Furthermore, we introduce the variation of the displacement field as Su, so that we can 
define the variation of the Green-Lagrange strain as: 

1 fdSu /d5u\'^ fdu\'^ dSu /ddvi\'^ du\ ,^„, 

'''=2[-dx + [-dx) +[dx) •-dx + [-&x) w) ('•') 
In the actual configuration and ignoring inertia effects, the balance of momentum 

reads: 
V , . (7 + pg - 0 (3.9) 

where the subscript x denotes differentiation with respect to the current configuration, 
a is the Cauchy stress tensor, p is the mass density in the current configuration and g 
is the gravity acceleration. The weak form of the momentum equation is obtained in 
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a s tandard manner by multiplying the balance of momentum by a test function w and 
integrating over the domain Q. After using the divergence theorem, one obtains: 

/ V'J'^w : adn = [ w- pgdn -h [ W'tdV (3.10) 
JQ JQ JT 

with r the external boundary to the body Vt and the superscript sym denoting a sym­
metrised operator. In a total Lagrange description, which is employed predominantly 
in computational structural analysis, static and kinematic variables are functions of the 
undeformed, or reference configuration Vt^ and it is computationally convenient to t rans­
form eq. (3.10) to the reference configuration. After some algebraic manipulations, using 
conservation of mass, p^dDP — pd£t, and identifying the test function w with the variation 
of the displacement field. Ju . one obtains: 

/ ^ 7 : r d ^ ° = / ( 5 u - p ° g d ^ V / J u • t ° dF^ (3.11) 
JVL^ JQO Jro 

where t^ is the (nominal) traction vector referred to the undeformed state, p^ is the mass 
density in the undeformed configuration, F^ is the surface in the undeformed state, and 
r is the second Piola-Kirchhoff stress tensor, which is related to the Cauchy stress tensor 
a by: 

a = (detF) F • r • F ^ (3.12) 

with d e t F = p/p^. 
In general, eq. (3.11) is highly nonlinear, because of the nonlinear dependence of r on 7 

and because of the nonlinear dependence of 7 on u: r = r ( 7 ( u ) ) . Solution of eq. (3.11) is 
therefore achieved using some iterative procedure, usually the Newton-Raphson method 
in computational s tructural analysis. Linearising the stress-strain relation r — T{J) to 
give the material tangential stiff'ness tensor, 

D = ^ (3.13) 

we obtain for the unknown stress TJ at iteration j : 

Tj = D : d 7 + r ^ - i (3.14) 

with Tj-i the known stress at the previous iteration j — 1 and the d-symbol signifying 
the iterative change of a quanti ty from iteration j — 1 to iteration j . Wi th eq. (3.14), we 
obtain instead of eq. (3.11): 

/ (57 : D : d7d^°-f- / ^7 : r^-id^^^ = / (5u • p ° g d ^ ° + / (5u • t^dL^ (3.15) 
Jn^ JQO 7^0 jpo 

Elaborat ing this equation using the strain decomposition (3.5) and consistent linearisa­
tion leads to: 

/ Se-.n-.dedn^-i- [ Srj'.Tj^idn^ = [ Su-p^gdn^+ f Su-t^dT^- f SeiTj-idft^ 
JQO JQO JQO Jpo Jn^ 

(3.16) 
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Figure 5. T-bone shaped AS-3501-06 graphite-epoxy laminated strip subjected to uni­
axial loading 
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Figure 6. Quarter of T-bone shaped laminated strip 

After a standard discretisation of the displacement field u, a discrete set of (nonlinear) 
algebraic equations is obtained. Such a discretisation will be elaborated in the next 
subsection for the specific case of generalised plane-strain elements and comments on 
the solution of the nonlinear set of equations will be made later in this section. 

At the beginning of each load increment, so for j = 0, the possible infiuence of hygro-
thermal eflPects is taken into account. Assuming that there are no nonlinear efi'ects in the 
plies other than hygral and thermal strains the stress increment is then given by 

dro - A T = D : (A7 - ATa - AC/?) (3.17) 

with AT and AC the incremental changes in temperature and moisture content in the 
current loading step, respectively. The vectors a, /3 contain the thermal and hygroscopic 
expansion coefficients, respectively. 

Due to mismatch of the Poisson effect between the layers of a laminated structure, 
as caused by the different orientation of the fibres, interlaminar stresses will develop 
between the plies at the free edges. At a generic stage in the loading process, these edge 
stresses will lead to delamination. Depending on the stacking sequence of the laminate 
and the position of the delamination zone in the laminate, delamination occurs purely as 
mode-I delamination or as delamination due to a combination of several cracking modes, 
so-called mixed-mode delamination. For the three-dimensional example of Figure 5, we 
will consider a lay-up that causes pure mode-I delamination, which is the dominant 
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Figure 7. COD vs axial stress for the full T-bone specimen and for an approximated 
3D solution using the rectangular specimen of Figure 8 

mode if delamination occurs in the mid-plane of a symmetric laminate. Consequently, 
only the upper (or equivalently, the lower) half of the laminate needs to be analysed. 
The interface delamination model was based on a damage formalism, see Schipperen and 
Lingen (1999) for details, where also the relevant material parameters can be found. 

The strip that has been analysed, has a laminate lay-up of [25, —25, 90]^ and is man­
ufactured of an AS-3501-06 graphite-epoxy. The initiation of delamination occurs at a 
threshold deformation Ki == 51.6 • 10~^mm in the normal direction of the interface. This 
threshold deformation is determined from the tensile strength of the material and the 
normal elastic stiffness in the interface dn- Because of the zero thickness of the interface 
this parameter is in fact a dummy stiffness. The use of a dummy stiffness in the determi­
nation of Ki makes the initiation of damage somethat arbitrary. However, the opening of 
the interface after damage initiation is controlled by the fracture energy of the material, 
Qc = 0.175N/mm^ which ensures that delamination propagation is predicted properly. 

The specimen that has been analysed is depicted in Figure 6 in more detail. The linear 
elastic ends of the specimen are a simplification of the real situation in an experiment 
and have been included in the analyses to limit the influence of the boundary conditions. 
Furthermore, to reduce the computation time, the radius of the transition zone has been 
taken fairly small compared to data suggested in norms. The COD versus axial stress, 
measured as the average stress in the narrow part of the strip, is shown in Figure 7. 

Numerical solutions of boundary-value problems involving materials that show a de­
scending branch after reaching a peak load level, can be highly mesh sensitive (de Borst , 
2004). However, in the present situation, where the degrading phenomena are limited to 
a discrete interface where the crack opening is controlled by a fracture energy (cohesive-
zone approach), the boundary value problem remains well-posed and, consequently, no 
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Figure 8. Quarter of the rectangular specimen used in the approximate 3D solutions 

mesh sensitivity should be observed. This is confirmed in a mesh refinement study of 
a three-dimensional rectangular plate, Figure 8, which is used to approximate the orig­
inal T-bone specimen, but, because of its simpler geometry, is less expensive in mesh 
refinement studies. The load-displacement curves for the original T-bone specimen and 
the approximate 3D specimen are close. Figure 7, justifying the approximation for the 
purpose of a mesh refinement study. 

Three different meshes have been used in the calculations. The coarse mesh consisted 
of 20 elements over the width and 25 elements over the length of the plate. For the 
two finer meshes the element distribution over the width was not equidistant. For the 
2.5 mm of the width of the plate closest to the free edge a finer mesh was used. This 
leads to 35 elements over the width and 25 elements over the length of the plate for the 
second mesh and to 70 elements over the width and 50 elements over the length of the 
place for the finest mesh. The crack opening displacement of a node near the centre 
of the free edge has been plotted versus the applied axial stress for all three meshes in 
Figure 9. No mesh sensitivity can be noticed. In Figure 10 the delamination zone of 
the plate is shown at several stages during the computation. Until the peak load the 
delamination is uniform, since the slight waviness is purely due to visualisation aspects. 
However, in the descending branch of Figure 9 the delamination zone becomes more and 
more non-uniform. 

3.2 Generalised Plane-Strain Formulation 

If the length of a laminate is large compared to the width and the thickness we may 
assume that, for uniaxial tensile or compressive loadings, at a certain distance from the 
ends of the specimen, the in-plane displacements in the X2,X3-plane are independent 
of the Xi-coordinate, Figure 11. This results in the following set of equations for the 
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F igure 9. Mesh sensitivity studies for the 3D rectangular specimen 
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Figure 10. Evolution of the delamination zone in simplified three-dimensional analysis 

displacement field of a cross section (Pipes and Pagano , 1970; Pagano , 1974; Schellekens 
and de Borst , 1993): 

7 i i (Xi ,X2,X3) = X€nXi+ui{X2,X3) (3.18a) 

U2{Xi,X2.Xs)=U2{X2^Xs) (3.18b) 

us{Xi,X2^Xs) = U3{X2,Xs) (3.18c) 

with eii a normalised strain tha t is prescribed in the Xi-di rec t ion of the specimen and 
A a load parameter . Wi th the increment of the Green-Lagrange strain tensor, eq. (3.4), 
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Figure 11. Uniaxially loaded laminate strip 

(3.20) 

and noting that, for generalised plane-strain conditions, Aui^Xi = AAen, Au2,Xi — 0 
and Aus^Xi = 0, we obtain for the strain increment A7 

A7 = AXei + Aeo + Aci + Arj (3.19) 

where, using Voigt's notation, the contribution AAen is due to the applied strain loading, 

/ e n \ 
0 
0 
0 
0 

V 0 / 

Aco is of the order zero in the incremental displacements, 

/ (Fn - l)AAeii + ^AA^ef^ \ 
0 
0 

i^i2AAeii 
0 

\ FisAAeii / 

A€n = (3.21) 

and Ac and Ary are linear and quadratic in the displacement increments, respectively: 

/ 0 \ 
Fi2Aui^X2 + F22AU2,X2 + -f32Aw3,X2 
FisAui^Xs + -P23AM2,X3 + F33AU3,X3 

{Fii + AXen)Aui^X2 
FuAui^Xa + Fi3Awi,X2 + F22AU2,X3 + F23AU2,X2 + F32AU3^X3 + F33AU3^X2 

\ (Fn+AAeii)Aui,x3 / 
(3.22) 

Ae 
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and 

AT] 

0 

i {Aul^^ + Aul^^ + Aul 
,X2J 

0 

Aui^X2^'^l,X3 + A'?i2,X2 Al^2,X3 + A'U3,X2^'^3,X3 
0 

(3.23) 

Because of the absence of external loadings in the X2, Xs-plane the weak form of the 
balance of momentum (3.16) reduces to: 

/ Se^Bdedft^-^ f Sr)^{TJ^i+dXBci+Bdeo)dn^ = - [ ^€^(r^_i+dAD€/+Ddco)df^° 

(3.24) 
where, in conformity with the use of Voigt's notation, matrix-vector notation has been 
adopted, de is linear in the iterative nodal corrections da: 

(3.25) 

Br = 

i by, cf eq. 3.22: 

0 

^12h,X2 

^13h,X3 

(F i i+dA6n)h X2 

de = BLda 

0 

^22h,X2 

^23h,X3 

0 

0 

^32U,X2 

i^33U,X3 
0 

^12h,X3 + ^13h,X2 ^22h,X3 + ^23h,X2 ^32h,X3 + ^33h,X2 

( F i i + d A e n ) h x 2 0 0 

(3.26) 

where h Xi contains the derivatives of the interpolation functions in the X^-direction. 
Using eq. (3.25), the first term in eq. (3.24) becomes 

/ Se^BdedQ^ = SR^ [ B^DBLd^^ da (3.27) 

We next introduce the matrix 

BATL = 

0 
0 
0 

9^X2 
0 
0 

d.Xs 
0 
0 

0 
0 
0 
0 

9,X2 
0 
0 

^ , ^ 3 

0 

0 
0 
0 
0 
0 

d,X2 
0 
0 

9,X3 

(3.28) 

with d^Xi — d/dXi. Now, the second term in the left hand of eq. (3.24) becomes 

/ ?7^(r^-i + dADez + Dd€o)d(^° = 5SL^ f B^^(T^_i + EJ)BNL dft^ da (3.29) 
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where 

and 

with 

T , - i = 

- l l 

- l l 

- l l 

E , -

^23,i-

^ ^ , 1 2 ! 

^^^,22! 

^9,2SI 

- l l 

- l l 

- l l 

- l l 

- l l 

- l l 
J 9x9 

'^5,3lA 

^ ^ , 2 3 ! 

^ ^ , 3 3 ! J 9x9 

D(d€o + dAe/) 

(3.30) 

(3.31) 

(3.32) 

Substitution of eqs (3.27) and (3.29) into eq. (3.24), and requiring that the result holds 
for any virtual displacement yields: 

K ^ d a • / B J ( T ^ _ I + dADê  + Ddeo)df]° 

with 

K, / B ^ D B i dfi° + / BATLCTJ- i + E , ) B ^ L d O ^ 

(3.33) 

(3.34) 

the tangential stiffness matrix. 
The three-dimensional analysis of the preceding subsection has been repeated us­

ing generalised plane-strain elements. The analyses have been carried out for two-
dimensional meshes of a cross section of a laminate subjected to a uniaxial strain under 
the assumption of uniform delamination at a certain distance away from the loaded edges, 
see Figure 5. 

The first analysis has been performed on a strip with an individual ply height of 
0.132 mm and a specimen width of 25 mm. For this specimen three different finite 
element discretisations have been considered, with element lengths of 0.05, 0.1 and 0.2 
mm, respectively, near the free edge. This fine discretisation has been used only at the 
5 mm nearest to the free edge of the specimen. The remainder of the laminate has been 
modelled with a coarser mesh with an element length of 2.5 mm. For the two-dimensional 
analyses, symmetry has been assumed, so that only one quarter of the cross section of 
the laminate has been modelled. This assumption has been made to reduce the problem 
size and thus the computation time. Of course, the assumed symmetry axis in the 
midplane of the laminate is valid due to the symmetrical ply lay-up. The other assumed 
symmetry axis is not a real symmetry axis of the laminate due to the fibre orientation 
in the plies. At the symmetry edges of the model supports were added according to 
the symmetry conditions, viz. ui{0,0,Xs) = 0,1^2(0, 0,^3) = 0 and us{0,X2,0) = 0. 
Prior to delamination, the interface elements have been assigned a high dummy stiffness 
dn = ds = 10^^N/mm'^, in order to minimise the artificial elastic deformations in the 
interface. 

The average axial stress (total axial load divided by the surface of the cross section) vs 
the applied axial strain is shown in Figure 12 for all three meshes. Clearly, no mesh sensi­
tivity occurs. A comparison of the computed value for the ultimate strain, ei = 0.00518, 
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F i g u r e 12 . Average axial load vs applied axial strain for [25, —25, 90] § laminate using a 
generalised plane-strain approximation 

with numerical results using a plasticity-based interface model, e/ = 0.00516 (Schellekens 
and de Borst , 1993), and with experimental data , e/ = 0.0053 (Wang , 1989), shows a 
good agreement. 

The influence of the temperature drop tha t occurs during the manufacturing process 
has been taken into account by simulating a temperature drop A T = —125 °C. If the 
temperature drop tha t occurs in the manufacturing process is not taken into account, 
the ult imate strain of the laminate is overestimated significantly, Figure 14, in which the 
delamination length from the free edge versus the applied axial strain is shown for the 
mesh with an element length of 0.1 mm near the free edge. 

A comparison of the results of a two-dimensional analyses of this laminate and the 
three-dimensional analysis is given in Figure 14. The two-dimensional approximation is 
close, but it should be noted tha t this three-dimensional analysis has been carried out 
for the simplified three-dimensional model of Figure 8. 

As an example of mixed-mode free-edge delamination, a composite str ip loaded in 
uniaxial tension has been considered. The material was a Fibredux 6376C/35/135/HTA 
graphite epoxy. To introduce the initial stresses tha t are caused by the manufacturing 
process, a temperature drop A T — —150 °C has been imposed prior to incrementing 
the axial elongation. A cross section of the example tha t we have considered, is shown 
in Figure 15. For this specific lay-up, the delamination jumps from one of the -35/90 
interfaces to tha t which is located at the other side of the symmetry line and back (mixed-
mode delamination). The energy tha t is dissipated in the crack tha t runs through the 
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Figure 13. Delamination length vs applied strain with and without temperature drop 
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Figure 14. Comparison of load-displacement curves obtained from generalised plane-
strain and from three-dimensional analyses 

plies is neghgible, because the fibres in this layer are parallel to the crack. Figure 16 
shows the results in terms of the axial strain at onset of delamination for three different 
lay-ups. A clear size (thickness) effect is predicted because of the presence of the energy 
of separation Qc in the constitutive model for the interface. This computed size effect 
was confirmed by experiments carried out at the Catholic University of Leuven after 
completion of the computations (Schellekens and de Borst , 1994a). 
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Figure 15. Mixed-mode delamination in a uniaxially loaded laminated strip: jumping 
of a delamination front between two -35/90 interfaces 
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Figure 16. Computed and experimentally determined values for the ultimate strain Cu 
as a function of the number of plies (Schellekens and de Borst , 1994a). Results are shown 
for laminates consisting of eight plies (n = 1), sixteen plies (n == 2) and twenty-four plies 
(n = 3). The triangles, which denote the numerical results, are well within the band of 
experimental results. The dashed line represents the inverse dependence of the ultimate 
strain on the laminate thickness 

3.3 Solid-Like Shell Formulation 

We consider the thick shell shown in Figure 17. The position of a material point 
in the shell in the undeformed configuration can be written as a function of the three 
curvilinear coordinates [£,,r],Q: 

X(e,r?,C)=Xo(^,7?)+CD(e,7?) (3.35) 
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Figure 17. Kinematic relations of the solid-like shell element 

where Xo(^, ry) is the projection of the point on the mid-surface of the shell and D(^ , rj) 
is the thickness director in this point: 

D ( e , r y ) = . i [ X , ( e , 7 7 ) - X , ( e , r 7 ) ] 

(3.36) 

(3.37) 

The subscripts {•)t and (•)^ denote the projections of the variable onto the top and bot tom 
surface, respectively. The position of the material point in the deformed configuration 
^(^7 V^ C) is related to X(^ , ry, () via the displacement field 0((^, ry, Q according to: 

x(^,r/,C)=X(^,7y,C)+<^(^,^,C) (3.38) 

where: 

<^(e, V, C) = uo(^, v) + Cui(^, 7?) + (1 - C')u2(e, V) (3.39) 

In this relation, UQ and u i are the displacements of X Q on the shell mid-surface, and the 
thickness director D , respectively: 

iio(^, V) = 7^ [ut(^, v) + U6(^, v) (3.40) 

Ul(^,^) = -[Ut(^,7y) -UbiC^v)] (3.41) 

and U2(^,77) denotes the internal stretching of the element, which is colinear with the 
thickness director in the deformed configuration and is a function of an additional 'stretch' 
parameter w: 

U 2 ( e , r / ) = ^ e , r / ) [ D + ui(e,r/)] (3.42) 

The displacement field (f) is considered as a function of two kinds of variables; the ordinary 
displacement field u, which will be split in a displacement of the top and bot tom surfaces 
Ut and Ufo, respectively, and the internal stretch parameter w: 

(l) = ^{Ut,Ub,w) (3.43) 
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Figure 18. Geometry of a Glare panel with a circular initial delamination 

The derivation of the strains and the finite element formulation are given in Hashagen 
et al (1995) and Parisch (1995). 

Using the solid-like shell element, the behaviour of a Glare panel with a circular initial 
delamination and a sinusoidally shaped out-of-plane imperfection (with an amplitude of 
0.003 mm) subject to a compressive load has been examined. The failure mechanism is 
slightly complicated, since the delaminated zone grows in a direction perpendicular to 
the main loading direction. As a result, the delaminated area transforms from a circular 
area into an ellipsoidal one. Consequently, the buckling mode will change as well, and 
some parts of the top layer will tend to move inwards. For this reason, the possibility of 
self-contact has been included and a contact algorithm has been activated. 

The specimen of Figure 18 consists of an aluminium layer with thickness /ii = 0.2 mm 
and a GlareS 0/90° prepreg layer with a thickness /i2 = 0.25 m,m.^ (Remmers and de Borst 
, 2002). An initially circular delamination area with radius 8 m.m is assumed. The layers 
are attached to a thick backing plate in order to prevent global buckling. A uniaxial 
compressive loading in x-direction is considered {a^ — —CTQ, ay ~ 0.0). 
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Figure 19. Mesh used for the simulation of delamination growth in the Glare panel. 
The initial delamination is located at the darker elements. Note that just one quarter of 
the panel (x > 0, i/ > 0) has been modelled 

Table 1. Material parameters for 0/90° GlareS 

£^11 

£^22 

^ 3 3 

33 170 M P a 
33 170 M P a 

9 400 M P a 

Gi2 
G^23 

Gi3 

5 500 MPa 
5 500 MPa 
5 500 MPa 

1^12 

i^23 

Z^13 

0.195 
0.032 

0.06 

The finite element mesh is shown in Figure 19. The material parameters for the Glare3 
layer are taken from Hashagen and de Borst (2000), see Table 1. The ultimate traction 
in normal direction in tension and compression are assumed to be t^ = 50 MPa and 
i^ = 150 MPa, respectively, and the ultimate traction in the two transverse directions 
equals igi = is2 = 25 MPa. The work of separation is ^c = 1-1 N/mm. An initial 
stiffness of the interface elements of dn — 50 000 N/mm?' has been assumed. 

The analytical estimation for the local buckling load of a clamped unidirectional panel 
with thickness hi subjected to an axial compressive load CTQ was derived in Shivakumar 
and Whitcomb (1985). For this configuration, the lowest critical buckling load is equal 
to cro = 113.2 MPa. 

For the contact algorithm the penalty stiffness has been set equal to the initial stiffness 
of the interface elements with the delamination model, dpen = 50 000 MPa. The out-
of-plane displacement of the centre point of the panel is shown in Figure 20. The local 
buckling load is in agreement with an eigenvalue analysis (Remmers and de Borst , 
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Figure 20. Out-^of-plane displacement of top layer versus applied axial compressive load 
CTQ. The dashed line corresponds to the critical buckling load obtained by an eigenvalue 
analysis (Remmers and de Borst , 2002) 

delamination growth contact 

Figure 21. Final deformation of the Glare laminate under uniaxial loading (Remmers 
and de Borst . 2002) 

2002). Initial delamination growth does not start until a load level CTQ = 300 MPa^ while 
progressive delamination begins at an external load level CTQ ̂  950 MPa. As this value 
is far beyond normal stress levels, the analysis suggests that delamination buckling is 
of little concern in uniaxially compressed Glare panels. As expected, the delamination 
extends in a direction perpendicular to the loading direction, Figure 21. 

3.4 Interface Elements 

We consider an A^-noded line or plane interface, e.g. Figure 22 for a line interface. In 
a general three-dimensional configuration each node has three translational degrees-of-
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tn, V„ 

Figure 22. Line interface element and transformation from the reference to the current 
configuration 

freedom, which leads to an element nodal displacement vector a 

— K. .an (3.44) 

where n denotes the direction normal to the interface surface and s and t denote the 
directions tangential to the interface surface, respectively. The continuous displacement 
field is denoted as 

u=«,<,<,wi,<,«0'' (3.45) 
where the superscripts u and / indicate the upper and lower sides or planes of the interface, 
respectively. With aid of the interpolation polynomials collected in the array h the 
relation between the continuous displacement field and the nodal displacement vector is 
derived as: 

u = H a (3.46) 

with 

H 

h 0 0 0 0 0 
0 h 0 0 0 0 
0 0 h 0 0 0 
0 0 0 h 0 0 
0 0 0 0 h 0 
0 0 0 0 0 h 

(3.47) 

To relate the continuous displacement field to the relative displacements an operator 
matrix L is introduced: 

L = 

With the relative displacement vector v^ = (vn^Vs^Vt) we obtain 

- 1 
+1 

0 
0 
0 
0 

0 
0 

- 1 
+1 

0 
0 

0 
0 
0 
0 

- 1 
+1 

(3.48) 

V = Lu (3.49) 
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The relation between nodal displacements and relative displacements for continuous el­
ements is now derived from eqs (3.46) and (3.49) as: 

V = LHa = Ba (3.50) 

where the relative displacement-nodal displacement matrix B now reads 

(3.51) 

For an arbitrarily oriented interface element the matrix B subsequently has to be trans­
formed to the local coordinate system of the integration point or node-set. 

In interface elements tractions and relative displacements are evaluated between the 
upper and the lower interface sides or planes. The components of the traction and 
relative displacement vector are determined by the orientations of the element sides or 
planes, and are thus fixed. With the Cauchy traction vector at the interface, t^, a relative 
displacement vector v which refers to the current configuration and F the actual element 
surface, the first variation of the internal energy in the current configuration is given by 

- h 
0 
0 

h 
0 
0 

0 
- h 

0 

0 
h 
0 

0 
0 

- h 

0 
0 
h 

5W = f Sv^UdT (3.52) 

which has to be added to the left-hand side of eq. (3.10). Similar to the previous 
continuum element formulations we will recast this expression in terms of static and 
kinematic variables that refer to the undeformed reference state. We first introduce 
dF = (detJ/detJ^)dF^ with detJ and detJ° the determinants of the Jacobian matrices 
in the current and the reference configuration, respectively. We next define an interface 
traction vector that refers to the reference configuration, t^ = (detJ/detJ^)R^t4, with 
R a rotation matrix as in Figure 22, and a relative displacement vector with respect to 
the reference configuration: v^ = R^v. Subsequently, we can rewrite eq. (3.52) as: 

5W= [ (JvO)TtOdF° (3.53) 

Hence, the auxiliary traction vector t^ is energetically conjugate to the relative displace­
ment vector v^ measured with respect to the reference configuration and can therefore 
be employed as an interface traction measure in a geometrically nonlinear formulation of 
interface elements. 

In a nonlinear analysis and assuming small strains, a traction vector t^ at the end of 
an iteration j can be expressed as 

tO = t^_^ 4- Tdv^ (3.54) 

cf., eqs (2.2) and (2.3), and dv° denotes the iterative change in the relative displacement 
vector. Introducing eqs (3.50) and (3.54) in the virtual work expression (3.53) and 
considering that no external actions are acting on the interface elements, one obtains: 

Sa' ' / B ^ T B d F O d a = - / B%o_idFO (3.55) 
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Figure 23. Geometry of symmetric, notched three-point bending beam 

The element stiffness matrix K and the internal force vector f._i can thus be defined as 

K - / B^TBdr^ 

and 

/ B^to idpo 

(3.56) 

(3.57) 

In the foregoing examples, interface elements equipped with a cohesive-zone model 
have been inserted a priori in the finite element mesh. Before the tensile strength in 
the interface element is exceeded, which is monitored in the integration points of the 
interface element, no deformations should occur, since (elastic) deformations before the 
onset of fracture only take place in the bulk. Nevertheless, the formulation of conventional 
interface elements requires a finite stiffness prior to the onset of cracking, thus giving rise 
to (unphysical) deformations in the interface before crack initiation. 

Prior to onset of delamination the stiffness matrix in the interface reads: 

T = 
dn 0 0 
<) ds 0 
0 0 dt 

(3.58) 

with dn the stiffness normal to the interface and ds and dt the tangential stiffnesses. The 
undesired elastic deformations can be largely suppressed by choosing a high value for 
the stiffness dn- Depending on the chosen spatial integration scheme, this high stiffness 
value can lead to spurious traction oscillations in the pre-cracking phase, which may 
cause erroneous crack patterns (Schellekens and de Borst , 1992; Remmers et al , 2001). 
An example of an oscillatory traction pattern ahead of a notch is given in Figure 24 for the 
notched three-point bending beam of Figure 23. When analysing dynamic delaminations. 
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Figure 24 . Traction profiles ahead of the notch using Unear interface elements with 
Gauss integration. Results are shown for different values of the stiffness J9 = d^ in the 
pre-cracking phase (Schellekens and de Borst , 1992; Remmers et al. , 2001) 

spurious wave reflections can occur as a result of the introduction of such artificially high 
stiffness values prior to the onset of delamination. Moreover, the necessity to align the 
mesh with the potential planes of delamination, restricts the modelling capabilities, in 
particular for thin composite structures. 

3.5 So lu t ion Contro l 

Depending on the lay-up, laminated composite structure can fail in a very brittle, and 
sometimes explosive manner. When plotting the axial load vs the axial elongation, this 
brittleness translates in snap- through and even in snap-back behaviour, see Figure 12 
tha t contains results for the generalised plane-strain approximation of the T-bone spec­
imen of Figure 5, which fails in mode-I . Use of s tandard load control prohibits the exam­
ination of the post-crit ical behaviour. However, path-following procedures, also known 
as arc-length procedures (Riks , 1970, 1972; Ramm , 1981; Crisfield , 1981), provide an 
elegant way to overcome this limitation of s tandard load control. This class of methods al­
lows continuation of the computat ion beyond limit and turning points in the equilibrium 
path . While originally devised for and applied to purely geometrically nonlinear struc­
tural behaviour, there is no conceptual limitation to also apply the method to physically 
nonlinearities such as delaminations. However, it has been observed tha t , especially in 
case of highly localised deformations, the method tends to become less effective and tha t 
it can be more efficient to only consider one of more dominant degrees~of-freedom (de 
Borst , 1987). In delamination analyses the constraint equation is then based on the 
relative displacements in the delamination front. 

Elaborat ing for the generalised plane-s t ra in case, we observe tha t in a conventional 
strain loading the iterative change in nodal displacements d a for iteration j is determined 
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Figure 25. Crack Opening Displacement (COD) control 

from eq. (3.33) If we define q as a normalised external load vector, 

q - - / BjDe/dQo 

and the internal force vector P j - i as 

p^_i = - / Bl{Tj-i - AA^_iDez + Dd6o)d^° 

eq. (3.33) can be rephrased as: 

da = Kj\AXjq-^Pj-i) 

(3.59) 

(3.60) 

(3.61) 

since dA = AA^ - AA^_i. In an arc-length modification of strain loading this process-
can be represented by the following set of equations 

da^ = K - i p , _ i 

da" = K-^q 

(3.62) 

(3.63) 

(3.64) da = da^ + AA^da" 

The correction da is determined by the requirement that the Crack Opening Displacement 
(COD) of the interface between the two plies where delamination occurs should have the 
same value for each iteration, Figure 25: 

d{COD) =0-^dap-daq = 0 (3.65) 

with dap the change in displacement of node p in the direction normal to the interface 
from iteration j — 1 to iteration j . Combination of eqs (3.64) and (3.65) yields the value 
for the change of the load parameter: 

doL — dai 
AXi= ^ ^ 

dai,i - daii 
(3.66) 
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4 Modelling of Delamination and Debonding Based on the 
Partition-of-Unity Concept 

4.1 The partition—of—unity concept 

Considering the restrictions that adhere to the use of interface elements, the search 
has continued for a proper representation of the discrete character of cracks and inter­
faces, while allowing for an arbitrary direction of crack propagation, not biased by the 
initial mesh design. Meshless methods (Huerta et al. , 2004) were thought to provide 
a solution for this problem, but they appear to be less robust than traditional finite 
element methods, they are computationally more demanding and the implementation 
in three dimensions appears to be less straightforward. However, out of this research, 
a method has emerged, in which a discontinuity in the displacement field is captured 
exactly. It has the added benefit that it can be used advantageously at different scales, 
from microscopic to macroscopic analyses. 

r = aQ 

Figure 26. Body composed of continuous displacement fields at each side of the discon­
tinuity r^ 

The method makes use of the partition-of-unity property of finite element shape 
functions (Babuska and Melenk , 1997). A collection of functions (/>i, associated with 
nodes z, form a partition of unity if ^^^i 02(x) = 1 with n the number of discrete nodal 
points. For a set of functions 0̂  that satisfy this property, a field u can be interpolated 
as follows: 

n / m \ 
u{x.) = ^(t)^{:x.)ia^ + Y^M^)^ij I (4-1) 

z=l V j = l / 

with a^ the 'regular' nodal degrees-of-freedom, '^^(x) the enhanced basis terms, and 
dtj the additional degrees-of-freedom at node i which represent the amplitudes of the 
j th enhanced basis term V^j(x). In conventional finite element notation we can thus 
interpolate a displacement field as: 

u = N(a -h Na) (4.2) 

where N contains the standard shape functions, N the enhanced basis terms and a and 
a collect the conventional and the additional nodal degrees-of-freedom, respectively. A 
displacement field that contains a single discontinuity, Figure 26, can be represented by 
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choosing (Belytschko and Black , 1999; Moes et al , 1999): 

N = HT,1 (4.3) 

Substitution into eq. (4.2) gives 

u = N a -^Hva N a (4.4) 
u u 

Identifying u = N a and u = N a we observe that eq. (4.4) exactly describes a displace­
ment field that is crossed by a single discontinuity, but is otherwise continuous. Accord­
ingly, the partition-of-unity property of finite element shape functions can be used in 
a straightforward fashion to incorporate discontinuities in a manner that preserves their 
discontinuous character. 

As before, we take the balance of momentum 

V • (7 + pg = 0 (4.5) 

as point of departure and multiply this identity by test functions w, taking them from 
the same space as the trial functions for u, 

w = w ^Hvd'^ (4.6) 

Applying the divergence theorem and requiring that this identity holds for arbitrary w 
and w yields the following set of coupled equations: 

/ V^y'^w :(T(m= f W' pgd^ + [ W'tdT (4.7) 

[ \/^y'^w:adn+ I W'tidT= [ w-pgdn-^ [nr^w-tdT (4.8) 
Jct+ Jvd J^-^ J^ 

where in the volume integrals the Heaviside function has been eliminated by a change of 
the integration domain from Q to Q^. With the standard interpolation: 

u = N a , u = N a ^̂ ^̂ ^ 

w = Nw , w = Nw 

and requiring that the resulting equations must hold for any admissible w and w, we 
obtain the discrete format: 

/ B^cjdQ = / pB^gdQ -h / N ^ t d r (4.10) 
JQ Jfi Jr 

[ B^adn-^ [ N ' ^ t d d r ^ / pB^gdQ+ / w r . N ^ t d r (4.11) 
Jn+ Jvd J^+ JT 

After linearisation, the following matrix-vector equation is obtained: 

da \ _ / fr* - fl"* 
da } \ f l ^ t - f i "* (4.12) 
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with f̂"̂*, f|̂ * given by the left-hand sides of eqs (4.7)-(4.8), f|̂ *, f|̂ * given by the right-
hand sides of eqs (4.7)-(4.8) and 

K^^ = / B^DBdf^ (4.13) 
Jn 

B'^DBd^ (4.14) 
JQ-

= / B^DBdll (4.15) 

K~aa = [ B^DBdl7+ / N ^ T d r (4.16) 

If the material tangential stiffness matrices of the bulk and the interface, D and T re­
spectively, are symmetric, the total tangential stiffness matrix remains symmetric. It is 
emphasised that in this concept, the additional degrees-of-freedom cannot be condensed 
at element level, because it is node-oriented and not element-oriented. It is this prop­
erty which makes it possible to represent a discontinuity such that it is continuous at 
inter element boundaries. 

At variance with conventional interface elements, a criterion is needed for the place­
ment of the discontinuity upon propagation. This criterion is based on the stress state 
at the delamination front, which can be monitored by adding temporary sample points. 
When the criterion exceeds a threshold value, the discontinuity is extended into the new 
element. The corresponding nodes of this element are enhanced with an additional set 
of degrees-of-freedom. 

Originally, the partition-of-unity concept was applied within the context of linear 
elastic fracture mechanics (Belytschko and Black , 1999; Moes et al. , 1999), thus neces­
sitating special functions to simulate the near-tip singularity. For this reason, close to 
the crack tip the enhanced basis terms were introduced as: 

^ = (yfcos(6'/2) , Vfsin(<9/2) , ^ f sin((9/2) sin(<9) , V^cos((9/2) sin((9))'^ (4.17) 

where r is the distance from the crack tip and 0 is measured from the current direction 
of crack propagation. Away from the crack tip Heaviside functions were employed as 
discussed above. 

The partition-of-unity property of finite element shape functions is a powerful method 
to introduce cohesive surfaces in continuum finite elements (Wells and Sluys , 2001; Wells 
et al. , 2002; Moes and Belytschko , 2002). Using the interpolation of eq. (4.4) the relative 
displacement at the discontinuity Yd is obtained as: 

Ixer^ (4.18) 

and the tractions at the discontinuity are derived from eq. (2.1). A key feature of the 
method is the possibility of extending a (cohesive) crack during the calculation in an 
arbitrary direction, independent of the structure of the underlying finite element mesh. 
It is also interesting to note that the field u does not have to be constant. The only 
requirement that is imposed is continuity. 
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Even though traditional interface elements equipped with cohesive-zone models are 
able to capture the failure behaviour of laminated composites accurately, the simulation 
of delamination using the partition-of-unity property of finite element shape functions 
offers some advantages. Because the discontinuity does not have to be inserted a priori, 
no (dummy) stiffness is needed in the elastic regime. Indeed, there does not have to be an 
elastic regime, since the discontinuity can be activated at the onset of cracking. Conse­
quently, the issue of spurious traction oscillations in the elastic phase becomes irrelevant. 
Also, the lines of the potential delamination planes no longer have to coincide with ele­
ment boundaries. They can lie at arbitrary locations inside elements and unstructured 
meshes can be used. 

4.2 Extension to Large Displacements 

The above approach for capturing discontinuities can be generalised to large displace­
ment gradients in a straightforward and consistent manner. To this end, one extends 
eq. (4.4) as: 

x = X + u + Hrou (4.19) 

with TYpo the Heaviside function at the interface in the reference configuration, F^. The 
deformation gradient follows by differentiation: 

F = F + Wpo F + 5ro (u (g) nro) (4.20) 

with F = i + 9u /9X, F = 9 u / 9 X and d^o the Dirac function at the interface in the 
reference configuration. 

Figure 27. Body crossed by a discontinuity F^ with normals np- and np+ at both sides 
of the discontinuity 

With aid of Nanson's relation for the normal n to a surface F: 

n = det F(F-T)nro — - (4.21) 
dF 

the expressions for the normals at the - side and at the + side of the interface can be 
derived: 

np- = det F(F-'^)nro — ^ (4.22a) 
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- ~ - ~ dr° 
n^j = det(F + F)(F + D ' ^ r i r o — ^ (4.22b) 

d 

see Figure 27. Distinction between np- and np+ is possible because u is not spatially 
constant. In the cohesive-zone approach, interface tractions tj are transmitted between 
r~ and r + with different normals np- and np+. In a heuristic assumption, it has 

d d 

been assumed that an average normal can be defined for use within the cohesive-zone 
model (Wells et al , 2002): 

1 ~ - 1 ~ dV^ 
nr ; = det(F + - F ) ( F + -F)-^nr<>^ (4.23) 

We now recall the equilibrium equation in the current configuration, cf. eq. (3.9): 

Vx ^ + pg = 0 

In a Bubnov-Galerkin method the test functions w for a single discontinuity are given 
by: 

ti; = tZ; + WrS^ (̂ -̂ ^^ 

Multiplying with this test function, integrating over the current domain Vt and requiring 
that the result holds for arbitrary w and w yields: 

/ V^w : adVL ^ I w- p^dVt + I wtdV (4.25a) 
Jn JQ JT 

/ Vxty : adVt -\- w • UdT = w • pgdQ + / Hr^w • tdF (4.25b) 

with the subscript x signifying differentiation with respect to the current configuration 
and td = nr* • (T the traction at the discontinuity in the current configuration. With a 
standard interpolation: 

1̂  = Nw , tl; - Nw (4.26) 

where N contains the interpolation polynomials and w and w contain the discrete values 
for the test functions, the discrete format of eqs (4.25a)-(4.25b) reads: 

/ B'^adQ = / pB^^d^ + / N ^ t d r (4.27a) 
Jo. JQ JT 

I 'B^(Td^+ [ N^tidr= [ p B ^ g d ^ + / w r ^ N ^ t d r (4.27b) 
JQ+ Jvd Jn+ JT 

After substitution of the constitutive relations for the plies and that for the interface, 
and transforming back to the reference configuration, a nonlinear set of algebraic equa­
tions results, which can be solved in a standard manner using an incremental-iterative 
procedure. If a Newton-Raphson procedure is used, these equations have to be linearised 
in order to derive the structural tangential stiffness matrix, see Wells et al. (2002) for 
details. 



Computational Mechanics of Failure in Composites at Multiple Scales 95 

b=l mm 

Figure 28. Double cantilever beam with initial delamination under compression 

Perfect bond • 
Debonding (dense mesh) 

Debonding (coarse mesh) -

Figure 29. Load-displacement curves for delamination-buckling test (Wells et al. 
2003) 

To exemplify the possibilities of this approach to model the combined failure mode 
of delamination growth and local buckling we consider the double cantilever beam of 
Figure 28 with an initial delamination length a = 10 mm. Both layers are made of the 
same material with Young's modulus E = 135 000 N/m.m? and Poisson's ratio v = 0.18. 
Due to symmetry in the geometry of the model and the applied loading, delamination 
propagation can be modelled with an exponential mode-I decohesion law: 

±n J. I u l t 77, (4.28) 

îg and v^is are the normal traction and displacement jump respectively. The where t^i^ 
ultimate traction t^it is equal to 50 N/m.m?, the work of separation is Qc = 0.8 N/mm. 

This case, in which failure is a consequence of a combination of delamination growth 



96 R. de Borst 

111111111111111111111111111111111111111 m 

Figure 30. Deformation of coarse mesh after buckling and delamination growth (true 
scale) (Wells et al , 2003) 

and structural instability, has been analysed using conventional interface elements in 
Allix and Corigliano (1999). The beam is subjected to an axial compressive force 2P, 
while two small perturbing forces PQ are applied to trigger the buckhng mode. Two 
finite element discretisations have been employed, a fine mesh with three elements over 
the thickness and 250 elements along the length of the beam, and a coarse mesh with 
only one (!) element over the thickness and 100 elements along the length. Figure 29 
shows that the calculation with the coarse mesh approaches the results for the fine mesh 
closely. For instance, the numerically calculated buckling load is in good agreement 
with the analytical solution. Steady-state delamination growth starts around a lateral 
displacement u = A mm. From this point onwards, delamination growth interacts with 
geometrical instability. Figure 30 presents the deformed beam for the coarse mesh at a 
tip displacement ^ = 6 m.m.. Note that the displacements are plotted at true scale, but 
that the difference in displacement between the upper and lower parts of the beam is for 
the major part due to the delamination and that the strains remain small. 

4.3 Delamination in a Solid—Like Shell Element 

The excellent results obtained in this example for the coarse discretisation have moti­
vated the development of a layered plate/shell element in which delaminations can occur 
inside the element between each of the layers (Remmers et al. , 2003). Because of the 
absence of rotational degrees-of-freedom, the solid-like shell element was taken as a 
point of departure. The shell of Figure 31 is crossed by a discontinuity surface F^ which 
is assumed to be parallel to the mid-surface of the thick shell. The displacement field 
0(^7 V^ C) can now be regarded as a continuous regular field ^ with an additional contin­
uous field (/> that determines the magnitude of the displacement jump. The position of a 
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• o geometrical node 

• n internal node 

Figure 3 1 . Enhanced nodes (black) whose support contains a discontinuity (grey sur­
face) . The nodes on the edge of the discontinuity are not enhanced in order to ensure a 
zero delamination opening at the t ip 

material point in the deformed configuration can then be writ ten as: 

x = X + ^ + Wro^ (4-29) 
d 

Since the displacement field 0 is a function of the variables Ut, u^ and w^ we need to 
decompose these three terms as: 

Ut = Ut +HroUt 
a 

Ub = Ub-\-Hro^Ub (4.30) 

w = w -h Tij-ow 

Inserting eq. (4.30) into eqs (3.40)-(3.42) gives: 

uo = uo + Wrouo 

u i = u i + W r o U i (4.31) 

where: 

Uo 

U l 

U2 

U2 

= - [ut + Ub] 

= 2 [̂ * - ^ ]̂ 
= w[T>-\-ui] 

= U2 -f TYpO U2 
d 

Uo = - [Ut + UfeJ 

Ul = 2 [u« - Ufc] 

U2 = U![T> + Ul + Ul] + tZ)Ui 

(4.32) 

It is noted tha t the enhanced par t of the internal stretch parameter U2, i.e. U2, contains 
regular variables as well as additional variables. The elaboration of the strains, the 
equilibrium equations and the linearisation follows s tandard lines (Remmers et al. , 
2003). 

The magnitude of the displacement j ump at the discontinuity is governed by an ad­
ditional set of degrees-of-freedom which are added to the existing nodes of the model. 
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Debonding (Gc=0.8) - - -

u [mm] 

Figure 32. Load-displacement curve and deformations of shell model after buckling and 
delamination growth (true scale) (Remmers et al. , 2003) 

Figure 31 shows the activation of these additional sets of degrees of freedom for a given 
(static) delamination surface in the model. Both the geometrical and the internal nodes 
are enhanced when the corresponding element is crossed by the discontinuity. This im­
plies that each geometrical node now contains three additional degrees-of-freedom next 
to the three regular ones, giving six degrees-of-freedom in total. Each internal node has 
one extra degree-of-freedom added to the single regular degree-of-freedom. As in the 
continuum elements, the discontinuity is assumed to always stretch through an entire 
element. This avoids the need for complicated algorithms to describe the stress state in 
the vicinity of a delamination front within an element. As a consequence, the discon­
tinuity 'touches' the boundary of an element. The geometrical and internal nodes that 
support this boundary are not enhanced in order to assure a zero crack tip condition. 

The example of Figure 28 has been reanalysed with a mesh composed of eight node 
enhanced solid-like shell elements (Remmers et al. , 2003). Again, only one element in 
thickness direction has been used. In order to capture delamination growth correctly, the 
mesh has been refined locally. Figure 32 shows the lateral displacement u of the beam as 
a function of the external force P. The load-displacement response for a specimen with a 
perfect bond (no delamination growth) is given as a reference. The numerically calculated 
buckling load is in agreement with the analytical solution. Steady delamination growth 
starts around a lateral displacement u '^ A mm, which is in agreement with the previous 
simulations (Allix and Corigliano , 1999; Wells et al. , 2003). 

5 Concluding Remarks 

Numerical models with separate finite elements for interfaces and plies are a powerful tool 
to analyse delaminations in composite structures, but have some restrictions. Because 
the interface elements have to be inserted a priori, spurious elastic deformations will occur 
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prior to delamination onset. These undesired deformations can be partially suppressed 
by assigning a high value to the normal stiffness modulus in the elastic range, but this 
can result in traction oscillations ahead of the crack tip and in erroneous wave reflections 
when dynamic delaminations are analysed. Furthermore, this methodology restricts the 
freedom of the discretisation in the sense that element boundaries have to be aligned 
with surfaces of potential delamination. 

Exploiting the partition-of-unity property of finite element shape functions enables 
placement of (cohesive) interfaces at arbitrary positions at the onset of delamination. 
Since interfaces are created at the moment when they are needed, the necessity of as­
signing an artificially high stiffness in the elastic regime no longer exists and traction 
oscillations or spurious wave reflections are no longer an issue. The fact that alignment 
of the discretisation with potential planes of delamination is no longer necessary, makes 
possible that unstructured meshes can be used. The versatility of the method is further 
enhanced by a consistent extension to large strains and by the incorporation in a solid­
like shell element. It is the latter extension which enables large-scale computations of 
composite structures taking into account delaminations. 
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Micromechanical modelling of strain hardening and 
tension softening in cementitious composites 

B. L. Karihaloo 

School of Engineering, Cardiff University 
Cardiff CF24 OYF, U.K. 

Abstract These lecture notes will describe a procedure for modelling the com­
plete macroscopic response (including strain hardening and tension softening) of 
two short fibre reinforced cementitious composites and show how their microstruc-
tural parameters influence this response. Prom a mathematical point of view it is 
necessary to examine how bridging forces imposed by the fibres alter the opening 
of multiple cracks in elgistic solids under unidirectional tensile loading. The strain 
hardening is essentially due to elastic bridging forces which are proportional to 
crack opening displacements. After a certain critical crack opening displacement 
is reached, some fibres progressively debond from the elastic matrix and thereafter 
provide a residual bridging force by frictional pull-out, while others continue to 
provide full bridging. This results in a kind of elasto-plastic bridging law which 
governs the initial tension softening response of the composite. 

Besides the usual square-root singularity at crack tips, the elasto-plastic bridging 
law introduces a logarithmic singularity at the point of discontinuity in the bridging 
force. These singularities have been analytically isolated, so that only regular func­
tions are subjected to numerical integration. Unbridged multiple crack problems 
have in the past been solved using double infinite series which have been found to 
be divergent. Here, a superposition procedure will be described that eliminates the 
use of double infinite series and thus the problem of divergence. It is applicable to 
both unbridged and bridged multiple cracks. 

These developments will then be used to show how the model of multiple bridged 
cracks can accurately predict the prolonged nonlinear strain hardening and the 
initial tension softening response of two cementitious composites. Finally, we will 
study the transition from the strain hardening to the tension softening behaviour 
as an instability phenomenon. 

1 Introduction 

The nonlinear behaviour of quasi-brittle materials such as concrete and other cementi­
tious composites is most often caused by the growth of pre-existing microcracks and by 
the nucleation and growth of new microcracks, which eventually lead to crack localiza­
tion and failure. In order to include this phenomenon in the constitutive relationships, 
Kachanov (1958) introduced a scalar damage variable P , which increased linearly under 
increasing stress. More sophisticated continuous damage concepts for brit t le materials 
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were later developed by Krajcinovic and Fonseka (1981), Fonseka and Krajcinovic (1981), 
and others. One simplified way to model a microcracked solid from a fracture mechan­
ics point of view is to assume that the cracks are arranged in regular patterns. Most 
studies so far have been devoted to modelling of doubly periodic rectangular arrays of 
cracks. Sahasakmontri et al. (1987), using the pseudo-traction technique and double 
infinite summations, revealed an anomaly in the use of double infinite series (Delameter 
et al. (1975); Karihaloo (1978)). They showed that if a superposition procedure was 
implemented first for an array of R rows by C columns of cracks, and the number of the 
cracks was then increased while keeping the ratio C/R constant, the mode I and mode II 
stress intensity factors depended on the chosen ratio C/R. This anomaly was resolved by 
Karihaloo et al. (1996) by using a proper superposition procedure and pseudo-traction 
technique. 

Here we shall first present the mathematical details for solving the problem of doubly 
periodic arrays of cracks when the cracks are free of traction and when they are subjected 
to a closure pressure. The solution is also based on pseudo-traction formalism, but the 
superposition procedure makes use of the exact solution for an array (a row) of cracks, 
thus avoiding divergent double infinite summations (Delameter et al. (1975)). The results 
for unbridged (traction-free) crack arrays are shown to be identical to those obtained by 
Isida et al. (1981) who used the boundary collocation method. 

The mathematical solutions are then used to study the influence of microstructure 
upon the complete macroscopic tensile response, including strain hardening and tension 
softening, of a conventional fibre-reinforced cementitious composite and a high perfor­
mance DSP-based fibre composite. 

A full description of the observed strain hardening behaviour will be given by consid­
ering elastically bridged doubly periodic arrays of cracks. The strain hardening regime is 
assumed to end when the fibres begin to pull out from the matrix. Thereafter, the crack 
bridging force drops to the level of frictional pull-out force, so that the crack opening 
increases. This results in a progressive reduction in the tensile carrying capacity of the 
composite and a corresponding increase in deformation, i.e. in tension softening. 

The tension softening response will be modelled by a collinear array (row) of cracks 
subjected to bilinear bridging forces. This model is akin to that used by Horii et al. 
(1989) and Ortiz (1988) for the tension softening of unreinforced quasi-brittle materials. 
It diff"ers from that used by Li et al. (1991) in that the localized damage in the present 
model is regarded as being discontinuous, whereas Li et al. (1991) assumed that the 
localized damage has resulted in a through crack. The model developed here is therefore 
suitable for describing the initial post-peak tension softening response of a fibre-reinforced 
quasi-brittle matrix. Finally, we will study the transition from the strain hardening to 
the tension softening behaviour as a material instability phenomenon and derive the 
conditions for instability on the macroscopic level. 

2 Formulation of the problem 

An infinite, isotropic elastic solid containing a doubly periodic array of bridged cracks is 
shown in Fig. la. It is subjected to a uniform remote stress a normal to the cracks. As 
the cracks are bridged, their faces are subjected to a normal bridging traction Pn- This 
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Figure 1. A doubly periodic array of cracks and the decomposition of the problem 

traction is not uniformly distributed along the surfaces of a crack but , by symmetry, has 
the same distribution along all cracks. 

In terms of the s tandard superposition procedure, the original problem shown in Fig. 
l a can be decomposed into the homogeneous problem of Fig. l b and the subsidiary 
problem shown in Fig. Ic. It is only needed to solve the subsidiary problem. Its solution 
can be obtained by the pseudo-traction technique and by proper superposition. To apply 
the method of the pseudo-tractions (Horii and Nemat-Nasser (1985)), the problem Ic is 
further decomposed into an infinite number of sub-problems, designated 1 , . . . , j , . . . , oc 
in Fig. 2. Each sub-problem contains only one row of cracks, each of which is subjected to 
a normal pseudo-traction a^. Because of the inherent symmetry of the original problem, 
the pseudo-tractions are the same for all cracks. 

Sahasakmontri et al. (1987) decomposed the subsidiary problem of Fig. Ic differently. 
In their decomposition, each sub-problem contained only one crack, so tha t superposition 
required summation of two infinite series. The decomposition in the present paper is 
such tha t superposition requires the summation of a single infinite series. As we shall 
see below, the elimination of double infinite series overcomes the problems of divergence 
and results in highly accurate solutions. 

The distribution of unknown pseudo-tractions a^ will be determined in such a way 
tha t the traction-free condition on the crack faces of the problem 2(a) is satisfied when 
the stress perturbat ions caused by all the sub-problems are superposed (Hu et al. (1994)). 
We shall use the basic solution for an infinite body containing a row of cracks each of 
which is subjected to two pairs of concentrated normal surface loads of opposite direction, 
as shown in Fig. 3. The exact solution for this problem can be readily deduced from the 
results in the handbook by Tada et al. (1985). In the sequel, the loads shown in Fig. 3 
will be referred to as a set of crack surface tractions at position x. 

Because of symmetry, we need consider only one crack in a sub-problem, e.g. the one 
labelled with the set of crack surface tractions aP{x) and coordinate system in Fig. 3. 
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Figure 2. Decomposition of the subsidiary problem of Fig. Ic into an infinite number 
of sub-problems, a^ is the pseudo-traction on the faces of each crack in the row in each 
sub-problem 

The stress ciyy at point x of the crack i is given by the superposition of the contributions 
from all the sub-problems 

+00 r+a 
-aP{x)-{- Y " / K^{x,x^)(TP{x^)dx^, x, x-̂ 'G [0,-j-a) (2.1) 

] - O O J l 

where the kernel K„ {x, x^) represents the stress at x induced by a set of unit crack surface 
tractions at x^ in sub-problem j . Denoting the distance between the cra<;k rows i and j 
(Fig. 3) by y, Ka{x,x^) can be written as 

K„{x,x^) = —Re{ 
co.^J{sm^)'-(sm^y 

W 
-Im < 

( s i n f ) ' - ( s i n ^ ) J ^ l - ( s i n f / s i n f ) ' J 

c o s # y ' ( s i n f ) ^ - ( s i n ^ ) ' 

( s i n f ) ' - ( s i n ^ ) ' l v ' l - C s i n t / s i n f ) 

^ TV , TTZ TTZ , ^ 

( s i n p ) cos 

+ 

/ . 7Ta ,7rz\'^ 

( s i n f ) ^ - ( s i n ^ ) ' 

W ( s i n f ) V l - ( s i n f / s i n f ) ^ 
(2.2) 



Micromechanical Modelling of Strain Hardening and Tension Softening... 107 

a-^{x- G 

^ X^ 

^(x^) 

-^ 

Figure 3. Superposition of sub-problems, showing pseudo-tractions on faces of cracks in 
rows i and j . Note that because of symmetry, x and x^ only vary from 0 to a (half-crack 
length) 

where z = x -^ iy and i — \ / ^ . 
For the crack configuration of Fig. 3, the summation in Eq. (2.1) is obviously carried 

out subject to the geometrical condition 

y = jif, j = -cx) , . . . , - 1 , - h i , . . . , H-oo. (2.3) 

Because of the symmetry of the problem with respect to the x axis, eqn (2.1) can be 
rewritten as 

+CO ^-|_a -T'--^ p-\-a 

-(7P{x) + 2 V / K„{x,x^)aP{x^)dx^, x,x^ € [0, +a) (2.4) 

By superposition of the sub-problems, the traction-free condition on each crack in the 
subsidiary problem of Fig, 2a can be written as 

+ 0 0 p-\-a ~r'^ p-\-a 

-aP{x) + 2'S2 Kaix,x^)aPix^)dx^ = -{a-p„), x,x^ e[0,+a) 
, = 1 -^0 

(2.5) 

Equation (2.5) is a simphfied form of the general formula for two-dimensional inter­
acting cracks derived by Hu et al. (1994). It can be rewritten as 

+ 0 0 «_^a 

aP{x) - 2 V / K„{x, x^)(jP{x^)dx^ +Pn = <T, x, x^ € [0, +a) (2.6) 
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In common with many previous works, the bridging traction pn is expressed as a func­
tion of the crack opening displacement 

Pn = fn{v{x)) (2.7) 

where v{x) is solely induced by the pseudo-tractions cr^(x*) on the cracks in sub-problem 
i (Hu et al. (1994)). It can be easily obtained from 

v{x)= / K^{x,x')aP{x')dx\ x,x'e[0,^a) 
Jo 

(2.8) 

where the kernel Ky{x,x'^) represents the crack opening displacement at x induced by 
a set of concentrated unit loads at x^ on the crack surfaces in sub-problem z, see Fig. 4. 
This kernel can be derived in a closed form from the results in the handbook by Tada 
et al. (1985) 

Ky{X,X') 
l - v 

7TG 
In 

^ l - ( c o s p / c o s ^ ) ' + J l - (cos f / cos ^ ) 

^ 1 - ( c o s f / c o s ^ ) ' - ^ 1 ^ (cos f / c o s ^ ) ^ 

Under general plane stress conditions v is replaced by z//(l -h i^). 

(2.9) 

— T.-^ • —T.-^ 

-^ X 

Figure 4. Sub-problem i, showing a set of pseudo-tractions on faces of a crack in a row. 
Note that because of symmetry, x^ only varies from 0 to a (half-crack length) 

It is seen that by substituting Eq. (2.6) into Eq. (2.5), and using the relation between 
the pseudo-traction and the crack opening displacement (2.8), we need only to solve an 
integral equation for the pseudo-traction (j^(x). The kernel Ka{x,x^) is not singular 
provided that H > 0, The kernel Ky{x^x'^) has an integrable logarithmic singularity at 
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X == X* which can easily be handled by the regularization 

v{x)= [ Ky{x,x')aP{x')dx' 
Jo 

= f K^{x,x') [a^[x') - a^(x)] dx'+ 
Jo 

p-\-a 

+ aP{x) Ky{x,x')dx' x ,x^G[0,+a) . (2.10) 

The integrand in the first integral of (2.10) is finite everywhere. The singularity of 
the integrand Ky{x^x'^) in the second integral can be isolated by introducing a function 
which has a singularity of the same order a,t x = x'^. The isolated singular integral can 
then be calculated analytically. To show this, we rewrite (2.9) as 

Ky{x,x') = - ^ I n 
^ 1 - (cos f / c o s f ^ ) ' + J l - (cos p / c o s ^ ) ^ 

,2 X — X^ 

y ^ l - ( c o s f / c o s f ) ' - ^ 1 - (cos # / cos ^ ) ' 

(2.11) 
Substituting (2.11) into the second integral on the right hand side of Eq. (2.10) and 

after some algebraic manipulations, we get 

Here 

/ Ky{x,x')dx'= [ K'^\x,x')dx'^ [ Kl{x,x')dx' (2.12) 
Jo Jo Jo 

(2.13) K:^{X,X')=^-^HF,F2) 

where 

(cos ^ COS ^ ) ' L / l - (cos f / c o s f ) ' + ^ 1 - (cos f / c o s ^ y 

•1 2 

2 sin ^{x + x«) (cos ^f (cos ^ + cos ^ ) 
(2.14) 

F2= { 

X — X 

s i n ^ ( x - x O ) 

2W 

X ^ X^ 

X = X\ 

(2.15) 

Tva 
The second integral on the right hand side of Eq. (2.12) is 

x^ I (ix* / Ky{x,x'^)dx^ 
Jo 

1 - ^ / 1 I 
^ J o ^ " 1 " 

TTG ^ 
•,lnx -\- {a — x) ln(a — x) — a] (2.16) 
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We shall use Gauss-Legendre quadrature to solve the integral Eq. (2.5) and write 
(with t — x/a) 

+00 N 

aP{ti) -2^aJ2[Ka {ti.ti) aP ( t{)] Wk+Pn{ti) = a 
3=1 k=i 

tutie{ti,...,tN)\ / = i , . . . , iV. (2.17) 

The equation for the crack opening displacement (2.10) can be similarly discretized 

N 

v{ti)=a J2 Kv{ti.ti)[aP{ti)-aP{ti 

N 

Wk + 

.k=i ^^ J 

ti,tje{tu...,tN); l = h...,N, (2.18) 

In Eqs. (2.17) and (2.18), ti,... .tpj are the collocation points and, at the same time, 
the integration points of the Gauss-Legendre quadrature, Wk {k = l , . . . , iV) are the 
corresponding weights. 

It can be seen from (2.2) and (2.3) that as j —> +CXD, K(J{X^X^) decays exponentially 
so the infinite summation in Eq. (2.17) is uniformly convergent for x G [0, W/2). This 
feature makes it possible to approximate the infinite summation using the sum of finite 
terms while the truncation error can be made as small as desired. 

3 Unbridged cracks 

When the cracks are not bridged {pn = 0), the integral Eq. (2.5) is particularly easy to 
solve with the numerical quadrature (2..17)-(2.18), whereafter the mode I stress intensity 
factor at each crack tip in the array and the overall effective Young's modulus Ey along 
the direction of loading can be determined. The non-dimensional mode I stress intensity 
factor is shown in Fig. 5, as a function of the density of cracks defined by o?/{WH) 
and the arrangement (or shape) of the rectangular array characterized by H/W. When 
H/W < 0.8, the SIF decreases with increasing density of cracks suggesting that the 
mutual infiuence of closely spaced cracks reduces the crack driving force. On the other 
hand, when H/W is large, the mode I SIF increases rapidly with the density of cracks. 
This is due to the fact that in order to maintain a high density when H is large, the 
neighbouring crack tips in a row must approach each other. 

Table 1 compares the results obtained by the present superposition technique with 
those reported earlier by Isida et al. (1981) and with the first-order approximation of 
Sahasakmontri et al. (1987). It is seen that the present method gives exactly the same 
results as those of Isida et al. (1981) for all crack geometries. For small values of a/VF, 
the results of Sahasakmontri et al. (1987) are also quite close to both the present results 
and those of Isida et al. (1981). This is because for small a/W and a/if, the interactions 
among the cracks are not significant, so that the pseudo-traction on the crack faces is 
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^ ^ i^^oH 

Figure 5. Variation of normalized mode I stress intensity factor with the density and 
shape of crack arrays 

Table 1. Comparison of the normalized mode I SIF 

a/W 
H/W 

0.5 

1.0 

1.5 

0.0 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

0.05 

0.984 
0.983 
0.982 
1.003 
1.003 
1.003 
1.004 
1.004 
1.004 

0.10 

0.948 
0.948 
0.948 
1.012 
1.012 
1.011 
1.017 
1.017 
1.016 

0.15 

0.922 
0.922 
0.838 
1.031 
1.031 
1.025 
1.039 
1.039 
1.036 

0.20 

1.074 
1.074 
1.074 

Present method 
Isida et al. 
First-order approximation 
Present method 
Isida et al. 
First-order approximation 
Present method 
Isida et al. 
First-order approximation 

reasonably accurately approximated by a constant value. The interactions are significant 
for large values of a/W^ thus rendering the first-order approximation less accurate. 

The overall tangent modulus of the body along the direction of loading is of prime 
interest. However, it is obvious that the cracked body is no longer a macroscopically 
isotropic medium but an orthotropic one. Its instantaneous shear modulus in the xy 
plane can be calculated by subjecting the body to an in-plane (xy) shear stress, but we 
shall not attempt this calculation here. Horii and Nemat-Nasser (1993) have given the 
constitutive relations for a cracked body 

-tj 

1 f 1 
DijkiCTki + 7 7 / 2^[^'^^j + [vj]ni)dS (3.1) 
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where [vj] denotes the displacement jump across the crack with unit normal vector n^, 
Diji^i is the elastic compliance tensor of the uncracked body, and the integration is carried 
over the crack surface S contained in a representative volume V of the solid. Application 
of (3.1) to the stress and strain in the loading direction gives the tangent modulus Ey in 
that direction 

1 

^ l + ^!lv^{t)dt 
(3.2) 

with 

v*{t) = 
v{t)E 
2a a 

t € [0,1] (3.3) 

v{t) is half crack opening displacement at the position t = x/a, and E is plane stress 
Young's modulus of the uncracked body. Under plane strain, E is replaced with E/{1 — 

Figure 6. Variation of normalized tangent modulus with the density and shape of the 
array of cracks 

Figure 6 shows the variation of Ey/E with the density and shape of the array of 
cracks. In contrast to the stress intensity factor, the instantaneous elastic modulus in 
the direction of loading does not seem to be very sensitive to the shape of the array 
(i.e. H/W). It depends primarily on the crack density (i.e. o?/{WH)). The tangent 
modulus Ey in the direction of loading for the crack geometry under consideration may be 
regarded as a lower bound on the value for a solid containing randomly oriented cracks. 
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4 Bridged cracks 

4.1 Elastic bridging 

In this section we shall study the effect of the bridging stiffness on the stress intensity 
factor at the tips of cracks and on the crack opening displacement, assuming that the 
bridging force is linearly proportional to the latter 

Pn{ti) = kv{ti). (4.1) 

Here, k is the bridging stiffness and t/ (/ = 1 , . . . , iV) denote positions on the crack surface 
in the notation of Eqs. (2.17)-(2.18). 

Figure 7 shows the non-dimensional crack opening displacement (for a quarter of the 
crack) for different values of the non-dimensional bridging stiffness c == k ^ ~^ ^a. The 
geometry of the array of cracks is described by W/a = 2.5 and H/a — 2.0. The results 
indicate that the crack opening displacement is very sensitive to small bridging stiffness. 
The same is also true for the mode I stress intensity factor at the crack tips (Fig. 8) and 
the tangent modulus (Fig. 9). It appears that the influence of bridging stiffness peaks at 
about c ?̂  10. A similar variation of the mode I stress intensity factor for three parallel, 
but offset bridged cracks is also seen in the work of Hu et al. (1994). 

4.2 Bilinear bridging 

It is assumed that when the crack opening displacement reaches a critical value VQJ> 

some of the fibres bridging the crack will debond from the matrix, resulting in a sudden 
drop in the bridging force (BC in Fig. 10), whereafter these fibres will exert a reduced 
closure force by frictional pull-out (CD in Fig. 10). If the fibres bridging the crack 
break, then a = 0. A bridging law with a = 0 has been earlier considered by Bao and 
Suo (1992). Several analytical models for fibre pull-out in cementitious composites have 
been developed by Gopalaratman and Shah (1987), Stang and Shah (1986), and Lim 
et al. (1987). These are based on single fibre pull-out tests giving a relationship between 
pull-out force P (or interfacial shear stress r = P/{7Tdle) where d is the fibre diameter 
and le its embedded length) and fibre slip v (Fig. 11a). From this single-fibre (r — v) 
relationship, the average closure force on crack faces bridged by many fibres is obtained 
through an approximation to the fibre distribution function (Fig. l ib) . The slope of 
the elastic part of this averaged pull-out diagram gives directly the parameter k in (4.1). 
When the crack opening exceeds the critical value Vcr, the bridging stress p = kv{ti) 
drops to the constant frictional pull-out value Pg. 

As the stress drop introduces a logarithmic singularity in the gradient of the crack 
opening displacement, the problem is subdivided into two sub-problems: (a) perfect 
elasto-plastic bond with no stress drop (Fig. 12a), and (b) a constant stress drop Ap = 
Pv — Pg (Fig. 12b). The superposition of the two solutions gives the final result. The 
first sub-problem is solved exactly as an elastically bridged crack but with the closure 
stress replaced by an constant stress py over the part of the crack where v{ti) exceeds 
the critical crack opening Vcr-
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u{x)E 
2a(l - z/2)cr 
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Figure 7. Influence of bridging stiffness on normalized crack opening displacement 

The crack opening displacement caused by the partial crack surface traction in Fig. 
12b can be calculated as follows 

v\x)^{Vv-Vg) [ K:}'{x,x')dx' -^-^^^^^^^ [ ln\x-x'\dx' 
Jo ^ TT Jo 

X e [0, a] and b < a 
(4.2) 

where Kl^^{x,x^) is non-singular and is given by Eq. (2.13). 
It is easy to show that 

fb I xlnx-{-{b — x)ln{b —x) - b for x < 6, 
/ ln|x - x'|(ix* == < 

-'o \x\nx — {x — b) \n{x — b) — b for x > 6. 
(4.3) 

From Eqs. (4.2) and (4.3), it is clearly seen that the gradient of crack opening 
displacement has a logarithmic singularity dit x = b. 

5 Application to short fibre reinforced concrete 

In the following, we shall use the above model to predict the pre-peak (strain hardening) 
and initial post-peak (tension softening) behaviour of short fibre reinforced conventional 
and DSP-based cementitious composites. The material parameters are given in Table 2. 
DSP stands for Densified Systems containing homogeneously arranged ultrafine Particles. 
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Figure 8. Influence of bridging stiffness on normalized stress intensity factor 

5.1 Strain hardening due to multiple cracking 

The decrease in the elastic modulus in the direction of loading induced by multiple 
elastically-bridged cracks can be used to predict the tensile strain hardening behaviour 
of random short fibre reinforced composites. There is ample experimental evidence 
from tests on fibre-reinforced brittle (Kim and Pagano (1991)) and quasi-brittle ma­
trices (Mobasher et al. (1990); Tjiptobroto and Hansen (1993)) that suggests that the 
tensile strain hardening in these composites is due to the formation of microcracks whose 
density increases with increasing tensile/flexural loading until it reaches a saturation 
level. 

To account for the increase in the density (number) of microcracks during the stage 
of strain hardening, we need a proper evolution law for the multiple cracks. Since the 
distribution of the size and spacing of multiple cracks in fibre-reinforced composites is of 
random nature, investigations have been conducted to predict the stochastic tendency of 
the development of the multiple cracks. Zok and Spearing (1992) considered a nonUnear 
relation between the spacing of cracks and applied stress. However, experimental obser­
vations on glass/ceramic GAS/SiC composite and theoretical predictions of Spearing and 
Zok (1993) based on stochastic simulations showed that the average spacing of cracks is 
reasonably linear in the applied stress during the course of multiple cracking until a state 
of saturation is reached. A linear relation between the average crack spacing and applied 
stress was also reported by Evans et al. (1994) 

= L 
[(^sl(^mc - 1] (5.1) 
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Figure 9. Influence of bridging stiffness on normalized tangent modulus 

where cr^c is the stress level at the initiation of the cracks; £ is the crack spacing at stress 
level a and is is the saturation spacing at stress level ag. 

Following the same line of reasoning as in the works just cited, we propose the fol­
lowing two-dimensional linear evolution law for multiple cracks analogous to the one-
dimensional law (5.1) 

1 + WH (5.2) 

where amc is the stress level at the initiation of the cracks, and the subscript s denotes the 
value of the corresponding parameter at the saturation of multiple cracks. The initiation 
value amc may be equated to the tensile strength of the matrix, whereas the saturation 
value (Js will represent the ultimate tensile capacity of the composite. 

The variation of tangent modulus with the applied stress during the evolution of 
the multiple cracks can be determined from Eqs. (3.2) and (5.2). Once the variation 
of tangent modulus with the applied stress during the evolution of the multiple cracks 
is known, the stress-strain relation past the initiation stress level amc can be obtained 
incrementally via 

s^&/Ey{a) (5.3) 

or 

E 
(5.4) 

where we have used the definition Smc = cTmc/E. When a < amc, Ey = E, so that the 
stress-strain relation is linear. When a > amc, ^yl ^ changes with a /amc so that we 
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Pn 

Figure 10. A linearized bridging law describing the relation between the bridging force 
and the crack opening displacement 

have to calculate the increment of the strain using the current value of Ey/E at each 
step. The accuracy of the incremental formulation is the better, the smaller the step 
length. The normalized stress-strain curves predicted by (5.4) via Eqs. (3.2) and (5.2) 
are shown in Fig. 13. The curves predicted by the one-dimensional evolution law (5.1) 
are shown for comparison. 

From Fig. 13, it is seen that both evolution laws (5.1) and (5.2) produce similar 
variations of the stress-strain curves. As the final crack densities are assumed to be the 
same for the two evolution processes, the final values of Ey/E are also equal, for the 
same value of Oslorac As expected, the two-dimensional evolution law predicts a stiffer 
response than does the one-dimensional law. The response of a composite with randomly 
oriented cracks can be expected to be even more stiff. 

5.2 Modelling of tension softening 

The microcrack model of Horii et al. (1989) and Ortiz (1988) for modelling the tension 
softening process of un-reinforced cementitious materials will be extended to short fibre 
reinforced composites. In this model (Fig. 14) the damage at peak load is assumed to 
localize along the eventual failure plane. The damage is in the form of fragmented cracks 
interspersed by unbroken material. At peak load each crack is bridged by fibres, some of 
which are on the verge of pulling out from the matrix. Let the average maximum opening 
displacement at this instant be Vcr- The initial part of tension softening is a result of the 
progressive growth of the cracks into the unbroken material, for which two conditions 
must be simultaneously met: the stress intensity factor at the tips of each crack Kij 
must attain the critical value Ki^ of the composite and the fibres must pull out when 
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\P 
PHHHIHH 

Figure 11. Conversion from pull-out properties of a single fibre to interfacial properties 
averaged over the cross-section, a) Single fibre pull-out b) averaged interfacial properties 
for many fibres randomly distributed 

Table 2. Material parameters 

Parameter 
E (Young's modulus) 
am (matrix strength) 
v (Poisson's ratio) 
Ty (interfacial shear strength) 
Tg (frictional shear strength) 
/ (fibre length) 
d (fibre diameter) 

[GPa] 
[MPa] 

[MPa] 
[MPa] 
[mm] 
[mm] 

DSP-based FRC 
40.0 
10.0 
0.2 
9.0 
5.0 

20.0 
0.4 

Conventional FRC 
40.0 
3.0 
0.2 
2.0 
1.0 

20.0 
0.4 

the crack opening reaches Vc 
growth are 

Mathematically these two dynamic conditions for crack 

Ki{a,a,l) = Kic 

v{a,a,l) = Vcr 

(5.5) 

(5.6) 

where v{a, a, /) is the crack opening a,t x = I and a denotes the reduced tensile carrying 
capacity. Note that at the onset of tension softening / := 0, so that Eq. (3.3) can be used 
to calculate the average critical crack opening Vcr- Kjc is related to the fibre content, 
the critical stress intensity factor of the matrix and the interfacial bond strength. 

Here, we introduce an equivalent critical stress intensity factor Kjc based upon the 
ultimate tensile strength of short fibre-reinforced concrete. The ultimate tensile strength 
of a composite containing a moderate fraction of fibre can be calculated using the simple 
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Mill mil 

Figure 12. The superposition of closing tractions 

1.0 2.0 3.0 4.0 5.0 6.0 

Figure 13. Normalized stress-strain curves during multiple cracking (strain hardening). 
Solid line corresponds to Eq. (5.2), and dashed line to Eq. (5.1) 

law of mixtures (Karihaloo (1995)) 

ac = aam{l-Vf) + PTVf- (5.7) 

where Vf is the volume fraction of fibre, r is the average bond strength of the fibre-matrix 
interface, and l/d is the aspect ratio of the fibre, a and ^ are empirical constants which 
are to be determined from tests. In order to retrieve GC = (Jm when F/ = 0, we take 



120 B.L. Karihaloo 

Figure 14. A microcrack model for tension softening process. The fibres in the central 
region of length 21 of each crack are assumed to pull out, so tha t the bridging traction 
in this region is reduced from ps to aps as shows in Fig. 10. The bridging traction in 
the shaded regions where the fibres are still fully bonded to the matr ix is proportional 
to crack opening, kv 

a = 1. Aveston et al. (1971) have proposed a value P = 0.5 for randomly distributed 
short fibres. Note tha t ac equals as in the present model. 

In the initial part of tension softening regime the growth of fragmented bridged cracks 
takes place at constant stress intensity factor equal to the effective fracture toughness of 
composite Kjc- Its value can therefore be calculated using the stress and crack length 
at the onset of tension softening. The stress equals ac {= CTS) given by (5.7) and the half 
crack length is ao, so tha t 

Kic aam{l Vf)+pTVf-^ (5.8) 

The geometrical factor FQ for the row of elastically bridged cracks at the onset of tension 
softening is calculated using the procedure described in Sect. 4 with H -^ -f-oo. 

From Eqs. (5.5), (5.6) and (5.8) it is now possible to determine the reduced tensile 
carrying capacity a and the length of crack / over which the fibres exert closure force 
due to frictional pull-out only. To complete the description of tension softening process 
it remains to determine the average inelastic crack opening along the localized damage 
band, given by 

^ { V ^ ) 1 r 1 r° (5.9) 

and where [vt] is the total opening of the crack faces {[vt] — v^ — v^ , with " + ' ' 
referring to the upper and lower crack faces), and [ve] is the elastic (recoverable) opening 

W 
of the crack faces. Note tha t over the unbroken ligaments |a:̂ | < -̂ r a, ['L'̂ ] = 0. 
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Figure 15. Complete pre- and post-peak tensile response of the materials of Table 2 
and l/j = 0.04. Note that the pre-peak response is given in terms of stresses and strains, 
whereas the post-peak response is via a stress-average crack opening measure 

Figure 15 shows the complete pre- and post-peak curves for the material parameters 
of Table 2. The values of W and ao in eqn (5.9) are assumed to be 50 mm and 4.83 mm, 
respectively. (5 in Eq. (5.7) is taken as 0.5. For convenience of graphical presentation of 
strain hardening and tension softening on the same diagram, it is assumed that (Jc = CFS 
and Gmc = cFm, although in the latter instance it might be more appropriate to set 
o'mc = <7m/(l — ^ / ) - Moreover, the pre-peak behaviour is presented as a relation between 
the applied remote stress a and strain 5, whereas the post-peak behaviour is presented 
as a relation between the diminishing applied stress a and the average inelastic crack 
opening w = if;*£^/7raocr^. Again for ease of comparison of the two response curves am 
has been arbitrarily chosen equal to 4 MPa. In reality, E of DSP-based FRC is nearly 
twice that of the conventional FRC (60 GPa compared with 30 GPa), while its am is more 
than three times that of the latter (see Table 2). The ratio E/am is DSP-based FRC 
is therefore around 6, whereas that of conventional FRC is around 10. This difference 
should be borne in mind in evaluating the response curves in Fig. 15. 

Figure 15 is in very good agreement with the typical load-elongation responses of these 
two materials. The stress-strain curve of DSP-based matrix is in excellent agreement with 
that measured in four-point bending by Tjiptobroto and Hansen (1993). The present 
model predicts that the improvement in the toughness of the material is primarily due 
to the enhancement of the ultimate strength (or the equivalent critical stress intensity 
factor Kic) of the composite. The high strength of the DSP-based matrix itself and the 
high interfacial bonding strength between the fibre and this matrix makes significant 
contribution to the improvement in the overall properties of the composite. 
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6 Material instability in the tensile response of short fibre 
reinforced quasi-brittle composites 

We described above the complete constitutive behaviour of short-fibre-reinforced cemen-
titious composites under unidirectional tension. We could not however predict the tran­
sition from the strain-hardening to tension-softening. This led to a discontinuity in the 
slope of the stress-strain/displacement curve at the peak load (see Fig. 15). In other 
words, conditions for localisation are still not clear. In this section, the mechanisms for 
the material instability which lead to deformation localisation and tension softening will 
be revealed. The study will be based upon an analytical procedure which allows the con­
ditions for the material instability in short-fibre-reinforced composites to be highlighted. 
The material instability is examined using the classical bifurcation criterion, with an 
emphasis on the role played by fibre bridging in the macroscopic instability. It is found 
that while the microscopic instability in the bridging traction plays a major role in the 
macroscopic instability of the composite, it is the level of damage in the matrix that 
determines when the macroscopic instability is induced by the bridging instability. The 
satisfaction of the classical bifurcation criterion is identified with several failure modes, 
depending on the degree of damage in the matrix. The phrase 'microscopic instability' 
is used to define the instant when the bridging stiffness momentarily vanishes. 

6.1 General formulae for multiple cracks 

The prediction of the effective elastic and fracture properties of a medium containing 
multiple cracks has received considerable attention. Among the studies are the solutions 
based upon the non-interacting approximation, when the interaction among the cracks 
is neglected. Under this assumption, the effective elastic properties can be expressed 
in explicit forms. The interactions among multiple cracks complicate the prediction of 
the overall material behaviour. The schemes based upon indirect considerations of crack 
interactions, such as the self-consistent method and the differential scheme may consid­
erably underestimate the overall moduli, as has been pointed by Wang et al. (2000a). 

Here, we shall present an analytical approach for the calculation of the overall tensile 
modulus of bodies containing multiple parallel bridged cracks. For this, we shall make 
use of the procedures described above, and those in the works of Wang et al. (2000a), 
Wanget al. (2000b). 

The overall (average) strain and stress of a cracked body are related via (e.g. [6]) 

where Sij and aki are the average strain and stress components, respectively, ui and Ui 
are the total crack opening/sliding displacement (COD/CSD) and the component of the 
unit vector normal to the crack faces. C^jj^i is the compliance tensor of the uncracked 
material. For parallel flat cracks when n^ is a constant, eqn (6.1) can be rewritten as 

^ij = Cijki^^ki + 2T7 5 ^ ([^^]%- + M^i) ^N (6.2) 
N 
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where [ui] is the average COD/CSD for a single crack over its faces, and SN is its area. 
We note that eqn (6.2) can be written as 

where a; is a non-dimensional crack density parameter, and L is an internal length scale, 
which will be defined later. In the above expression, [ui] is taken to be the COD/CSD 
for a representative crack. 

We consider only infinitesimal deformation and rotation. Taking the time-derivative 
of the above equation gives 

^n . 1 /?—T T—T \ dtu . UJ (d\ui] d[uj] \ . .^ .. 
ei, = CU^ki + ^ (Hn, + [uj]n,) —au + ^ ( ^ ^ ^ n , + ^^n,j a « (6.4) 

Here, we have assumed that the crack density is a function of the applied stress. Strictly 
speaking, [ui] is also a function of uj, which is in turn a function of aki- However, eqn 
(6.3) implies that [ui] is a generic crack opening/sliding displacement in a representative 
element. In analogy with the usual non-interacting solution, we assume at this stage 
that this generic crack opening/sliding displacement is not related to the crack density, 
so that the derivative of [ui] with respect to to vanishes. Equation (6.4) gives the tangent 
compliance tensor 

Cm = C%,i + - K ] n , + [Ui]n, )jrr- + j \ ^ n , + ^ — n J (6.5) 

whence the rate form of the constitutive relation (6.4) can be written as 

Sij = CijkiCTki (6.6) 

We now return to the determination of [ui]. For bodies containing multiple cracks, the 
effect of crack interactions and of any bridging tractions must be taken into account in 
the calculation of the crack opening displacement. Using the pseudo-traction formalism 
Horii and Nemat-Nasser (1985), the average crack opening displacement is calculated 
by applying a pseudo-traction on the faces of a single crack, as we did in the preceding 
sections. In order to determine [ui] and thus Cijki for a body containing randomly 
distributed multiple parallel bridged cracks, we shall first invoke the analytical procedures 
in the works of Wang et al. (2000a), Wang et al. (2000b) for two regular arrays of bridged 
cracks, namely, a doubly periodic rectangular array and a doubly periodic diamond-
shaped array of bridged cracks, shown in Figure 16. We consider the two-dimensional 
case, when the parallel cracks are perpendicular to, say, the direction 2. Following the 
procedures in the above works, the traction consistency condition on each crack in either 
of the two doubly periodic configurations is expressed as follows: 

af^ix) - 2 ^ / Kijki{x,x^)ali{x^)dx^ +Pij{x) = 4 x G [0,a) (6.7) 
, = 1 -^0 
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Figure 16. Doubly periodic rectangular (a) and diamond-shaped array (b) of bridged 
cracks 

where af, is the pseudo-traction on the crack faces, cr̂  is the applied stress, pij is the 
bridging stress exerted by the fibres, and a is the half length of a crack. Kijki{x,x^) 
is the stress influence tensor which was described above (see Eq. (2.6), where we used 
a slightly diff"erent notation). 

However, in this section, in order to trace the non-linear behaviour of the material, 
we shall recast the traction consistency condition (6.7) in an incremental form 

, = 1 -^0 
K^jkiix, x^)Aal^{x^)dx^ + ^Pij{x) = Aa% x E [0, a) (6.8) 

For the two-dimensional case under study, the parallel cracks are perpendicular to 
direction 2, so that we need only the pseudo-tractions (J22 and cr̂ 2 for calculating the 
crack opening/sliding displacements. Following the procedure in the work by Wang et al. 
(2000a), it is found that the incremental pseudo-tractions for the two periodic arrays of 
cracks shown in Figure 16 can be written as 

Aa°2 (6.9) 

A<T?, 12 (6.10) 
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where 

1̂  W 

Tra 2 # 7 r C = {1 - 4 s i n " - — e " " ^ 
W 

2 # 7 r r?"̂  = < 1 +4sin '^ -—e "^^ 

'̂̂  = { 1 - 4sin^ —-e '^w'' 
W 

2/C22l^\ / ^ « A V 
=r— m COS — - > 

naE' V W^/J 

2 ^ 2 2 1 ^ . / 7Ta^\ 
—- m cos —7 > 

2̂ / 7 r a \ \ 2/Ci2T^ 

na E' 

E' 
( — In (cos w)) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

E' — E for plane-stress, and £^' = EjiX — z/^) for plane-strain deformation. In deriving 
eqns (6.9)-(6.10), a linear relationship between the incremental bridging stress Ap22(3:^) 
and incremental C O D / C S D has been assumed 

Ap22(a:) = k22l^\u^{x)\ Api2(x) = kx2^\u\\{x) (6.15) 

where ['i/i](x) and [1^2](^) are the crack opening/sliding displacements. It is evident tha t 
k\2 and k22 in the above expression should be the tangent bridging stiffnesses. 

We presented above the incremental pseudo-tractions on the crack faces following the 
asymptotic analysis of Wang et al. (2000a), Wang et al. (2000b). They are found to 
be constants (in an average sense only) and dependent upon the geometry of the crack 
arrays and the instantaneous tangent bridging stiffnesses. A(j22(A(jf2) and Acr22(A(j^2) 
are the two incremental pseudo-tractions for the doubly periodic rectangular array and 
diamond-shaped array, respectively. According to the analysis in the work by Wang 
et al. (2000a), these two regular pat terns should represent the two extreme interactions 
among multiple parallel cracks, namely, the maximum "shielding" and "magnification" 
effects under unidirectional tension and the maximum "magnification" and "shielding" 
effects under in-plane shear. Based upon this analysis, Wang et al. (2000a) deduced tha t 
the overall modulus of a body containing randomly distributed multiple parallel cracks 
should be within a pair of bounds corresponding to the moduli for the doubly periodic 
rectangular and diamond-shaped array, respectively. Moreover, it was found tha t when 
the the terms 4sin^ ^ ^ - ^ w ^ [1 4- 2^7r ] and 4sin^ p e ' ^ w ^ [l - 2^7r ] were neglected 
in the expressions (6.11)-(6.14), i.e., when these expressions reduced to 

{ 
^ 2k22W^ ^ ( T^a 
1 T^r In cos —-

T^aE' \ W 

- 1 

{ 2 ^ 1 2 ^ ^ . / 7 r a x \ " 
^ = ^ 1 7^^ In cos —7 > 

(6.16) 

(6.17) 

the overall moduli so calculated for low to moderate crack ( 
die of the range bounded by those obtained when the terms 4sin^ ^ e ~ ^ w ^ [l ^ ^^, 

and 4sin^ p e ~ ^ ^ ^ [1 - 2:^7r] were retained. Expressions (6.16)-(6.17) are nothing 

: density were always in the mid-
^rms 4sin2 ^ e ' ^ w ^ h + 2#7r] 
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but the so-called non-interacting solution. Numerical computations of Kachanov (1992) 
for random discrete unbridged parallel cracks also were found to be close to the non-
interacting solution. Thus, it is reasonable to use the expressions (6.16)-(6.17) to calcu­
late the pseudo-tractions 

A(TP2 = CA(T02, Ac 12 7yA(7?2 (6.18) 

Having obtained the pseudo-tractions, the average crack opening/sliding displace­
ments can be easily found 

° f A[wi](a;)" 

A[U2]{X)_ 
dx ^ In (cos ^ ) { ^ " ^ 4 (6.19) 

The subsequent development is for plane-stress deformation condition. Substituting 
(6.18) into (6.19) gives 

(A[u,n 2W^ 
na E 

I n c o s 777 < „ > (6.20) 

which can be rewritten as 

1 E 

I E > 

> = 
^ ' J l n l c o s f ) 

2W 
na 

C In (cos ^ ) J 

fAH 
W 

AM 
w 

(6.21) 

Expression (6.21) describes the local behaviour of the cracked material. The global 
constitutive behaviour of the material can be determined from (6.6), together with (6.5). 

6.2 A n a l y s i s of Mater ia l Ins tabi l i ty 

In this Section, we shall s tudy the material instability in the macroscopic tensile re­
sponse of the composite, especially tha t induced by the microscopic bridging mechanism. 
For this, we use the classical bifurcation criterion for discontinuity localisation across 
parallel planes of Rudnicki and Rice (1975). As will be seen later, for the case studied 
here, this criterion is equivalent to other bifurcation criteria identified by Neilsen and 
Schreyer (1993) for the study of material instabilities. The classical bifurcation criterion 
is 

de t [g , , ] = 0 (6.22) 

where Qij is the acoustic tensor defined as 

Qij = UkDkijini (6.23) 

Dkiji is the tangent stiffness tensor which is the inverse of the tangent compliance tensor 
Ckiji in Eq (6.5). 
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In order to obtain the acoustic tensor (6.23), we need to calculate the tangent compli­
ance tensor from eqn (6.5). For this, we need the total crack opening/sliding displacement 
[ifci], and its partial derivative with respect to ĉ /ê  As pointed out previously, in fibre-
reinforced quasi-brittle composites, it is observed in experiments that the density of the 
multiple cracks increases with increasing load until it reaches a saturation level UJS , when 
the localisation sets in. Moreover, in these materials the damage localisation usually 
coincides with the pull-out of fibres from the matrix. This implies that at localisation, 
the partial derivative du/daki in Eq (6.5) can be equated to zero. Of course, the second 
term in Eq (6.5) is essential to the strain hardening description which may be found in 
the work of Karihaloo and Wang (2000). The tangent compliance tensor (6.5) at the 
instant of localisation therefore reduces to 

^ii ijkl 
^0 , ^ djuj] 

dcJki 

d[uj\ 
(6.24) 

Let us consider the localisation into a planar band under unidirectional tension (J22-
For the considered two-dimensional case, the conventional crack density parameter uj is 
defined as 

(6.25) 
WH 

The rate form of the stress-strain relations {^.^)^ after making use of (6.24), are 

^11 

^22 

<^12J 

> = 

r 1 
E 

V 

E 

0 

V 

E 

1 _U 0^.s ^[^2] 
E^ ^ L ao-22 

0 

0 

0 

E '^ ^ L d(Ti2 . 

• < 

^^111 

^22 1 

. ^ 1 2 J 

(6.26) 

Calculating d[u2]/d(T22 and d[ui]/dai2 from Eq (6.20), and noting that for the con­
sidered case, L = a^ we get the tangent compliance matrix 

r i_ 
E 

\Cij] 

0 

and, by inversion, the corresponding tangent stiffness matrix 

0 

K2 

(6.27) 

\Dij] = 

Eu S[ l -4( f ' )^L,] _ 

Eu E 
[l-'^'-4(f ) ^ i * ] [l-'^^-4(^)'^L«) 

0 0 
2lil+u)-2{i^y^L, 

(6.28) 
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Here, we have introduced two non-dimensional parameters 

L , ^ C l n ( c o s ^ ) (6.29) 

Ls=T]\n (cos--j (6.30) 

where the subscripts t and s denote tension and shear, respectively. 
Substituting the tangent stiffness tensor into Eq (6.23) gives the acoustic tensor whose 

components in a matrix form are 

[Q^. 
0 

0 

- 4 ( f ) ' ^ i t ] 

(6.31) 

As we are interested in the unidirectional tensile case, we only discuss Lt in the 
sequel. We first rewrite Lt (6.29), using Eq (6.16), and omit the subscript 22 from K22 
for brevity. 

L,= ' - " ( - ^ ) (6.32) 
l - S l n ( c o s t ) 

The ratio 2a/W represents the cracked area to the nominal area in the direction 
perpendicular to the loading direction. It therefore represents the conventional damage 
parameter in the context of damage mechanics. Denoting Q = 2a/W, Lt can be rewritten 
as 

L. = ! " ( - ' - - ^ " ) (6.33) 

i-|^?kin(cosfn) 
It is seen from Eq (6.31) that the satisfaction of the localisation criterion (6.22) 

requires that Lt —̂  cxo. When this condition is met, it is seen from (6.28) that the deter­
minant of the tangent stiffness matrix, det[Dij], also vanishes. [Dij] is symmetric, as is 
[Qij]. Therefore, the condition L^ ^ 00 leads to the satisfaction of all bifurcation crite­
ria identified by Neilsen and Schreyer (1993), namely, the classical bifurcation criterion 
(6.22), the general bifurcation criterion, the limit point bifurcation criterion and the loss 
of strong ellipticity criterion. In the following, we shall use the phrases "localisation" or 
"material instabihty" to refer to the consequences of det[(5^j] = 0, i.e. when L^ —> 00. 

6.3 Conditions for Material Instability 

Several features of the material instability are revealed by the above results. First, for 
unbridged material (k = 0), it seen from eqn (6.33) that the satisfaction of the localisation 
criterion det[Q^j] = 0 requires that Lt = In (cos ^O) -^ 00. This simply means that the 
damage parameter, or any effective quantity, Q, tends to 1. In this case, Lg also becomes 
zero. So the material loses instability both under unidirectional tension perpendicular to 
the crack and under in-plane shear. Thus, the bifurcation criterion is identified with the 
damage induced rupture of the material. 

When /c 7̂  0, it is seen from (6.33) that Lt is determined by the tangent bridging 
stiffness k. For short-fibre-reinforced cementitious composites, a trilinear bridging law, 
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Figure 17. An idealised trilinear bridging law OABC and a more realistic smooth bridg 
ing law OAD with continuous slope 

such as OABC shown in Figure 17, is commonly used. This is obviously an idealisation 
of the actual fibre pull-out test results. The problem with the idealised trilinear bridging 
law is the discontinuity in the tangent bridging stiffness k. In real materials, especially 
when the average effect of randomly distributed fibres is considered, the tangent bridging 
stiffness varies gradually, as shown by OAD in Figure 17. This continuous bridging 
traction can, for example, be described by 

(6.34) p = k[u\e 

The tangent bridging stiffness can thus be written as 

ko<l [ u ] ^ (6.35) 

where ko is the initial tangent bridging stiffness when the fibres are bonded to_the matrix 
(Figure 17). It is evident that the tangent bridging stiffness vanishes at [u] = [u]^^ and it 
becomes negative, when [u] > [u]^^. The expression (6.35) is in line with the simple local 
constitutive law that Jirasek and Bazant (1994) used in their study of the localisation 
phenomenon within the formalism of the non-local theory. The initial tangent bridging 
stiffness ko can be calculated from the linear bridging model developed by Lange-Kornbak 
and Karihaloo (1997). 

k^^Vf^Efy (6.36) 
Tg L 
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where Tg and Ty are the frictional bond strength and the adhesive bond strength, respec­
tively, h is the so-called snubbing factor, L is the length of fibres, and Ef their modulus 
of elasticity. 

When /c > 0, it follows from (6.33) that Lt has the following property 

n-^0: Lt^O (6.37) 

In other words, no instability can set in, if there is no damage in the material. Thus, as 
expected, the case ( 7 ^ 0 can be excluded from the instability analysis. 

When 0 < r̂  < 1, the bifurcation criterion {Lt -^ oo) can only be satisfied when the 
following condition is met (cf. (6.33)) 

— l n ( c o s | ^ ) = 0 (6.38) 

that is 
•T-cr 

with 

r = ^ ^ ^ ^ for 0 < ^ < 1 (6.39) 
8a In (cos fQ) ^ ^ 

n-^1: k"""^ -^0 (6.40) 

The variation of the normalised k with Q given by (6.39) is shown in Figure 18. 
From the above analysis and Figure 18, we are able to discern several features of 

incipient material instability. First, it follows from eqn (6.39) that for all values of D. 
in the range 0 < 1̂  < 1, no instability can set in, if the tangent bridging stiffness k is 
greater than 0. In other words, no matter how much the matrix is damaged, as long as 
the fibres are still bonded to it (/c > 0) , the composite will not exhibit any instability 
at the macroscopic level, even when a through crack has formed in the matrix (Figure 
19(a)). The tangent stiffness of the composite will continue to be positive. This is 
exactly what happens, for example, in strong continuous fibre-reinforced composites, as 
is demonstrated by the ACK model Aveston et al. (1971). 

The second feature is that k can vanish before or after a through crack has formed, 
i.e., r̂  -> 1. Here, we discuss the formation of a through crack (Q —̂  1) when the fibres 
are still bonded to the matrix, i.e., k >0. In this case, Lt can be approximated by 

4kW 

Here, W loses its meaning, although its appearance in the above formula simply points 
to the existence of an internal length scale. The expression (6.41) indicates that the 
bifurcation condition {Lt -^ cxo) requires that the fibre bridging stiffness vanishes A: = 0. 
In other words, after a through crack has formed or is about to form, the macroscopic 
instability of the composite coincides with the (microscopic) bridging instability (Figure 
19(b)). 

The third feature is that when the localisation band is still not a through crack (i.e. 
0 < r̂  < 1), the localisation criterion can still be satisfied when k^'^ is given by (6.39). We 
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1.0 Q 

Figure 18. Variation of normalised tangent bridging stiffness at macroscopic instability 
with damage parameter. No instability is possible when f̂  = 0. Thus the point on the 
axis of ordinates at 1 is excluded, as highlighted by the open circle 

recall that the average crack opening displacement for a row of periodic cracks without 
the bridging action of fibres can be rewritten as (see, e.g. Karihaloo (1995)). 

AcTr, 
TTE ^ ATI 

A[u] Sa In (cos f ^ ) 
(6.42) 

When the cracks are bridged by fibres, the total instantaneous resistance of the composite 
material to crack opening can be written as the sum of matrix and fibre contributions 

TTE n^ 
Sa ln(cosfl]) 

+ /c (6.43) 

Thus the condition (6.39) implies that the resistance of the composite material to crack 
opening displacement vanishes because the instantaneous resistance of the matrix itself 
to crack opening is exactly counterbalanced by the loss of the bridging resistance (Fig. 
19(c)). 

The parameter k^'^ in (6.39) includes the physical effect of several factors on the incep­
tion of localisation. First, instability of the composite at the macrolevel is possible, when 
/c < 0, i.e., the fibres are only exerting the residual friction bridging action. The closer 
r̂  is to 1, the smaller the absolute value of k^'^. When ft = 1, the macroscopic instability 
occurs at A: = 0, i.e. it coincides with the microscopic (bridging) instability. Second, 
the dependence of the absolute value of k^^ on the modulus E of the uncracked matrix 
indicates that the stiffer the matrix, the less susceptible the material is to microscopic 
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Figure 19. Relationship between bridging stiffness and macroscopic response of the 
composite material, (a) no instabiUty, when the fibres are bonded to matr ix {k > 0) even 
though a through crack has formed in it (Q = 1); (b) macroscopic instabihty induced 
by loss of bridging stiffness {k = 0) and formation of a through crack {fl = 1); (c) 
macroscopic instability induced by a combination of matr ix damage (^ < 1) and initial 
softening of bridging stiffness equal to k^^ < 0; (d) macroscopic tension-softening caused 
by matrix damage (f̂  < 1) and considerable softening of bridging stiffness (A: < 0) 
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instability. Third, k^^ contains a length scale, here the half length a of a crack. As the 
parameters ft and E are scale insensitive, k^'^ introduces a scale effect into the loss of 
macroscopic instability of short-fibre-reinforced materials. The macroscopic response of 
large specimens made from these composites will be more sensitive to vanishing of bridg­
ing stiffness than that of small specimens with the same level of damage (0 < f] < 1). 

It is seen from Figure 18 that the absolute value of k'^^ increases rapidly when the 
value of ft deviates from 1. This means that in order to delay macroscopic instability 
of the composite, it is very important to prevent or delay the coalescence of the discrete 
microcracks. In principle, if the microcracks are somehow prevented from coalescing 
whilst at the same time the tangent bridging stiffness is maintained above the critical 
value given by (6.39), macroscopic instability of the composite cannot occur. In practice 
though, the discrete microcracks are likely to propagate and coalesce once the fibres begin 
to be pulled out, i.e., once k reaches zero. Figure 19(d) illustrates such a possibility 
whereby the composite exhibits tension-softening, while the cracks in the localisation 
band are still fragmented (0 < f] < 1) but the tangent bridging stiffness is equal to or 
less than the critical value (6.39). This provides a softening model which is different from 
that introduced by Li et al. (1991) in which the softening is a result of fibre pull-out from 
a through crack (Q = 1). 

Based upon the pseudo-traction technique and an asymptotic analysis, the tensile 
stress-strain relation was established analytically for short-fibre-reinforced composites 
containing multiple parallel bridged microcracks. This allows an analysis to be made of 
the macroscopic material instability in the tensile deformation process of these compos­
ites. The material instability at the macrolevel is examined using the classical bifurcation 
criterion, with an emphasis on the role of the bridging action of fibres. Conditions for 
the incipient macroscopic instability are obtained as functions of damage in the matrix, 
crack length, and the microscopic bridging stiffness. It is found that no macroscopic 
instability is possible as along as the tangent bridging stiffness is positive, i.e., as long as 
the fibres remain bonded to the matrix. However, whilst the bridging instability at the 
microievel plays a major role in the macroscopic instability, it is the damage in the matrix 
that determines when the macroscopic instability is induced by the bridging instability. 
The microscopic bridging instability does not necessarily induce macroscopic instability. 
Indeed, macroscopic instability may be delayed until the fibres are only exerting residual 
frictional action. Likewise, the formation of a through crack is neither a necessary nor 
a sufficient condition for the onset of tension-softening in the composite. The results also 
suggest that in order to delay macroscopic instability in the tensile response, it is very 
important to prevent or to delay the coalescence of the discrete microcracks that form 
in the strain-hardening stage. 

Bibliography 

J. Aveston, G.A. Cooper, and A. Kelly. Single and multiple fracture. In The properties 
of fibre composites, Conference Proceedings of National Physical Laboratory, pages 
15-26, London, 1971. 

G. Bao and Z. Suo. Remarks on crack bridging concepts. Applied Mechanics Reviews, 
45:355-366, 1992. 



134 B.L. Karihaloo 

W.R. Delameter, G. Herrmann, and D.M. Barnett. Weakening of an elastic solid by a 
rectangular array of cracks. Journal of Applied Mechanics, 42:74-80, 1975. 

A.G. Evans, J.M. Domergue, and E. Vagaggini. Methodology for relating the tensile con­
stitutive behaviour of ceramic-matrix composites to constituent properties. Journal 
of the American Ceramic Society, 77:1425-1435, 1994. 

G.U.J. Fonseka and D. Krajcinovic. The continuous damage theory of brittle materials; 
Part 2: uniaxial and plane response modes. Journal of Applied Mechanics, 48:816-824, 
1981. 

V.S. Gopalaratman and S.P. Shah. Tensile failure of steel fiber-reinforced mortar. ASCE 
Journal of Engineering Mechanics, 113:635-652, 1987. 

H. Horii, A. Hasegawa, and F. Nishino. Process zone model and influencing factors in 
fracture of concrete. In S.P. Shah and S.E. Swartz, editors. Fracture of Concrete and 
Rocks, pages 205-219. Springer-Verlag, New York, 1989. 

H. Horii and S. Nemat-Nasser. Elastic fields of interacting inhomogeneities. International 
Journal of Solids and Structures, 21:731-745, 1985. 

H. Horii and S. Nemat-Nasser. Overall moduli of solids with microcracks: load-induced 
anisotropy. Journal of the Mechanics and Physics of Solids, 31:155-171, 1993. 

K.X. Hu, A. Chandra, and Y. Huang. On interacting bridged-crack systems. International 
Journal of Solids and Structures, 31:599-611, 1994. 

M. Isida, N. Ushijima, and N. Kishine. Rectangular plates, strips and wide plates con­
taining internal cracks under various boundary conditions. Transactions of the Japan 
Society of Mechanical Engineers, Series A 47:27-35, 1981. 

M. Jirasek and Z.P. Bazant. Localization analysis of nonlocal model based upon crack 
interactions. ASCE Journal of Engineering Mechanics, 120:1521-1542, 1994. 

L.M. Kachanov. Time of the rupture process under creep conditions, pages 26-31. Izv. 
Akad. Nauk SSR, 1958. 

M. Kachanov. Effective elastic properties of cracked solids: critical review of some basic 
concepts. Applied Mechanics Reviews, 45:304-335, 1992. 

B.L. Karihaloo. Fracture characteristics of solids containing doubly-periodic arrays of 
cracks. Proceedeings of Royal Society London, A360:373-387, 1978. 

B.L. Karihaloo. Fracture Mechanics and Structural Concrete. Addison Wesley Longman, 
1995. 

B.L. Karihaloo and J. Wang. Mechanics of fibre-reinforced cementitious composites. 
Computers & Structures, 76:19-34, 2000. 

B.L. Karihaloo, J. Wang, and M. Grzybowski. Doubly periodic arrays of bridged cracks 
and short fibre-reinforced cementitious composites. Journal of the Mechanics and 
Physics of Solids, 44:1565-1586, 1996. 

R.Y. Kim and N.J. Pagano. Crack initiation in unidirectional brittle-matrix composites. 
Journal of the American Ceramic Society, 74:1082-1090, 1991. 

D. Krajcinovic and G.U. Fonseka. The continuous damage theory of brittle materials. 
Part 1: general theory. Journal of Applied Mechanics, 48:809-815, 1981. 

D. Lange-Kornbak and B.L. Karihaloo. Tension softening of fibre-reinforced cementitious 
composites. Cement and Concrete Composites, 19:315-328, 1997. 



Micromechanical Modelling of Strain Hardening and Tension Softening... 135 

V.C. Li, Y. Wang, and S. Backer. A micromechanical model of tension-softening and 
bridging toughening of short random fibre reinforced brittle matrix composites. Jour­
nal of the Mechanics and Physics of Solids, 39:607-625, 1991. 

T.Y. Lim, P. Paramasivan, and S.L. Lee. Analytical model for tensile behavior of steel-
fiber concrete. A CI Material Journal, 84:286-298, 1987. 

B. Mobasher, H. Stang, and S.P. Shah. Microcracking in fibre reinforced concrete. Cement 
and Concrete Research, 20:665-676, 1990. 

M.K. Neilsen and H.L. Schreyer. Bifurcations in elastic-plastic materials. International 
Journal of Solids and Structures, 30:521-544, 1993. 

M. Ortiz. Microcrack coalescence and macroscopic crack growth initiation in brittle 
solids. International Journal of Solids and Structures, 24:231-250, 1988. 

J.W. Rudnicki and J.R. Rice. Conditions for the localization of deformation in pressure-
sensitive dilatant materials. Journal of the Mechanics and Physics of Solids, 23: 
371-394, 1975. 

K. Sahasakmontri, H. Horii, A. Hasegawa, and F. Nishino. Mechanical properties of 
solids containing a doubly periodic rectangular array of cracks. Structural Engineering 
/Earthquake Engineering, 4:125s-135s, 1987. 

S.M. Spearing and F.W. Zok. Stochastic aspects of matrix cracking in brittle matrix 
composites. Journal of Engineering Materials and Technology, 115:314-318, 1993. 

H. Stang and S.P. Shah. Failure of fibre-reinforced composites by pull-out fracture. 
Journal of Materials Science, 21:953-957, 1986. 

H. Tada, P.C. Paris, and G.R. Irwin. The Stress Analysis of Cracks Handbook. Paris 
Productions Inc., St. Louis, Missouri, 1985. 

P. Tjiptobroto and W. Hansen. Tensile strain hardening and multiple cracking in high-
performance cement-based composites containing discontinuous fibres. ACI Material 
Journal, 90:16-35, 1993. 

J. Wang, J. Fang, and B.L. Karihaloo. Asymptotic bounds on overall moduli of cracked 
bodies. International Journal of Solids and Structures, 37:6221-6237, 2000a. 

J. Wang, J. Fang, and B.L. Karihaloo. Asymptotics of multiple crack interactions and 
prediction of effective modulus. International Journal of Solids and Structures, 37: 
4261-4273, 2000b. 

F.W. Zok and S.M. Spearing. Matrix crack spacing in brittle matrix composites. Acta 
Metallurgica et Materialia, 40:2033-2043, 1992. 



Optimum Composite Laminates Least Prone to 
Delamination under Mechanical and Thermal Loads 

B. L. Karihaloo 
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Abstract In this Chapter we will describe how optimum laminate configurations 
are sought for multidirectional fibre-reinforced composite laminates under combined 
in-plane mechanical and thermal loads. The design objective is to enhance the 
value of the loads over and above the first-ply-failure loads which are judged by 
a transverse failure criterion and the Tsai-Hill criterion, respectively. The in situ 
strength parameters previously obtained are incorporated in these criteria. It is 
found that the optimum designs under combined mechanical and thermal loads are 
not the same as those under pure mechanical loads for three of the four loading 
cases studied. For all cases the optimum loads are significantly larger than those 
for a quasi-isotropic design. 

1 Introduction 

Optimum strength designs of continuous fibre-reinforced composite laminates have been 
pursued since the early days of these materials. For example, Sandhu (1969) used 
a parametric study to investigate the fibre orientation of a unidirectional lamina yield­
ing maximum strength under in-plane stress conditions. Brandmaier (1970) found tha t 
the strength of a unidirectional lamina under in-plane stresses could be maximized an­
alytically with respect to the fibre orientation. The results based upon Tsai-Hill failure 
criterion indicated tha t the optimum fibre orientation depended upon the stress state and 
the relative value of the transverse and in-plane shear strengths of the lamina. When the 
strength of a multidirectional composite laminate is to be maximized, more complicated 
and explicit optimization techniques are needed. The work by Chao et al. (1975) was 
probably the earliest s tudy tha t sought the optimum strength design of multidirectional 
laminates using a search technique. Many studies have been devoted to the optimum 
strength design of multidirectional laminates in the recent two decades. Among these are 
the works by Park (1982), Fukunaga and Chou (1988), Miravete (1989), Fukunaga and 
Vanderplaats (1991). Considering tha t most of the advanced fibre-reinforced composite 
laminates are prone to cracking and delamination, and tha t the properties of laminates 
are tailorable, Wang and Karihaloo (1994a), Wang and Karihaloo (1996c), Wang and 
Karihaloo (1996b) posed optimum strength design problems of multidirectional lami­
nates in a different way from the conventional ones. They applied fracture mechanics 
analyses in the optimum strength designs of multidirectional laminates against delami­
nation and transverse cracking. We shall summarise these results in later sections. 
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In measuring the in situ transverse strength of unidirectional laminae in laminates, it 
was found by Flaggs and Kural (1982) that the thermal residual stress resulting from the 
manufacturing process might consist of a large portion of the in situ strength (more than 
half for [02/90n]s and [di30/90n]s for n = 1,2,... ,8). A composite structure will also 
experience temperature variations in service. Because of the remarkable difference in the 
thermal expansion coefficients as well as the stiffnesses of a unidirectional lamina in its 
longitudinal and transverse directions, the stresses caused by temperature variations may 
be quite significant in practice. It is obvious that the thermal stresses in a multidirectional 
laminate are functions of the laminate configuration, that is, functions of the ply angles in 
the laminate. In the present chapter, we shall pursue the optimum in situ strength design 
of multidirectional composite laminates subjected to combined mechanical and thermal 
loads. We shall first introduce the in situ strength parameters, and then incorporate them 
into the formalism of optimization problems. Details of these calculations will be given 
in later sections. The optimization problems will be solved by a nonlinear mathematical 
programming technique. 

2 In situ strength formulae 

Chang and Lessard (1991) fitted experimental data with two formulae to calculate the in 
situ transverse tensile and in-plane shear strengths of unidirectional laminae in general 
multidirectional laminates, namely, 

^ = l + A s i n ( A ^ ) , (2.1) 

^ = l + ] ^ « i ^ ( ^ ^ ) ' (2.2) 

where T^ and S^ are the transverse tensile strength and in-plane shear strength measured 
with a thick unidirectional lamina. A, J5, C and D are to be determined by experiments. 
Â  is the number of plies in a unidirectional lamina in a multidirectional laminate. A^ 
represents the minimum difference between the ply angle of a lamina and those of its 
neighbouring plies. 

In order to reveal the physics of the phenomenon of in situ strengths, Wang and 
Karihaloo (1996c) studied the in situ strengths using fracture mechanics . Based upon 
the fracture mechanics analyses, they proposed two formulae to calculate the in situ 
strengths 

^ = l + ] ^ / * ( ^ ^ ) ' (2-3) 

^ = 1 + ] ^ / « ( A ^ ) ' (2-4) 

Here, the two functions ft{AO) and /^(A^) represent the influence of the neighbouring 
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laminae on the strengths of a lamina. They are given by 

sin 
ftiA0)=mm 

/«(A^) = min 

H-sin2(A6'o)' l+sin^{A9b). 

sin2(2A(9a) sm^{2A0b) 

1 + sin^(2A6la) 1 + siii^(2A6i6)J 

(2.5) 

(2.6) 

The parameters A, B, C and D in formulae (2.1)-(2.4) are to be determined from 
experimental results. As these formulae also contain the ply-angle influence functions, 
i.e. sin(A^), /t(A^) and /^(A^), the investigation of the dependence of A^ B^ C and 
D on the laminate configuration is very important. They must be independent of the 
laminate configuration, if they are to be regarded as material constants. Otherwise the 
above in situ strength formulae cannot be applied to a general multidirectional laminate. 
Therefore, in order to determine the values of these constants for a particular composite 
material, extensive experiments are needed. Currently, there are very few experimental 
results available, of which the results of the in situ transverse tensile strength obtained 
by Flaggs and Kural (1982) are widely cited in the literature. Regarding the in-plane 
shear strength, Chang and Chen (1987) studied its dependence on the ply thickness 
in unidirectional and cross-ply laminates. There is a dearth of experimental data to 
determine the dependence of the in situ shear strength on the laminate configuration. 

In Fig. 1, the in situ transverse strength predicted by Eqs. (2.1) and (2.3) are 
compared with the experimental results of Flaggs and Kural (1982) for the material 
T300/934. In fitting the experimental data, different values of A are used in Eqs. (2.1) 
and (2.3) (1.7 and 3.4, respectively). Chang and Lessard (1991) used A — 1.3 and 
5 = 0.8 previously to fit the experimental data. It is seen that both the theoretical 
formulae fit the experimental data reasonably well. The most important conclusion 
drawn from Fig. 1 is that for the material and laminate configurations studied by Flaggs 
and Kural (1982) the parameters A and B appear to be independent of the laminate 
configuration. It appears that they can indeed be treated as material constants. On the 
other hand, due to lack of experimental data, the dependence of the parameters C and 
D on the laminate configuration cannot be judged. Chang and Lessard (1991) found 
that formula (2.2) fits the experimental data weh for T300/976 cross-ply laminates with 
D — 2.0 and C — 1.0. In the sequel, we shall use formula (2.3), which has a fracture 
mechanics basis, to calculate the in situ shear strength of laminae in multidirectional 
laminates with C = 4.0 and i ) — 1.0. 

In most cases, transverse cracking is the first noticeable damage in a laminate. Al­
though the transverse cracks generally do not result in the immediate failure of the whole 
laminate, they have the potential to induce failure by stress concentration and delam­
ination. For instance, the experimental results of Herakovich (1982) indicate that the 
failure of angle-ply laminates with thick laminae under in-plane unidirectional tension is 
entirely due to transverse cracking. In the optimum strength design to follow, we shall 
use a transverse tensile failure criterion (Chang and Lessard (1991)) to judge the trans­
verse failure of a unidirectional lamina in a multidirectional laminate. This criterion. 
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Figure 1. Comparison of theoretical and experimental results of the in situ transverse 
tensile strength. A — 1.7 and B — 0.8 are used in formula (2.1), and A = 3.4 and B — 0.8 
are used in formula (2.3) 

into which the in situ strengths are incorporated, is written as 

K)!HI)!^' (. = 1.V..«, (2.7) 

where Y and 5* are the in-plane transverse and shear stresses in the lamina. L is the total 
number of unidirectional laminae in the laminate. In the previous optimum strength 
design of laminates by Wang and Karihaloo (1996b), it was found that the optimizer 
aims at distributing the stresses according to the strengths of an anisotropic material 
in different directions. In the failure criterion (2.7), the strength and stress in the fibre 
direction are not taken into account. Therefore, the optimizer always gives optimum 
designs of laminates in which the stresses in the fibre directions of the laminae are very 
large. This may increase the risk of failure in the fibre direction. Thus, here we also use 
the following simplified Tsai-Hill criterion to consider the eff"ect of the stress in the fibre 
direction in the optimum design 

g)>a)>(f):- <-- '̂' (2.8) 

where CTL and F^ are the stress and strength of a unidirectional lamina in the fibre 
direction. 
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3 Formulation of optimization problem 

For a multidirectional laminate subjected to in-plane loads, let us denote the left-hand 
terms of Eqs. (7) and (8) by q^. For a composite laminate under given in-plane loads, if 
the ply angles and thicknesses of the constituent laminae are so chosen that the values of 
q^ for all laminae are reduced, then the loads corresponding to the transverse cracking 
or failure will be enhanced. This objective is achieved by minimizing the maximum 
value of q^. Following the procedure in the work by Wang and Karihaloo (1996b), the 
optimization problem is formulated as 

subject to 

min 7 (3.1) 

qr-l<^. (3.2) 

- f < ^ ^ < | , (3.3) 

Y,U = h ( i - l , . . . ,L ) , (3.4) 
i 

t<ti<l (3.5) 

The above optimization problem is solved by a constrained variable metric method. 
The non-differentiability of /t(A^) and /s(A^) with respect to the design variables Oi is 
treated using the procedure in the work by Wang and Karihaloo (1996b). 

As mentioned in Section 1, the thermal residual stresses resulting from the man­
ufacturing process may constitute a large portion of the in situ strength (more than 
half for [02/90n]s and [±30/90n]s for n = 1, 2 , . . . , 8). It is obvious that the thermal 
residual stresses in a multidirectional laminate are also functions of the laminate config­
uration, that is, functions of the ply angles in the laminate. Therefore, in the optimum 
strength design of laminates, the laminates are assumed to be under combined thermal 
and mechanical loads. Thus, following the classical lamination theory, the total stresses 
in a generic lamina in a multidirectional laminate are calculated from 

= Qi Az\Nk^Nl)-el] (i,i,A; = 1,2,6), (3.6) 

where cr̂  the stress components in the reference coordinate system for the laminate, Qij 
the off-axis stiffnesses of the lamina, and Aij the in-plane stiffnesses of the laminate, Â ^ 
the equivalent thermal loads, and rf the thermal strains. 

4 Design examples 

The above optimization procedure was applied to the optimum design of a multidirec­
tional laminate shown in Figure 2. Fig. 2(a) shows the in-plane loads, and Fig. 2(b) 
shows the detailed configuration of one half of the laminate. This laminate is com­
posed of L laminae of different ply angles and thicknesses. It is physically symmetric 
with respect to its geometric middle plane, i.e. the laminae are stacked in the order 
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(^L/2/ • • • /^i)s' The stiffness and strength constants used in the calculation of the in 
situ strengths are adapted from the work by Chang and Lessard (1991) on T300/976. 
The thermal expansion coefficients are taken as those of T300/934 (Flaggs and Kural 
(1982)), i.e. ai = 0.09 / is t ra in/°C, ar = 28.8 /xstrain/°C. The thickness of a single ply 
is assumed to be 0.14 mm. The temperature variation is taken as A T = —147°C, i.e. 
the temperature drop in the manufacturing process. It can be arbitrary otherwise. 

^L/25^L/2 

Oi,ti 

h/2 

Mid plane 

Figure 2. The laminate configuration. The in-plane loads shown represent the resultant 
mechanical forces over the thickness 

Because of the highly nonlinear na ture of the functions Qi, and of the fact tha t they can 
a t ta in their minima at different combinations of design variables, the above optimization 
problem can have many local minima. In the computational scheme, the global minimum 
is sought by a random search technique. The optimization process is begun from different 
initial design points ( x ^ ) ^ ( j = 1 , . . . , L; m = 1 , . . . , M) (m denotes the uith initial design 
point) in the space of design variables {xj)^ (j = 1 , . . . , L) . These random initial design 
points are chosen so tha t they are uniformly distributed in the design space, and the 
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global minimum is sought from among the local minima corresponding to these randomly 
chosen initial designs. In all cases, M was chosen to be equal to 400. 

The above optimum design is demonstrated on an eight-ply symmetric laminate with 
the four ply angles being the design variables. Given a mechanical load [NI,N2->NQ], 

the improvement in the design is represented by 

k 
maxg^ 

(i = l , 2 , . . . , 4 ) (4.1) 

We first seek the optimum designs without the thermal effect, that is, the laminate 
is only subjected to mechanical loads. The change of the load factor k during the op­
timization process for four in-plane loading combinations is shown in Figs. 3 and 4 for 
the failure criteria (2.7) and (2.8), respectively. The initial guesses to ply angles (chosen 
pseudo-randomly) and their final optimum values, the optimum load factor /Cmax and the 
ratio of /cmax to the initial load factor A:in, are given in Table 1, where the load factor ki^o 
is for a quasi-isotropic laminate design [45/90/ — 45/0] g. 

k {a,b, c k{d) 
10000 

-j 8000 

H 6000 

H 4000 

A 2000 

Figure 3. Evolution of load factor k for a symmetric laminate of four ply angles for 
four mechanical loading cases without thermal effect: (a) [N^.N^.N^]'^ = [200,200,0]^ 
kN/m; (b) [N^.N^N^f = [200,0,200]^ kN/m; (c) [N^^N^Nlf = [400,200,0]^ 
kN/m; (d) [N^.N^.N^]'^ = [200,200,200]^ kN/m. The transverse cracking criterion 
(2.7) is used 

The results shown in Table 1 and in Figs. 3 and 4 exhibit several features. First, 
for each of the loading cases (a)-(c), the mechanical load corresponding to the first-ply-
failure in the optimally designed laminate is increased several fold compared with that 
of a randomly chosen design. Secondly, when the transverse cracking criterion (2.7) is 



144 B.L. Karihaloo 

k (a, 6, c) k{d) 

Figure 4. Evolution of load factor k for a symmetric laminate of four ply angles without 
thermal effect. The mechanical loading cases are the same as those in Fig. 3. The 
Tsui-Hill failure criterion (2.8) is used 

used in the optimization, the optimizer aims at reducing the transverse and in-plane 
shear stresses and distributing the stress in the fibre direction of a lamina in a laminate. 
For example, for loading case (b) in Fig. 3, the final stresses in the four laminae in the 
optimized laminate are {cri. as, ere} = [{-349,39,0.5}, {541,-19,0.3}, {-36,18,-38}, 

Table 1. Summary of optimized ply angles in a symmetric laminate of four ply angles 
without thermal effect 

In-plane 
loading 

a 
b 
c 
d 

a 
b 
c 
d 

Initial design 
^ 1 , ^ 2 , ^ 3 , ^ 4 

Final design 
^ 1 , ^ 2 , ^ 3 , O4 

Transverse cracking criterion 
82.4,88.5,75.3,46.6 
-78.1,72.5,82,5,18.2 
-0.9,76.1,-2.2,48.3 
33.9,27.3,35.2,38.9 

Tsai-Hill failure criterion 
21.1,7.2,38.6,-40.9 
-61.5,10.6,-59.7,86.1 
13.6,54.2,-74.0,61.7 
23.0,55.2,52.5,21.4 

46.8,89.6,44.0,-30.4 
-56.6,32.7,86.6,30.5 
-33.5,70.0,-33.8,20.4 
45.0,45.0,45.0,45.0 

40.6,-4.4,54.7,-58.5 
-58.4,32.0,-57.6,31.3 
-48.9,52.3,-44.7,10.6 
45.5,43.6,47.0,43.7 

'^^max 

1.62 
2.28 
1.5 
(X) 

1.45 
2.50 
1.28 
4.22 

^max / ' »^ in 

5.34 
3.27 
3.0 
(X) 

2.13 
4.5 
3.46 
3.08 

^ i s o 

1.37 
0.93 
1.40 
0.77 

1.32 
0.90 
1.18 
0.76 
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{540, -19 ,3}] MPa. For loading case (c), these values are {cri,a2,cr6} = [{439,48,24}, 
{ 3 6 4 , 5 3 , - 2 3 } , {436,28,24}, {726,29,5}] MPa, In terms of the optimum design under 
loading case (b), the failure load corresponding to the first transverse cracking will be 
^max X Wii^2^^6]^ ^^ which casc the maximum tensile stress in the fibre direction of 
the second ply (lamina) wih be 2.28 x 541 MPa = 1233 MPa. This value is close to 
the longitudinal tensile strength 1515 MPa of the material 1300/976. For this reason, 
optimum strength designs are pursued using the Tsai-Hill failure criterion (2.8) in which 
the contribution of the stress component in the fibre direction is also taken into account. 

The results obtained using the Tsai-Hill failure criterion are also shown in Table 1. 
However, it is found tha t the use of the Tsai-Hill criterion does not result in a signifi­
cant change in the stress distribution in the laminae in the optimally designed laminate. 
For instance, for loading case (b) in Fig. 4, the final stresses in the four laminae in 
the optimized laminate are {ai ,cr2,ae} = [{ -213 ,41 ,2} , { 5 3 7 , - 8 , - 5 } , { -213 ,41 ,10} , 
{537, —8,3}] MPa. The reason for this may be due to the large strength of the uni­
directional lamina in the fibre direction. The optimizer always distributes the stresses 
according the strengths in different directions of the anisotropic material. 

Loading case (d) is simply to check the "smartness" of the optimizer. As this load­
ing case is simply a unidirectional tension along 45° with respect to the 1-axis of the 
reference coordinate system for the laminate, the theoretical optimum design should be 
a unidirectional laminate in which all the fibres are along 45°. In this case, all qi are 0, 
which is obviously the absolute minimum of the optimization problem. This theoretical 
opt imum design is captured by the optimizer for both failure criteria, as shown in Table 
1. This theoretical opt imum design was not obtained in the previous work by Wang and 
Karihaloo (1995). 

The results of the opt imum designs when the thermal effect is included are shown in 
Table 2 again for the two failure criteria. The evolutions of the load factor it are shown 
in Figs. 5 and 6 for the two failure criteria, respectively. Due to the thermal stresses. 

Table 2. Summary of optimized ply angles in a symmetric laminate of four ply angles 
with thermal effect 

In-plane Initial design Final design kmax 
loading 61,62,0^,0 A 61,62,63,64 

Transverse cracking criterion 
a -29.9, -13.6, -75.6,13.6 -56.3 , -30.5, -49.2,44.4 
b - 7 . 1 , - 3 5 , -19.2,16.4 23.7, -36.5, 23.7, 27.0 
c -27.37, -63.1,69.8, -63.4 43.7, -51.1,43.7, -18.6 
d 57.3,41.3,45.8, 35.6 45.0,45.0,45.0,45.0 

Tsai-Hill failure criterion 
a -32.6, -27.7, -77.8,14.9 -53.0, -29.2, -47.2,45.8 
b 86.6, 73.4, -36.0,61.2 27.4, 24.3, -36.6, 24.3 
c -64.8,11.1, -88.6, -44.0 -42.8,49.1, -42.8,19.4 
d 86.7,61.6, 22.8, 22.6 45.0,45.0,45.0,45.0 

0.81 
2.24 
0.82 
0 0 

0.79 
1.91 
0.77 
4.24 

1.66 
8.75 
3.31 
0 0 

1.56 
5.66 
1.95 
5.75 

0.60 
0.72 
0.62 
0.50 

0.60 
0.71 
0.60 
0.50 
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Figure 5. Evolution of load factor k for a symmetric laminate of four ply angles subjected 
to mixed thermal and mechanical loads. The mechanical loading cases are the same as 
those in Fig. 3. The transverse cracking criterion (2.7) is used 

the absolute enhancement of the load factor is not as large as those in Table 1. 

k (a, 6, c 

Figure 6. Evolution of load factor k for a symmetric laminate of four ply angles subjected 
to mixed thermal and mechanical loads. The mechanical loading cases are the same as 
those in Fig. 3. The Tsai-Hill failure criterion (2.8) is used 
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Table 3. Summary of optimized ply angles in a symmetric laminate of four ply angles 
with thermal effect using the initial designs in Table 1 

In-plane 
loading 

a 
b 
c 
d 

a 
b 
c 
d 

Initial design 
^ 1 , ^ 2 , ^ 3 , O4 

Final design 
Oi, 02,63,04 

Transverse cracking criterion 
82.4,88.5,75.3,46.6 
-78.1,72.5,82,5,18.2 
-0.9,76.1,-2.2,48.3 
33.9,27.3,35.2,38.9 
Tsai-Hill failure criterion 
27.1,7.2,38.6,-40,9 
-61.5,10.6,-59.7,86.1 
13.6,54.2,-74.0,61.7 
23.0,55.2,52.5,21.4 

35.2,60.7,41.8,-44.9 
-84.7,39.6,37.0,37.0 
-43.9,50.9,-43.9,18.4 
45.0,45.0,45.0,45.0 

54.2,30.3,48.1,-45.1 
-55.9,33.2,-69.0,32.9 
-42.9,49.2,-42.9,19.3 
45.5,45.0.45.0,45.0 

n^max 

0.81 
1.78 
0.82 
0 0 

0.79 
1.66 
0.77 
4.24 

/k in 

2.7 
2.59 
2.16 
0 0 

1.37 
4.05 
2.64 
4.08 

However, the values of the ratio /Cmax/̂ in are of the same level as those in Table 
1. Because all the optimum designs are sought starting from multiple random initial 
designs, the initial designs in Table 2 are not necessarily the same as those in Table 1. 

Although the optimum values of /Cmax in Tables 1 and 2 are likely to be the global 
maxima in the design domain, the optimum ply angles as well as the initial ply angles 
leading to the same optimum angles are not unique because of the high nonlinearity and 
the inherent symmetry of the problem. To get a better insight into the influence of the 
thermal effect on the optimum strength design, we use the initial ply angles in Table 1 to 
seek the optimum designs of the laminate when subjected to the combined mechanical 
and thermal loads. The results are shown in Table 3. 

A comparison of the results in Tables 1 and 3 shows that for loading cases (a), (b), 
and (c), the optimum designs without the thermal effect are not the optimum designs 
under mixed mechanical and thermal loads. On the other hand, for loading case (d), 
the optimum design under pure mechanical loads is the optimum design under mixed 
mechanical and thermal loads, for both the failure criteria. 

5 Matrix crack-induced delamination in composite laminates 
under transverse loading 

Fibre-reinforced multidirectional composite laminates are observed in experiments un­
der transverse static or low-velocity impact loading to suflFer considerable delamination 
damage. The intensity of this damage depends on the difference in the ply angles above 
and below the interface. Here a fracture mechanics model is presented for investigating 
the role of matrix cracks in triggering delaminations and the influence of ply angles in 
adjacent plies on delamination cracking. The fracture mechanics analysis shows that 
for a graphite fibre-reinforced composite laminate containing a transverse intraply crack, 
the crack-induced largest interfacial principal tensile stress is the maximum when the 
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difference between the ply angles across the interface is 90°, and it attains a minimum 
when the difference is 40°. When the crack tips touch the interfaces, the minimum mode 
II stress singularity which is weaker than the usual square-root type appears when the 
difference between the ply angles is about 45° for one glass fibre-reinforced laminate 
and three graphite fibre-reinforced laminates. These results are in agreement with the 
experimental observation that the largest delaminations appear at the interface across 
which the difference between the ply angles is the largest, i.e. 90°. The analytical results 
indicate that in the commonly used quasi-isotropic laminate in which the ply angles are 
usually 0°. ±45° and 90°, it would be advantageous to interleave the 0° and 90° plies 
with the ±45° plies in order to increase its damage tolerance to transverse static or 
low-velocity impact loading. 

5.1 Introduction 

It is widely known that under transverse static or low-velocity impact loading, matrix 
cracks in the laminae of a fibre-reinforced multidirectional laminate can cause delami­
nations between the laminae (Chester and Clark (1992); Doxsee et al. (1993); Jih and 
Sun (1993); Liu et al. (1993); Pavier and Clarke (1995); Wang and Karihaloo (1994a)). 
As the low-velocity impact-induced delaminations in laminates are the major source of 
the reduction in their post-impact-compressive strength, the mechanisms of onset of the 
impact-induced delaminations has attracted the attention of many researchers in recent 
years (Chester and Clark (1992); Choi and Chang (1992); Davies et al. (1997); Jih and 
Sun (1993); Pavier and Clarke (1995)). There have been numerous experimental ob­
servations and finite element computations in this area. As the damage in laminates is 
always related to cracks (matrix and/or interfacial cracks), a strict fracture mechanics 
analysis is likely to provide a better physical insight into the damage mechanisms in these 
materials than the finite element analysis. 

For fibre-reinforced multidirectional composite laminates under low-velocity impact, 
Chester and Clark (1992), and Pavier and Clarke (1995) found that the intensity of 
delaminations depended on the difference between the ply angles above and below the 
interface. Figure 7 shows the relative intensity of the observed delaminations in a com­
posite laminate caused by transverse impact. It is seen that the largest delaminations 
appear at the interface across which the difference between the ply angles is the largest, 
i.e. 90°. A damage model which shows the matrix cracks and delaminations in a compos­
ite laminate under transverse impact has been presented by Chester and Clark (1992), 
and is reproduced in Figure 8. 

In this section an idealized fracture mechanics model is presented for investigating 
the role of a transverse shear crack in triggering delaminations and the influence of 
ply angles in adjacent plies on delamination cracking. The model consists of a cracked 
[(±^n2/(90)ni7(^^)712] laminate. The inner layer is assumed to contain an intraply or 
interply crack, whereas the two outer layers are assumed to have no cracks (Wang and 
Karihaloo (1994a); Wang and Karihaloo (1994b)). A solution is obtained when the 
crack is subjected to transverse shear, i.e. mode II in fracture mechanics, for two crack 
configurations. First, when the crack is contained wholly within the inner layer, the 
crack driving-force and the crack-induced interfacial stresses are calculated. The fracture 
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-45° 

90° 

0° 

0° 

90° 
0° 

-45° 

+45° 

low velocity impact 

-4-

Figure 7. A composite laminate subjected to transverse impact and the relative intensity 
of delaminations at the interfaces caused by the impact (after Chester and Clark (1992)) 

matrix crack 

Figure 8. A damaged composite laminate showing matrix cracks and delaminations 
caused by a transverse load or low-velocity impact (after Chester and Clark (1992)) 

mechanics analysis shows that for a graphite fibre-reinforced composite laminate, when 
the transverse crack is an intraply crack, the crack-induced largest interfacial principal 
tensile stress is the maximum when ^ = 0°, that is, the difference between the ply angles 
across the interface is 90°, and it attains a minimum when 0 = 50°. Secondly, when the 
crack tips touch the interfaces, the minimum mode II stress singularity, which is weaker 
than the usual square-root type, appears when 9 is about 45° for one glass fibre-reinforced 
laminate and three graphite fibre-reinforced laminates. These analytical results indicate 
that in the commonly used quasi-isotropic laminate in which the ply angles are usually 
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0°, ±45° and 90°, it would be advantageous to interleave the 0° and 90° plies with the 
±45° plies in order to increase its damage tolerance to transverse static or low-velocity 
impact loading. 

5.2 Fracture mechanics model 

The damage model in Figure 8 clearly shows that the delaminations are related to 
the transverse cracks. Clark and Saunders (1991) also noted that delaminations in fibre-
reinforced composite laminates under impact appear to initiate at the crossover points of 
matrix cracks in adjacent plies. It is noted in Figure 8 that the matrix cracks are mainly 
subjected to a shear stress in the x^-plane. Only when the top layer fails at this stress 
state can the transverse load be transferred to the lower layer and the delaminations 
result. Liu et al. (1993), and Jih and Sun (1993) have classified the matrix cracks caused 
by a transverse load or low-velocity impact into two types: transverse shear cracks and 
bending cracks. The transverse shear cracks occur near the loading site due to the high 
transverse shear stress in this area, whereas the transverse bending cracks are mainly 
caused by the flexing of the laminate. It is concluded by Liu et al. (1993) that the 
delaminations caused by a transverse shear crack are catastrophic in that, once formed, 
they propagate unstably. On the other hand, the delaminations caused by a transverse 
bending crack are stable. Therefore, in order to investigate the role of a transverse 
shear crack in triggering the delaminations, the idealized fracture mechanics model of 
the composite laminate shown in Figure 9 (Wang and Karihaloo (1994a); Wang and 
Karihaloo (1994b)) is used. 

2d 

*• y 

\ t 2a n \ ^ y 

Figure 9. A fracture mechanics model for investigating the role of a transverse matrix 
crack in triggering delaminations when the crack is subjected to an in-plane shear stress, 
mode II in fracture mechanics, (a) laminate configuration; (b) an intraply transverse 
matrix crack; (c) an interply transverse matrix crack 
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In the idealized fracture mechanics model of Figure 9, the two outer layers of thickness 
b are assumed to be each an (±^)n2 angle-ply laminate. They are regarded as transversely 
orthotropic in the xy-plsine whose principal elastic axes are parallel with the x and y axes, 
respectively. The elastic constants are calculated using the classical lamination theory 
(Wang and Karihaloo (1994a)). The inner layer of thickness 2d is taken as a transversely 
isotropic material in the xy-plane. Figure 9(b) shows an intraply transverse matrix crack 
of length 2a which is in the center of the inner layer, whereas Figure 9(c) shows an 
interply matrix crack whose tips touch the interfaces. 

5.3 Solution of intraply crack 

The fracture mechanics problems shown in Figures 9(b) and 9(c) can be solved using 
the Fourier transforms and superposition procedure (Wang and Karihaloo (1994a); Wang 
and Karihaloo (1994b)). We first give the results for the intraply crack problem of Figure 
9(b). For this problem, the most relevant parameters which are related to the damage 
of the laminate are the mode II stress intensity factor at the crack tips and the crack-
induced interfacial stresses. The mode II stress intensity factor at each of the tips of the 
crack is 

Kii = FiiT^ (5.1) 

where Fjj is determined by the configuration of the laminate. For a typical graphite/epoxy 
fibre-reinforced composite material (Ml in Table 4), the variation of Fu is shown in Fig­
ure 10. In the figure, F{a/d) represents the value of Fu when the two outer layers are 
absent. It is seen that these layers considerably reduce the crack-driving force at the tips 
of the crack. From this point of view, the outer layers have the strongest constraining 
effect on the propagation of the crack when ^ is 0°, that is, the laminate is a cross-ply 
one. The constraining effect decreases when 0 increases from 0° to 90°. 

The presence of the transverse matrix crack will inevitably cause stress concentration 
in the areas ahead of the crack tips. As the interfacial area is generally a weak part of the 
laminate, we now consider the crack-induced interfacial stresses. The non-dimensional 
(normalized by r) crack-induced largest interfacial principal tensile stress cr^, which 
occurs immediately ahead of the crack tips {x = did, y = 0)^ is shown in Figure 11. 

The results show that the magnitude of ar is infiuenced by the outer ply angle 0. In 
contrast to the mode II intensity factor, whose magnitude is determined by F/ / , Or has 

Table 4. Material properties 

Property 
Materials 
Ml: T300/934 (Gr/Ep) 
M2: Glass/Ep 
M3: AS4/3501-6 (Gr/Ep) 
M4: AS4/Tactix 556 (Gr/Ep) 

EL 

[GPa] 
138.0 
41,7 

140.1 
151.1 

ET 

[GPa] 
11.7 
13.0 
8.36 
7.09 

GLT 

[GPa] 
4.56 
3.40 
4.31 
3.63 

GTT 

[GPa] 
4.18 
4.57 
3.20 
2.72 

I^LT 

[-] 
0.29 
0.30 
0.253 
0.241 

VTT 

H 
0.40 
0.42 
0.297 
0.304 
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Figure 10. Variation of Fn with the relative crack length § and the outer ply angle 0 
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Figure 11 . Variation of the normalized crack-induced largest interfacial principal tensile 
stress with the relative crack length a/d and the outer ply angle 0 

the maximum value when ^ is 0°. The situation worsens as the tips of the crack approach 
the interfaces, as the influence of 6 becomes more prominent. 

If the design objective is to minimize the crack-driving force at the tips of the crack 
so tha t the laminate is least prone to transverse cracking when subjected to a transverse 
load, ^ = 0° should be chosen. However, if the design objective is to minimize the 
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crack-induced, interfacial stress so that the risk of delamination is minimized or delayed, 
6 should take on a non-zero value. We can deal with these conflicting design objectives 
by trying to find a compromise design using optimization techniques. The compromise 
design can be obtained by solving two optimization problems (Wang and Karihaloo 
(1994a)). 

In the first optimization problem, the crack-driving force, represented by F/ / , is min­
imized, whereas constraints are imposed on (JT, (TT < (1 + ce) and the flexural rigidity of 
the laminate, D > {1 — j)Do- D is the normalized flexural rigidity of the laminate, and 
Do is its value, when 0 = 0°. a and 7 are tolerance factors on the stress gain and stiff­
ness loss, respectively. Upper (^, b) and lower limits (^, b) are also placed on the design 
variables 0 and b/d, respectively {6 = 90°, b = 4.0; ^ = 0°, 6 = 0.0). From the solution 
of this optimization problem it was found that for small a/d, the active constraints were 
the lower limit on 0 and the upper limit on b/d. The minimum of Fu always occurred 
at ^ = 0°. When a/d was large, the interfacial stress constraint became critical to the 
design. For the satisfaction of this constraint the design angle 9 had to take on a non-zero 
value. It was found that for a = 0.5, 7 = 0.15 and b — 4.0, when a/d exceeded 0.73, 
no optimum design was possible because of the violation of the constraint on interfacial 
strength. For this reason an alternative formulation of the optimization problem was 
considered. 

In the second optimization problem, the largest interfacial tensile stress CTT was min­
imized subject to the constraint that $(1) not exceed 1.0 and that the flexural stiffness 
be adequate. The solution of this minimization problem is shown in Figure 12. In this 
case, ar reaches its minimum when 0 = 50° and b/d = b. 

1.0 a/d 

Figure 12. Results of the optimization problem in which the normalized crack-induced 
largest interfacial principal tensile stress cry is minimized 



154 B.L. Karihaloo 

5.4 Solution of interply crack 

In this section, we show the results of the fracture mechanics solution of the crack 
problem shown in Figure 9(c). In this case, the problem leads to the solution of a singular 
integral equation (Wang and Karihaloo (1994b)). When the tips of the crack touch the 
interfaces, the asymptotic value of the stresses near the tips can be expressed as 

hjir.O) (5.2) 

13 K'^ij — 1^2) are the stress components in the x^-plane. Kn is the mode II where GIJ {i,j 
stress intensity factor and 72 is the singularity of the stress field, r is the distance away 
from the tips of the crack, and fij{r, 0) are the angular functions with the origin of polar 
coordinates at the crack tip. 

The variation of the stress singularity 72 for the four composite materials (three 
graphite/epoxy composites and one glass/epoxy composite) listed in Table 4 is shown 
in Figure 13. The strongest and weakest mode II singularities are given in Table 5. It 
is seen from Figure 13 and Table 5 that the mode II stress singularity has its minimum 
value when the outer ply angle 6 is about 45°, that is, the difference between the ply 
angles in the adjacent plies is about 45°. For the three graphite/epoxy composites the 
strongest singularity occurs at ^ = 90°, that is when the composite laminate in Figure 
9(a) degenerates into a transversely isotropic layer. 

72 

0.54 

0.52 h 

90° 0 

Figure 13. Variation of the mode II stress singularity 72 with the outer ply angle 0 
for four composites. Ml, M3 and M4 are graphite/epoxy composites, whereas M2 is 
a glaiss/epoxy composite 
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Table 5. Strongest and weakest mode II stress singularities 

Materials 
^2 max 

t'inax 

0̂ 2 min 

C'min 

Ml 
0.500 
90° 

0.468 
45° 

M2 
0.510 

0° 
0.468 
45° 

M3 
0.500 
90° 

0.470 
41° 

M4 
0.500 
90° 

0.468 
42° 

5.5 Discussion 

For a multidirectional composite laminate under transverse static or low-velocity im­
pact loading, the matrix cracks are obviously caused by a combination of the tensile 
stress perpendicular to the fibre direction and the shear stress, as shown in Figure 8. 
It was shown by Davies and Zhang (1995) that for quasi-isotropic laminates, the trans­
verse shear stress near the impacted site is very high. Following this observation and 
the analyses by Liu et al. (1993), and by Jih and Sun (1993), it is quite reasonable to 
assume that the occurrence of transverse cracks near the loading point is dominated by 
the transverse shear stress. 

From the idealized fracture mechanics model presented above, the following conclu­
sions may be drawn: 

1. When the transverse crack is wholly within the inner layer (intraply transverse 
crack), the crack-induced interfacial principal tensile stress is influenced by the 
difference between the ply angles in the inner and outer layers. When the difference 
between the ply angles is 40°, the stress reaches its minimum for the graphite/epoxy 
composite material considered. 

2. For an interply transverse crack where the crack has run through the thickness of 
the inner layer, the mode II stress singularity reaches its minimum for the three 
graphite/epoxy composites and one glass/epoxy composite when the difference be­
tween the ply angles is about 45°. 

3. It is therefore suggested that in the design of the commonly used quasi-isotropic 
laminates, say, [(ib45°/90°/0°)r]s, it would be advantageous to interleave the 0° and 
90° plies with the ±45° phes in order to increase its damage tolerance to transverse 
static or low-velocity impact loading. The configuration [(-f45°/90°/ — 45°/0°)n]s 
would be more damage tolerant than the configuration mentioned above. 

6 Multiple cracking in angle-ply composite laminates 

The stress field in a cracked [(±^°)n2/(90°)ni]s angle-ply fibre-reinforced composite lam­
inate is solved by using Fourier transforms and dual integral equation formulation. The 
(90°)ni sublaminate is characterized by periodically distributed multiple transverse in-
tralaminar cracks. The stress intensity factor at each crack tip and the crack-induced 
interfacial stresses are calculated. Both are found to be significantly influenced by the 
closeness of the crack tip to the bimaterial interface, the crack spacing and ply angle 0 
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of the constraining sublaminates. The variation of the SIF explains the physical mecha­
nisms behind constrained cracking in composite laminates, while the perturbation of the 
interfacial stress field caused by the transverse cracks reveals that as the cracks approach 
the bimaterial interface, there is a considerable increase in interfacial stresses. The crack 
driving force and the crack-induced interfacial stresses decrease considerably when the 
multiple cracks are densely distributed. From the design point of view, the results also 
suggest that by a proper choice of ply angles in angle-ply laminates the crack growth in 
the individual lamina can be greatly retarded. 

6.1 Introduction 

The strength and stiffness of unidirectional fibre-reinforced composite laminae are 
quite sensitive to the direction of load with respect to the fibre orientation. For this 
reason, they are often used in the form of multi-angle-ply laminates. In these laminates, 
because of the inherent weakness of the laminae in their transverse direction, multiple 
transverse cracks are the most frequently observed form of damage. They can be found 
in the very early loading stage or even before external service loading Bailey and Parvizi 
(1981). The propagation of these cracks results not only in the fracture of the lamina, 
but also in the delamination failure between the sublaminates. Experimental results and 
theoretical calculations Grossman and Wang (1982), Fish and Lee (1990), Kim (1989), 
Wang and Karihaloo (1994a) have revealed that transverse cracks, especially when they 
are close to the interfaces, are directly responsible for the delamination failure. 

Recognizing the transverse cracks as a basic damage feature of fibre-reinforced angle-
ply laminates, many studies have been devoted to estimating the perturbations induced 
in the stress fields and laminate properties by these cracks. Thus Garrett and Bailey 
(1977) used a one-dimensional shear-lag model to predict the stress redistribution due 
to multiple transverse cracks in the 90° ply of cross-ply laminates. Grossman and Wang 
(1982) made detailed experimental observations of the phenomena of multiple transverse 
cracks in 90° and delamination in [=b25°/90°]s angle-ply laminates. The stress redistri­
bution and the stiffness reduction due to the existence of multiple transverse cracks were 
extensively investigated in the works of others (Gudmundson and Zang (1993); Hashin 
(1985); Highsmith and Reifsnider (1982); Lee et al. (1989); Nairn (1989); Talreja (1985); 
Tan and Nuismer (1989)). Most of these works considered pre-existing through-thickness 
transverse cracks in the 90° plies. However, through-thickness cracks do not normally ex­
ist in laminates but originate as microcracks or small flaws in the 90° ply and propagate 
under increasing load until they reach the interfaces, resulting in the complete fracture 
of the 90° ply. Moreover, because of the weak constraint provided by the adjacent plies 
on the crack propagation, the initial microcracks are most likely to occur away from the 
interfaces (Kaw and Besterfield (1992); Wang and Karihaloo (1994a)) so that they are 
wholly within the 90° ply. On the aspect of the intralaminar crack problem. Fan et al. 
(1989) calculated the stress intensity factor at the tip of a single transverse crack in 
the 90° ply of a cross-ply laminate. Bai (1989) studied the tensile stiffness reduction of 
cross-ply laminates due to the existence of these multiple intralaminar cracks in the 90° 
ply. For angle-ply laminates under out-of-plane shear load, Wang and Karihaloo (1994a) 
calculated the stress intensity factor at the tip of a single intralaminar crack in the 90° 
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sublaminate and the crack-induced interfacial stresses. These results were appUed to the 
design of angle-ply laminates that were least prone to delamination failure Wang and 
Karihaloo (1994a). 

In this section, the results of Wang and Karihaloo (1994a) for a single transverse crack 
wholly within the (90°)^, sublaminate are generalised to [(±6>°)n2/(90°)ni]s angle-ply 
laminates with multiple intralaminar cracks in the (90°)ni sublaminate. The general­
isation is accomplished by the superposition procedure of Nied (1987), and Kaw and 
Besterfield (1992) and requires the solution of a boundary-value problem. This solution 
is obtained by an extension of Copson (1961) procedure (Sih and Chen (1981); Wang and 
Karihaloo (1994a)). In this procedure the stress intensity factor is computed from the 
solution of a Fredholm integral equation rather than a singular integral equation. The 
effect of the crack spacing and ply angle 0 on the in situ stress intensity factor is studied. 
The relationship between the crack-induced interfacial stresses and the crack geometry 
is also investigated. 

The results reveal the constraining effect of the outer ±0° sublaminates on the crack 
driving force at the crack tips in the 90° sublaminate. This constraining effect can be 
exploited in designing the ply angle configurations of multi-angle-ply laminates so that 
the crack propagation in the individual unidirectional lamina can be retarded. As in 
a homogeneous medium containing a parallel array of cracks under mode I, the stress 
intensity factor (SIF) at each crack tip decreases with decreasing crack spacing. The 
interactive effect of multiple cracks considerably decreases the SIF when the cracks are 
densely distributed. At the same time the crack-induced interfacial stress is also reduced 
by the existence of the multiple cracks, which therefore serve as stress relaxers. 

6.2 Boundary-Value Problem and Solution 

Model and Basic Solution We consider a symmetric (or antisymmetric) angle-ply 
[(it^°)^2/(90°)ni]s fibre-reinforced laminate under unidirectional in-plane (yz) tension, 
shown in Figure 14. It consists of a central sublaminate in which the fibres are ori­
ented normal to the plane of the paper (90° ply) and two outer sublaminates which are 
composed of an equal number of +0° and 0° angle plies. The (90°)ni sublaminate of 
thickness 2d is transversely isotropic (in xy plane) and is assumed to contain a series of 
parallel, periodically distributed transverse cracks of length 2c. Each outer sublaminate 
of thickness b is treated as being homogeneous orthotropic with average elastic properties 
of [=b °̂]s laminate, consistent with the classical lamination theory. 

It is assumed that the composite laminate is subjected remotely to a uniform tensile 
deformation along y direction. Because of the orthotropy of the outer sublaminates, the 
90° sublaminate also undergoes a uniform tensile deformation along y direction except 
near the free edges. This free-edge effect is not considered here. From a mathematical 
point of view, one needs only to solve the problem of cancellation of a uniform stress 
over the faces of all the cracks. Because of symmetry, it is enough to consider a quarter 
of the laminate, say x >0, y >0. 

The solution to the above problem must satisfy the following boundary, and symmetry 
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Figure 14. The cracked composite laminate and co-ordinate axes 
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(6.2) 

(6.3) 
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and the foUowing continuity and free surface conditions {0 < y < +oo): 

al°{d,y)=aUd,y) 90 
"^ XX 

90 
' xy {d,y) ' xy {d,y) 

v'°id,y) = v\d,y) 

'{d + b,y) = 0 

,(d + b,y) = 0 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

The solution of the above boundary-value problem for multiple cracks is simplified 
by the superposition procedure of Nied (1987), and Kaw and Besterfield (1992) applied 
to the solution of the boundary-value problem for a single crack, given by Wang and 
Karihaloo (1996a). The relevant expressions from that solution, identified by n = 0 will 
be cited here without detail. With the single crack located at ^ = 0, the stress ayy{x,y) 
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and displacement v^^{x,y) are 

<^ly{^^y)\n=0 = ^ ^1 ( - ' ^ j COS [s-j ds-{-

"'"f-">!»=« = I f"''^ (?••)''" (•?)*-' 
/ -E (-]\2aii - (ai2 - aii)sy]e~^^ cos{sr)ds 

where 

g-^ ( - , r ) = A f - j cosh(5r) + ^ ( - j [2 cosh(5r) + sr sinh(sr)] 

62 ( - , r j = - | - A ( ^ - J (ai2 -a i i ) cosh(s r ) + 

H-^ f - J [2aii cosh(sr) — (ai2 - aii)5r sinh(5r)] ̂  

and 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

The functions A{s/c) and B{s/c) are determined from the continuity and free surface 
conditions (6.6)-(6.11). 

The perturbation of the stress and displacement fields caused by the infinite array of 
cracks can be obtained by superposing the contributions of cracks located at y = itnA, 
n = 0,..., +CX3. Using the above superposition procedure on (6.12) and (6.13) and noting 
that v^^{x,y) must be an odd function of y, we get the following two integral equations 

/„ " h s ( ; ) ] £ ( ^ ) c o s W * = - { f , + ̂  ~5 , ( i . r ) 

• 1 + 2 y^ cos f 
L n=l ^ 

f-^^ 1 /s\ 
/ ~El-jcos{sr)ds=^0; =0; r > 1 

where 

Denoting 

and noting that 

^©- 2e-
1 + s-

A 1 

c i - e -

-(•) = (s)*-© 
cos(sx) = ( ^ ) ' J-i{sx) 

0 < r < 1 (6.17) 

(6.18) 

(6.19) 

(6.20) 

(6.21) 
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where J_ i is the Bessel function of the first kind, the dual integral eqns. (6.17)-(6.18) 
can be rewritten as 

s[l+g{s)] F{s)J_ 1 {sr)ds = - — \ ^ a + 
V^ I 2 Jo 

+ OC 

1 + 2 E COS sn 

r-\-oo 

Jo 
F{s)J_i {sr)ds=0; r > 1 

s, r ) • 

ds[; 0 < r < 1 (6.22) 

(6.23) 

The above dual integral equations can be solved by generalising the procedure of 
Copson (1961) (see also Sih and Chen (1981)), as shown in the Appendix. From (6.40) 
of the Appendix, E{s) can be expressed as 

E{s) =-"^a U(l)Msc) - J^ ^MscO-"^ m d^ 
2 - I - - ' - - " - /̂  ^"^--^'de 

where $(^) is the solution of the following Fredholm integral equation 

Jo 

The kernels Ki{C,.r]) and K2(^.T]) in eqn (6.25) are 

(6.24) 

(6.25) 

Kii^-ri)=V^V I +^ se-'i 

A{s) 
h{sE,)Y^K,jE,+ 

i = i 

+ CX3 

1 + 2 E COS sn 

K2{^,v)=ViV 
Jo 1-t 

1 + 5 -
A 

c i - e -
Jo{^s)Jo{r]s)ds 

ds (6.26) 

(6.27) 

where Kij (z = 1. 2; j = 1 , . . . . 4) may be found in Wang and Karihaloo (1996a), and 

d 
Ei= [2- S-] loisT]) + sr]Ii{sr]), 

E2 = { 1 - s- ] Io{sT]) + sr]Ii{srj), 

E3 — CL12E1 + a n 

^ 4 = (2aii - a i 2 ) ^ 2 + a l l 

s-Io{sr]) - sr]Ii{sr]) 
c 

1 + 5 - ) Io{sr]) - srjli{sr]) 



Optimum Composite Laminates Least Prone to Delamination... 161 

/o() and /i() are the modified Bessel functions of the first kind. 
That the integral of Ki {^, rf) is convergent fohows from the integral 

L ' gm^-Ps cos{nas)ds = (—1)̂  
gn p 

dp^ V^^<^^ + /̂ ^ 
(6.28) 

The integral of i^2(^, '̂ ) is evidently convergent. 
The necessary stress and displacement components can be obtained, once E{s) has 

been found from the solution of (6.24)-(6.27). 

Stress intensity factor We now calculate the mode I stress intensity factor at each 
crack tip. The relevant normal stress component around the crack tip is 

afix, 0) = - / [1 + g{s)] E{s) cos{sx)ds+ 

1 + 2 2_. cos(snA) 
2 r~^^ 

+ - / gi[s,x) 

^ Jo 

Substituting eqn (6.24) into eqn (6.29) gives 

(6.29) 

7^ Jo 
Qi{s,x) 

+ c»o 

1 + 2 2^ cos(snA) 
n=l 

ds 

d^ ^ cos{sx)ds-[-

(6.30) 

The mode I stress intensity factor at the crack tip is 

Ki= lim ^s{x-c)all{x,{)) = ^{l)(j^c (6.31) 

If the 0° plies on the two sides are absent then the stress intensity factor is 

Kio = F ( ^ ) a^^ (6.32) 

$(1) alone is affected by stiffness properties of the sublaminates, the density of the 
cracks and the laminate configuration, i.e. the ply-angle 0 and the relative thicknesses 
of the sublaminates. For the graphite/epoxy material properties (Tan and Nuismer 

Properties 
and material 
T300/934 

EL 
(GPa) 

138 

Table 6. Material properties 

ET GLT GTT i^LT 
(GPa) (GPa) (GPa) 
11.7 4.56 4.18 0.29 

fTT 

0.40 

Ply thickness 
(mm) 
0.132 
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90n.O 

Figure 15. Variation of #(1) with c/d and 9 for a single crack 

90° LO 

Figure 16. Variation of #(1) with 9 and X/d for multiple cracks of length c/d = 0.7 

(1989))hsted in Table 6 in the notation of Tsai and Hahn (1980) , the variation of #(1) 
with c/d, X/d, and different 9 are shown in Figures 15 and 16. 

In order to examine the constraining effect of the outer sublaminates, we first show in 
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Figure 15 the variation of $(1) with 0 and c/d, for a single crack (i.e. when X/d -^ oc). 
h/d = 1 is used here and throughout the computations presented below. 

$(1) exhibits two notable features. First, it always increases with increasing 0^ ir­
respective of the crack size. This means that the constraining effect of the outer plies 
decreases with increasing 0. In other words, transverse cracks in the 90° ply of [=b^°/90°]s 
laminates will propagate at smaller stress levels, the larger the ply angle 6. This result 
agrees with the experimental observations which show that in situ tensile strength of 
the 90° layer in [ib0°/90°]s laminates reduces with an increase in 0 (Flaggs and Kural 
(1982)). It is also seen that if the size of the initial cracks or flaws is less than a certain 
critical value, the in situ stress intensity factor increases with an increase in the thickness 
of the 90° sublaminate. Thus, the thicker the 90° layer, the smaller the in situ trans­
verse tensile strength. This deduction also confirms experimental observations made by 
Garrett and Bailey (1977), Parvizi et al. (1978), and Flaggs and Kural (1982). 

Secondly, for 0° < ^ < 90°, ^(1) is always less than F ( ^ ) - the corresponding 
geometry factor at each crack tip in a finite homogeneous isotropic strip, otherwise there 
would be no point in using composite materials. It is also for this reason that the 0° 
sublaminates are regarded as constraints for the central layer. However, it is found that 
this constraining effect has the following important characteristic which can be exploited 
in the design of crack-insensitive laminates. When 0 is not greater than a certain critical 
value 6c^ $(1) decreases with the increasing crack length, so that the crack-driving force 
decreases during the propagation of the crack. This suggests that for arbitrary multi-ply-
angle laminates, the difference between the fibre orientations in the adjacent plies should 
exceed a certain minimum value Om-, if the laminae are going to play the role of mutual 
crack arrestors. For the material properties of Table 6, this critical value Oc is around 70°, 
i.e. the ply angle difference between the central sublaminate and the outer sublaminates 
should exceed Om = 20°. The configurations with smaller ply angle differences should be 
avoided in order not to exaggerate the crack growth in the central sublaminate. 

Figure 16 shows the variation of ^(1) with 0 and c/d. The interaction among the 
multiple cracks helps to reduce the value of the stress intensity factor at each crack tip. 
This effect comes from the stress relaxation caused by the crack arrays on the two sides 
of a particular crack. Theoretically, when \/d —> 0, ^(1) —> 0 (a paradoxical result from 
a practical view point). Experimental results (e.g. Highsmith and Reifsnider (1982)) 
reveal that the number of the multiple cracks (the crack density) in the 90° sublaminate 
increases with increasing tensile load, reaching a saturation value at a certain load level. 
This saturation phenomenon is evidently a result of the interplay between ^(1) and \/d 
just mentioned. 

Interfacial Stresses The non-dimensional crack-induced stresses at the interfacial 
point in front of each crack tip are 
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The tensile stress perpendicular to the interface area is most likely to cause delami-
nation. For the crack configuration and loading, the interfacial stresses in front of each 
crack tip CFXX and ayy are found to be always positive. Therefore, under plane strain 
conditions, the interfacial area is subjected to an unfavourable three-dimensional tensile 
field. The variation of crack-induced interfacial normal stress GXX with X/d and c/d for 
^ = 0° and 0 = 45° is shown in Figures 17(a,b), respectively. The crack-induced inter­
facial Gyy is almost of the same order as GXX- The total interfacial cjyy is obtained by 
adding the applied homogeneous stress cr to the crack-induced value. 

As the crack tip approaches the interface [c/d - ^ 1 ) , the interfacial stresses increase 
rapidly for all 0. For small cracks though, the interfacial stresses are fairly insensitive to 
changes in 6, but as c/d increases so also does its sensitivity to outer ply angle 9. An 
examination of Figures 16 and 17 shows that for all c/d^ both the crack driving force $(1) 
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and the interfacial stresses take on their minimum values when 0 = 0^. It confirms the 
fact that the outer sublaminates of a cross-ply laminate have the strongest constraining 
effect on the inner 90*̂  layer. The crack-induced interfacial stress field due to an isolated 
crack that terminates at the interface {c/d = 1 ) has been given for modes I, II and III 
by Wang and Karihaloo (1994b), Wang and Karihaloo (1996a). 

6.0 0.2 

(a) 

6.0 0-2 

(b) 

Figure 17. Normalised interfacial normal stress: (a) 9 = 0^; {h) 6 = 45° 
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6.3 Discussion 

ni]]s angle-ply laminate, the constraining effect of the outer [(ib^°)722] 
sublaminates on the inner [(90°)^] sublaminate is determined by the stiffness, geometry 
and ply angle 6, with the stiffness of the outer sublaminates playing the most dominant 
role. In order to retard the growth of transverse cracks in the inner sublaminate the 
difference in the fibre orientations in the adjacent laminae must exceed a certain critical 
value. For the same reason, the inner sublaminate should not be very thick. 

Transverse cracks can induce high interfacial stresses, the more so when these cracks 
are close to the interface. This is a major cause of the crack-induced delamination in 
angle-ply laminates. 

Appendix 

Solution of dual integral equations 
Copson (1961) showed that the dual integral equations 

are solved by 

provided that 

/»oo 

/ A{s)J^{rs)ds = 0 r>c (6.38) 

/•OO 

/ s^''A{s)Mrs)ds = / ( r ) r<c (6.39) 

A{s) = 5^-^ / (j){t)J^^c.ist)dt (6.40) 
Jo 

0 < a < 1 (6.41) 

iy>-a (6.42) 

lim [r+^-V(0] =0 (6.43) 

The function (j){t) is given by 

provided that the function r^f{r) and its first derivative are continuous in the interval 
[0, c]. The above solution procedure was also cited by Sih and Chen (1981) in relation to 
crack problems in composite materials. 

Wang and Karihaloo (1994a) showed that the solution (6.40) is also valid when a = 
î  = 1/2 as in the dual integral equations 

/ A{s)J_ids = 0 r>c (6.45) 
Jo ^ 

/ sA{s)J_ids = f{r) r<c (6.46) 
Jo ^ 
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resulting from the boundary-value problem for a single crack. 
The dual integral equations (6.5)-(6.6) are a variation upon (6.38)-(6.39) 

/•OO 

/ A{s)Jj,{rs)ds = 0 r>c (6.47) 

/•OO 

/ s^'^F{s)A{s)J^ds = f{r) r<c (6.48) 

These may however be formally given the form of (6.21)-(6.22) 

/•OO 

/ A{s)J^{rs)ds = 0 r>c (6.49) 
-̂ 0 

/•OO 

/ s^"'A{s)J^ds = f*{r) r<c 
Jo 

where 

(6.50) 

/•OO 

/ * (r) = fir) - / s^-[F{s) - l]A{s)Mrs)ds (6.51) 

The solution (6.44) now becomes 

m + f mm, v)dv = '^/— [ ^ ^ 3 j ^ (6.52) 

(6.53) 

in which the additional kernel K(^, 77) is 

/•OO 

^ ( e , r])=t s[F{s) - l]J^+,{sOJa+A^t)ds 
Jo 
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Multiscale Computational Damage Modelling 
of Laminate Composites 

Ladeveze Pierre^ 

^ LMT Cachan (ENS Cachan/CNRS/Paris 6 Univ.), 61 avenue du President-Wilson, 94235 Cachan, 
France 

Abstract. The main questions discussed here are how to bridge the micro- and 
mesomechanics of laminates and how this affects the understanding and prediction of 
localization and final fracture of engineering composite structures. 

1 Motivations: the Scientific and Industrial Challenges 

The last quarter-century has witnessed considerable research efforts in the mechanics of 
composites in order to understand their behavior and to model or calculate them - the ultimate 
goal being the design of the materials/structures/manufacturing processes. Even in the case of 
stratified composites (w ĥich are the most studied and, therefore, the best understood), the 
prediction of damage evolution up to and including final fracture remains a major challenge in the 
modem mechanics of composite materials and structures. Today, the use of stratified composites 
in the aerospace industry always involves characterization procedures consisting of huge numbers 
of tests, which shows the low level of confidence in models. A significant improvement in this 
situation, /. e. a drastic reduction in the number of industrial tests, could be achieved if one could 
create a real synergy among the approaches on different scales which, today, are followed quite 
independently of one another in the case of stratified composites. One could jokingly say that 
there is, on the one hand, the micromechanics of laminates where one counts cracks and, on the 
other, the meso- or macromechanics of laminates where one measures stiffnesses - with only few 
links between the two. How to bridge the micro- and mesomechanics aspects and how this affects 
the understanding and prediction of localization and final fracture are the two main questions 
discussed here. 

Up to now, there have been numerous theoretical and experimental works on the 
micromechanics of laminates (see the two review papers Nairn and Hu, 1994, Berthelot, 2003, 
our references herein, and in particular the book of Herakovich, 1998); the micromechanics 
approach provides a relatively good understanding of damage mechanisms, such as matrix 
microcracking. However, these micromechanics models are lacking in some respects: in 
particular, they are far fi-om being complete for the prediction of localization and final fi-acture. 

Alternative, pragmatic computational approaches have also been developed. In our lab, we 
focus on what we call a "damage mesomodel for laminates" (see Ladeveze, 1986, Ladeveze et 
al, 2000, and our references herein). In this approach, one assumes that the behavior of any 
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laminated composite for any loading and any stacking sequence can be modeled using two 
elementary constituents which are continuous media: the ply and the interface. Another important 
point is that the state of damage is assumed to remain constant throughout the thickness of the 
single layer (of course, it can vary from one layer of the laminate to the next). 

The central question we aim to discuss here is: how can one bridge the micro- and 
mesomechanics of damage? The belief that such a complete bridge could exist is not shared by all 
the people working in micromechanics. A first attempt at building such a bridge was made in 
Ladeveze and Lubineau (2001, 2002) for plane macrostresses. The mesomodel was found to be 
fully compatible with the microdamage mechanisms. The micro-meso relations introduce 
quantities or relations which we call "approximately ply-material", which are intrinsically related 
to the cracked ply's characteristics and, therefore, independent of the characteristics of the other 
plies. Recently, additional work has extended this approach to out-of-plane stresses (see 
Ladeveze et al, 2004). This more complex situation involves non-local mesomodels, as there are 
interactions between the interface's damage and the microcracking mechanisms of the adjacent 
plies. The method of investigation is now entering what is called a "virtual testing" stage, in 
which numerous numerical experiments using the micromodel and involving various possible 
stacking sequences, thicknesses... are performed. One can show that the micromechanisms 
within the plies and interfaces can be homogenized; relations between the micro- and 
mesoquantities can be obtained through the resolution of several basic problems. 

The second question being discussed here is the impact of such a bridge on the micro- and 
mesomodels themselves, the objective being to calculate the intensities of the damage 
mechanisms at any point of a laminated structure subjected to complex loading and at any time 
until final fracture resulting from strain and damage localization. These improved models require 
a multiscale approach. A first example is an improved damage mesomodel for laminates allowing 
the calculation of the intensities of the damage micromechanisms. A second example is a 
"computational damage micromodel" which is rather simple, yet semi-discrete and probabilistic. 
It is detailed here for the first time. Unfortunately, this model leads to prohibitive calculation 
costs if one uses current industrial codes. The use of a multiscale computational strategy is 
absolutely essential. Several examples are worked out in order to show the capabilities and the 
limitations of the different models. 
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2 The Micromechanics of Laminates - Damage Modelling 

2.1 The Working Scale 

Micromechanics 
«fiber-matrix material » 

+ 
cracte 

Figure 1. The studied structure at the microscale. 

Up to now, there have been numerous theoretical and experimental works on the micromechanics 
of laminates (see the two review papers Nairn and Hu, 1994, Berthelot, 2003, our references 
herein, and in particular the book of Herakovich, 1998). The working scale in micromechanics is 
between the dimension of the structure and the diameter of a fiber. The structure at state is in fact 
described as an assembly of cracked interfaces and cracked layers made with a "fiber-matrix" 
material prescribed homogeneous or quasi-homogeneous. 

2.2 Phenomenology at the Microscale 
Figures 2, 3, 4 show the different scenarios on the microscale. Scenarios 3 and 4 are generally 
missing in micromechanics. 



174 P. Ladeveze 

Experimental observations 

11 ••iMi&^ III 
(radiography of microcracked crossipiy lamNiate) 

(transverse microcrack - edge observation) 

associated description 

microcracking rate 

Figure 2. Scenario 1: transverse microcracking. 

Experimental observations 

tip of transverse crack 
with localized delamination 

associated description 

T = r / H 

delamination rate 

"CM 

T + = r ^ / H 

T- = r - / H 

Figure 3. Scenario 2: local delamination. 
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Scenario 3 
Diffuse damage (matrix-fiber debonding) 

I jflii^ 
Scenario 4 

Diffuse delaminatjon 

Figure 4. Scenarios 3 and 4: diffuse damage inside the plies and interfaces. 

In most practical cases, the chain of scenarios follows the figure 5. Scenarios 3 and 4 start, 
leading to a rather diffuse damage inside the plies and interfaces. Through a percolation 
phenomenon, transverse microcracks appear and then Scenario 1 is active. The competition 
between transverse microcracking and local delamination ends with the saturation of Scenario 1 
and is relayed by the catastrophic development of Scenario 2. Finally, the final fracture arrives 
with fiber breaking and delamination. 

scemrio 1 scenario 2 

Percolation PHHRPHBHSatura t ion •BHBPIJJJJHl 
Final 

fracture 

Figure 5. The chain of scenarios. 

2.3 Several Keypoints in Micromechanics 
Hereafter are displayed several keypoints which characterize in our opinion the behavior of a 
laminate on the microscale. 

Keypoint 1: need of Scenarios 3 and 4. The Scenarios 3 and 4 which are usually missing in 
micromechanics can be witnessed when performing the tension test [45°, - 45°]2«; a clear 
definitive experimental proof has been done recently in Lagattu and Lafarie-Frenot, 2000: 
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Figure 6. Shear modulus and microcracking density versus the longitudinal stress 
for the tension test [45°, - 45°]2s' 

A major consequence is that there are at least two main damage mechanisms: Scenarios 1 
and 3. Therefore, mesomodels with one mesodamage variable per layer are only valid for 
particular loading; that is the case for the most alternative approaches to our mesomodel 
(see Paragraph 3). 

Remarks: 

• These scenarios are also responsible of the (visco)plastic behavior which can be observed at 
the mesoscale. 

• The better understanding at the scale of the fiber of the surprising non-percolation 
phenomenon which occurs with shear is an open question. 

Keypoint 2: Initiation/propagation modelling - thickness effect. Most of the basic papers are 
not recent: Garrett and Bailey (1977), Parvizi et al. (1978), Wang and Grossman (1980), Boniface 
et al. (1997), Yang et al (2003). For stacking sequences built with 0° and 90° plies, two main 
observations have been done for tension tests. 

First, the behavior of thick 90° plies is different from the one of thin 90° phes. For thick plies, 
the transverse microcracks always cross the width of the tension test specimen. For thin plies, 
they can stop near the edges. 

Another observation is related to thickness effect (see Figures 7 and 8) which is quite 
important. Let us note that the longitudinal stiffnesses of the different stacking sequences are very 
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similar: the contribution of the 90° pHes is negligible. The transition thickness h is about twice the 
thickness of the elementary ply. 

200 400 600 800 tOOO 

Average stress G^ {^^a>) 

Figure 7. Microcracking density versus the longitudinal stress for different stacking sequences. 

longitudinal stress 

k 

thickness 

: transition thickness 

Figure 8. Failure stress versus the number of 90° plies. 

The theoretical explanation is both quite old and well-known. Let us consider a flaw /. e. a 
penny-shape crack (see Figure 9) which could propagate in the longitudinal direction or in the 
transverse one (thickness direction). It has been proved that the transverse value of the energy 
release rate is much larger than the longitudinal one; consequently, the flaw primarily propagates 
itself in the transverse direction. 

Before introducing a cracking process modelling, let us build the damage force. Let 
Gtunneling be the tunneling energy release rate used classically in micromechanics. A significant 
property is shown in Figure 9; its value is practically independent of the ratio 

0 = y for 0 ^ 0.8 .Then, the transverse damage force is: 
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^trans ~ ^^^^[_^tunneling ^^tunneling .] 
(1) 

and the longitudinal one: Gtunneling-
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Figure 9. Energy release rate versus the ratio 0 = y^r • 

The cracking process modelhng is then without separating the different modes for staking 
sequences made with 0° and 90° phes: 

• initiation 

^trans > Gr (2) 

• propagation of existing cracks 

^tunneling ^ ^c (3) 

Apphed to thick and thin 90° phes, one gets for tension tests: 

• Thick phes: h ^ h 

If the initiation criterion is active, the propagation one is also active. A rapid crack 
propagation in the width direction follows. 



Multiscale Computational Damage Modelling of Laminate Composites 179 

• Thin plies: h <. h 

There is only one criterion for both initiation and propagation. An overstress occurs near the 
edges that explains why the cracks start at the edges. After, they cand stop if the energy release 
rate diminishes. Such an edge effect has been stressed recently in Pagano et al. (1998). We add 
that it is responsible for the odd behavior of certain stacking sequences. 

Keypoint 3: Microcracking as a stochastic phenomenon. Several probabilistic models have 
already been proposed: Wang et al (1984), Fukunaga et al (1984), Laws and Dvorak (1988), 
Masters and Reifsnider (1982), Berthelot and Le Corre (2000). Heuristic coefficients have been 
introduced to characterize the non-perfect periodicity for large cracking density (see Laws and 
Dvorak, 1988, Nairn et al, 1993, and Ladeveze and Lubineau, 2002). This is necessary in order 
to get a reasonable agreement with experiment (see Yahvac et al, 1991). 

Here, we defend the idea that the process is stochastic but quasi-independent of the 
probabilistic law. Let us consider the G-curve defined Figure 10; a new crack should appear at the 
maximum. Being piecewise flat, the cracking process is necessarily stochastic at the beginning. 
Our proposed model is very simple. It is prescribed a uniform probability density to get a new 
crack over the domain: 

Ml m a x G ( M ; ) - G ( M ) < Z l 
\ M' 

(4) 

with max G(M') = Gr . 
ML 

G denotes the tunneling energy release rate and A a small parameter. GQ is the critical value 
associated to the fiber-matrix material. 

m 
Can) 

Figure 10. G-curve as the function of the longitudinal abscissa - domain associated to A. 
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Figure 11 shows several samples for different values of A; the "mean" curve which is used for 
identification appears to be insensitive to A and to the samples. It is a quasi-deterministic curve 
(practically independent of A) which is quite different from the curve related to a perfect periodic 
pattern. 
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Figure 11. Max., mean and min. values for the micro cracking rate versus the longitudinal strain. 

Such a model has a reasonable agreement with experiments (see Figure 12); the test results 
are given in Nairn and Hu (1994) for AS4/Hercules 3501-6. 
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3 A First Damage Mesomodel: a Pragmatic Approach 

3.1 Basic Aspects 
An initial step is to define what we call a laminate mesomodel (see Ladeveze, 1986, 1989). At the 
mesoscale, characterized by the thickness of the ply, the laminate structure is described as a 
stacking sequence of homogeneous layers through the thickness and of interlaminar interfaces 
(see Figure 13). The main damage mechanisms are described as: fiber breaking, matrix 
microcracking and debonding of adjacent layers. The single-layer model includes both damage 
and inelasticity. The interlaminar interface is defined as a two-dimensional mechanical model 
which ensures traction and displacement transfer from one ply to the next. Its mechanical 
behavior depends on the angle between the fibers of two adjacent layers. ̂ /?norz, 0°/0° interfaces 
are not introduced. Herakovich (1998), in his book, calls this theory "mesoscale composite 
damage theory". 

characteristic length: thicl<ness of the single layer 

smgle layer R,, , , , , , , , , 
• • Transverse microcracking 

Rber-matrix debonding 

interface 

Interface 

Ctel ami nation 
Assures continuity of displacement and 
nomnal stress vector between plies 

Figure 13. Laminate modelling. 

The damage mechanisms are taken into account by means of internal damage variables. A 
mesomodel is then defined by adding another property; a uniform damage state is prescribed 
throughout the thickness of the elementary ply. This point plays a major role when trying to 
simulate a crack with a damage model. As a complement, delayed damage models are introduced. 

One limitation of the proposed mesomodel is that material fracture is described by means of 
only two types of macrocracks: 

• delamination cracks within the interfaces, 
• cracks orthogonal to the laminate's mid-plane, each cracked layer being completely cracked 

through its thickness. 

The layers - in our sense - are assumed to be not too thick. Another limitation is that very 
severe dynamic loadings cannot be studied; the dynamic wavelength must be larger than the 
thickness of the plies. 

Two models have to be identified: the single-layer model (see Ladeveze and Le Dantec, 1992) 
and the interface model (see Allix and Ladeveze, 1992, and AUix et al, 1999). The appropriate 
tests used consist of: tension, bending and delamination. Each composite specimen, which 
contains several layers and interfaces, is analyzed in order to derive the material quantities 
intrinsic to the single-layer or to the interlaminar interface. 
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Various comparisons with experimental results have been performed to show the possibilities 
and hmits of our proposed computational damage mechanics approach for laminates 
(see Ladeveze, 1995, Daudeville and Ladeveze, 1993, and Allix, 1992). 

The Ply Mesomodel 
Damage kinematics. The composite materials under investigation in this study have only one 
reinforced direction. In the following, subscripts 1, 2 and 3 designate the fiber direction, the 
transverse direction inside the layer and the normal direction respectively. The energy of the 
damaged material defines the damage kinematics. Using common notations, this energy is: 

Eo -
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0 is a material ftinction which takes into account the nonlinear response in compression 
(see Allix et al, 1994). df, d and d' are three scalar internal variables which remain constant 
through the thickness of each single-layer and serve to describe the damage mechanisms inside. 
The unilateral aspect of microcracking is taken into account by splitting the energy into a 
"tension" energy and a "compression" energy; (•) denotes the positive part. 

The thermodynamic forces associated with the mechanical dissipation are: 
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u •)̂  denotes the mean value through the thickness. 

Damage evolution law. From experimental results, it follows that the governing forces of 
damage evolution are: 

Y = \Yd+bYd'^Y' = \Yd'+b'Yd^YF 
where b aadb' are material constants which balance the influence of the transverse energy and 
the shear energy. For small damage rates and quasi-static loading, we get; 

d' = f,\r"yox d'^\ 

d, = f,{Y;'') for d,^l 

(7) 

where: TL = sup rU^. 

fd, fd' and /F are material "functions"; progressive damage evolution (generally defined 
by a linear function) and brittle damage evolution (defined by a threshold) are both present. The 
thresholds involve the thickness because they are related to Scenarios 1 and 2. / F is generally 
associated with a brittle damage mechanism. The model stays valid for a rather large temperature 
range (see Allix et ai, 1996). At room temperature, a typical material function fd is given in 
figure 14. For large damage rates, we have introduced a damage model with delay effects: 

j = l[l_exp(-a(/,(r'/^)-c/)) 
c 

rf' = -i[l-exp(--a(/,(rV^)^J')) 

dp = — 

if d <l,d = 1 otherwise 

if d'<hd' = 1 otherwise (8) 

if dp<l,dp = 1 otherwise 

The same material constants, Xc and a, are taken for the three damage evolution laws. For 

this damage model with delay effects, the variations of the forces 7, Y' and YF do not lead to 

instantaneous variations of the damage variables d, d' and dp • There is a certain delay, defined 
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by the characteristic time r^ . Moreover, a maximum damage rate, which is I/T^ , does exist. A 

first identification consists of taking half the Rayleigh wave speed combined with the critical 
value of the energy release rate. Let us also point out here that a clear distinction can be made 
between this damage model with delay effects and viscoelastic or viscoplastic models: the 
characteristic time introduced in the damage model with delay effects is several orders of 
magnitude less than in the viscous case. This characteristic time is, in fact, related to the fracture 
process. 
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Q experimental data 
• • « identification 

IM7/977-2 
Identified from [45,-45]2s 

0.5 1 1.5 2 

Shear damage force rac(Y) (rac(Mpa)) 

Figure 14. Shear damage material function Y i -^ fd I ^J ^ 1 of the single-layer for the M55J/M18 

material at room temperature. 
Remarks; 

• Two damage variables are used to describe the damage associated with matrix microcracking 
and fiber-matrix debonding. They seem to account for all the proposed damage kinematics, 
including all of them starting from an analysis of the microcracks. Many works have 
established, experimentally or theoritically, a relation between the microcrack density and 
our damage variable d, which can be very useful for the identification of a damage fatigue 
model. 

• What we call the single-layer is the assemblage of adjacent usual elementary plies of the 
same direction. The damage forces, being mean values through the thickness of the single-
layer, can be interpreted as energy release rates divided by the thickness. It follows that the 
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damage evolution law of the progressive part is thickness-independent. At the contrary, the 
thresholds are thickness-dependent. 

• The damage variables are active for [0°, 90°]„ laminates even if the apparent modulus does 
not change. The model predicts this hidden damage (see Ladeveze, 1992). 

• For fatigue loadings, we introduce: 

d = d(: + dp 
f f ( 9 ) 

d' ^ d'^ + df 

where ds Sind d's are the quasi-static part of the damage defined by Equations 4 and 5. 

df and dp denote the fatigue part characterized by the following fatigue evolution laws: 

'^^ =a(d,[Y,^bY,]) 
^ ^ (10) 

'""^ = a'(d',[Y,,]) */r 

dN 

where a, a are two material functions. [ ] denotes the maximum value over the cycle. 

Coupling between damage and (visco)plasticity. The microcracks, /. e. the damage, lead to 
sliding with friction, and thus to inelastic strains. The effective stress and inelastic strain are 
defined by: 

/ \ (<^22) / \ ( ^ 3 3 ) 
^11 - ^11 ^22 - - ( - ^ 2 2 ) + 7 ^ 3 ^ ^33 - ^ ( - ^ 3 3 ) + 7 ^ 7 ^ 

<^12 ^ _ ^ 2 3 ^ _ Q 3̂1 a = i± rr = — rr = 
'' ~ [l-d] '' ~ [l-d] '' ~ (1-J) 

^Up = £up £22p = {£22p){^-d')-(-S22p) ŝSp ^ (^33p ) ( l " ^ ' ) " ( " ^33p) 

^I2p = ^npi^-d) £23p = ^23^(1-^ ) ^31p = £31^(1-^) 

(11) 

Sijp for ij e \, 2, 3} denotes the usual inelastic strain. The idea is to apply classical plasticity 

or viscoplasticity models to effective quantities. A very simple plasticity model is defined by the 
following elastic domain: 

/(<^,i?) = [af̂  + ol, + o], + a'[ol^ + o],)^'^ -R-R^ (12) 
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Hardening is assumed to be isotropic, which means that the threshold R is a function of the 
cumulated strainp; p -^ R(p) is a material function,/? being defined by: 

= Jdt 2 2 2 
^I2p '^ ^23p "^ ^3\p "•• ?( 

. 1 / 2 

2 , p 2 ' 
^22p "•" ^33;?^ (13) 

a is a material coupling constant. The yield conditions are: 

• p / = 0 , / 7 s O , / s O 

(14) 

An example of such a hardening curve is given for the T300-914 material in figure 15. 

-20 

•00 

i 
s » 

1-& 
40 

20 

0" 
c 05 

•^jaswwu'FffSP'mw mmi6 HJO- • a »/»«!> 

• ^ 

» 
nO|M>^)> 20 

8e«i{MP«)<a-0' 

OammiB 037 

• 5 2 2 5 3 3 5 4 
d»kirmj(k>n piniqu* •t»c4M» cumuh* f ^ 

- ' ' ' ' ' ^ • ¥ 

45 

j 

] 
J 

"j 

i 

5 

x'O"* 

100 

C/) 

CO 
CD 

C/) 

20 

\^*^^ 

.iff I t / 1 /^ 1 

it! t i l 1 f t 

/ / / / / / / / / 

shear strain 

Figure 15. Hardening curve at room temperature for IM6/914. 

Identification of the material parameters. The single-layer model and the interface model have 
been identified for various materials. Aside from the elastic constants, the model depends on: 

• three coupling coefficients b, b\ a^ , 

• the damage "functions" fd, fd', fp describing progressive and brittle evolutions, 

• the hardening function p -^ R(p) , 
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• the function 0 defined practically by one parameter characterizing the compressive stiffness 
loss in the fiber direction (see Allix et al., 1994). 

The identification is developed here for low-stiffness matrixes. It is based on three canonic 
tests [0°, 90°]25, [+ 45°, - 45°]2s, [+ 67.5°, - 67.5°]2^. The measured experimental quantities are: 

• the tension F which is related to the macrostress a^ by a^ = ^yC where 5 is a specimen's 

section, 
• the laminate's axial strain ^^ ^^^ the transverse one e^. 

Consequently, the inelastic strains and moduli variations are determined. 

• Tensile test on [0°, 90°]2s laminate 
This test defines fp , i e., in many cases, the fiber's limit tensile strain. 

• Tensile test on [+ 45°, - 45°]25 laminate 
The following relations allow to reconstitute the ply's shear behavior: 

CTi2 

e,2 

<^ii 

= 

= 

= 

2 

2 
* 

4) * * 
(15) 

For many materials, one has: 

^ 2 ^(^11,^22) 

c^l ^ 022 

Consequently, the transverse stress and strain do not affect the behavior. The damage function 
fd is defined using: 

= ; 0 * 
2^12 ^12e 

( 1 - ^ ) = 
al (16) 
0 * 

2G 1̂2 ^12^ 
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0 * 
R + RQ = G^2 ^\2e 

^\2e (17) 

• Tensile test on [+ 67.5°, - 67.5^J^ laminate 
b' can be taken to zero for many materials. Then, the stresses and strains in the upper layer 

are: 

a,J = ^a* o^2 = ^'a* o^^ = ^"^L ^ = 67.5° 

1̂1 ** 0 2̂2 = cos^ 0 e* + sin^ 0 £* £j2 = cos0sin0f£*-^* j 

where s, s\ s" are coefficients depending on 6 and the single-layer's characteristics. This test 

allows one to identify the two coupling coefficients b and a^ and the material function fd'. A 

complete numerical simulation of the model is needed here. Let us note that a more robust test 
should be welcome. 

3.2 The Interface Mesomodel 
Damage kinematics of the interface. The interlaminar connection is thus modeled as a two-
dimensional entity which ensures stress and displacement transfers from one ply to another. The 
interlaminar connection can be classically interpreted as a ply of matrix whose thickness (denoted 
by e) is small compared to the in-plane dimension. 

1 

(1.2.3)Orthotropic direction of the interface 

Figure 16. "Orthotropic" directions of the interface. 

^7]= U+ -U~ = L^lJVi +y72_p2 +L^3_r3 denotes the difference in displacements 
between the upper and lower surfaces of the "3D interface". Thus, at the first order, the strain 
energy is: 

2 •̂  ^ e 
A 
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where Fis the area of the mid-plane interface, and H is a (3,3) symmetrical matrix. For the 2D 
interface model, \U] is the displacement discontinuity between two adjacent layers. We assume 
that the bisectors (Ni and N2) of the angle formed by the fiber directions of the adjacent plies 

are orthotropic directions. The interface material model is built following the same approach used 
for deriving the single-layer model. The effect of the deterioration of the interlaminar connection 
is taken into account by means of internal damage variables. The behaviors in "tension" and in 
"compression" are distinguished by splitting the strain energy into a "tension energy" and a 
"compression energy". 

More precisely, we use the following expression for the energy per unit area: 

- ^ / 

( " " ^ 3 3 ) ' ( ^ 3 3 ) ' Or a 23 

k',{l-d,) k^il-d,) k'^{l-d^) 
dT (19) 

Three intemal damage indicators, associated with the three Fracture Mechanics modes, are 
thereby introduced. 

Damage evolution laws of the interface. These evolution laws must satisfy the Clausius-
Duheim inequality. Classically, the damage forces, associated with the dissipated energy o), are 
introduced as follows: 

Yd, = 
1 ((^33)' 

-,yd, = 
a 31 

'^Yd, = 
o 32 

2 ^ 0 ( 1 - ^ 3 ) 2 ' ^^ 2 , 0 ( i _ ^ ^ ) 2 ' -2 2 , 0 ( i _ ^ ^ ) 2 
(20) 

with CO = Y,d^ + Y,d, + Y,^d^ ( a ; > 0 ) . 

The damage evolution laws used in this study are based on the assumption that the evolutions 
of the various damage indicators are strongly coupled and driven by a unique equivalent damage 
force. The following model considers that the damage evolution is governed by means of the 
following equivalent damage force: 

Y{t) = Y:Ay^Y,)\(y,Y,)' 
a \ l / « 

(21) 

ht ^ sup K 

where 71,72 and a are material parameters. In terms of delamination modes, the first term is 

associated with the first opening mode, and the two others are associated with the second and 
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third modes. A damage evolution law is then defined by the choice of a material function W, such 
that: 

W{Y) = 
n il-Yo), 

n + l Y^^YQ 
(22) 

where a critical value Yc and a threshold value ^o are introduced. A high value of w corresponds 
to a brittle interface. For small damage rates, one obtains: 
d^ = d\ = d2 ^ W{Y) a d <\\ d^) = d\ = d2 = 1 otherwise. 

In the general case, a damage model with delay effects is used: 

5 = d, = d, ^ d^ = l-^l-exp(-a'{W(Y)-6))] if 6<1 

6 = d^ = d^ = d2 = I otherwise 

To summarize, the damage evolution law is defined, except for r'c and a', by means of six 

intrinsic material parameters Yc,Yo,y\,y2,cc and n . The threshold value YQ is introduced here 

in order to expand the possibility of describing both the initiation of a delamination crack and its 
propagation. As regards the initiation of a delamination crack, the significant parameters are 
Fo, n and a . It will be shown hereafter that Yc,y\,y2 and a are related to the critical damage 
forces. 

Identification of the interface model̂ s material constants. A simple way to identify the various 
material constants is by comparing the mechanical dissipation yielded by our damage mechanics 
approach and classical linear fracture mechanics; classical delamination tests are used 
(see Daudeville and Ladeveze, 1993, and Allix et aL, 1998). One main result reported in 
Ladeveze et al. (1998) is that the interface parameters seem to be independent of 6 for all ± d 
interfaces with ^ ^̂  0° (see Table 1). Let us also note that the (0°/0°) interface appears to be 
something artificial. However, such an "artificial" interface can be introduced, for example, to 
describe a crack inside a thick layer. It should also be pointed out that the same model is 
applicable for both delamination propagation and delamination initiation. 

070^ : Y^= 0, 1 N/mm,7^= 73= 0,35, a = 2 
± e : Y^ = 0, 18 N/mm, ŷ  = 73= 0, 35 , a = 1 

Table 1. Interface model parameters. 
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Remarks; 

• y\ andy2 characterize the ratio between interface toughness in mode II and mode I, and 
mode III and mode I, respectively. Until now, we have taken practically: yi = 72 • The a 
value can be different from 2; its value is identified from the measured interface toughness 
for combined delamination modes. Interface material parameters have been characterized in 
Daudeville and Ladeveze (1993) and Allix et ah (1998). x'c and a could be identified using 
pressure-shear impact test (see Espinoza, 1995); however, they do not play an important role 
for fracture prediction in most engineering quasi-static situations. 

• The different damage indicators must be equal for the completely destroyed zones; their 
value is one. It follows that to define same damage rate for modes I, II and III is very 
convenient for calculation; it means that the interface damage state is characterized by a 
scalar state internal variable. However, a model with different damage rate for modes I, II 
and III is given in Allix and Ladeveze (1992) and Ladeveze (1992, 1995). 

3.3 Objective Prediction of Final Fracture 
An important issue is the objective prediction of final fracture which is rather well-understood 
nowadays. It is well known that classical damage models are non-consistent. A visible lack is the 
abnormal sensitivity to the mesh of the finite element solution. Several remedies have been 
proposed, in particular: 

• non local damage model (see Bazant and Pijaudier-Cabot, 1988) 
• second-gradient regularization (see Belytschko and Lasry, 1988, and Slyuis and De Borst, 

1992) 
• rate dependent damage model (see Needleman, 1988, and Loret and Prevost, 1990). 

Here, we have followed a specific approach to laminate composites introduced in 
Ladeveze (1989, 1992). It is prescribed that the damage state is piecewise constant in the 
thickness of the laminate. Moreover, as a complement, we use damage models with delay effect 
combined with a dynamic analysis. Further developments can be found in Ladeveze (1992, 1995) 
and Ladeveze et al (2000). 

3.4 An Illustration 
Several calculations done with the mesomodel are presented in the special issue (see Allix and 
Johnson, 2004). Here, it is shown that the damage mesomodel predicts the response of a 
composite structure in dynamics until its ultimate fracture. This response is computed using the 
explicit dynamic code LS-DYNA3D. Figure 17 defines the studied structure and its loading. It is 
a [+ 22.5°, - 22.5°]^ holed laminated plate; the material is a SiC/MAS-L composite with silicon 
carbide fibers and a glass matrix made by EADS. The fiber stiffness (200 GPa) is higher than the 
matrix stiffness (75 GPa), and cracks first appear in the matrix. Let us note that reasonable values 
have been chosen for the material constants of the interlaminar interface model. 
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In particular, the values of the critical times TQ andr^ and the constants a and a are: 

T̂  = T; = 210- 's 

a = a = \ 
(24) 

SYMMETRY PLANE 

Figure 17. Holed laminate submitted to dynamic tension loading. 

Dejamjnation i t the interface 
[+22.5.-22.5] 

T=100|js 

Figure 18. Interface damage map at several times. 
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Several computations have been performed especially for the stacking sequence [wO ]̂̂ . These 
reasonable constant values correspond to a fracture zone size whose order of magnitude 
corresponds to the ply's thickness. Figure 18 reveals the degradation of the [± 22.5°] interface; the 
dark area represents the completely destroyed zone and then the delamination crack. Figures 19 
and 20 present the microcracking intensity maps and the fiber-direction damage maps at different 
times. It is clear that a transverse crack orthogonal to the fibers appears and then grows inside 
each ply. One can consider that the final fracture occurs around t = 100 is ; the size of the 
transverse cracks is about 2 mm. Last, the global load versus the prescribed displacement is 
plotted in Figure 21. No particular numerical difficulty with respect to time discretization and 
mesh sensitivity has appeared. 

Ply -22.5*̂  Ply +22.5" 

T=50|js 

0,000 

0333 
0,500 
0,667 
0333 
1,000 

Matrix damage 

Figure 19. Shear damage maps for the plies at several times. 

Ply -22.5" Ply +22.5" 

T=50|js 

T=100MS 

Fiber damage 

Figure 20. Longitudinal damage maps for the plies at several times. 



194 P. Ladeveze 

Global r^ponse 

8 9 10 

Load (F/S): N/mm2 

U/L10-3 

Figure 21. Global load versus the prescribed displacement. 
3.5 Concluding Remarks 

The laminate mesomodel proposed herein is able to compute the intensities of the damage 
mechanisms inside both the plies and the interfaces at any time, until final fracture; the main 
limitation for severe dynamic loadings is that the dynamic wavelength has to be larger than the 
thickness of the plies. Simulations have shown the macrocracks' initiation and propagation. 
Comparisons with experimental results have proved to be satisfactory; however, a better 
agreement could be welcome for delamination prediction. 

4 A Bridge Between the Micro- and Mesomechanics of Laminates 

A rather complete bridge has been built in Ladeveze and Lubineau (2001, 2002) and Ladeveze et 
al. (2004). 
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4.1 The Method to Bridge 

«micro» 

m—y large wavelenght phenomena 

« micro » = function (« meso ») 

Figure 22. The two-scale computational scheme. 

Figure 22 describes the used two-scale computational scheme. At the left, the real structure 
submitted to a given loading is defined at the "microscale". It is made with the fiber-matrix 
material and there are crack, delamination and transverse ones. The problem to solve is clearly a 
two-scale one, and then the solution consists in two parts: the large wavelength part for which the 
characteristic length is the structure dimension and the small wavelength part which has a 
characteristic length equal to the ply thickness. 

A classical scheme to solve this two-scale problem is to separate the calculation of the two 
parts. In a first step, one determines the large wavelength part solving the so-called homogenized 
problem where the real structure is replaced by the homogenized structure. Its solution defines the 
mesoquantities. In a second step, the microquantities that make the small wavelength part of the 
solution are determined in term of the mesoquantities. 

This approach is applied to two basic problems which represent all engineering situations: the 
ply basic problem and the interface basic problem. They are defined Figures 23 and 24. Periodic 
conditions and elastic behavior are prescribed. The upper and lower parts of the studied cell are 
homogenized. 
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«micro» 

Same « ply » energy 

Figure 23. The ply basic problem. 

«micro» «meso» 

Residual loading: 
i^U-i penodic aH'^ pgnodt 
crlLi periodK (rH'i petiodic 

Same « interface » energy 

Figure 24. The interface basic problem. 

As classically, the solution of the homogenized problem is built first (see Figure 25). For the 
real structure, this solution needs to be corrected; the residuals associated with discontinuities 
have to be equilibrated. 

solution on the homogenized structure 
n—y (without cracks) with given boundaries 

conditions: {(T.€) 

^ 
residuals related to discontinuities 

corrections :{&,£) 

^ 

^m,cro = 0^ + ^ 

Figure 25. To solve the "micro" problem. 
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It is supposed that the wavelength of the homogenized problem is smaller or of the same order 
of the ply thickness. It follows that the residuals can be considered as locally uniform. Another 
interesting property comes from the fact that the resultant and the moment of each residual are 
zero-value; according to Saint-Venant's principle, corrections are relatively local. 

The equivalence should hold for any value of the residual which can be written in term of 
mesoquantities. The fundamental micro-meso link which defines the so-called homogenized 
structure holds exactly for the two basic problems; it could be written: 

"^ mesoKs =<'^ micro K3 > (25) 

where < • > = 
mes r 

dS . 

mesocell mjcrocell 

Figure 26. Fundamental micro-meso link - the cell for the interface basic problem. 

r is any cross-section orthogonal to 7V3 and compatible to the periodicity associated to the 

layer or interface containing P. Practically for large crack densities, F could be replaced by any 
large cross-section with respect to the plate thickness. 17 is the projector on the plane orthogonal 
to N-, 

4.2 The Solving of the Microproblem 
The solving of the microproblem has been a major issue in micromechanics; quasi-analytical 
approximations have been derived (see Hashin, 1985, Nairn, 1989, Aboudi et al., 1988, Nuismer 
and Tan, 1988, Zhang et aL, 1992, McCartney, 1992, 2000, Schoeppner and Pagano, 1998, Varna 
et al., 1992, Berthelot et al., 1996, Selvarathinam and Weitsman, 1999...) Such approximations 
have been quite interesting for a better understanding of laminate behavior but they have some 
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limits which are displayed in Figure 27. It computs three stacking sequences which follow three 
very close curve microcracking rate/transverse mesodamage; using Hashin approximation, one 
gets three different curves and consequently, one loses a remarkable property. It is why we follow 
here another calculation method which is in fact a functional analysis: the solution is first 
determined in term of material operators which depend on the microdamage variables and the 
different additional parameters. After that, these operators are computed for all the values of 
parameters and microdamage variables (practical range: pE[o, 0 .7]TE[O,0 .4]) . Consequently, 
a very large amount of calculations have been performed. 

J 

i 

H::: 

' 

c 

4 « l 

T 

1 
m 

1 

t 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Transverse damage Indicator 

Figure 27. Limit of quasi-analytical calculation. 

4.3 Virtual Testing Dealing With the Ply 
The ply basic problem. The mesoenergy of the cracked ply can be written: 

^meso V ^ ^ meso ̂  ^ meso ±JL3)~ ^^rL " I fe meso ̂ ^^ meso ^ 

+ - ^ meso K3 • A«^ meso K3 + ^ meso K3 • ^ ^ meso^ (26) 

where H, A, B depend on the microdamage variables and the parameters of the upper and lower 
parts. 

Numerically, it has been proved: 

Fundamental property; 
The operators H, A, B are quasi-intrinsic homogenized operators. They do not depend 

practically on the parameters of the upper and lower parts. An illustration is given Figure 28 for 
two coefficients, the mesodamages d22 and (^33. 
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cte!aftiirmtionraBo(t + - t - ) ^ ° mlc^ocracklr^eternity ctelamlna6onraMo(T4.«i:"| * * mferooackif^dtefBity 

Figure 28. Mesodamages dii and </33 in term of parameters for different values of the 
microdamage variables. 

Additional results: 
The mesoenergy has the following remarkable expression: 

^meso V ^^ meso^ ^ meso ±1-3) ~ emeso ' 

2 2 

1-^22 J ^^ El 

^33 ^IZ 

1-^33 J^ 

1-^12 0 G\2 

+ IV^ 1^2 ' C^"^ K-i 

(27) 
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All stresses involved are mesoquantities; moreover, the mesodamage variables d22, d\2, d^^ 

and C which is diagonal can be computed in a very simple way in terms of the microdamage 
variables: 

dij{p,r^,r ) = fijip.T^)-^fij(p,r ) (28) 

CM 

deiaminatlon ratio deiamination ratio 

Figure 29. Functioiis/22 ^^^f33 related to the ply basic problem. 

The extended ply basic problem. 

^ R H R 

Figure 30. The extended ply basic problem. 
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From calculations, it follows that: 

Fun^damental.property; 
The damage mesomodel of the ply is quasi-intrinsic to the ply and its adjacent interfaces. Its 

mesodamage variables are defined in term of the microdamage variables of the ply and its 
adjacent interfaces. 

Additional result: 

The damages dii and d\2 for the ply / depend on pi, f^, r^ • 

Remarks; 
Such results allow an easy calculation of the ply mesomodel. Let us note that it is easy to 

introduce the different behaviors due to the closure and the opening of microcracks. For example, 
in the left member of the Equation (27), 022 and 033 should be replaced by 

(cT22)^ and(a33)^. 

4.4 Virtual Testing Dealing With the Interface 
The interface basic problem is a 3D one with the following microdamage variables: 

• transversemicrocrackingrates: p = /p^^ P = / n ' 

• local delamination rates: 

^^ ^ R+/ ^- = R-/ T;'+ ^ R'+/ , T;'- ^ R'-/ , 

• total delamination ratio: A = ^^^^^^^^^^ ^^^X'otal area' 

1 and 1' direction of fibers 

D' 

• ^ ^ ^ ^ - ; „ , , 7" - transverse microcracking rates 

^̂ '̂  [^""^^^Hlr ' ^ —iijl I '̂ - local delamination rates 

^ • H ' . - total delamination ratio 

D * " ^ delaminated aiiea 

N1 

Figure 31. The interface basic problem and its parameters. 
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The interface is only active under out-of-the plane loading. The mesoenergy can be written: 

(29) ^meso\^ meso ±-L3) ^ ^ meso ±JL3 • ^^ meso ±J-3 

where D is a positive definite symmetric operator which depends on the microdamage variables 
and the parameters of the upper and lower parts. This expression has to be compared with the 
expression of our previous interface damage mesomodel: 

'meso V meso _ 3 ^ 
1 a 33 Or a 23 

{l-D,,)k', {l-D,,)k^ {l-D,,)k', 
(30) 

where 1)33, Z)i3, D23 are associated to the delamination modes I, II, III. Numerically, it has 

been proved: 

Fundamental.propCTty; 
The operator D does not depend practically on the parameters of the lower and upper parts. 

The interface mesomodel does depend on the interface and its adjacent plies. Illustrations of this 
property are given Figures 32 and 33. 

p=0.5, p '=0.35, A*=A"=0.25, A '*=A '"=0.105 

Figure 32. Mesodamage variables in term of orientation parameters of the upper and lower parts. 
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p=0.5. p '=0.35. A*=A"=0.25. A '*=A '"=0.105 

23 

%\%:%i' 

A<1% . 

13 13 D 33 

Figure 33. Mesodamage variables in term of thicl̂ nesses of the upper and lower parts. 

Additional results: 
The mesodamage D23 related to the opening delamination mode (mode I) does depend only 

on the total delamination ratio (see Figure 34). Figure 35 shows the other mesodamages 
D\2 andD23 associated to modes II and III when orthotropic conditions are prescribed; it 
quantifies the interaction between intra and interlaminar mesodamages. 
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1rr 

0.8 
parameters: 
H =H/10.9=90 and H=H' oel 

int ' w.D 

. delaminated area 
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-̂ 33 
0.4h 
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r~+ p=o.3 
o p=0.5 

1 - p=0.7 

i i i i 
0.2 0.4 0.6 0.8 

X 

Figure 34. Mesodamage 1)33 of the interface in term of the total delamination ratio for different 
values of microcracking rates. 

1 

0.8 

0.6 

0.4 

0.2 

| - » - p-0.3 
H>- p-0.5 

1̂ M* p.0.7 
: ^ 2 3 ; ^ ^ ^ ^ ^ 

-'' y^./^ 

i i 1 - i - * 

a«l8 02 0.4, ^ ,p.6 0.8 1 0 0.2 0.4, ^ ,fi.6 n^^¥ 0.8 

33 33 

Figure 35. Interface mesodamages />i3 and Diz related to modes 11 and III. 

Reinarjcs: 
Through calculations, it is relatively easy to build the interface mesomodel. Let us note that a 

good approximation could be obtained by solving two 2D-problems similar to the ply basic 
problem. 

It is also relatively easy to introduce the different behaviors due to the closure and the opening 
of the delamination microcracks by considering that the cracks are shut when the meso-stress 
a33 is negative and that the normal stiffness then remains the initial one. 
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5 Perspectives to Damage Computation 

Two computational approaches could be distinguished: 

• an enhanced damage mesomodel 
• a computational damage micromodel of laminates. 

5.1 An Enhanced Damage Mesomodel 

Engineering calculations with the standard mesomodel. An example of a 3D finite element 
computation is presented in order to demonstrate the ability of the damage mesomodel to predict 
the response of a composite structure in dynamics until its ultimate fracture (see Paragraph 3.5). 

Other engineering examples can be found in Allix and Johnson (2004). They show that the 
standard mesomodel is a pragmatic and efficient model for engineering problems but it should be 
improved: 

• to get a better coupling between ply-microcracking and delamination 
• to get a better answer to Edge Delamination Tension tests. 

The enhanced versions. Firstly, the progress lies in the enhancement of the delamination 
prediction by considering a nonlocal interface damage mesomodel which takes into account the 
damage of adjacent plies. Another application of the bridge that we have built is the use of micro-
meso relations for describing damage in terms of micromechanics. 

A first open question is to come back to the identification process by using micro- and macro-
information. A further step is to develop the true mesomodel which is nonlocal not only for the 
interface but also for the ply mesomodel. 

5.2 A Computational Damage Micromodel of Laminate 
Basic aspects. One starts with the initial state where residual stresses occur which can be 
calculated from the process simulation. A more pragmatic and standard approach is simply to 
introduce a uniform negative variation of temperature and then the corresponding residual 
stresses calculated in elasticity. 

At the microscale, the structure is described as an assembly of layers and interfaces which 
could be cracked; the layers being made with the fiber-matrix material. A hybrid modelling is 
proposed. The fiber-matrix material is described following the classical continuum mechanics 
framework and the cracked surfaces follow a discrete model by introducing "minimum cracked 
surfaces". This enters in what is called "Finite Fracture Mechanics" (see Hashin, 1996). 

Modelling of the fiber-matrix material. Here, we follow the mesomodel limited to Scenarios 3 
and 4. The Scenarios 1 and 2 which appear through thresholds are not included. Therefore we 
describe the diffuse damage in plies and interface through a model which includes damage and 
(visco)plasticity. 

Modelling of delamination and microcracking. One introduces minimum cracked surfaces, the 
characteristic length being the thickness of the elementary ply (see Figure 36). 
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Microcracking in the plies Delamination cracking 

Figure 36. Minimum cracked surfaces. 

Initiation criterion of transverse microcracks 

r . i . . . 
initiation 

^11, III 
initiation 

G' 

h 

; I I , I I I^ 
h 

h^h G' 

(31) 

r . i . . . 
initiation 

•.a ^11,111 
initiation 

T « 

JI,III 
(32) 

Propagation criterion of existing transverse microcracks 

T « .11, III 

JI , III 

-,a 

> 1 (33) 
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Delamination cracking 

'del 
J ' 

a ^11, III 
^del 

T O ! 

ji , in' 
a 1 (34) 

• Fiber breaking 
It is supposed brittle. A minimum volume to fracture is introduced: a cube of height h. So, we 

have: 

{^n>^0/,((r,),(y,».i 

(^ii>^0^4(y,),(r,».i 

(35) 

(•) denotes the mean value over the cube of height h. IT and IQ define the criteria for traction 

and compression. 
• Complements 
When an elementary surface is cracked, unilateral contact conditions with friction occur. The 

critical values Gc, G^ are stochastic fields for which we suppose that the correlation length is not 
larger than the thickness h. Then, after discretization, they could be replaced by independent 
stochastic variables for which a modified normal law is introduced. 

• Remarks 
The energy release rate related to microcracking could be computed simply by using the 

tunneling value. More generally, the computation of the different energy release rates could be 
vastly simplified by using analytical expressions. 

Numerical difficulties. Let us consider as an example the low velocity impact problem defined 
Figure 37. 
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Low Velocity impact problem 

Discrete model 

mnttttttntttt 

Material :T300/914 
24 plies 
Impact Energy : 15 J 

• Classical Finite elements method 

- lO^^dof 

• Computational multiscale strategy with 

space and time homogeneisation 

One macro scale ~ lO^dof 

Two macro scales » 10^ dof 
Expeiimentai C-Scan results 

Figure 37. A low velocity impact problem. 

A reasonable mesh for the classical finite element method leads to 2.10^^ degrees of freedom! 
A research challenge is then to derive alternative computational strategies capable of solving such 
engineering problems. This is a hot topic named "multiscale computational strategies including 
uncertainties". Several answers have already been given (see Fish et al, 1997, Zohdi, 1998, Oden 
et al, 1999, Feyel, 2003, Geers et al, 2003, Ghosh, 1995, Ladeveze et al, 2001, Ladeveze and 
Nouy,2003...) 

Following Ladeveze and Nouy (2003), one gets with two scales: 4.10^ degrees of freedom. To 
get reasonable calculations, it is necessary to introduce one more scale, a macro one; one has 
lO^ddls. 

6 Conclusion 

Let us come back to the central question discussed in this paper: does a bridge exist between the 
micro- and the mesomechanics of laminates? 

The answer is positive but the mesomechanics of laminates is not so simple, it is nonlocal. 
Applications of the bridge which has been built are computational approaches for final 

fracture prediction, the most promising approach being the computational micromodel of 
laminates. To become true engineering tools, further researches, especially in computational 
mechanics, are needed. 
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Abstract. Interface damage and delamination is usually accompanied by fric-
tional slip at contacting interfaces under compressive normal stress. Under tensile 
stress the separation and opening mode develops. The present study provides a 
simplified analysis of progressive interface failure under applied in plane tractions 
and normal compressive traction. The cohesive crack model is used to simulate 
damage frictional traction present at contact. Both monotonic and cyclic load­
ings are considered for an elastic plate bonded to a rigid substrate by means of 
cohesive interface. The analysis of progressive delamination process revealed three 
solution types, namely short, medium and long plate solutions. For cyclic loading 
the states of frictional slip accompanied by shake down or incremental failure are 
distinguished. The finite element solutions confirm the validity of simplified anal­
ysis. The thermal loading case is studied separately under monotonic and cyclic 
temperature loading history. The cracking of plate is now accompanied by frictional 
slip and progressive delamination of the interface layer. The analysis predicts the 
cracking pattern and the size of delaminated zones. 

1 Introduction 

The propagation of interlayer cracks and the resulting failure of the interface is one of 
more important modes occurring in composite materials, rocks and ceramics. A detailed 
survey of research in this area can be found, for instance, in the article by Hutchinson 
and Suo (1991) who discussed mixed mode crack propagation using the Griffith energy 
condition. A promising approach to analyse interface failure seems to be the concept of a 
cohesive zone assumed ahead of crack t ip at the interfacial region. It follows the pioneer­
ing works by Barenblatt (1962) and Dugdale (1960) and so far has been used by numerous 
researchers in investigating crack growth, cf. for instance, Ortiz (1996), Hillerborg et al. 
(1976), Yang and Ravi-Chandar (1997). The asperity interaction modes at cracked in­
terfaces and associated effects were studied in some papers, cf. Gross and Mendelsohn 
(1989), Bennison and Lawn (1989), Evans and Hutchinson (1989). The analysis of as­
perity models and the effects of interface micro-dilatancy in problems of fiber pulling or 
pushing was presented by Mroz and Stupkiewicz (1995). However, the effects of interface 
friction have not yet been fully investigated. In general, several major topics should be 
considered, namely, formulation of slip and wear rules at the delaminated interface por­
tions, damage zone evolution rules and also localized temperature effects due to cyclic 
slip and interface dissipation. In fact, the coupled phenomena occur at the interface such 
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as wear and damage growth, frictional slip and localized temperature effects, asperities 
crushing or flattening with the associated dilatancy phenomena. 

The interface failure can be closely related to segmentation cracking of structures hav­
ing large surface area subjected to axial strains. Both segmentation and delamination 
processes can be distinguished as failure modes in thin films technologies, when a film 
is attached to a thick substrate. The segmentation cracking can result in delamination 
phenomena, since there are new damaged zones created at the interface in the vicinity 
of every segmentation crack, leading to a potential slip mechanism. On the other hand, 
delamination can reduce the risk of potential segmentation. Both cracking and delam­
ination resistance has to be considered in practical applications in a way that a proper 
balance between these two factors is maintained. 

The segmentation and delamination failure is related to systems of either macro and 
micro scale. Crack development within concrete structures occurring as a result of drying 
shrinkage or thermal cyclic loading is often observed in engineering practice. In many 
cases the cracks are formed in structures having either one dimension dominant with 
respect to the others or when a large surface area is subjected to tension. Failure can 
be a consequence of either external temperature loading changing in time, or of internal 
material shrinkage driven by drying or concrete production process, both influencing 
crack patterns, their development in time and opening gap. Due to the production 
process, concrete is first subjected to tension stresses owing to drying shrinkage. In order 
to protect the material from potential failure, reinforcement in the form of randomly 
distributed steel fibers is needed. If their resistance is not sufficient to compensate 
tension stresses, a fragmentation occurs which can lead to functional or structural failure. 
In addition to the drying shrinkage, concrete is also subjected to environmental loading. 
Daily and seasonal temperature changes play a dominant role as a crack development 
factor. 

It is often observed that uniformly spaced longitudinal cracks are normal to the direc­
tion of applied axial strain. The so called thermal cracks can also propagate in asphalt 
pavements on a granular base, extending across the width of the pavement ( Timm et al. 
(2003), Hiltunen and Roque (1994)) and allowing for infiltration of water leading to 
structure deterioration. They usually appear as a consequence of a sudden temperature 
drop causing excessive tension in a pavement system. 

Although thermal cracking of pavements is related to large scale systems, the same 
mechanical modelling can be applied to thin film coatings attached to metal substrates 
(Shieu et al. (1990), Agrawal and Raj (1989, 1990), Chen et al. (2000), Xia and Hutchin­
son (2000),. Baker et al. (2002)). When subjected to temperature loading and tension 
stresses, cracks typically develop within a coating before actual failure of substrate. After 
initiation they propagate through a film thickness and upon reaching coating-substrate in­
terface several failure mechanisms can follow: cracks enter the substrate material (Chung 
and Pon (2001), Zhang and Zhao (2002), Chi and Chung (2003)), deviate and propa­
gate along the coating-substrate interface (Nairn and Kim (1992), Kokini and Takeuchi 
(1998), Erdem Alaca et al. (2002)) or remain arrested. In this particular case new cracks 
may form during the course of loading ( Kim and Nairn (2000a,b), Schulze and Erdogan 
(1998)). It has been observed that the crack density initially increases and then stabilizes 
at a constant value, unaffected by further loading ( Agrawal and Raj (1989, 1990)). 
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Fragmentation of thin brittle coatings seem to be well suited to examine the interac­
tion between elastic properties of solids and statistical aspect of failure phenomena. It is 
obvious that crack formation is strongly dependent upon the existence of randomly dis­
tributed microcraks that promote failure. These issues have been addressed in the papers 
by Handge et al. (2000, 2001), accounting for stochastical effects in multiple cracking. 

The present work is aimed at analytical solutions of damage growth at the interface 
between an elastic plate and a rigid foundation, assuming compressive normal traction 
acting on the interface. A cohesive zone is assumed ahead of crack tip and an influence 
of various softening constitutive relations for the bond is analysed. Both mechanical or 
temperature loadings are assumed, the former leading to delamination process, the latter 
related to plate segmentation and delamination. The states of frictional slip accompanied 
by shake down or incremental failure are distinguished in the case of cyclic loading, related 
to the load amplitude and structural dimensions. With regard to monotonic loadings, 
the analysis clarifies the character of instability points, occurring due to interaction of 
damaged zone with the boundary and can serve as a reference solution for more complex 
cases. 

2 Problem Formulation 

Consider a plate resting on a rigid foundation as schematically presented in Figure 1. The 
plate is bonded to the foundation by a thin interface layer of thickness much smaller than 
the plate thickness. The upper plate surface is acted on by surface tractions t inducing 
compressive normal stresses at contact interface. The edge traction T may induce three 
modes of delamination or their combination, namely opening, longitudinal and transverse 
shear modes, analogous to fundamental modes in fracture mechanics. Assuming the plate 
thickness to be small as compared to its other dimensions, its response may be described 
within linear elasticity equations and the interaction tractions of the bonding interface 
can be treated as in-plane body forces acting on the plate. If there is no opening mode 
at the interface, the plate deformation state can be described by assuming plane stress 
conditions. 

opemng 
mode 

T 
longitudinal 

shear 
transverse 

shear 

Figure 1. Basic modes of delamination. 

By assuming that there is a frictional contact at the interface between the plate 
and the substrate governed by the Coulomb's law, the traction t normal to the upper 
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Figure 2. A plate in plane stress condition resting on a rigid substrate. 

plate surface induces the frictional stress having the magnitude | r | = /i|t|. The friction 
stress direction remains unknown. When a rigid-frictional interface is assumed, we have 
two zones developed at the interface, namely Q^^\ where the structure is fully bonded 
and Q ( ^ \ where the bond is damaged and there is a frictional contact. Let E denote the 
delamination front between regions f̂^̂^ and ft^'^\ as schematically presented in Figure 2. 
The displacement field w has to be continuous across E: 

\w\ = 0, (2.1) 

where \m{x)\ = m{x'^) — m{x'), x G E is the discontinuity of function m{x) across E 
{x~^ — x~, x~^ e rt^^\ x~ G r^^^^). On the other hand, for a rigid-frictional interface 
there is discontinuous switch of shear stresses at the interface across the boundary E: 

\Tn\ ^ 0, (2.2) 

where n is a unit vector pointing into Q*̂^̂  and normal to the delamination front. 
The time derivative of condition (2.1) provides a relation between the velocity field 

V = w = dw/dt and the discontinuity of displacement gradient across E: 

\w\ +Vn\{Vw)-n\ = 0 , (2.3) 

where Vn is the velocity of delamination front. The frictional tractions at the interface 
can be treated as in-plane body forces, so the equation of equilibrium takes the form: 

Diver + T = 0, (2.4) 

1,2) being a stress tensor in the plane stress case. The interfacial 
frictional tractions satisfy the Coulomb's law: 
with aij = taij {i,j 

\r\<fi\t\ 
\T\=l^\t\, T/\T\ = tb/|tb| 

for |tb| = 0, 
for \w\ > 0. (2.5) 
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The boundary conditions on St are 

aN = T, (2.6) 

where N is the unit normal vector to St- Additional boundary conditions on the delam-
ination front E are provided by Equations (2.1) and (2.3) and have the form: 

^ = 0 \w\=-Vn\{Vw)-n\. (2.7) 

To fully formulate the delamination process for an elastic plate bonded to a rigid 
substrate, we define the strain rate tensor e: 

£ = h^w + S/^w) (2.8) 

and the linear constitutive equation for the plate material: 

& = Cs , (2.9) 

where C is the elastic tensor. 
The rate of dissipated energy is a difference between the rate of work done on the 

system by external forces T and the rate of change of elastic energy: 

D= [ T'wdS-^ [ U{e)dn, (2.10) 
J St ^^ Jn(^^ 

where U{£) = ^eCe is the specific elastic energy per unit volume. The time derivative 
of the total elastic energy can be rewritten in the form: 

_d 
[ U{e)dn = f or. sdO -h / U{e)vndE, (2.11) 

where the fact, that the delamination front E changes with time and propagates during 
the loading process has been used to derive the second term on the right side of above 
equation. By substituting (2.4), (2.6), (2.7) and (2.11) into Equation (2.10) and making 
use of Gauss theorem, we can write the formula for the rate of dissipated energy 

D= [ T • iidn + / [(drn) . (Vix • n) - U{s)]vnd^, (2.12) 

The first term in the above equation refers to frictional dissipation at the interface, the 
second is related to the energy dissipated at the delamination front. 

In the present paper, the bonding layer will be treated as an elastic-plastic interface for 
which the response is expressed in terms of contact stress components and the conjugate 
displacement discontinuities. As the substrate is assumed as rigid, the plate displacement 
field at the interface represents the displacement discontinuity for the interface. The 
constitutive equations for the interface will be referred to elastic, elastic-plastic and 
frictional slip regimes. We shall now discuss these relations in more detail. 
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2.1 Const i tu t ive Relat ions for t h e Interface 

Considering an interface 5, we neglect the in-plane stress components and express the 
deformation response in terms of the interface traction components Gn-, n, Tm^ where 

(J = in'Crin, ri=ii'CTin, rm=im'0'in (2.13) 

and in is the unit normal vector to S, ii and im are the unit vectors within the 5, forming 
the orthonormal basis. The displacement discontinuity vector 5 on 5 can also be decom­
posed into normal and tangential components (5 ,̂ Si and 6m- The total displacement 
discontinuity and its rate are decomposed into elastic and slip components, thus: 

S = S^ + S', S = S"^S\ (2.14) 

The constitutive equations relating the interface tractions and the reversible part of 
displacement discontinuity are of the form: 

& = Kj'n^ fi^KtSf, fm = Kt6'm. (2.15) 

where Kn and Kt is an interfacial stiffness respectively in tension and shear. The irre­
versible part of displacement discontinuity is related to the failure process at the interface 
and expressed in the framework of theory of plasticity by an evolution of failure function 
F. The proposed failure function has the form: 

{ r -h /icr - Tc{Se) < 0 for a < 0 

n~^ (2.16) 
V ( ^ ) ^^ + ^^-^c{Se)<0 f o r a > 0 , ^ ' 

where: = / ri' + rl. 

/i is a friction coefficient and rc{Se) the critical shear stress for cr = 0. The failure 
parameter 6e is defined as 

S, = J^ ^{Sir + M^ikYAi St = ^{Sfr + {S^r, (2.17) 

where M is a material constant expressing the influence of opening mode on failure 
evolution. 

Thus, for the compressive traction acting at the interface we have the Coulomb friction 
law relating the shear and normal stresses, whereas for tension the damage surface is an 
ellipse. The function F is presented in Figure 3. 

The assumed shp potential is of the form: 

T — rc{Se) for a < 0 
Gi'^^r) = { //.ON2 , , , ^^^ ^ ^ ^ (2.18) 

^Jl^f'^^+^^-^ciSe) iova>0. 

Thus, we have an associated flow rule for positive normal stresses and non-associated 
flow rule for interface subjected to compression. The reason for doing that is to neglect 
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damage 
locus 

limit 
friction 
locus 

F=0 

Figure 3. Yield function F and plastic potential G. 

the contact dilatancy. It should be noted, that the slip rule remains continuous when the 
normal stress a changes sign, though the damage function F has a slope discontinuity 
for cr = 0, see Figure 3. 

The sliding rule has a form: 

8t 5n F < 0, AF = 0, (2.19) 

where A is a positive slip multiplier. 
The evolution equation expresses the failure development at the interface and relates 

the increasing separation 5^ with the vanishing interfacial traction. In the present study, 
the linearly decreasing function has been assumed: 

rc{5e) = 
0, 

(2.20) 

For r^ == 0 we have only elastic-frictional contact with no stress softening and subse­
quently the failure function does not evolve in {cr, r } space. For Kn = Kt -^ oo one can 
neglect the elasticity of interface layer and obtain rigid-softening-friction or rigid-friction 
interface models. 

In the case of monotonically varying shear loading and constant compressive normal 
traction a = const, Equations (2.19) can be integrated in order to provide the total slip 
displacement: 

dG 
S't = X— = X, F^ < 0, XFf = 0. (2.21) 

However, when unloading and reverse slip occurs, the memory of the previous slip dis­
placement must be stored and added to the reverse slip displacement. Figure 4(a) 
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Figure 4. (a) Stress - displacement response for elastic-plastic layer under constant 
compressive normal stress, (b) Stress - displacement response for rigid-plastic layer 
under constant compressive normal stress. 

presents the shear stress - tangential sliding response for the interface layer in the case 
of progressive delamination. For specified cr, the shear stress first reaches the maximum 
critical value r^ and then in the elasto-plastic softening process, decreases to the limit 
friction value /icr in the fully damaged state. We can therefore write: 

r = Ktdu 

Ks(St - Sf). 

T = na, 5t > SI 

(2.22) 

(2.23) 

(2.24) 

where AT̂  > 0 is the elasto-plastic softening modulus. Figure 4(b) specifies the constitu­
tive relation in the case of rigid-plastic response. 

Assuming the decomposition (2.14), we can write in the softening regime: 

St^S^ + St r 

'K't 

T T 
(2.25) 

where Kr is the softening modulus associated with the plastic slip component S^. From 
Equation (2.25) we have 

1 1 1 
K..= 

Kr 

1 - Kr/Kt 
(2.26) 

Thus, the softening response for the elasto-plastic interface is dependent on the ratio 
Kr/Kt. When ( = Kr/Kt = 1, we have the brittle response of the interface. On the 
other hand, when Kt -^ oo, that is for rigid-plastic response, there is Kg = Kr. 

The discussion of a dilatant contact condition can be found in the paper by Mroz and 
Seweryn (1998). 
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Figure 5. Plate bonded to the substrate. Anti plane shear state h> L 

2.2 Anti-Plane Shear State 

In the present section we shall formulate equations of an anti-plane shear state al­
lowing for analytical solution of delamination process due to mechanical loading. Sub­
sequently longitudinal shear delamination due to temperature loading will be treated 
resulting in a simple mathematical model for delamination and segmentation. 

Let us consider a plate of length L, width 6, and thickness t, bonded to a rigid 
foundation by an interface layer of thickness /i, /i < < t, as shown in Figure 5. 

The uniform compressive traction CFZZ = — CT is assumed to act at the upper plate 
surface. The plate is loaded by the shear force T = Tyx[^)A, A — bt, at the end section 
X = 0. The other end at x = L remains traction free. Assuming the transverse dimension 
b to be larger than the plate length L, the flexural effects can be neglected and the state 
of anti-plane shear can be assumed with two shear stress components Tyx and Tyz, so 
that the equilibrium equation is: 

dr. yx 

dx + 
dr. yz_ __ 

dz 
- 0 (2.27) 

and Gzz = — cr = const is the initial stress induced by the lateral compressive traction 
along the 2;-axis. Denoting hy w = w{x,z) the displacement field along the y-ajds and 
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' / ' ' / 

using the Hooke's law: 

dw 
xy 

dw 
ox 

the equihbrium equation (2.27) takes the form : 

(2.28) 

(2.29) 

where Gi and G2 are the shear moduh along x and z axes. The boundary conditions 
at the interface 2; = 0: Tyz = —T/; at the upper boundary z = —/:: Tyz = 0 and at the 
transverse boundaries x = 0 : Txy{0) = fo{y,z), x = L : Txy{L) = 0 should be satisfied. 

A simplified solution can be generated by assuming the distribution of Tyz^ namely: 

Ty. = -T{x){l + j), (2.30) 

where T{X) is the interface shear stress at 2; = 0. The equilibrium (2.27) takes the form: 

^ + 7 = 0 . (2.31) 
OX t 

Let us note that this form of (2.31) can be obtained by assuming the shear beam 
model, that is assuming w = w{x), Txy — —Gdiwl^x and writing the equilibrium equation 
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for the elastic beam interacting with the interface cohesive layer: 

A^+br = 0, (2.32) 
ax 

where A — bt denotes the transverse cross section area. This formula can be rewritten 
in the form: 

din 
-AG-~ + 6r = 0. (2.33) 

This form of equation can be generated from (2.29) by assuming G2 -^ oc, that is 
neglecting shear deformation along the 2:-axis and regarding the shear stress Tyz as a 
reaction. Alternatively, this equation can be obtained from (2.29) and (2.30) by satisfying 
the equilibrium equation at the interface z — 0. In the following, we shall provide the 
analytical solution using the simplified equation. 

It should be noted, that the same set of equations apply for a fiber pullout problem 
as presented in Figure 6. By assuming the problem to be axisymmetric and reflecting 
the deformable medium surrounding the fiber by the interface constitutive equation with 
the surrounding medium to be rigid, one obtains the equilibrium equation 

A^ -h 6r = 0. (2.34) 
ax 

The three dimensional effects associated with normal stresses due to Poisson's ratio are 
then ignored. Additionally, treating the fiber as an elastic body, we have the linear 
constitutive relation between displacement field u and normal stress a: 

CT = -Ep, (2.35) 
ax 

with E being the Young modulus. By substituting (2.34) into (2.35), one obtains a 
differential equation in the form: 

-AE^ +br = 0 (2.36) 
dx^ 

identical to (2.33). The results of fiber pullout based on such a one dimensional model 
of decohesion were discussed by Schreyer and Peffer (2000). 

2.3 Longitudinal Shear Delamination Due to Temperature Loading 

In a similar fashion we shall now derive equations for an elastic plate of length 2L, 
width 2B and thickness t bonded to a rigid substrate, as presented in Figure 7(a). Due 
to temperature loading, the structure delaminates and the tractions at plate-substrate 
interface induce stresses acting on the plate material. In order to obtain an analytical 
solution for the problem, we shall consider a simple one dimensional strip model presented 
in Figure 7(b). 

The plate material is elastic - perfectly brittle as depicted in Figure 7(c). The critical 
stress is denoted by ac- We want to analyze the plate response under monotonic and 
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cyclic temperature loadings, assuming different constitutive laws for the bond interface. 
The equilibrium equation has the form: 

^ - y = 0 (2.37) 
dx t 

with a denoting the normal stress, r the shear stress at the interface and t the plate 
thickness, Figure 8. Since we consider temperature loading, the stress - strain relation 
takes the form: 

6 - ^ + aAT. (2.38) 
E 

where e is the plate elongation along x axis, a denotes the thermal expansion coefficient 
and A T is the temperature variation with respect to reference state. It is assumed tha t 
the substrate does not crack, so the problem can be reduced to a model of interaction 
with the rigid substrate. The strain e is defined as 

. = J^ (2.39) 
dx 

with u = u{x) being the displacement field along x. Combining Equations (2.37), (2.38) 
and (2.39) provides a formula relating u with the interface shear stress r : 

Assume the uniform temperature distribution within the plate material, tha t is A T is 
not a function of x AT{x) — A T = const. Then Equation (2.40) becomes 

~Et^+T = 0. (2.41) 

Equations (2.33), (2.36), and (2.41) have the same structure. As will be presented 
in the following, the delamination process is identical in nature in the case of transverse 
and longitudinal shear as well as fiber pull-out problem (Schreyer and Peffer (2000)). 

The temperature gradient along the thickness of the plate results in a bending moment 
to be specified from vanishing curvature of plate deflection, tha t is assuming a full contact 
between the plate and the substrate. The appropriate condition takes the form: 

K = K^^ + K^ = 0, (2.42) 

with K^^ equal: 

and the curvature K^ resulting from temperature gradient: 

„-^„?<|Q. (2.44) 

where z denotes the normal direction to the plate. 
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Figure 7. (a) Plate bonded to a rigid substrate, (b) One dimensional strip model. 
(c) The constitutive law for the plate material. 

By substituting Equations (2.43) and (2.44) into Equation (2.42), one obtains: 

9 (Ar ) 
M = -EJa-

dz 
(2.45) 

The value of normal stresses a^ resulting from temperature gradient is given by: 

J oz 
(2.46) 

When a linear temperature variation across the plate thickness is assumed, we have: 

M aEz 
ATt - An 

t 
(2.47) 

where ATt is the temperature loading at the upper plate surface and ATt> is the tem­
perature change at plate-substrate interface. In the following we shall assume a uniform 
temperature variation across plate thickness, ATt = AT^, resulting in a^ = 0. 

Now the interfacial constitutive model is used to describe the deformation of the in­
terface layer. In the analysis we shall use rigid-friction and rigid-cohesive-friction formu­
lations for the interface material. Two types of temperature loadings shall be considered, 
namely monotonic and cyclic. 

2.4 Cyclic Loading of Interface 

Consider now a cyclic loading of interface with varying shear stress r and normal 
traction a kept constant. In order to simplify mathematical considerations let us assume 
that the interface is rigid-cohesive-frictional as presented in Figure 4(b). We shall dis­
tinguish between two consecutive semi-cycles constituting loading and unloading stages, 
respectively. The interface state variables for the n-th and n — 1-st stages are 5t^, Tn^ 
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Figure 8. Stresses acting on an infinitesimal strip element. 

^trr-i^ ^n-1, with 6t^ = —4^_i- The constitutive equation for the plastic zone now takes 
the form: 

Tn{x) = -Ks{6tAx) - St^_A^)) - rn- i(x) , (2.48) 

where St^_^{x), Tn-i{x) are respectively the displacement and stress fields at the end 
of n — 1-st semi cycle, as denoted in Figure 4(b). The equilibrium Equations (2.33) 
and (2.41) provide: 

S't'+rl5, r%„. (2.49) 

where r^ — y/Kg/Gt, 5t = w for for anti-plane shear and r^ = yjKslEt^ St = u for lon­
gitudinal delamination. Equation (2.49) is a recursive relation between functions 5t^ {x) 
and St^_-^{x) and allows for an analytical solution. Though it is easy to specify the 
integration constants for a monotonic loading program, a cyclic case requires substan­
tial algebraic manipulations. In practice, it is necessary to use a computer software, 
eg. Mathematica Wolfram (1999), able to perform symbolic mathematics. 

3 Anti-Plane Shear - Analytical Solution 

Let us now consider transverse delamination of a plate in an anti-plane shear state. In 
order to obtain formulas that can be easily treated in an analytical fashion we shall 
neglect the elasticity for interface layer by assuming Kn = Kt —^ oo. Thus we have 
rigid-softening-friction interface constitutive relation. By substituting Equations (2.23) 
and (2.24) into (2.33), one obtains ordinary differential equations providing formulas for 
displacement fields w^ and w^, respectively for plastic and frictional interfaces. Thus, 
for the plastic case we have 

Tc I Ks 
w^{x) == Ci cos{rsx) + C2 sin(rsx) -h -r^sign{w) r^ = W —^ (3.1) 

J\g V vjrt 

whereas the displacement field within the frictional zone is given by the following formula 

w^{x) = sign{w)^^x^ + C^x + Ci (3.2) 
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with Ci, (72, C3 and C4 being the integration constants to be specified from boundary 
and continuity conditions. Here r^ = ^/Ks/{Gt) is a parameter of dimension 1/length. 
In the following, monotonic and cyclic interface failure modes will be discussed separately. 

3.1 Monotonic Interface Failure 

Let us assume monotonic damage at the material interface and examine the effect of 
progressive delamination on stress and displacement fields. In order to do that, we shall 
combine functions (3.1) and (3.2) using appropriate boundary and continuity conditions. 
Three different solution types can be distinguished, each being defined by the plate 
dimensions. They are characterized in the following sections where the consecutive stages 
of delamination process are described. 

Short plate solution. There are two zones at the interface during the first stage 
of loading, namely undamaged and cohesive zone. They are schematically presented 
in Figure 9. Due to the rigid-plastic interface model, the undamaged zone has zero 
displacement field, whereas the plate displacement field for the cohesive region is provided 
by Equation (3.1) with the integration constants Ci and C2 to be specified from the 
boundary conditions: 

wP{si) = wP\si)=0. (3.3) 

The value of si specifies the coordinate of the transition point between undamaged and 
plastic (cohesive) zones. The displacement field w^ takes the form: 

w^{x, si) = -r^{l - cos[rs{x - 5i)]}, 0 < a; < 5i (3.4) 

where 5i is taken as a loading parameter describing the damage zone evolution. The 
corresponding stress in the plate r^y can be obtained by making use of Equation (2.28), 
thus: 

II T^y{x, Si) = -Gvs-^ ^m[rs{x - si)], 0 < x < ^i. (3.5) 

Formula (2.33) provides the shear stress at the plastic interface: 

r^(x,si) = TcCos[rs{x — si)], 0 < x < 5i. (3.6) 

The short plate solution takes place when the plate is short enough for the plastic 
zone to cover the entire length L. This is true when the following condition is satisfied: 

w^{x = 0,si=L)<Wp = ^^-^^ (3.7) 

stating that there is no frictional zone developed at the interface while its undamaged 
part has finally vanished. The inequality (3.7) reduces to 

L ^ G /icr 
— < \ -rz— arccos — (o.( 
t - \ Kst Tc 
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Figure 9. Short plate solution; delamination phases and contact stress distribution. 
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where the condition put on plate dimensions is shown explicitly. This condition may be 
rewritten in a dimensionless form: 

X<arccosr/, X = r^I^, r / = — . (3.9) 

requiring the dimensionless parameter x ^o be bounded. In a particular case, we can 
vary the softening modulus Ks keeping the plate length constant and, as a result, we will 
obtain a short plate solution for small values of Kg. It is seen that the system response 
depends on a complex interaction between mechanical and geometrical characteristics to 
be captured by two dimensionless parameters x and 77. 

There is only plastic zone at the interface during the second loading phase, as pre­
sented schematically in Figure 9. The displacement field is given by Equation (3.1), 
where the integration constants can be specified from the boundary conditions: 

w^'{L)^^, ^ ^ ( 0 ) = = < , (3.10) 

with t̂ Q being the loaded end displacement. At this stage, the value of w^^ becomes the 
loading parameter. The displacement field, shear stress r"^ and interfacial traction r^ 
fields are: 

- ' • ( X , < ) . ( - ^ - < ) ^ * 4 T T ^ . 0 < I < L (3^13) 

A friction zone starts to develop at the interface for the displacement w^ reaching 
^p — {jc — \^(y)l^s and a subsequent loading phase begins, as presented in Figure 9. 
There are two interfacial zones, namely plastic and friction with respective displacement 
fields given by Equations (3.1) and (3.2). The integration constants are specified from 
the boundary and continuity conditions: 

«;P'(L)=0, «;P(S2)=«;/(S2) = ^ ^ ^ , w^'{s-,) = w^Xa^), (3.14) 

where S2 is a coordinate of the transition point between plastic and frictional zones. The 
displacement and stress fields take the form: 

- plastic zone, S2 < x < L: 

p( . Tc fia cos[rs{L - x)] 

rSyi-^s,)=^fr.G^^^p}^^, (3.16) 
^ Ks cos[rs{L - S2)\ 

TP{X, S2) = iJ.a ^—- TT, (3.17) 
cos[rs{L - S2)\ 
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- friction zone, 0 < x < S2: 

'^^^'^' ''^ ^Wt^""' ' 2^ ' + ^ ^^"t''^^^ ~ '2)](X - 52) + ^ ^ ^ ^ , (3.18) 

r4(:r, 52) = - ^ ( x - s^) - f ^ t a n h ( L - s^)], (3.19) 

r/(a;,S2) = M'̂ , (3-20) 

SO for this loading phase the value of S2 takes over w^ as the loading parameter and its 
monotonia increase describes the damage growth. 

For 52 equal to L the interface has been fully damaged and progressive delamination 
is accomplished. The limit shear stress subjected to the plate equals 

T. ̂ 7(0) = ^L (3.21) 

and is equilibrated by the frictional forces at the interface. 
Figure 10(a) presents a relation between the loading traction rxy{0) and the loaded 

end displacement for various values of the dimensionless parameter x = ^s^ satisfying 
the condition (3.9). The dashed hue is a solution obtained for an interface with no 
cohesive strength, simply rigid-frictional interface. It should be noted that there is a 
slope discontinuity on the load-displacement curves at limit points Pi corresponding to 
the maximal load value, Figure 10(a). In fact, the limit point P/ corresponds to the state 
when the damage zone reaches the plate boundary Si = L. The subsequent response is 
associated with reduction of length of damage zone when S2 approaches L. 

It also follows from Figure 10 that the normalized maximum traction Txy{0)/r^^^{0) 
subjected to the plate becomes higher while the length L, that is the dimensionless 
parameter x, decreases. The reason for this scale effect is the softening law used for the 
material interface. 

Since the solution strategy is similar in the case of short, medium and long plate, the 
resulting displacement and stress fields will not be included in the following sections. In 
order to avoid repetitive formulations, only general guidelines and the most important 
conclusions shall be considered now with the detailed mathematical expressions to be 
found in Appendix. 

Medium length solution. Let us assume now that the condition (3.8) is not satis­
fied. As opposed to the short plate solution, there are following interface zones during 
the second loading phase: friction, plastic and undamaged, as schematically presented 
in Figure 11. The displacement fields for the plastic and friction zones are given by 
Equations (3.1) and (3.2), respectively. The integration constants can be specified from 
the boundary and continuity conditions: 

wP{s,)=wP'{si) = 0, wPis2) = wf{s2) = ^^~^, wP'{s2)=wf'{s2), (3.22) 

where, as before, 5i is the coordinate of the transition point between undamaged and 
plastic regions, and S2 indicates the point between plastic and friction zones. Assume 
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that si is now a monotonically increasing control parameter of the loading process and 
both shear stress and displacement at the loaded boundary x — 0 are specified in terms 
of si. It subsequently follows from the conditions (3.22): 

•52 = <5i arccosry, Sd = si — S2 = — arccosr/, (3.23) 
rs Ts 

that is the plastic zone length Sd is constant during the second loading phase. The 
displacement and stress fields for plastic and friction zones are presented by Equa­
tions (5.4)^(5.9) in Appendix. 

The whole interface is damaged during the subsequent delamination stage, that is for 
Si — L. The value of S2 becomes the control parameter of the loading process, so the con­
sidered situation is identical to the third delamination phase of short plate solution, with 
plastic and friction zones at the interface. The obtained stress and displacement fields are 
specified by Equations (5.10)^(5.15) in Appendix. One should remember though, that 
these formulas are valid for monotonic interface loading only, that is when the following 
condition is satisfied: 

w>{). (3.24) 

Having in mind that 52 is a control parameter during the third delamination stage, the 
inequality (3.24) can be rewritten as: 

^ ^ ^ > 0 V . E < 0 , X > . (3.25) 
OS2 

This condition is satisfied for the length to height ratio L/t smaller than 

7 < \ / i | ( — " + 7 I = ! l <='-̂ '" 
or in a dimensionless form: 

X < arccos rj + , , x = ^sL, rj = — . (3.27) 
VT^' Tc 

Plate satisfying the inequality (3.27) will provide a medium length solution. In a dimen­
sionless form, it is defined by the following formula 

Tl 
arccos ry < X ^ arccos 77 H . (3.28) 

V l - r ; 2 

As in the case of short plate solution, it is a condition put on parameter x and expressed 
in terms of both the plate length and the softening modulus Kg. It is seen that two 
dimensionless parameters x and 77 govern the system response. 

Figure 10(b) presents a relation between the loading traction T^^(O) and the loaded 
end displacement for various values of dimensional parameter x = r^L satisfying the 
condition (3.28). The dashed line is a solution obtained for an interface with no softening 
effect, simply rigid-frictional interface. Similarly to the short plate solution, the scale 
effect is manifested by a decrease in the normalized maximum traction rxy{0)/r^^^{0) 
accompanied by an increase in plate length L, that is in the parameter x-
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Long plate solution. The static solution for this case can be constructed by assuming 
the existence of a reverse shp zone near the loaded boundary (L-1 solution). For a longer 
plate, multiple zones may develop near the loaded boundary (L-2 solution). We shall 
discuss in detail the L-1 solution and specify its domain of validity in terms of plate and 
interface parameters. The details of L-2 solution will be presented in a companion paper 
accounting for the elasticity of the interface. 

L-1 solution. Let us consider now a long plate solution, when the material and geo­
metric parameters satisfy the following condition: 

X — TsL> arccos 77 -h 

The first two delamination stages are identical to those of medium plate solution, that 
is there are initially the following zones at the interface: 

- first phase: plastic and undamaged zones, Equations (5.1)-^(5.3) in Appendix; 
- second phase: friction, plastic and undamaged zones, Equations (5.4)-^(5.9) in 

Appendix. 
A difference appears when the plastic zone reaches the boundary si = L. Assume now S2, 
specifying the transition between plastic and friction zones, to be the control parameter 
of the process. For the progressive delamination the value of S2 

increases from S2 to L, where S2 corresponds to the instant when 5i = L, thus in view 
of Equation (3.23) we have 

S2 = L arccos?]. 
rs 

Assuming existence of plastic and friction zones within the interface we have the dis­
placement and stress fields given by Equations (5.10)-^(5.15) in Appendix. However, 
they cannot be accepted as the correct solution, since the rate of deflection changes its 
sign within the frictional interface. In fact, the derivative dw^{x^S2)/ds2 vanishes at 
X = S3 and becomes negative for 0 < x < 53. Thus, there is a transition point between 
the forward {w^ > 0) and the reverse {w-^ < 0) displacement zones. By substituting 
(5.10) into equation 

dia^plA = 0 (3.29) 
ds2 

one obtains a formula relating ss to the loading parameter ^2: 

53 = 52 cot[rs(L - 52)]. (3.30) 
rs 

The constitutive relation for the reverse displacement interface is given by 

r = /j.asign{w) — —[lo^ (3.31) 

as previously indicated in Figure 4. Upon substituting Equation (3.31) into (2.33), we 
obtain an ordinary differential equation specifying the reverse deflection field: 

w^{x) - - ^ ^ ' + C5X + Ce (3.32) 
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Figure 12. The end of second and beginning of third loading phases - s as the control 
parameter. 

where C5 and CQ are the integration constants to be specified from the continuity con­
ditions: 

w^iss) = wf{ss), w'-'iss) = w^'iss). (3.33) 

The displacement field takes the form: 

W^{x,S2) = -^^[2{x-S^f-ix~S2f]- tan.[rs{L — S2)]ix-S2) + — 
jia 

Gtr K. 
. (3.34) 

Figure 12 presents the displacement field at the instance when si = L, that is at the 
end of the second loading phase. The dashed line refers to the onset of the subsequent 
delamination stage when S2 = 52. It is seen that there is a discontinuous switch from 
forward to reverse displacement within the segment x G [0, 53] characterized by the snap-
back response at the end of beam and accompanied by the discontinuous load variation. 
Such discontinuous response is typical for the rigid-plastic-friction interface model. 

In order to obtain a continuous response, we may assume that S2 is fixed at the value 
s = S2 and the reverse friction slip zone propagates from the loaded end x = 0 until it 
reaches the length x = ss specified by 

S3 = S2 cot[rs{L - 52)] (3.35) 

and obtained from Equation (3.30) for S2 = ^2- It is schematically presented in Fig­
ure 12. Assuming s to represent the position of the propagating zone, we can specify the 
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deflection field from (3.32) and determine the integration constants from the continuity 
conditions at x = s: 

w'^{x = s) = w^{x = s,S2 = S2), w^'{x = s) — w^ {x = s, 52 = 52). (3.36) 

The obtained displacement and stress fields within the reverse slip zone are given by 
Equations (5.16)-^(5.18) in Appendix. 

For s = ss the reverse slip zone reaches its maximal length. The third delamina-
tion phase then begins and formulas (5.10)^(5.15), cf. Appendix, become valid for the 
progressive slip within the interval Ss < x < L. The reverse slip deflection within the 
interval 0 < x < S3 is characterised by Equation (3.34). It follows from Equation (3.30), 
that dss/ds2 < 0, so for S2 > 0 we have S3 < 0 and the reverse slip zone is decreasing 
and eliminated when 53 = 0. The stress fields within the plate and at the interface can 
be obtained from Equations (3.34), (2.28) and (2.33) providing 

<,(x,S2) = ^ [ 2 ( x - S 3 ) - ( x - S 2 ) ] + f ^ t a n [ r , ( L - S 2 ) ] , 0 < x < S3, (3.37) 

r ^ ( x , s 2 ) - - / i a , 0 < x < S 3 , (3.38) 

where the relation between ss and S2 is given by (3.30). The evolution of forward and 
reverse friction zones is presented schematically in Figure 13. 

The fourth phase of deformation is associated with the progressive slip and evolution 
of S2 to its limit value S2 = L, when the plastic zone is erased and the limit state is 
reached. The stress and displacement fields are specified by Equations (5.10)-^(5.15) in 
Appendix for friction and plastic interfacial zones. 

The load-displacement diagrams are presented in Figure 14. The combined decrease 
in loading traction and loaded end displacement corresponds to the snap-back of the 
loaded end and generation of the reverse slip zone. It is subsequently erased and the last 
section of the T(0) ~ w{0) diagram refers to progressive slip and failure within the plastic 
zone, similarly to the case of short and medium plate solutions. Figure 14 presents the 
calculated response diagram for 77 = 0.32 and several values of x = ^s^-

The present solution describes the quasi static response assuming the process to be 
controlled by the progressive front of the plastic zone. Figure 14 reveals a complex re­
sponse, that cannot be realized either by stress or displacement controlled loading. In 
practice it may lead to an unstable behaviour with a critical point related to the dis­
appearance of undamaged interfacial area. A dynamic mode could follow next starting 
from this limit state. However, the present solution clarifies the nature of critical points 
associated with the delamination process and can provide a reference solution for nu­
merical algorithms attempting to generate equilibrium paths in the post critical states. 
The reason for the combined decrease in loading traction and loaded end displacement 
is the elastic energy stored in the plate during the previous loading phase and its release 
to debond the structure. Thus, an extra work by external loadings would produce a 
dynamic response. 

We shall check now, whether the presented scenario is compatible with the slip rule 
at the interface. In order to do that, one should analyze the sign of the derivative 
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Figure 13. Long plate delamination phases: L-1 solution: (a) plastic, friction and reverse 
slip zones; (b) moving interfaces: S2 > 0, S3 < 0); (c) friction and plastic zones; (d) limit 
friction state. 
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Figure 14. Long plate solution L-1, loading traction versus displacement: illustrative 
solutions with response curves for 77 = 0.32 and varying x-

dw^{x. S2)/ds2- representing the rate of slip within the reverse slip zone with respect to 
control parameter S2- Equations (3.34), (3.37), (3.38) are valid only when the inequality 

dw^{x,S2) 

ds2 
< 0 (3.39) 

is satisfied, which is compatible with the interfacial shear stress within the reverse slip 
zone T = —/la. By substi tuting (3.34) into (3.39), this condition takes the form: 

where: 

C D <0, (3.40) 

C = cos[rs{L - S2)] + rs{x - S2) sm[rs{L - S2)], 

D = - S - 12cos[2rs(52 - L)] - cos[4rs(s2 - L)]. 

The value of C is always negative for every x G [0, 53] and the sign of product C • D 
depends on D only. Thus, in order for the reverse slip zone to be compatible with the 
slip rule, the condition D > 0 should be satisfied. Tha t is t rue only when the control 
parameter S2 is lower than the value of S2, thus: 

S2 < S2 = L — -— arccos(2A/2 — 3) = L 
ZTG 

0.8716 
(3.41) 

For values of S2 not satisfying this condition, tha t is for S2 > ^2, we have the inequality 
dw^{x, S2)/ds2 > 0, meaning tha t there is a subsequent change in the rate of slip within 
the reverse slip zone for x G [0, S3] during the course of delamination. 
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Upon substituting (3.41) into Equation (3.30) one obtains the length of reverse slip 
zone at the instant when the subsequent change in displacement rate takes place: 

h = ssih) = L 
1.7125 

(3.42) 

It becomes obvious that for 53 = 0 we have a situation when the reverse slip zone has 
vanished before the slip rate in this particular area is changed. 

In view of (3.42), the delamination process presented in Figure 13 and Figure 14 is 
valid for a plate of length L satisfying the inequality: 

arccos 77 -f <X< 1.7125, X = TsL. 

The domain of validity of this solution in the plane x^V ^^ shown in Figure 15. 

(3.43) 

L-2 solution. For x > 1-7125 a different type of system response occurs with more 
complex evolution of slip zones. Now, subsequent changes in the slip rate within the 
zone X G [0, S3] should be considered. Detailed analytical solution cannot be constructed 
using the rigid-plastic interface model. It can be constructed though by means of finite 
differences method when the elastic-softening interface is considered. The progressive 
delamination of the structure occurs in a cyclic deformation process with hysteretic 
response generated in load-displacement diagram. The length of zone x G [0, 53] decreases 
to zero with progressive increase of control parameter 52 provided by Equation (3.30). 
When the value of 53 reaches zero, there are two interfacial zones left at the interface: 
friction and plastic. The situation is identical to previously considered and the stresses 
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and displacement fields are specified by the medium length solution (3.15)^(3.20). For 
S2 = L the plastic zone is erased and the limit state is reached. A complete solution 
for this case is discussed by Bialas and Mroz (2004). Here only the final results are 
presented. Figure 16 reveals a complex system response. It is seen that in order to 
perform the progressive delamination, a cyclic loading along a specific loading path is 
required. The number of hysteretic loops in the r^yiO) — w{0) relation depends on the 
value of dimensionless parameter x- By keeping the Kg constant and varying only the 
plate length L, we obtain a different number of loops. The number of loading cycles 
required to damage the interface increases with increasing L. The results show that the 
part of the structure in the x G< 0,^3 > zone performs a flattering movement with 
subsequent forward and reverse displacements. This process cannot be executed either 
by stress or displacement controlled loading. In practice it may lead to an unstable 
behaviour with a critical point related to the disappearance of undamaged interfacial 
area. A dynamic mode could follow next starting from this limit state. However, the 
present solution clarifies the nature of critical points associated with the delamination 
process and can provide a reference solution for numerical algorithms attempting to 
generate equilibrium paths in the post critical states. The reason for the combined 
decrease in loading traction and loaded end displacement is the elastic energy, stored in 
the plate during the previous loading phase and being released to debond the structure. 
For a longer plate there is more elastic energy in the structure and consequently a greater 
number of loading cycles is required for its dissipation at the frictional interface. Any 
extra work by external forces would result in a dynamic response. 

Figure 15 presents the response domains provided by conditions (3.8), (3.26), for 
short, medium and long solution types in {x, T]} plane. The L-1 and L-2 regimes are also 
indicated. It allows for a prediction of structural response when the set of geometric and 
material parameters is known. 

Finite element validation. In the present section the obtained analytical results 
of the shear beam model will be compared with a finite element analysis of an elastic 
plate bonded to a rigid substrate by a cohesive interface. The problem presented in 
Figure 5 shall be treated as two dimensional, with elastic plane stress elements for the 
plate material and with zero thickness interfacial elements. The delamination process 
is displacement controlled by an increasing value of displacement Uy{y^x = 0) of plate 
boundary for x — 0. It has been assumed that the displacement Ux{y,x = 0) in x 
direction is constrained, that is we have Ux{y,x = 0) = 0. 

Let us assume that the plate is a granite block with the value of Young modulus equal 
to E = 4-10^ MPa and Poisson's ratio u = 0.25. The shear strength is r^ = 30 MPa and 
the friction coefficient /i = 0.64. The resulting Kirchhoff' modulus is G = 1.6 • 10^ MPa. 
The plate dimensions are L = 2 m 6 = 4 m t = 0 .2min order to provide the anti-plane 
shear state. The traction a acting on the upper surface has the value a = 20.1 MPa and 
the resulting friction stress for the fully damaged interface is /icr = 12.9 MPa. The value 
of the dimensionless parameter 

Tj = iiG/{ficF H- T )̂ equals 77 = 0.3. By varying the interfacial softening modulus Kg-, 
we can obtain the delamination scenario characteristic for short, medium and long plate 
solutions. 
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- results of numerical simulation for two dimensional model; continuous line - analyti­
cal solution for shear-beam model; (a) short plate solution, (b) medium plate solution, 
(c) long plate solution. 
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Figures 17 presents the relation between the displacement Ux and the stress Txy at 
point 0, tha t is at the origin of coordinate system, see Figure 5. They have been obtained 
for short, medium and long plates by varying the value of interfacial softening modulus 
Kg. The continuous line was obtained using the analytical solution for the shear beam 
model, whereas the dashed line is a result of numerical simulation performed for the 
two dimensional system. The simulation results are very close to the analytical solution 
during the early delamination stages. As the failure progresses though, the differences 
become more visible and disappear only during the last delamination stage, tha t is when 
there is only frictional interaction at contact. It is seen, tha t the decrease of loading 
force is smoother in the case of two dimensional simulation. In particular, the delami­
nation stage associated with the decrease in loading force after the elastic zone has been 
terminated, is significantly different for the medium plate solution. The shear beam 
model provides an abrupt jump in the value of loading traction, whereas the numerical 
simulation results in a more compliant system response. 

For Ks > 1999 M P a / m we have a long plate solution. Due to the numerical conver­
gence problems, the full delamination process could not be performed. These difficulties 
arise from the fact, tha t displacement controlled simulation does not lead to a progressive 
failure evolution and the quasi static equilibrium pa th can not be generated. Figure 17(c) 
presents the solution for Kg = 4500 M P a / m obtained only up to the point of loss of con­
vergence. It is associated with the first loop in the load-displacement curve for the shear 
beam model. Thus, the simple model of decohesion provides a reference solution for 
numerical algorithms searching for quasi static equilibrium paths in more complex cases. 

Figures 18(a-e) present the variation of interfacial shear stress Ty during the delami­
nation process obtained for the following values of displacement at point 0: 26-10"^ m, 
0.02 m, 0.032 m, 0.042 m, 0.06 m. For clarity, the deformed mesh has been magnified 
and does not present the exact solution for the displacement field. Figures 18 were ob­
tained for subsequent delamination phases of short plate and thus we have: in (a) the 
interface is fully elastic and the shear stress is below the critical value TC] in Figure 18(b) 
the interface is in the elastic and plastic regimes; Figure 18(c) presents the evolution 
of interfacial plastic zone; Figure 18(d) shows both plastic and frictional stresses at the 
interface, whereas in Figure 18(e) only frictional stress for fully damaged interface is 
presented. The Ty stress presents a slight dependence on the y coordinate, so interfacial 
zones of elastic, plastic and frictional stresses are not exactly parallel. This is due to the 
fiexural effects still present during the course of delamination and playing a dominant role 
mainly along the stress free boundaries. Moreover, as presented in Figure 18(e), the fully 
frictional interface becomes unloaded below the frictional stress value /j.a = 12.9 MPa, 
which is also a result of fiexural response of the structure. 

3.2 Cyc l ic Loading: P la s t i c Shake D o w n and In cremen ta l Failure 

Consider now a cyclic loading process induced by the boundary traction rxy{0) vary­
ing between +r^^ and —r^^, tha t is a symmetric loading program. It is assumed tha t the 
cyclic response is represented by the same softening diagram as in the monotonic case. 
Figure 4(b). We shall distinguish between two consecutive semi-cycles constituting load­
ing and unloading stages, respectively. The equilibrium Equation (2.49) is a recursive 
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Figure 18. The variation of interfacial shear stress Ty [MPa] during the course of de-
lamination for the short plate response; the subsequent displacements Uy of boundary 
X = 0: (a) 26 • 10"^ m; (b) 0.02 m; (c) 0.032 m; (d) 0.042 m; (e) 0.06 m. 
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relation between functions Wn{x) and Wn-i{x) and allows for an analytical solution. For 
n = 1 we have the displacement field given by Equation (3.1). 

Frictional shake-down solution, r^y < fiaL/t. Let us consider the n — 1-st semi 
cycle and assume that there are friction, plastic (damage) and undamaged zones at the 
interface. The transition point between friction and plastic region has a coordinate Zn-i-
The value of Su-i specifies the transition point between plastic and undamaged zones, 
as presented in Figure 19(a). The loading traction at the end of n - 1-st semi cycle is 
T^y, SO we assume it to be a loading stage. We shall consider the subsequent n-th loading 
stage. The function Wn-i{x) and its derivative w'^_i{x) at the end of n — 1-st semi cycle 
provide the continuity conditions: 

Wn{a) = Wn-i{a) w'^{a) = w'^_i{a), (3.44) 

allowing for the specification of integration constants for the displacement field function 
Wn{x) of n-th semi cycle. The unloading process is presented in Figure 19(a), mean­
ing that there is a change in displacement field only for x G [0, a] and there are no 
configuration changes in the remaining plate section, that is for x G [a, L]. 

Mroz and Bialas (2004) presented a detailed analysis of plate delamination due to 
cyclic loading, taking the limit case as the number of cycles approaches infinity. The 
results can be summarised as follows. During the cyclic loading process there are fric­
tion slip and damage zones developed at the interface. The interfacial shear stress is 
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equilibrated by the external tractions subjected to the structure. As the loading process 
progresses, the damage zone becomes shorter, whereas the friction zone becomes longer. 
In the limit case, tha t is for a number of loading cycles approaching infinity, the cohesive 
zone vanishes completely and there is only frictional contact at the interface. The friction 
zone reaches its ult imate length S given by 

5 = (3.45) 

which can be easily deduced from Figure 19(b) by considering plate equilibrium in the 
limit s tate. 

The loading traction Txy(O) varying between —T^y to + T ^ ^ cannot produce any further 
bond degradation and it is the frictional stress only to equilibrate the external loading. 
The development of inter facial shear stress is schematically presented in Figure 19. 
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The reason for this interesting phenomena is the softening response in the damage zone 
of the interface material providing progressive decrease in stress magnitude regardless the 
loading path. The actual shape of the softening function is not important and does not 
change the overall tendency, that is the progressive elongation of the frictional zone 
and the ultimate disappearance of cohesive area. In the limit state, the applied cyclic 
loading is fully equilibrated by the friction stress in the slip zone 0 < x < S, The length 
S of friction zone does not depend on the softening function and is dependent on the 
amplitude r^y of the loading traction and the value of interfacial frictional stress r = JJLCF, 

cf. Equation (3.45). 
It should be noted, that the interfacial frictional stress allows for the structural adap­

tation to steady cyclic response and thus, it governs the delamination process. The 
interfacial friction equilibrates the loading traction in the steady cyclic state. The ulti­
mate length S of debonded area depends on the value of fia: it is inversely proportional 
to the magnitude of friction stress. In fact, the failure zone can be very long, provided 
the frictional stress r = fia is small. 

The present analysis does not consider wear effects at the interface, that is the degra­
dation of friction coefficient /i. In practice, these effects are also present and cannot be 
neglected. The wear would reduce the value of friction stresses at the interface and, as a 
result, the ultimate length S of failure zone would increase. The coupling between wear 
and cohesive zone development should be treated numerically, as analytical approach 
faces mathematical difficulties. 

Incremental-dynamic failure mode, r^ > jj,aL/t, Our analysis reveals two modes 
of structural response to cyclic loading, dependent on the value of amplitude r^y and 
the actual length L of the structure. When the loading traction amplitude r^y satisfies 
the inequality r^y < iiaL/t, the limit length S of debonded zone is lower than the plate 
length L. Thus, at any stage during the delamination process, there remains an intact 
zone at the interface where the bond is not damaged and the loading traction Txy (0) can 
be fully equilibrated by the interfacial shear stress. We have then the case of cyclic shake 
down with frictional cyclic dissipation generated within the slip zone. As presented in 
Figure 20, the loading cycles approach the asymptotic cycle obtained for an interface 
with rigid-frictional constitutive relation with no softening effects. Thus, we have a 
situation of structural adaptation to cyclic loading, when the plate can sustain even 
an infinite number of loading cycles. For r^ > fiaL/t we have an incremental failure 
mode. An amplitude satisfying this inequality results in the frictional zone limit length S 
being longer than the actual length L of the structure, meaning that the entire interface 
debonds after a specific number of cycles. The equilibrium curve is then reached with 
a subsequent dynamic failure mode. This type of response is also valid for a frictionless 
case, iia = 0, since the friction stress cannot equilibrate the loading traction and the 
debonded area becomes longer from one cycle to the other. No shake down is then 
possible as the debonded zone does not stabilize on any length. The structural response 
is schematically presented in Figure 20(b). 

The delamination process is coupled with two types of energy dissipation at the ma­
terial interface, namely damage and friction dissipation. In the course of delamination 
the damage zone disappears, so one dissipative process (friction) eliminates the other 
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(damage growth) in the steady-state response. This phenomenon is beheved to be an 
intrinsic feature of failure evolution at material interfaces subjected to cyclic loading. It 
can be generalized to any loading conditions involving cyclic changes in external trac­
tions, not only symmetric cycles assumed in the present analysis. This phenomenon 
is present during any delamination process induced by cyclic loading and the following 
conclusion can be stated. The steady state cyclic response at the interface is associated 
with frictional slip and disappearance of the damaged zone. The transient state evolves 
toward the steady cyclic state or the dynamic failure mode. 

Numerical predictions. In order to present the results for the cyclic loading program, 
we shall introduce two dimensionless parameters: 

Tc S 

where si is the overall length of debonded zone at the end of the first semi cycle and 
S specified by (3.45) denotes the damaged zone length in the limit state. Thus, (3 
specifies the length of the damaged interface zone after the first semi cycle is completed 
as compared to the overall damage area. The parameter T] was already introduced in 
Section 3.1 and expresses the ratio between interface critical stress and frictional traction 
for fully damaged interface. The value of Si can be obtained from Equations (3.5) 
and (5.8). So we have: 

1 r"" K 
5i = — arcsm —-— Ts GTCTS ^ ^ Vst 

for r^^<I^yr^ (3.46) 

and 

si ] ^ t - - ^ ^ ^ ^ + -arccosry for r , \ > ^ x / T ^ . (3.47) 

The results are provided under the assumption that the plate is long enough to allow 
for the adaptation mode. In order to equilibrate the loading traction in the limit cyclic 
state the following condition should be satisfied: 

/ i ( j 5 < TcSi 

providing 
P>r]. (3.48) 

So the pair {77, /?} should satisfy the inequalities: 

0 < 7 7 < 1 , r]<P<l. (3.49) 

The dimensionless parameter /3 can be expressed as a function of ratio 5 = r^y/rc in 
the form 

/? = ^ arcsin(r,t(5) for rstS < ^ / l - r/2 (3.50) 
TstO 

(3 — -(ryarccos?] — y^l — rf) for Vstd > ^/l — rf (3.51) 
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Thus, Equations (3.50) and (3.51) allow for a comparison between the parameter P and 
more convenient, from a practical point of view, the ratio S — r^y/rc. 

Figures 21 illustrate the problem solution by showing the evolution oi {zn} and {sn}, 
being respectively friction and combined friction and damage zones lengths. They are 
obtained for various values of parameters r/ and (3 satisfying the condition (3.49) by 
recursively integrating Equation (2.49). The number n indicates a particular semi-cycle. 
It is seen that throughout the loading process the results come closer to the asymptotic 
solution described above: the length of damage zone approaches zero and the length of 
friction zone approaches 5. The diagrams (21) provide also the number of semi cycles 
leading to failure in the case of incremental collapse. For a given L < S and an amplitude 
T^y, one can read the maximum number of semi cycles the structure can sustain by an 
intersection of an appropriate Si/S curve with L/S line, as presented in the nomogram 
obtained for the values r] = 0.3 and /3 = 0.4. 

4 Longitudinal Shear Delamination and Segmentation Cracking 
Due to Temperature Loading 

In the following we shall use equations specified in Section 2.3 in order to analyse the 
plate delamination and segmentation cracking induced by temperature loading. In the 
analysis we shall use rigid-friction and rigid-cohesive-friction formulations for the inter­
face material. Two types of temperature loadings shall be considered, namely monotonic 
and cyclic. 

4.1 Monotonic Loading 

Rigid-friction interface model. Let us assume a frictional relation between the shear 
stress r and the interface deformation 7 = u/h^ where h denotes interface layer thickness. 
The interface shear stress equals 

r{x) = Tfsign{u) (4.1) 



Damage Modelling at Material Interfaces 251 

with Tf being the constant value of frictional stress and h the interface thickness. By sub­
stituting Equation (4.1) into (2.41) and solving it for u, one can obtain the displacement 
field in the form: 

u{x) = ^^sigii{u)x^ + Aix + ^2, (4.2) 

where Ai and A2 are integration constants. Equation (4.2) together with (2.38), (2.39) 
and the boundary conditions 

u{s) = 0, (j{L) = 0, \a{s)\ = 0 (4.3) 

presented in Figure 22, provide the problem solution. Here [•] denotes the discontinuity 
of the enclosed state field. Equations (4.3)2 and (4.3)3 indicate that the interface in the 
middle of the plate remains intact and the deformation takes place in the frictional zone 
only. With s being the loading parameter, we obtain the displacement field u{x, s) in the 
form: 

u{x,s) = -^^{x-sr. (4.4) 

The temperature AT is related to s by the formula: 

The corresponding normal stress a{x) within the friction zone is a linear function: 

a{x,s) = ^iL-x), (4.6) 

whereas in the intact layer zone its value is independent of x and equals a = rf{L — s)/t 
in order to compensate the normal strain. The plots of r , cr, e and u are presented 
in Figure 23. It should be noted that although the plate is being cooled down and 
subsequently being shrunken, the normal stress acting on it is positive and therefore 
the plate is in tension. It is clearly seen that the maximum value of the normal stress 
a is achieved for s = 0 and equals TfL/t. The condition s = 0 means that the entire 
interface has been damaged and further variation in temperature AT will not aff"ect the 
stress state. The hmit value of AT is equal to —TfL/{atE) and can be obtained from 
Equation (4.5) for s = 0. 

The infiuence of temperature gradient d{AT)/dz on the stress state in the plate 
material can be specified by the ratio a^/a where a^ is given by Equation (2.47) and 
a by Equation (4.6): 

a^ ^ aEzjATt - AT,) ^^ ^^ 
a Tf{L — x) 

Having in the above formula z = t/2 and requiring a^/a < 0.05, we obtain the max­
imal plate thickness for which the infiuence of temperature gradient on normal stress 
distribution is less than 5%: 

0.lTf{L-x) . 
'^aE{AT,-Any ^'-'^ 

It is obvious that the temperature gradient effect plays dominant role at stress free end 
for X = ±L and reduces in the middle section of the structure. 
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Figure 23. The shear stress at the interface, normal stress, strain and displacement 
fields for the rigid-friction model. 

Let us now consider the brittle fracture of the plate material. The critical stress value 
ac indicates the strength in tension. As it is seen in Figure 23 the maximum value of the 
normal stress is attained along the entire middle zone, therefore this simple model can 
not properly predict the place where fracture occurs. As a matter of fact, we assume that 
the plate would break exactly in the middle. It corresponds to the realistic assumption 
that interface material cannot be perfectly rigid and, if so, the maximum stress a is 
always attained in the middle for x = 0. It will be clarified when elastic - frictional 
model of the interface is considered. 

Due to the assumption that the plate would fracture in the middle, a new boundary 
is created for x = 0 and the stress field has to satisfy the condition a{0) = 0. This 
leads to creation of two more frictional zones in the vicinity of the plate fragmentation 
point. The plateau where (j(x) is equal to ac still exists though, and the two successive 
fragments fracture again. The process continues until there are no more critical stresses 
ac attained at any of the plate fragments. Thus, the total number of fragments N may 
equal 1, 2,4, 8,..., n^, 2ni,.... The fragmentation process is illustrated in Figure 24. 

Let N be the number of plate fragments. From the condition 

^(0) < ac (4.9) 

we can derive a formula for N, when all material and geometry parameters are given. 
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Condition (4.9) applied to Equation (4.6) provides 

a(0) = ^ ^ < a c . (4.10) 

The fact that the length of each of A^-th fragments is 2L/N now has been used. From 
inequality (4.10) it can be derived that the total number of plate fragments is the smallest 
natural number N of the set {1, 2,4, 8 , . . . , n^, 2ni , . . .} that obeys the condition 

AT ^f ^ 

Gn t 
(4.11) 

It should be noticed, that according to this model all fractures occur at the same tem­
perature ATc = Tf/{atE). 

Rigid-Cohesive-Friction Model Now, let us assume the cohesive interface model 
and study the progressive delamination at the interface combined with plate cracking. 
The relation between the shear stress r and the interface deformation exhibits softening 
and is that presented in Figure 4(b). In the case of monotonic loading it takes the form: 

r = Tc — KsU, u E< 0, Uc >, 

for the cohesive zone, and 

^/. U> Uc 

(4.12) 

(4.13) 

for the frictional zone. By substituting Equation (4.12) into equilibrium Equation (2.41) 
and solving for li, it can be obtained that the displacement field within the cohesive zone 
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is expressed in the form: 

u{x) = Ci cos{rsx) -f C2 sin(r5x) + —^, (4.14) 

where r^ = ^^Ks/{Et) and Ci and C2 are the integration constants. The displacement 
field (4.2) still applies for the frictional zone. To describe the delamination phenomena 
we have to combine displacement fields (4.2) and (4.14) using appropriate boundary and 
continuity conditions. It appears that there are two distinct cases to be considered, 
namely a short and a long plate solution. 

During the first stage of delamination there is only the cohesive zone developed at 
the interface. From Equation (4.14) we can determine the constants Ci and C2 which 
satisfy the boundary conditions: 

u{s) = 0, G{L) = 0. (4.15) 

Similarly to the rigid friction model, there is a central zone where the interface is intact, 
that is 

u{x) = e{x) = 0 (4.16) 

for X G< —s.s >. From Equation (2.38) it follows that the normal stress within this 
zone is constant and equals 

a{x) = aATE x e<-s,s> . (4.17) 

Equations (4.15) and (4.17) allow us to write the displacement field u, the normal 
stress field a, the interface shear stress field r and the temperature AT as functions of s: 

u{x,s) = - ^ + | L £ ^ ! M ^ Z ^ + ^ s i n [ r , ( s - a r ) ] t a n h ( L - s)], (4.18) 
Ks Ks cos[rs(L - s)\ Kg 

cj{x,s) = ^^(^sm[rs{L - s)]^sm[rs{s - x)]), (4.19) 

T{X,S) = -TcCos[rs{s-x)], (4.20) 

A r ( . ) ^ - ^ s i n [ r , ( L - . ) ] . (4.21) 

The equality 
T(0)U=O - -Tf (4.22) 

implies the condition for two types of solution. The plate will be called a long one if 
there are three zones, namely friction, cohesive and intact, developed at the interface. 
For the short plate solution there are either one or two zones developed for every stage 
of the loading process. At first there are cohesive and intact zones developed, next the 
cohesive one only and subsequently both cohesive and friction zones. 

From Equation (4.22) the condition for the short plate solution can be derived in the 
form: 

Xs ^ arccosry, (4.23) 

where Xs — ^sL^ rj = '^f l^c- The long plate solution applies when 

Xs > arccos?7. (4.24) 
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Short plate solution. Let us consider the short plate solution in detail. After the 
intact zone has disappeared there is only cohesive zone left. The stress and displacement 
fields can be derived from Equation (4.14) by satisfying boundary conditions: 

u{0) = a{L) = 0. (4.25) 

Accounting for Equation (4.25), one obtains: 

u(x) = - ^ + ^c cos[r , (L-x)] ^ ATof sin(r,x) ^ 
Ks Ks cos{rsL) Vg cos(rsL)' 

aix) = -EATa + EaAT^-^^^ + ^^;^c sin[r.(£ - x)] ^ 
cos(r5L) Kg cos[rsL) 

The decohesion process continues with temperature decreasing from 

ATi = -r ,TcSin(r ,L)/(K,a) 

down to 
Ar2 = -VSITC/ sm{rsL) -^ Tf cot{Lrs)]/{Ksa). 

When AT reaches AT2 the friction zone starts to develop together with the cohesive one. 
The displacement and stress fields can be obtained from Equation (4.14) by satisfying 
the boundary conditions: 

u{0) = 0, u{z) = -Uc, (4.28) 

where z is the coordinate of point between the friction and cohesion zones. The continuity 
condition 

a{z)^^{L-z) (4.29) 

provides the relation between the temperature T and the parameter z: 

Ks Kssm{rsz) 

aix) = -EATiz)a - gr i^cCos[r . ( . - .)] - r ,cos( r . . )^ 
Ks sm{rsZ) 

AT{z) = - ^ { L -z)- ^-C-Tfcosirsz)^ 
^ ^ Eta^ ^ Eta sin(rs^) 

It follows from Equation (4.32) that when z tends to zero AT tends to minus infinity. 
Therefore, the stage when the interface is totally delaminated is attained only asymp­
totically. 
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Long plate solution. We shall consider now the long plate solution in detail. During 
the first stage of the loading process there are two zones at the interface: intact and 
cohesive and Equations (4.18)-(4.21) apply. During the second stage the friction zone 
develops additionally. The condition 

u{x) = e{x) = 0 , X e< - 5 , s > (4.33) 

still holds within the intact zone providing the value of the normal stress acting in this 
zone: 

a{x) = -aATE, x e< -s,s> . (4.34) 

By satisfying the continuity conditions: 

a{s) - -aATE, 

u{s) = 0, 

a{z) = ^{L-z), (4.35) 

U{z) = -Uc, 

we can obtain displacement and stress fields, temperature AT and the value of z in the 
function of s: 

"̂ ''̂ " K, Ks y r r ^ 

a U - ) - E^Ta 1 ^^«^/cos[^^(«-
J^s 

-x)] -TcCos[rg{x -

Vl^ 
1 

z = s -\ arccos ?], 

1 

-z)] 
? 

(4.36) 

(4.37) 

(4.38) 

AT(s) = - ^ { L - s - - arccos r/) - ^ \ / T ^ . (4.39) 
Eta Vs KgCt 

It should be noted that the length of the cohesive zone 1̂ : — 5| is constant and equals 
arccos rj/vg. 

The last stage of the loading process starts when the intact zone disappears and there 
are only two zones left, namely cohesive and frictional. This particular case was solved 
before and is described by Equations (4.30)-(4.32). All previous remarks apply. 

Brittle fracture of plate. Let us discuss now the brittle fracture of the plate. In 
order to do that, we shall examine the maximum normal stress acting in the plate, that 
is at the center x = 0. It can be done by making use of Equations (4.17), (4.27), (4.31) 
and (4.34). Results are presented in Figure 25. It is seen that in the short plate case the 
maximum normal stress is attained at the end of the first loading stage, whereas for the 
long plate, at the end of the second one. 
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Figure 25 . The maximum normal stress cr(0) during the loading process: (a) short plate, 

(b) long plate: a{0) at point A equals EVSTC^/^^^^^/Kg] cr(0) at point B is equal to 

ErsTc\/l -rp'iKs + Tf{L - siccosr]/rs)/t. 

Let us discuss the fragmentation of the short plate first. If dc, tha t is the fracture 
strength, is greater than ErsTc^in{rsL)/Ks then no fragmentation occurs. For cjc satis­
fying the inequality 

^''•^^^•sin(r,L) (4.40) (Tc < 
K. 

fractures will appear during the first stage of loading process, tha t is when there is 
cohesive zone developed together with the intact one. After a fracture, a new boundary 
is created for x = 0 and the stress field has to satisfy the condition a{0) = 0. This 
leads to creation of two cohesive zones in the vicinity of the plate fragmentation point. 
The plateau where a{x) = ac stih exists though, and the plate breaks again. The 
process continues until there are no more critical stresses ac a t tained at any of the plate 
fragments. The scenario is similar to tha t of rigid-friction model and can be illustrated 
by Figure 24. 

Let n be the number of plate fragments. From the condition 

^(0) < dc (4.41) 

we will derive a formula for N when all material and geometry parameters are given. 
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Figure 26. The fracture of a long plate. 

Condition (4.41) applied to Equation (4.19) provides 

N> 
arcsin(^trs) 

(4.42) 

which means that the total number of fragments is the smallest N in the set N e 
{1, 2,4, 8 , . . . , ni,2ni,...} that satisfies condition (4.42). 

We shall concentrate now on the long plate solution. Three different cases should be 
discussed. For 

^ ' • • ' ^ ^ . y r ^ (4.43) 0"c < 
K, 

fracture occurs when two zones exists, namely intact and cohesive. Equation (4.42) 
applies since the considerations are identical with those of the short plate. If the critical 
stress (Tn satisfies the condition: 

Er.Tr 
— ^ x / l -7/2 < (Tc < ^ "" A/1 - 7/2 + -j-{L arccos7/) (4.44) 

then fracture occurs when there are three interfacial zones developed, namely: intact, 
cohesive and friction. As it is presented in Figure 26 the condition for the cracks to stop 
occurring can be written in the form: 

l + d>^, (4.45) 
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where / and d are the lengths of friction and damage zones respectively. From (4.45) it 
follows 

N> ^ , (4.46) 
arccosT? — — h —trg 

where N is the smallest number of the set {1, 2,4, 8 , . . . , n^, 2ni,...}. 
For 

Gc > —fz— v l ~ ^ + ( ^ arccos rj) 

no cracks occur and there is delamination only. 

4.2 Discussion 

Let us compare the maximum number of plate fragments provided by discussed mod­
els. They are given by expression (4.11) for the rigid-friction model and by formulas (4.42) 
and (4.46) respectively for the short and long plate solutions in case of rigid-cohesive-
frictional interface. In order to compare the results we shall introduce the following 
dimensionless parameters: 

Having done that, we can rewrite the expressions (4.11), (4.11), (4.42) and (4.46). They 
take the form: 

• the rigid-friction model 

• the cohesive-friction model 
- short plate solution 

N>^, (4.47) 

A ^ > — ^ ^ ^ , (4.48) 
arcsm ^̂  

long plate solution 

N > ^f ^ for e. < V l - r y 2 , (4.49) 
arcsm t,s 

N > -^ y===- for 6 > V^-V'. (4.50) 
arccos 77 -h ^(^^ - V 1 - V) 

where N is the smallest natural number of the set {1, 2,4, 8 , . . . , n^, 2ni^...}. 
By having equality in the conditions (4.47), (4.48), (4.49), (4.50) and Â  being a 

number of the set {1, 2,4, 8 , . . . ,n^, 2n^, . . .} , we obtain a family of functions £,^{Xs)-
They are plotted in Figure 27 and Figure 28. Thus, the plane {Xs^^s) is divided into 
separate regions providing the resulting maximum number of plate fragments for given 
parameters Xs and ^g-

The solutions for the rigid-cohesive-friction model are plotted in Figure 28 for several 
values of dimensionless parameter 77 = TJ JTC It is clearly seen that for 77 being close 
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Xs 

Figure 27. Number of plate fragments in the plane (XsiCs) for the rigid-friction and 
elastic-friction models. 

to 1 the resulting number of fragments versus the parameters Xsi^s is similar to that 
provided by the rigid-friction model. It can be easily explained since a value of r] close 
to unity means that the softening effect of the rigid-cohesive-friction model is very small. 
As a consequence, it provides similar results to those of the rigid-friction model. 

In order to obtain a high number of plate fragments the ratio £,s/Xs has to be small 
enough. It can be achieved by several means. Firstly, a small value of the critical stress 
(Tc results in small ^s and, consequently, a high number of fragments. It is not strange 
since a weaker plate tends to break into more segments. In order to obtain a small value 
of ^s one can also have a high value of TC^ that is the maximal interfacial strength. As a 
consequence, it follows that a strong bond between the plate and the substrate may lead 
to a high damage within the entire structure. 

4.3 Cyclic Loading: Rigid-Cohesive-Friction Model 

We now consider the cyclic loading case.As in the case of anti-plane shear, for­
mula (2.49) is a recursive relation between the displacement fields of two subsequent 
semi-cycles. By having Un-i one can solve Equation (2.49) in order to obtain Un. In the 
following we shall consider symmetric cyclic loading. 

Limit solution. In this section we shall consider a limit solution referring to a situation 
after an infinite number of cycles. First let us focus on the cooling and heating cycles 
and assume that the plate is long enough to have three interface zones developed, namely 
intact, cohesive and friction. The normal stress at the center is constant and its absolute 
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Figure 28. Number of plate fragments in the plane (Xs^^s) for the rigid-cohesive-friction 
model and values of 77 equal to 0.1, 0.3, 0.5, 0.9. 

value is aEATa- It compensates the thermal deformation of this plate portion and 
therefore there is no shrinkage in this zone. 

At the end of the subsequent heating there is an intact zone in the center portion 
as well, but this time shorter than at the end of previous semi-cycle. In order to com­
pensate its thermal expansion the damage interface zone gets longer. The reason of this 
is the softening effect in the cohesive zone and subsequent reduction in absolute value 
of interfacial shear stress. The phenomena continues during the following cycles. An 
asymptotic solution is that the cohesive zone vanishes completely and there are only 
friction and intact zones remaining, provided the plate is long enough. The process is 
illustrated in Figures 29 and is identical to that presented by Mroz and Bialas (2004). 
This scenario can be called an adaptation mode^ since the structure exhibits only partial 
delamination and there always remains an undamaged interfacial zone, regardless the 
number of loading cycles. 

Let us derive the limit length 5 of a single friction zone during the asymptotic limit 
state. The normal stress a = aEATa has to compensate the plate deformation in the 
central portion. Moreover, it has to be continuous at the transition point between both 
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Figure 29. Plate response to cyclic loading for adaptation mode. The limit state: L > 5. 

intact and friction zones. Therefore we can write: 

(7= ^S = aEATa 

and subsequently: 
ATaEta 

(4.51) 

Results. Let us assume that the plate length satisfies the condition: 

L>S, 

that is there is always an intact interface layer in the middle of the plate. We shall 
introduce two dimensionless parameters allowing to describe the plate response to cyclic 
loading. The first one 77 is given by the formula: 

V = 
^f 

The other dimensionless parameter P is defined as follows: 



Damage Modelling at Material Interfaces 263 

where Si is the length of damage zone at the end of first semi-cycle, and S is given by 
Equation (4.51). Thus, /3 says how long is the damaged interface zone after the first 
semi-cycle when compared to the overall length of the damaged zone. The value of si is 
provided by 

1 . \ATa\Ksa 
si = — arcsm 

for the short plate solution and by 

1 y r ^ lAT^i^^^ 
si = — arccosT/ — i^-^al 

Ts VsT] Tf 

for the long plate solution. 
Parameters r] and /3 have already been used in Section 3.2 where anti-plane cyclic 

shear loading was considered. The same condition applies, namely f3 and r] are bounded 
by the inequalities: 

0 < 7 7 < 1 , T] < P <1. 

Figures 21 present the problem solution by providing the evolution of lengths of single 
friction and cohesive zones. They are obtained for several values of parameters 77 and /3 by 
integrating Equation (2.49). The number n indicates a particular semi-cycle. They are 
the same as for anti-plane shear cyclic loading, since they were obtained by integrating 
Equation (2.49), valid both for longitudinal and transverse delamination. It is seen that 
throughout the loading process the results are closer to the asymptotic solution described 
above: the lengths of cohesive zone for increasing number of cycles tend to zero and the 
length of friction zone tends to S. 

For L < S the intact zone vanishes and there are only cohesive and friction zones left 
at the interface. Figures 21 allow for specification of number of thermal cycles leading 
to failure. For a given set of parameters (ry, (3) one simply has to read the semi-cycle for 
which the following condition is satisfied: 

A similar failure mode for an interface subjected to cyclic loading was presented in the 
paper by Mroz and Bialas (2004). 

For L < S the intact zone vanishes and the whole plate shrinks during cooling or 
elongates during heating. This is the incremental failure situation, when the interface 
is damaged after a critical number of cycles. Due to the softening effect the length of 
cohesive zone tends to zero, but the state when it vanishes completely can be obtained 
only asymptotically. This is because of the structural symmetry. The point at the center 
X = 0 cannot be displaced and the interface will not be damaged there. The plate 
response for this particular case is schematically presented in Figure 30. 

Figures 31 present the development of friction and cohesive zones when L < S. They 
are obtained for several values of 77, /3 and L/S. Likewise in the previous case, the length 
of cohesive zone becomes shorter as loading progresses. 
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Figure 30. The plate response to cyclic loading - incremental failure mode: L < S. 

5 Summary and conclusions 

The present work was aimed at analytical solutions of damage growth at the interface 
between an elastic plate and a rigid foundation, assuming compressive normal traction 
acting on the interface. The concept of plastic damage zone ahead of delamination front 
was used in order to simulate progressive damage and ultimate failure. The analysis was 
simplified by assuming two basic delamination modes, namely longitudinal and trans­
verse shear. The assumption of anti-plane shear and the strip model allowed for one 
dimensional treatment and analytical solutions. The control parameter driving the fail­
ure process was the length of damage zone. Thus, a particular attention could be given 
to the analysis of critical and post-critical states associated with growth of delamination 
zone under monotonic and cyclic loading. It was shown that two types of response can 
be specified in terms of two dimensionless parameters x and rj with corresponding short, 
medium and long plate solutions. 

The quasi static solutions were specified assuming monotonic progression of delam­
ination front. Obviously, under boundary traction control the quasi-static deformation 
process is terminated at the limit point corresponding to maximal load and the dynamic 
failure mode would be developed. Similarly, for the displacement control the snap-back 
state is reached in the long plate solution at the maximal load point with snap back as­
sociated with the reverse slip effect. In order to execute a quasi-static delamination both 
the loading traction and the loaded end displacement should follow a unique equilibrium 
path, resulting in a histeretic response. The structure close to the loaded end performs 
a flattering movement with subsequent forward and reverse displacements. The number 
of cycles leading to complete delamination is dependent on the plate length. The reason 
for the combined traction and displacement interaction is the elastic energy stored in the 
plate and next released to debond the structure. Thus, an extra work by external forces 



Damage Modelling at Material Interfaces 265 

?7 = 0 . 1 13 = 0.2 L / S = 0 . 3 5 r] = 0.1 /3 = 0 . 2 L / S = 0 . 5 

0 . 3 5 

0 . 3 

0 . 2 

0 . 1 5 

0 . 1 

M Zi 

2 4 6 8 10 12 14 
n 

r7 = 0 . 3 ^ = 0 . 4 L / S = 0 . 5 3 

I/— 1 uHHniiTT 

«'ho M Ẑ -'̂ -
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Figure 31. The development of friction and cohesive zones for L < 5 . 
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would be transformed into kinetic energy and a dynamic mode would follow. 
The shear beam model was validated by a finite element analysis. It was shown, that 

one can neglect the flexural deformation provided that the plate width is greater than its 
length. The analytical solution describes qualitatively the delamination process and is 
close to the numerical results during the early delamination phases. Following the critical 
point associated with maximum value of traction subjected to the structure, differences 
increase and disappear only when the structure is fully debonded with frictional contact 
at the interface. 

Displacement control does not provide a complete solution for the long plate case. 
There is a divergence in numerical procedure at the beginning of first hysteretic loop. 
Thus, the analytical shear beam model provides a reference solution for numerical algo­
rithms searching for quasi-static equilibrium paths. 

The softening constitutive relation in the case of rigid-cohesive interfacial model al­
lows to describe the progressive delamination induced by cyclic temperature loading. 
Two types of structural response can be exhibited: either adapt at ive delamination and 
subsequent structural adaptation to cyclic loading, or incremental delamination mode 
resulting in full delamination after a specific number of loading cycles. The wear ef­
fects accompanying cyclic deformation would reduce the friction coefficient, leading to 
an accelerated incremental failure mode. 

In the case of temperature loading, the delamination was coupled with segmentation 
cracking. The model describes the saturation stage, when the crack density stabilizes at 
a constant value unaffected by further loading. A common feature for the used interface 
models is the fact, that strong bond between the plate and the substrate may lead to 
dense segmentation cracking per unit length. High value of critical shear stress at the 
interface results in high normal stresses acting on the plate and thus, mitigates the 
segmentation process. Both cracking and delamination resistance have to be considered 
in practical applications, in a way that a proper balance between these two factors is 
maintained. 

It follows from the proposed model that the segmentation cracking can result in 
delamination process, since there are new damaged zones created at the interface in the 
vicinity of every segmentation crack, leading to a potential slip mechanism. On the 
other hand, delamination can reduce the risk of potential segmentation cracking, since 
the resulting normal stress acting on the plate is lower in the case of delaminated layer 
than for fully bonded structure. 
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Appendix 

1. Plastic and undamaged interface zones. 
- plcistic zone: 0 < x < si 

wP{x, Si) = - ^ { 1 - cos[rs{x - si)]}, (5.1) 

Tly{x, Si) - -GTSJ^ ^H^S{X - Si)], (5.2) 

rP{x,si) = rcCOs[rs{x - si)]. (5.3) 
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2. Undamaged, plastic and friction interface zones. 
- plastic zone: S2 < x < Si 

wP{x, Si) = - M l - cos[rs{x - si)]}, (5.4) 

^Syi^^si) == -Grsj^sm[rs{x-si)], (5.5) 

rP{x,si) =rcCos[rs{x- si)], (5.6) 

- friction zone: 0 < x < S2 

^ ( x - S2{si)Y - rs^\/^~^{x - S2{si)) + ̂  , 

riyix.si) = -t^{x-S2{si))^Grsj^yi-v^ (5.8) 

r^{x,si) = fia, (5.9) 

where: 

52(^1) = si arccos77. 
rs 

3. Plastic and friction interface zones. 
- plastic zone: S2 < x < L 

wP[x,S2) = - 7 ^ - -T^ r-J? VI' ^^-^^^ 
Ks Ks cos[rs{L - S2)\ 

v( ^ ^<^ ^ s i n [ r g ( L - x ) ] 

" - ^ " ' ^ ^ ) ^ K : ^ ^ ^ c o s [ r . ( L - . 2 ) ] ' ^ ' - ' '^ 

r ^ ( . , . . ) = , . ^ ^ ^ ^ ^ (5.12) 
cos[r^(L-52)J 

- friction zone, 0 < x < ^2: 

w^{x, S2) = ^ ( ^ - ^if + ^ t a n h ( £ - S2)](:r - ^2) + ^ ^ ^ , (5.13) 

r4(x,S2) = -^{x-s.,) - ^ ^ t a n [ r , ( L - 5 2 ) ] , (5.14) 

T^ {x,S2) = lia. (5.15) 

4. Propagation of reverse slip zone. 
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- reverse slip zone: 0 < x < s 

w^{x, s) = - ^ { x - sf + w'^\s){x - 5) + ^^(5), (5.16) 

r:,(x,.-) = ^{x -s)- Gw^'is), (5.17) 

r^(x,s) = -iJ.a, (5.18) 

where: 

»'(.-) = !?;(.--.-.)^ - n|^yrr^(* - .̂ .) + ^ , 

S2 — L arccos r/. 
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Abstract. The present contribution focuses on the problem of mechanical response of the 
composite ceramic material containing internal structure. This initial internal structure of 
the material consists of: grains, intergranular layers, initial defects (like porosity or micro-
cracks) and initial reinforcement. During deformation process the initial structure of the 
material changes (evolves) due to development of dislocation bands, local stress concentra­
tion and further nucleation of microdefects, their growth into mesocracks and finally to 
macrocracks leading to the failure of the material. This contribution describes all phases of 
deformation process of polycrystalline of composite ceramic material including phenomena 
governing changes of internal structure of the material like: nucleation, growth of defects. 
In particular to the description of the material response including internal damage process, 
the micromechanical approach will be used by application of averaging procedures. In or­
der to show local stress concentrations the Finite Element Analysis (FEA) will be applied. 

1 Introduction 

In general, polycrystalline materials - depending on their internal structure - can be treated as 
multiphase materials. Even one phase ceramic porous material can be analysed as two-phase 
solid, where gas existing in the pores is considered as a second phase. 

The initial internal structure of the composite material consists of: grains, intergranular lay­
ers, initial defects (like porosity or microcracks) and initial reinforcement (small particles, 
whiskers, short or long fibers), see Figure 1. The first problem in modeling of such materials is 
estimation of the effective behavior of nonlinear composite materials. The overview of differ­
ent methods was discussed at CISM courses: in 1996 entitled "Continuum Micromechanics" 
(Sequet ed.), in 2000 entitled "Mechanics of Random and Multiscale Microstructures" (Juelin 
and Ostoja-Starzewski eds.) and in 2002 entiled "Modem Trends in Composite Laminates 
Mechanics" (Altenbach and Becker eds.). The non-linearity problem of composites was dis­
cussed by Ponte Castaneda and Sequet (1998) whereas mixed mode of cracks in layered 
materials by Hutchinson and Suo (1991). 

In this presentation we will focuse on the problem of modelling ceramic matrix and ceramic 
polycrystalline materials of the types illustrated in the Figure Id - h. Even one phase polycrys­
talline material can be treated as a composite because of different mechanical and fracture 
properties of grains and grain boundaries, Davidge (1979). It is due to existence of: 

• misorientation of crystalline axes on the grain boundaries of two adjacent grains and 
• different kind of microdefects generated at grain boundaries during the technological 

process of material preparation 
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It means that the initial structure of the material is complicated, changes from point to point 
inside of the material and is difficult for experimental investigations concerning estimation of 
local mechanical and fracture properties. 

a) 

I ̂
 

b) 

:&Jry^J ^ - - . _ 
d) e) 

• I 

J 

r 

w 
• % . " • J S ' 

h) 

Figure 1. Type of composites: a) short-fiber, b) long fiber, c) layered, d) particle, e) FGM, f) polycrystal-
line with different grain boundary fracture properties, g) poly crystalline with small interfaces, h) 

polycrystalline with thick interfaces. 

In many cases, ceramic polycrystalline material has the second phase introduced to the 
material as an interface of the small thickness in comparison to the grain diameter. Such inter­
faces result from technological process or are intentionally introduced to the material to create 
a new internal structure. 

One can distinguish four kinds of polycrystalline materials containing intergranular phases. 
The internal structure of the material consists of: 

• ceramic grains with brittle interphases. An example of such material is alumina ceramics, 
where glassy phase added as sintering aid between grains changes significantly response 
of the material to a mechanical loading. Raiser et al., (1994), Espinosa and Zavattieri 
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(2003). Under dynamic loading this intergranular glassy phase decreases tensile strength 
(spall) when the amount of this phase increases. This problem was analysed by Sundaram 
and Clifton (1998) for alumina ceramics containing 15% glassy binder 

• ceramic grains and metallic interphase (cermets). The problem of modelling of a ductile 
layer in ceramics was considered, for example, by Tvergaard (1997) 

• metallic grains surrounded by ceramic interphases(cermets) 

• metallic grains surrounded by the layer of a soft ductile material, softer than the grain inte­
rior. This case is very important for alluminum alloys applied in aerospace purposes (e.g. 
Vasudevan et.al. (1987), Pardoen et. al. (2003) 

In all cases the role of intergranular phase is very important for the description of such 
composite materials having very complex internal structure. 

Generally the deformation process of the composite materials passes through two stages: 

• stage I - purely: elastic, elasto-plastic or elasto-viscoplastic deformations in which we ob­
serve the stress concentrations at particular points of the internal structure of the 
material 

• stage II - additional inelastic deformation due to: microdefects initiation (inside of each 
phase or at the boundary between phases) and their propagation, interphase or transphase 
failure, fragmentation of phases and flow of metallic phase or crushing of brittle phases (in 
case of compressive load). 

The stage I is very important for the further material behaviour because depending on the type 
of loading (mechanical, thermal etc.) the stress concentration takes place in different points of 
the material. It means that the further damage process in composites highly depends on the 
description of loading process (uniaxial, multiaxial, monotonic, cyclic, etc.) of the material and 
even initially isotropic treated material becomes anisotropic due to defects growth in the stage 
II. The above specified stages of the deformation process will be discussed in the next chapters 
for different kind of composites and different types of loading. 

2 Prediction of Mechanical Response under Uniaxial Tension of Polycrystalline Ceramics 

Containing Brittle or Metallic Inter-granular Layers 

Let us consider polycrystalline material containing interfaces between grains, Figure Ig. The 
theory was formulated by Sadowski et all. (2004) for the case of brittle and metallic inter­
granular layers. For the theoretical considerations we use the SEM photographs material pre­
senting fracture surface of polycrystalline ceramic. Figure 2a. Figure 2b presents contours of 
grains and small interface layers. Another examples of the internal structures of the materials 
can be shown, for example, in Davidge (1979) or Sadowski et al. (1997). 

In order to model polycrystalline material containing interphase between grains, it is neces­
sary to have microscopic observations of the internal structure of the material showing: 

• interface thickness distribution 
• pore size distribution 
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• grain size distribution, 
• pore placement inside the material 

Figure 2. Internal structure of polycrystalline ceramics a) SEM photograph, b) contours of grains and 
interfaces 

2.1 Theoretical formulation of the problem 

In order to formulate general model of the polycrystalline material containing interfaces be­
tween grains, covering all four specified cases in previous chapter, it is important to include 
time rate effects in description of the material response. This allows to include in the modelling 
creep effects, viscoplastic response and modelling of the changes of the internal material struc­
ture under dynamic and temperature loading. The different phases of the considered composite 
can exhibit various physical and mechanical features. Therefore in order to describe all the 
essential characteristics of the visco-elastic-plastic materials response, following Perzyna 
(1971), the total strain rate e.j can be split into elastic strain rate E^^j and viscoplastic strain rate 

/J =1,2,3 (2.1) 

Dot over the symbol denotes time differentiation. Having the elastic strain rate e' and speci­
fied elastic properties defined by elasticity matrix C.̂ ,̂ one can calculate the total stress rate: 

<7 = C ,,£f, 
ij ^ijkl^kl 

(2.2) 

The visco-plastic behaviour of the material occurs, when the following yield condition is sat­
isfied: 

Fia,,e;f)>F, (2.3) 
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where F^ denotes the uniaxial yield stress. Assuming associated plasticity theory the viscoplas-
tic strain rate e? can be postulated in the following form: 

EJI" =7(exp[M(F-F, ) /FJ- l )—- (2.4) 

where / is the fluidity parameter related to the plastic flow rate and M is the constant describ­
ing the particular plastic behaviour of the material. The next step in the problem formulation is 
calculation of a strain increment Ae''^^"'' for a time increment At^"^ =̂ («+i) _ (̂«). Taking into ac­
count the Euler time integration scheme we assume that the strain increment is fully described 
by conditions specified in time &^: 

A£.̂ ^^"^=£.̂ ^"^A^^"^ (2.5) 

Similar to Owen and Hinton (1980), one can define viscoplastic strain rate e?̂ "̂ ^̂  for the time 
while of the loading process r̂ "̂ ^̂ : 

e j<«- ' )=ej< '"+/ /«A(T<; ' (2.6) 

where matrix H."J is given by: 

(2.7) Ti(n) ^^ 

^(^M 

and the stress increment, taking into account strain-displacement relation Ae,*"' = B-Jl^Adl"^ 
and (2.5), is expressed by: 

A(T« = Q „ ( f i « A < " ' -e;f<">A?<">) (2.8) 

where Bjjj^ is the strain-displacement matrix. 

The loading process of the material should satisfy equillibrium equation for any instant of 
time ;'"': 

j [ B l , : » f < J Q + /;<'"=0 (2.9) 

where /̂ "̂  represents vector of equivalent nodal forces and Q denotes considered volume of 
the analysed material. During time increment Â "̂̂  it is necesasary to satisfy also incremental 
form of equillibrium equation (2.9) expressed in the linearised form: 

jlB^^fAaifdn + Af.^"^ =0 (2.10) 
Q 

where Af^*""^ is the increase of load corresponding to A^̂ "̂ . The calculated current component 
of the total stress cr̂ "̂̂ '̂  = <ĵ "̂̂  + Acrf"̂  are not strictly correct. Therefore it is necessary to 
calculate the residual forces in order to make corrections: 
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VA<"̂ " = J [B<-" f (T(-»rfQ + / ; - " ^ 0 (2.11) 
Q 

where B/"^^^ is evaluated for a current displacement statê ^̂ "̂ ^̂  = d^J"^ + M^""^. Formula (2.11) 
as a of set of equation is solved by iteration procedure (Newton-Raphson method). The itera­
tive process is continued until the solution converges to the nonlinear solution, which is 

( 1 + 1 ) 

mdicated by the condition \f/^ ~ 0 . 

Introducing tangential stiffness matrix K^^"^\ 

KT=j[B!;'fC-!B:Zda (2.12) 
Q 

one can calculate the inrease of pseudo-load: 

AC> ̂  j [ C f c^:r'"'Ar*"'^o+A/,r' (2.13) 

and increase of nodal displacements: 

Adl"'=[K2"'VAV;^'' (2.14) 

Then the current values of the stress state and displacement are: cT̂ "̂ '̂  =(7^"^ + AcT̂ "̂  and 

Finally one can calculate the strain increment: 

Ae7<">=B<fAJ,:"'-C,^A<"' (2.15) 

and the current components of the visco-plastic strain for the time ?*"̂ " take the form: 

ef"^'^ =ep"'+Aef"^ (2.16) 

Moreover, the equivalent visco-plastic strain is calculated according to: 

and the Ruber - von Mises equivalent stress: 

< - = - ^ V ( ' ^ , . . - a J ^ + ( a , , - c T j V ( c T , - a J ^ + 6 ( < + < + c T ^ ) (2.18) 
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2.2 FEM mesh for polycrystalline material containing interphase and loading conditions 

The internal structure of the material was modelled within Finite Element Method (FEM) 
using eight-node isotropic hexagonal elements to represent grains and interfaces. The Repre­
sentative Volume Element (RVE) of the following dimensions: 100 |im x 200 |im x 20 |xm was 
cut out. It was assumed that RVE was subjected to a uniform pressure (7 and due to appropri­
ate symmetries only one quarter of the RVE was analysed, i.e. sample of the following 
dimensions: 100 jim x 100 |im x 10 jim . The exemplary internal structure on the surface of the 
material is shown in Figure 2b. The corresponding FEM mesh is shown in Figure 3, whereas 
interphase is presented in Figure 4. Number of used elements to model REV was 58,016. 

Z V 

c 

J^^fe^ 
:^i^^^^^^0^^''^-* 
''^W^^^^^^'^i^'^ • 

^Hra^jS^^^feSyW^^^^^^pr 
^^^i^^^Mi<M{^^^f^^^^w 

Figure 3. FEM mesh of the material internal structure 

Figure 4. Interphase FEM mesh 

In order to present the influence of the heterogeneity of the material on the stress distribu­
tion inside RVE, the polycrystalline sample was subjected to the uniaxial tension. The manner 
of specimen loading and displacement boundary conditions are shown in Figure 5. The poly-
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crystalline sample is situated horizontally and on the right hand side is simply supported to 
constrain free displacement along jc-axis. This RVE can model one quarter of the total speci­
men subjected to uniaxial pressure when we assume that the symmetry plane are coincided 
with plane xy and yz. The specimen is subjected to quasi-static increase of pressure G up to 
the limit corresponding to ultimate strength of alumina oxide. 

uniform 
pressure 

a 

z 4 

^ 
100 |im \m 

0 4 

uniform 
pressure 

^S^STZ^^S Z_\ Z ^ -<1A .(L\ £J:^ 4C\ 4C^ .C^ Z^ A I 

yyyyyYYyyl ^^^^ 
I 100 urn J 

Figure 5. Specimen, RVE loading and boundary conditions. 

2.3 Numerical example 

The mechanical properties of the poly crystalline samples were presented in Table 1. Two 
examples with the same grains made of alumina oxide were considered. In the first example 
interphase was created from a weak elastic material, eg. alumina oxide containing porosity. In 
the second example the interphase was build up from metallic phase, eg. cobalt. The aim of this 
work was to show the different behaviour between those two kinds of composite materials with 
regard to stress distribution. 
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Table 1: Mechanical properties of the poly crystal 

Part of polycrystal 

Grains 

(elastic material - AI2O3) 

Interphase 

Material in example 1 Material in example 2 

Eg^=A.\ W MPa 

v, ,=0.25 

weak elastic material 

E.^=2.\ W MPa 

V,, =0.235 

plastic material - cobalt 
(Co) 

Ei^=2.l 10" MPa 

V,, =0.235 

a^ = 2.97 10'° MPa 

Polycrystalline material with strong elastic grains and weak elastic interphase (example 1). 
Figure 6 illustrates the distribution of stress <7^. As it was expected, the low values of stress are 
concentrated along parts of interfaces parallel to loading direction. It is due to quasi-
homogeneous distribution of the displacement u^. The higher values of stress can be observed in 
parts of grains lying along side surfaces of RVE parallel to x-axis, but they do not exceed fracture 
stress for AI2O3 equal to ~ 400 MPa. The maximum of a^^ appears in interfaces at the bottom of 
the RVE and is equal to 467 MPa, whereas the minimum amounts 195 MPa. The degree of in-
homogeneity 
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Figure 6. Distribution of stress (7^ for the material with elastic interface. 
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measured as the relative difference between maximum and minimum values of <Ĵ ^ in RVE is 
equal to 58%. 

4.9S+13 

4.13+13 

333+13 

2.53+13 

1.72+13 

9.20+12 

1.17+12 

-6.85+12 

-1.49+13 

-2.29+13 

-3.09+IS 

-3.90+13 

-4.70+13 

-5.50+13 

-6.30+13 

I 

Figure 7. Distribution of stress (7 for the material with elastic interface. 

Figure 7 presents distribution of shear stress <7 ,̂. The shear stress concentrates along inter­
faces (white and black lines) in the form of bands inclined to the loading direction at ±(20-45)^. 
Concentration of such high values of the stress in the narrow bands can cause grain rotation. The 
values of stress inside the grains are one order less in comparison to interfaces. 

6.05+-13 

5.30+13 

2.66+13 

1.81 + 13 

9.60+12 

1.12+12 

-7.35+1 2 

-1.38+1 3 

T2.43+1 3 

-3.3B+13 

-4.13+13 I 

Figure 8. Distribution of stress <7 for the material with elastic interface. 
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Figure 8 shows distribution of the stress perpendicular to the loading direction, i.e. a^^. 
One can observe that interfaces inclined to the x-axis at the angle 75-90° are subjected to ten­
sion, whereas interfaces inclined at the angle 10-45° are subjected to compression. The 
maximum of tension is equal to 69 MPa, whereas the minimum of compression appears in the 
interface inclined at the angle 10^ and is equal to -58 MPa. Nongomogeneity parameter is of 
order 218%. One can point out that the level of stress a^^ in grains is less more than one order 
in comparison to the interfaces. 
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Figure 9. The Huber - von Mises equivalent stress (J for the material with elastic interface. 

In order to estimate the material effort, the Huber - von Mises equivalent stress, Eq. (2.18), 
was calculated in the interfaces. Figure 9. It is interesting to notice that the maximum of (Ĵ ^~^ 
appears at the "triple points" of interfaces of polycrystalline structure of the material. These 
interfaces are inclined at the angle 80-90° to the loading direction. The relative inhomogeneity 
of the Huber - von Mises stress distribution is of order 53%. 

Polycrystalline material with strong elastic grains and visco-plastic interphase (example 2). 
The material properties of the second polycrystalline are presented in Table 1. In the numerical 
examples the visco-plastic strain rate (Eq. (2.11)) was modelled using a fluidity parameter within 
the range ye (10~'°, 10"^)[MPa • s]~^. Figures 14 - 22 show the results obtained for the material 
containing interfaces characterised by 7 = 10"̂  [MPa • s]~^. 

Figure 10 illustrates the distribution of stress a^^, which is similar to example 1 (Figure 6). 
The lower value of stresses are concentrated along the interfaces parallel to the loading direc­
tion i.e. the x-axis. This is due to the quasi-homogeneous distribution of displacement u^. The 
higher values of stress can be observed in parts of grains lying along side the surface of the 
RVE parallel to the x-axis, but they do not exceed the fracture stress for AI2O3 (~ 400 MPa). 
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Figure 10. Distribution of stress <Ĵ ^ for the material with visco-plastic interface. 
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Figure 11. Distribution of stress <Ĵ . for the material with visco-plastic interface. 

The maximum value of a^^ appears in the interfaces at the bottom of the RVE and is 484 MPa, 
an increase in comparison to example 1 of 3,6%. The minimum value of a^ is 156 MPa and a 
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decrease in comparison to example 1 of 21%. The degree of inhomogeneity measured as the 
relative difference between maximum and minimum values of a^^ in the RVE is 68%. 

Figure 11 shows the distribution of shear stress <T̂ .̂ In a similar way to example 1 (Figure 
7), the shear stress concentrates along the interfaces (white and black bands) inclined to the 
loading direction at ±(20-45)°. The concentration of such high values of stress in the narrow 
bands is due to plastic slip and grain rotation. The maximum value of stress is ~ 20% greater 
than in example 1. The stresses inside the grains have values one order of magnitude less than 
the interfaces. 
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Figure 12. Distribution of stress C7 for the material with elastic interface. 

Figure 12 presents distribution of a^^ . One can observe that the interfaces inclined to the x-
axis at an angle of about 90° are subjected to tension, whereas the interfaces inclined at an 
angle 10-45° are compressed. The maximum tensile stress is 105 MPa, whereas the minimum 
compressive stress appears in the interfaces inclined at 10° and is -74 MPa. Then the non-
homogeneity parameter is of order 242,3%. The level of stress a^y in the grains is more than 
one order of magnitude less than the interfaces, similar to example 1. 

The equivalent visco-plastic strains were calculated according to Eq. (2.17) and are pre­
sented in Figure 13. The equivalent visco-plastic strains are concentrated at the interfaces. The 
maximum value of eJJ' appears both in the middle of the straight segments of the interfaces, 
and at the so-called "triple points". Grains are free of equivalent visco-plastic strains. Therefore 
it is instructive to plot only the interfaces, Figure 14. The analysis of this plot leads to the 
conclusion that the third dimension (along the z-axis) plays a very important role in the 
problem of strain concentration and the initiation of further defects. 
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Figure 13. The equivalent strain e]^ in RVE for the material with visco-plastic interface. 

Figure 14. The equivalent strain e]^ in the visco-plastic interface. 

In order to estimate the material effect in the interfaces, the Huber - von Mises equivalent 
stress was calculated according to Eq. (2.18), Figure 15. It is interesting to note that the 
maximum value 
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Figure 15. The von Mises equivalent stress a"^ ^ for the material with visco-plastic interface. 

of CJ^^~^ appears at the "triple points" of the interfaces of the material polycrystalline 

structure, see Figurel6 for more details. These interfaces are inclined to the loading direction at 
an angle 80-90°. 

Figure 16. "Triple point" in the visco-plastic interface. 

The relative nonhomogeneity of the Huber - von Mises stress distribution is of the order 63%. 
Figure 16 shows the stress concentration in the "triple point". One can see additionally the 
change of stress distribution along the z-axis and observe the stress concentration (Kt = 1.21) at 
the top surface of the RVE. This means that defects can nucleate at the surface of the material 
and propagate into the volume of the material. 
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It is important to note that the variation of the fluidity parameter within the range 
ye (10~^°,10~^)[MPas]~^ causes variation of the equivalent visco-plastic strain, Figure 17, 
but does not affect the Huber - von Mises equivalent stress. 
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Figure 17. Variation of the equivalent visco-plastic strain with the fluidity parameter. 

2.4 Poly crystalline material containing single viod inside of the interface 

Let us consider the case of the material containing single void in the interface. Figure 18. The 
diameters of this void are 0.5 fim x 3.3 fim x 8.5 ^m . The existence of any defect strongly 

disturbs the stress distribution inside of the material. It can be observed in the Figure 19. The 
stress concentration factor at the border of the void is Kt = 1.42. 
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t. 
Figure 18. Single void inside one facet of the interface. 
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Figure 19. Single void inside one facet of the interface. 
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2.5 Conclusions and remarks 

The aim of this lectures is to highlight qualitatively and quantitatively the problem of non-
homogeneity of displacement, stress and strain distributions in real polycrystalline material 
structures. In particular, the work focuses on the influence of thin inter-granular layers between 
grains on the material behaviour. The properties of these components of the material structure 
play a fundamental role in the description of the microscopic and macroscopic material 
response. In this work, consideration is limited to polycrystalline materials having strong 
elastic grains and relatively weaker interfaces: purely elastic or visco-plastic. 

Presented results show the real micro-stress distributions in the polycrystalline material. In 
general these distributions are very complicated. The degree of nonhomogeneity is relatively 
high. One can also observe many sites of the local concentrations: 

• at interfaces and particularly at the so called "triple points" 
• on the surface of the specimen. 

These can act as future sources of defect nucleus, when the local tensile strength is overcome. 
In the first case, in relation to a particular case of loading: a circular, elliptic or other shaped 
cracks can initiate and develop as an isolated defect. In the second case the stress concentration 
on the surface of the material (at the interfaces) can be a source of a semi-circular surface crack 
(e.g. Fett (2001), Fett and Munz (1997)), which spreads into the volume of the material. 

As an example, the stress concentration around the single void inside of interface was 
analysed. It indicates that the stress concentration factor is of order 1.42 what is higher value in 
comparison to stress concentration inside the material without defect (1.21). Further 
investigations are necessary in order to obtain more details of crack initiation and propagation 
in modem and complicated materials i.e. composites. The model outlined above is currently 
being developed in order to describe the material behaviour more precisely. 

3 Modeling of Porous Ceramics Response to Compressive and Tensile 
Loading 

3.1 Introduction 

Popularity of porous ceramic materials results from many engineering applications, like: thermal 
insulators, filters, grinding wheels, electrodes, surgical implants, etc. Rice (1998), Pampuch 
(1988). 
Porous ceramic materials can be treated as two-phase materials with a gas existing in pores as a 
second phase. Such materials are widely used in steel making or cement factories as furnace 
lining because of good thermal stress resistance and relatively good compressive strength. 
The volumetric porosity of refractory materials is up to 30%. Grains of ceramic material create 
a skeleton of the solid phase, which determines the final mechanical properties. Pores of 
elliptical or spherical shape arise in the material during the technological process (isotropic 
pressing and sintering at high temperature) e.g. Ostrowski and Rodel (1999). A typical example 
of a refractory material is magnesium oxide - a semi-brittle ceramic exhibiting limited 
plasticity at room temperature and microcrack development during loading. 

The Scanning Electron Microscopy (SEM) observations of the polycrystalline material 
structure before and after fracture give the following information: 
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- grain size distribution, 
- pore size distribution, 
- pore distribution in the material, 
- mode of microcracking process (intergranular or transgranular). 

Experimental findings for MgO and AI2O3, e.g. Sadowski et al. (1997), show that pores are 
spherical and their diameters are much smaller than the grain diameter. They are distributed 
along grain boundaries and inside grains. Crack initiation mechanism for semi-brittle ceramics 
can be described by Zener-Stroh's model [7], i.e. dislocations pile-up at the grain boundary of 
the poly crystalline material structure. The observations of the fracture surface (Davidge (1979), 
Sadowski et al. (1997)) , lead to conclusion that for quasi-static load increase, microcracks 
propagate mainly intergranularly. Moreover experiments let us establish the distribution of the 
basic mechanical features as the Young's modulus or the Poisson's coefficient in relation to 
porosity of the material (Lam et al. (1994) and Nanjangud (1995). 
The purpose of this lecture is theoretical modelling of the behaviour of porous ceramic materials 
under compression and tension, taking into account necessary experimental data. Unfortunately, 
the behavior of polycrystalline ceramic materials under compression have been studied little, Fett 
and Munz (1999). This work aims at removing lack in theoretical modeling. 

3.2 Modeling of the material response 

Micromechanical basis of constitutive equations. Constitutive modeling of polycrystalline 

semi-brittle and porous materials under active loading process obeys a description of the: 

• elastic deformations of initially porous material, 
• existence of shear dislocation bands, 
• deformations connected with crack growth. 

In order to model the considered material behavior for plane strain condition we introduce a 
Representative Surface Element - RSE (e.g. Krajcinovic (1989), Namat-Nasser and Horii 
(1993), Kachanov (1993), Kachanov et al. (2001)) with the surface area of A, Figure 20. We 
assume that RSE contains Â  hexagonal grains. All defects inside the material: porosity, 
dislocation bands and microcracks create local microscopic additional strains in comparison to 
purely elastic material behavior. Let us denote by: 
Let us denote by: 

• A!^ the surface area of one pore "^", 
• ^ f the surface area of the single grain "^" with activated slip system, 
• A^ the surface area of one crack "^", 
• .4̂  the surface area of all pores and cracks inside RSE. 
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Figure 20. Representative Surface Element. 

The RSE area A can be divided into the surface area of grains Â  (deforming elastically or 
elasto-plastically) and surface area of defects Â  , i.e. A- A^-\- A^. 
In micromechanical approach we analyze development of all existing (pores) and nucleating 
(cracks) defects inside RSE. Let us assume that the initially porous poly crystalline material is 
subjected to monotonically increasing compressive load 0^2^ Figure 21. Then within the 
material, local microstrains at arbitrary point x^^ are created ^'^ (-̂ ,̂ cr22) ^^^ ^̂  ^^e change of 
pores shape, development of dislocation bands and cracks. Note, that /,7,m = l,2. These 
microstrains should be averaged over the appropriate areas. As a result we obtain: 

the elastic strains 

the additional strains due to single pore "s" 

the additional strains due to activation of slip system in grain " i" 

(3.1) 

(3.2) 

the additional strains caused by single crack " i" 

(3.3) 

(3.4) 



Modelling of Damage and Fracture Processes of Ceramic Matrix Composites 291 

"'• iiUUiil 

RSE 

^ ^ n̂  ^ ^ ^ ^ 1̂  ^ 

Figure 21. Compressive loading of the specimen. 

In order to obtain macroscopic constitutive relation we introduce the following surface 
densities: f^= A^ IA characterizing all defects inside RSE, f^'} - A '̂i / A - for a single pore 
"^", /J/^ = J^^ IA - for one grain "s'' with activated slip system, / J / = A;'̂  IA - for a single 
crack "^". Applying the mixture rule we can get the constitutive equations: 

£,U™;< ' ) = 
[i-/.] e,;(̂ .; ̂ fl) +Iy;!>r'(^.; cT<?) + 

^=1 

N„ 

J.f^'^''\x^^ ofi) ^J^f^'e^'^ix^, a^) 

(3.5) 

Âp̂  denotes the number of pores inside RSE. It is estimated on the basis of SEM observations 
of the fracture surface of the specimen and the measurement of the material density by 
Archimedes method. In numerical calculations it was assumed Âp̂  = const, during whole 
loading process. N^^ ia^^i ) denote the number of grains with activated conjugate slip system in 
RSE. This parameter of the model is estimated according to [17]: 

A^.K>|[A.KO-^S.KO]^ (3.6) 

where /Jg io^^^)< P < p^^ (a^^ ) denotes the fan of inclination angles measured in relation to 
the axis x^ of activated slip system inside the grains of RSE. Slip system activates, when the 
shear stress along its direction overcomes a threshold value r̂ ^ characterizing dislocation 
resistance to move: 
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T(a<^',^)>T^ (3.7) 

T̂P results from experimental observations of MgO single crystals. 
^cr (̂ 22 ) denotes the number of active cracks inside RSE. It is estimated similarly to (3.6), 
i.e.: 

; v „ ( a * ^ ' ) . a „ | [ ; 8 „ ^ « ) - ^ „ , « ) ] A ^ (3.8) 

The fan of inclination angles of crack to the axis jc, /3̂ ^ (0^2 ) - P - Pcv^ y^S) î  calculated 
from: 

r ( < , ^ ) > r „ (3.9) 

a^^ in (8) plays the role of material parameter depending on grain size in RSE. 
The constitutive equations (3.5) are valid for dilute or at most moderate defect concentration. It 
means that the presented model describes the material with porosity less than 40%, Boccacini 
(1998) and the interaction of pores is very limited. Taking the above into account, the 
constitutive equations can be rewritten to the additive form of macroscopic strain components: 

£,=£,;+e,^+e,^'+e;=5,,,c7,, (3.10) 

where: £̂^ are purely elastic strains, e^ are pore existence-dependent strains, £? are plastic 
strains, e" are crack growth-dependent strains. S^J,^^ is the compliance tensor of the total 
material response, whereas 0,.^ is the macroscopic stress tensor. 

Porosity of ceramic material. We assume the initial porosity of the material to be closed and 
distributed in grains (/?g) or along grain boundaries (/?gb )• Both types of porosity p = p^-\- p^^ 
influence the initial components of the compliance tensor S-^^^^ and the initial (elastic) stage of 
deformation process. In case of spherical pores, which at the beginning of the loading process are 
homogeneously distributed inside RSE the porosity parameter can be expressed as: 

1 ^ P O 

P = - I ^^u ) (3.11) 

Considering RSE of circular shape A = KR^ we get, see Figure 22: 

v=l ti 
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Figure 22. RSE containing dilutely distributed pores. 

If the loading process is analyzed for plane strain conditions, we have: 

-[p{Ao\^'-ot%)] 

for non-interacting pores or 

.l-(Vo)' 

(3.14) ^0 

for interacting pores Kachanov (1993). 

P (4af-al^8^) 
l-p 

(3.13) 

Crack growth. Cracks inside the MgO material are initiated by Zener-Stroh's mechanism. 
Microcracks can develop along grain facets changing direction of their propagation, Figure 23. 

The description of the crack propagation process is strongly influenced by grain boundary 
porosity p^^. Namely, any crack (rectilinear or wing) occupying grain boundaries can grow if 
the energy release rate G satisfies the following condition: 

G(<y^^,<l>,e,n,p^,)>r^,{p^,) (3.15) 
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^22 

Figure 23. Wing crack model 

where 0,6 are inclination angles of straight crack and a wing, respectively Namat-Nasser and 
Obata (1988) and Sadowski (1994). It is worth pointing out that during compression the 
straight crack or central parts of the wing cracks are closed. Their growth is highly influenced 
by friction coefficient n of the crack surfaces. Moreover Ygb(Pgh) î  ^^^ critical value of the 
grain boundary fracture surface energy and is considerably less than the grain fracture surface 
energy y^, Pampuch (1988): 

rgb(Pgb) = (0-5 -0.75)7^ (3.16) 

In order to describe function y^^ip^^) we introduce linear density of holes along grain 
boundary p^^. For our purpose let us assume the simplest correlation: 

or 

(3.17) 

(3.18) 

It is easy to find correlation />gb(Pgb) or Pgb(P) ^^m geometrical considerations and finally 

rgb(Pgb) or rgb(p)-
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Figure 24. Homogenization procedure of the surface energy for grain boundary. 

In order to describe crack growth along grain boundaries we assume (instead of boundary with 
a certain set of holes - Figure 24a that grain boundaries are homogeneous and their fracture 
energy is expressed by 7gb(/?gb), i-e. by formula (3.17) or (3.18) - Figure 24b. The growth of 
microcrack occurs when condition (3.15) is satisfied at the crack tip. 

3.3 Experimental and numerical results 

Empirical evidences. Our objective was an investigation of the initial porosity effect on the 
semi-brittle MgO ceramic response to uniaxial compressive stress. In order to estimate the 
Young's modulus in MgO the specimens with the following porosities were experimentally 
analyzed: p=0.06, 0.10 and 0.18. The material porosity was estimated by measurement of 
material density conducted by the Archimedes method using water as the medium. For each 
level of porosity 4 cylindrical specimens of diameter 13mm and height 50mm were loaded 
(with the loading rate about O.Olmm/s) to the final failure. The strain gauges were placed at the 
central part of the specimens' height. The elastic part of the stress-strain curve allows to 
estimate the values of the Young's modulus of porous MgO ceramic for compression process -
continuous line in Figure 25. The dot line corresponds to the theoretical model of porous 
material containing spherical non-interacting voids, whereas the broken line is related to the 
case when holes interact. Figure 25 shows small discrepancy between theoretical modeling of 
the porous material by spherical holes only and the real material behavior. The less values of 
the Young's modulus can be caused by existence of small amount of microcracks existing in 
the real material, which are created during technological process. 

Numerical example. Numerical calculations were performed according to theoretical 
formulation presented in section II taking into account the following data (e.g. Davidge (1979) 
orPampuch(1988)): 

• E^ip = 0) = 316.4 GPa, 
• Go (/7 = 0) = 121.4 GPa, 
• Vo(p = 0) = 0.20, 
• 7,(p = 0) = lJlm\ 

The porosity parameter is included within the range p e (0;0.2) 
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Figure 25. Comparison of numerically and experimentally estimated Young's modulus for porous 
ceramics (MgO). 

Moreover, it was assumed polycrystalline structure of the material consists of hexagonal grains 
of mean diameter D=45jLim. The densities of pores and cracks are here low, therefore we do 
not take into account interaction between them. As for modeling of grain boundaries it was 
assumed that the mean pore diameter is equal 2|Lim (data results from fracture surface SEM 
observations) and the surface fracture energy of grain boundaries is assumed to be equal 
7gb(Pgb) = 0.5. 
Figure 26 presents the diagram of normalized compressive stresses versus normalized 
compressive strains. The normalizing values of stress r̂ ^ = -75MPa and strain 
ê^̂  =-4,75 10"̂  correspond to the point of slip lines initiation inside the grains of 
polycrystalline structure of the material. During the compression process of ceramic materials 
the initiated microcracks develop as closed cracks with contact friction. It is difficult to 
estimate the real value of friction coefficient ^ along crack facets. Therefore the numerical 
calculation were performed for the several values of ^ = 0.1; 0.2; 0.3; 0.4. It is illustrated for 
the case of material without porosity (/? = 0). The influence of the inirial porosity on the 
material behavior is presented for the case p = 0,10 and 0,18. Comparison with experimental 
data (dot lines) of deformation process exhibits good confirmation of assumption concerning 
theoretical modeling. 
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Figure 26. Stress-strain relation for different porosity levels. Experimental data shown by dotted lines; 
modelling shown by solid lines. 

3.4 Summary 

Presented results show capability of micromechanical approach in modeling of material 
with internal structure (Figure 20). One can notice high influence of the porosity on the 
material response (Figure 26). It is reflected by significant increase of the components of 
compliance tensor S.ji^i(p). Experimental observations of the Poisson's coefficient lead to the 
conclusion that v(p) > v^ (/? = 0) for the analyzed range of porosity. It confirms the theoretical 
modeling methods suggesting a small increase of this mechanical property. 
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4 Thermal shock crack propagation in functionally graded strip 

4.1 Introduction 

The aim of this lecture is theoretical modelling of the thermal shock problem in a strip made of 
functionally graded composite with an interpenetrating network microstructure of AI2O3 and Al 
(Sadowski and Neubrand 2003). Such a material could be used in brake disks or cylinder liners 
in the future. In both applications it is subjected to the thermal shock. 

Now this material is used as brittle surface layers in many high temperature applications 
such as thermal barrier coatings for turbines and combustion engines and chemical reactors 
because of their superior mechanical properties, oxidation and wear resistance at elevated 
temperatures. Temperature gradients and differences in thermal expansion can cause high 
thermal stresses in such layers. Large shear and axial stress concentrations are generated where 
the interface meets the free edge of the part, Bogy (1970). These stresses promote crack 
propagation parallel to the interface Hu et al. (1988). It has been shown that the introduction of 
a layer with a gradual transition of the thermomechanical properties can greatly reduce these 
stress concentrations, Yang and Munz (1995). Additionally, it has been observed 
experimentally that the critical energy release rate for delamination is substantially increased in 
such a FGM which further impedes delamination, Bahr et al. (2004). Unfortunately in-plane 
thermal stresses parallel to the interface are not always reduced (Itoh and Kishiwaya (1992) 
and Droschel et al. (1999)) and the initiation of vertical surface cracks under transient or 
constant thermal loads is common in FGMs. In the present work which is based on linear 
elastic fracture mechanics, it will be demonstrated that the additional degree of freedom 
provided by the gradation of properties can reduce the driving force for the propagation of such 
vertical cracks substantially. It will be shown that thermal residual stresses resulting from the 
production process can play an important role and should be taken into account in 
investigations of thermal shock crack propagation in FGMs. In combination with the increasing 
crack growth resistance typically encountered in graded composites, an early crack arrest and a 
high residual strength after thermal shock can be obtained for an optimized composition 
gradient. 

4.2 Formulation of the problem of edge crack problem subjected to high temperature 
gradient 

Let us consider an infinitely long strip made of functionally graded material (FGM), which in the 
initial state is without any crack. Figure 27a. Both the mechanical and the thermal properties of 
the strip change gradually along the x direction. Assume that the strip has initial temperature TQ. 
In an unsymmetrical thermal shock one side of strip (jc = 0) is cooled by AT to the temperature T ,̂ 
whereas the second side of the strip {x - h) remains under constant temperature TQ. It is assumed 
that an edge crack (Fig. 28a) is initiated at the cooling surface due to tensile thermal stress (Figure 
27b). This crack can propagate as long as the thermal stress intensity factor exceeds the threshold 
value of the crack resistance of the FGM. The aim of the work is to estimate the equilibrium 
length b of the edge crack after thermal shock in particular composition of FGM (AI2O3/AI). 



Modelling of Damage and Fracture Processes of Ceramic Matrix Composites 299 

(T„>T,) 

b) 

© 

o 

Figure 27. Initial configuration of the strip subjected to thermal shock: a) strip dimensions, b) thermal 
stress distribution during thermal shock. 

The theoretical solution of the considered problem is performed in several steps: 
• finding the temperature distribution as a function of time t. Figure 27a 
• calculation of the thermal shock stress distribution as a function of time t. Figure 27b 
• estimation of thermal residual stress distribution due to technological cooling process 
• calculation of thermal stress intensity factors as a function of time and crack length for 

an edge crack, Figure 28 

Temperature distribution during thermal shock. The temperature function T{x, y, t) can be 
calculated solving the heat conduction equation, which has the following form in the two 
dimensional case: 

v'r+ dx dx dy dy 

]_dT_ 

K dt ' 
(4.1) 

Here the thermal diffusivity is equal to K = kl pc^, where k is the thermal conductivity, p is 
the density and c^ is the specific heat of the material. Taking into account symmetry condition 
regarding to y axis. Figure 27, and introducing non-dimensional coordinate t,=— and non-
dimensional time t* =-Yt J equation (1) takes the following form for sought femperature 
function T = T(^/) ^ 

d^T ^ ifdkdT^ 1 dT 
d^^'^kld^d^ \~ Kdi 

(4.2) 
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Here, K^ = K(^ = 0) , is the thermal diffusivity at the ceramic side of the strip. The above 
equation will be solved for the following boundary and initial conditions T{^ = 0, t) = Ta and 
T(^ = I, t) = To. The temperature field T = T(^,t*) can be obtained by numerical integration 
of (2) using the Runge-Kutta method for given thermal conductivity and thermal diffusivity 
functions of the form k(^) = ^k.^' and K(^) = ^K*.(^' . In the present work the coefficients 

of these functions were estimated from experimental data. 

a) 
(To>T3) 

4-

— 4 - — ^ X 

^=. 

b) 

L-< 

Figure 28. Edge crack formation due to thermal shock: a) crack configuration, b) stress applied to the crack 
surface. 

Thermal shock stress. Having the temperature field inside the strip T = T(^,t*) it is possible 
to calculate the thermal shock stress by introduction of the Airy stress function (Jin and Batra 
(1996)) into the equilibrium equation 

C T , , , + p / - 0 (4.3) 

where / are components of the body forces per unit mass. Using the Hooke's law in the 
following form 

O",, = -
' (1+v) (l-2v) 

-a{T-T,)-^—d,j (4.4) 

and assuming small strain, i.e. e-- = ( « . + « . ) / 2 one can calculate the thermal shock stress 
o\^.{^,t*) from the equation 
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d^' d^ 
-[(l+v)ar] = 0 (4.5) 

if body forces are excluded. In equations (4.4) and (4.5) E{^J*) is the Young modulus, v{^,t*) 
is the Poisson ratio and a(^,t*) is the thermal expansion coefficient. All of them are in general 
functions of position and time. Equation (4.5) was solved analytically for power law expansions 
(in x) for E(^,t*), v(^J*) a(^j*) and stress free boundary conditions, i.e. no additional 
mechanical loading on the strip boundary. The particular form of the thermal stress function is the 
following 

oZiU)-

where 

E,a,AT K(^y)= 
E(^/)a(^,t')T{^/) 

ttn AT 

E{^,t') 
\-[v{^,t')f E,A, 

{h^A,,i^)-A,,(^)}JE(U)^^^^^^hd^ + 
«„ AT 

{A,,iO-h^A,,(^)}UE(U)^^^^^iP-h'd^ 
AT 

(4.6) 

E(^,t') E{^,t') 

^•^'•'-l-^m-^'' ^'^-HT^^f'' 
E(^/) 

Moreover the values EQ - Ei^ - 0, t^ and OQ = (x(b, = 0, t*), i.e. correspond to the ceramic edge of 
the strip. An example of a^ (<̂ ,̂ *) distribution is shown in Fig. 27b. 

Thermal residual stress due to technological cooling process. The thermal residual stress 
created during technological cooling of the FGM from the processing temperature has a 
significant influence on the material behaviour. According to Ravichandran (1995), the thermal 
residual stress for a strip as shown in Fig. 27 is 
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cT;r(^,/*) = A7;„£(^,/*) 

A-^£,W-£J 

iZ/ i -C/o • ^ ^ 

(2.7) 

where Ar̂ ^̂  denotes the difference between the process temperature and room temperature. 

The expressions for Ai and A2 are 

1 1 

0 0 

and El.£2,E3 are given by 

1 1 1 

E,(t') = JE{^,t')d^, E,it') = JE(^,t')^d^ E,it') = JEi^,t')^'d^ 
0 0 0 

Thermal stress intensity factor during thermal shock. As shown in Figure 28, the crack is 
perpendicular to the stress-free boundaries, because it was assumed that the problem is 
symmetric with respect to the y axis. Because the length of the crack after thermal shock is 
short compared to the specimen dimensions one can simplify the problem by assuming a 
constant Young modulus E(^ = 0, t*) = EQ. Then the thermal stress intensity factor in the FGM 
strip (Figure 28) can be found in a similar way as described in (Jin and Batra (1996), Erdogan 
and Wu (1996), Noda (1999). The thermal stress intensity factor is found by solution of the 
integral equation under the given tractions p^^Xx, y = Oj*) = -a ,̂̂ .(jc, y = 0,t*) along the crack 
boundary. Figure 28b. Employing the edge crack opening displacement defined by 

V^{x,y = 0,t ) = w^.(jc,-K),r*)-w^.(jc,-0,r*) 

(4.8) 

the problem can be reduced to the following integral equation 

for (0 < X < b) 

]— j-dr-\-jV^Xx,ra )K{x,r)dr = -n 
0 y ~ ^ ) 0 

( ^\ 
p(x/) for ( 0 < x < b ) (4.9) 

Here K(x,r) is the integral kernel given by 

K(x,r) = K,ir,x)-\-K,(h-r,h-x) + K^(r,x)-^-K^(h-r,h-x) 

K,{r^x) = -
1 12JC 12JC' 

(r + x) (r + jc) (r + jc) 
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K,{r,x) = ][f, {r,x,r)e-''''''+f2 (r,^,/)^"^^'^^^-^^}// 

-L.-^r^ fx{r,x,Y) = -^e 
87Vrjc-127'/ i ' (r + x) + 27'[9/i '+/i(r + x) + rjc]+] 

- 3 / [2/? + r + jc] + 5 + ^~'^' [-2y Vx + 37(r + x)-5] 

y \-Ay^hx{h-r) + 6y^\h^ +h{x~r)\+ 1 
/2(r,x,7) = —^ 

D [+y[_io/i + r - x ] + 3 + ^-'^'[7(jc-r)-3]J 

Z) = l - (47V+2)^- ' ^ '+^- ' ^ ' 

Normalizing the interval XG (0,̂ ?) by defining 

r = ^ ( l + w), ^ = ^(1 + ^ ) , V / r , r ) = - / ( w , r ) 

the integral equation (4.9) becomes 

- ^ — - ^ d w + \ f [ w j )k(w,s)dw = g [s,t ) , (4.10) 

where 

kiw,s) = \~\ K(r,x), (s/) = -K 
( ^ \ 

PyyiS.t ) 

Let us assume the solution of the integral equation takes the form /(wj* j = yjl-wF\w,t* j , 

where V l -w is a so called weight function and F{WJ*^= ^cirn^t*)w"'. Solving (4.10) we 

get the expression for thermal stress intensity factor in the non-dimensional form 

1-v, 
K;(b,hj)= '-=Kjib/) 

£oaoArv;r/i 
(4.11) 
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4.3 Numerical simulation of unsymmetrical thermal shock in the strip 

As an example an AI2O3/AI FGM prepared by the so called GMFC process (Neubrand et al. 
(2004)) was analysed. This material was chosen because it is one of the rare FGMs for which 
all thermomechanical properties including residual stresses and the crack growth resistance 
have been studied experimentally in detail (Neubrand et al. (2002 and 2004), Becker et al. 
(2001)). For the purpose of this work, the properties of the analysed AI2O3/AI FGM were 
expressed as a function of the volume content of Al in the composite c^i. The Young's 
modulus at RT (in GPa) was described by the polynomial 

£(r, ,)--1482.6(c,,)Vl973(c^/) '-1096.9(c^,) + 398.42 (4.12) 

and its temperature dependence was neglected. In a similar manner the thermal expansion 
coefficient of the composite between 20°C and 620°C was described by 

Of(r^/) = 281.24(c^/)'-102.98(c^j'+15.112(c^/) + 7.71 (in lO^K) (4.13) 

The appropriate function for thermal conductivity k (in W/mK) is given by 

/:(c^/) = 37.71 + 363(c;,f)-exp[-1.5c^J (4.14) 

The thermal diffusivity K (in cm^/s) is 

K-(c^J = 0.109 + 1.844(c;,f)exp[-2.5c^J (4.15) 

The crack growth resistance as a function of crack length in the AI2O3/AI FGMs was determined 
earlier in Neubrand et al. (2004). 

For the calculation of the residual stresses, it was assumed that the composite was stress free 
at 620°C (at this temperature the aluminium in the composite is still very soft and cannot exert 
high stresses on the ceramic backbone of the composite irrespective of volume content) and 
residual stresses during cooling to room temperature were calculated from the thermal expansion 
coefficients and elastic modulus data. It has been shown for specimens of a different geometry 
that the stresses calculated with these assumptions are in reasonable agreement with experimental 
data Neubrand (2002). 
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Figure 29. Maximum of the non-dimensional thermal stress intensity factors Kj and corresponding 
crack resistance curve Kj^ for linear change of Al content in FGM (n= 1); 

For the calculations of residual stresses during thermal shock it was assumed that the 
temperature To was 620°C and Ta was 20°C, i.e. the thermal shock temperature difference AT 
was 600°C. The strip had a width of /z = 10 mm and a composition gradient along the x-
direction which could be described by the function 

Â/(̂ ^̂ ) = 4 + C - r (4.16) 

Here, c^;,c^; and n are material parameters describing the composition gradient in the 
material. By introducing (4.16) to (4.12)-(4.15) and varying the material parameters, the 
thermal shock response of different FGMs can be investigated. In our study, c\^ equalled 0.03 

and c^i = 0.3 throughout - at such volume fractions the material behaves macroscopically 

brittle, and thus plasticity could be neglected. For n=l we have a linear composition gradient 
of the Al in AI2O3. For n < I, the metal content increases quickly below the surface, and we 
have the case of a "metal rich material", whereas for ^ > 1 the metal content increases only 
slowly, and we have a "ceramic rich material". 
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The thermal stress intensity factor K* depends on time, crack length and temperature. For a 

given crack length the stress intensity factor will reach a maximum at a certain time t which 
will increase with crack length. This non-dimensional maximum of the stress intensity factor 
K* is plotted in Figure 29 as a function of crack length ^^^ together with the crack growth 

resistance, K^ for AI2O3/AI and 7̂ *̂ '̂̂ ' for pure AI2O3. The point where the curve for the 

stress intensity factor intersects the R-curve represents the equilibrium crack length. 

no residual 
stress 

with residual 
stress 

1.00 2.00 

Coefficient n 

Figure 29. Equilibrium crack length for different kinds of PGM characterised by coefficient n 

Figure 29 presents the equilibrium crack length for different values of n=l, 1/3 and 3. The 
crack lengths are much shorter in the graded AI2O3/AI composite than in a homogenous 
composite with a volume content of Al which corresponds to the surface composition of the 
FGM,^ = 0. 
Residual stresses in the graded composite are typically compressive near the surface and lead 
to smaller stress intensity factors and equilibrium crack length (for longer cracks the stress 
intensity factors even become negative indicating very efficient crack arrest). The effect of 
residual stresses is strongest for n = 1/3 where the equilibrium crack length is reduced by about 
60% compared to a hypothetic stress free material. The composite with n = 1/3 shows also the 
shortest equilibrium crack length. The short crack length is not only caused by the residual 
stresses, but also by the crack growth resistance of the material, which increases quickly due to 
its metal-rich composition profile. Close examination of Figures 28 and 29 reveals that the 
graded material with n=l/3 would show the lowest stress intensity factors under thermal 
shock even if residual stresses were absent. The current contribution thus corroborates earlier 
calculations by Noda (1999), which also predict that thermal shock stress intensity factors can 
be reduced by gradients. The findings of this work show, however, that significantly shorter 
equilibrium crack lengths are expected if the rising crack growth (R-curve) of an FGM is 
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combined with a controlled residual stress profile. Residual stress and the rising crack grow 
resistance should thus be included in any analysis of the thermal shock resistance of 
functionally graded materials. 

5 Concluding remarks 

The lectures deal with the description of stress concentration, defects nucleation and their growth 
leading to creation of macrodefect, which course the final failure of the material. Local stress 
concentration plays very important role in the damage initiation process. This process begins at 
nano- or micro-scale and is strictly related to the particular kind of the ceramic composite. The 
damage growth process can be related to meso- or mili-scale. Final failure corresponds to macro-
scale. The problem of multiscale modelling of composites was illustrated by three examples 
presenting different approaches to the general topic of the course. 
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