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PREFACE

Various types of composites are used in engineering practice. The most important
are fibrous composites, laminates and materials with a more complicated geometry of
reinforcement in the form of short fibres and particles of various properties, shapes
and sizes.

The aim of course was to understand the basic principles of damage growth and
fracture processes in ceramic, polymer and metal matrix composites. Nowadays, it is
widely recognized that important macroscopic properties like the macroscopic stiffness
and strength, are governed by processes that occur at one to several scales below the
level of observation. Understanding how these processes influence the reduction of
stiffness and strength is essential for the analysis of existing and the design of
improved composite materials.

The study of how these various length scales can be linked together or taken into
account simultaneously is particular attractive for composite materials, since they
have a well-defined structure at the micro and meso-levels. Moreover, the
microstructural and mesostructural levels are well-defined: the microstructural level
can be associated with small particles or fibres, while the individual laminae can be
indentified at the mesoscopic level. For this reason, advances in multiscale modelling
and analysis made here, pertain directly to classes of materials which either have a
range of relevant microstructural scales, such as metals, or do not have a very well-
defined microstructure, e.g. cementitious composites.

In particular, the fracture mechanics and optimization techniques for the design of
polymer composite laminates against the delamination type of failure was discussed.
Computational modelling of laminated composites at different scales: microscopic
mesoscopic and macroscopic with application of suitable plate/shell elements for thin
composites was presented. The application of fracture and damage mechanics
approaches to the description of the complete constitutive behaviour of high
performance fibre-reinforced cementitious composites was discussed. With regard to
ceramic matrix composites (CMC) the damage and fracture processes was described
in three scales. The important problem of damage process of interfaces surrounding
particles, grains or fibres in composites was analysed for different properties of the
components of composites and in different scales.

The course brought together experts dealing with materials science, mechanics,
experimental and computational techniques at the three mentioned scales. I
acknowledge the commitment of Professors: H.Altenbach, R. de Borst, P.Ladeveze,
B.Karihaloo and Z.Mroz in making the course possible in the nice atmosphere of the
Palazzo del Torso in Udine. Lectures delivered by mentioned Professors presenting the
latest achievements in the topic of the course and discussions with the course
participants significantly enriched the scientific aim of this course. 58 participants
PhD students, postdocs, senior researchers and engineers had good opportunity to



listen to interesting lectures and discuss their on going research problems with leading
persons in the field of the course.

I thank to the Rectors and staff of CISM for help and co-operation in the
organization of the course and printing these lecture notes.

Tomasz Sadowski
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Modelling of anisotropic behavior in fiber and particle
reinforced composites ~

Holm Altenbach

Lehrstuhl Technische Mechanik, Fachbereich Ingenieurwissenschaften,
Martin-Luther-Universitdt Halle-Wittenberg, D-06099 Halle (Saale), Germany

Abstract Fiber and particle reinforced composites are widely used in aircraft, spacecraft and
automotive industries, but also in various branches of the traditional mechanical engineering.
They substitute classical materials like steel, aluminium, etc. since their specific stiffness is
significant higher. The optimal design of structures made of reinforced composites demands
the mathematical description of the constitutive behavior of these materials characterized by
anisotropic mechanical properties and inhomogeneities. This contribution is devoted to the
phenomenological modelling of fiber and particle reinforced materials.

After a short introduction the modelling principles are briefly discussed. For a realistic
material description the anisotropic elasticity is necessary. The generalized HOOKE’s law is
introduced and the symmetry relations of the stiffness and compliance tensors are discussed.
For the analysis of the limit state of composite materials various failure and strength criteria
are presented. Finally, a short introduction into modelling of polymer suspensions is given.

1 Introduction

Fiber and particle reinforced composites are used as structural materials in many application
fields: aircraft and rocket industries, mechanical and civil engineering, sport goods and auto-
motive industries, etc. The reason for this is a number of advantages in comparison with the
traditional structural materials: high specific stiffness properties, small weight, etc. It must be
noted that there are also disadvantages: for example, more complex design rules and failure
analysis. The application fields, the advantages and disadvantages are discussed, for example by
Altenbach et al. (2004); Altenbach & Becker (2003); Ashbee (1994); Chawla (1987); Ehrenstein
(1992); Gay (2002); Gibson (1994); Hult & Rammerstorfer (1994); Jones (1975); Kim (1995)
and Powell (1994).

The design of structures made of composites is connected with two main problems

e the material behavior is usually anisotropic and

e the inhomogeneous distribution of all properties must be considered.
In the first case - anisotropic material behavior - one has to apply the anisotropic constitutive
equations of continuum mechanics since the anisotropic behavior can be observed in the elastic,
viscoelastic, plastic, etc. range. In addition, the classical failure and strength analysis based on
the existence of an equivalent stress and a criterion, which allows to compare complex (multi-
axial) stress states with some experimental data based on uniaxial tests must be extended. The
problem is that in the case of anisotropic material behavior various failure modes are existing and



2 H. Altenbach

a unique criterion for all cases cannot be established. The second item - the inhomogeneity of
the material behavior - is more complicated. As is known from many practical applications for
the general analysis of the stress or strain states one can use the overall properties assuming that
the material is quasi-homogeneous and can be described with the help of effective ("smeared”)
properties. This approach works successfully in the case of structural elements made of com-
posites if only the global mechanical characteristics (for example, the deflections of plates or the
eigenfrequencies) are to be computed. In this case the comparison with the experimental data
is satisfying. A quite different situation one obtains if the local behavior plays the main role.
Now the averaged properties cannot be applied and the heterogeneity of the material must be
considered.

Below the anisotropic analysis of composite materials and structures is discussed. The atten-
tion is paid to the elastic range and the limit state only. Both situations are mostly assumed in
practical applications. In addition, two types of reinforcement are considered: the unidirectional
continuous fiber and the short fiber (particle) reinforcements. They are assumed as a satisfying
approximation in many practical cases. From the theoretical point of view the analysis of con-
tinuous fiber reinforced composites is much simpler - in the case of particle reinforcement the
heterogeneity plays an important role.

After this brief introduction the basics of modelling the material behavior and anisotropic
elasticity are presented. Some remarks concerning the principles of the global failure analysis
are presented. Finally, some models of particle reinforced composites are discussed.

2 Materials behavior modelling

The modelling of the material behavior is a necessary first step for the engineering analysis of
any structure. Since the geometry, the loading cases, etc. are often very complex the analysis
must be performed computer-aided mostly. For this purpose one needs mathematical expressions
describing the material behavior. In this section some problems in material behavior modelling
will be discussed. For further reading one can recommend, for example, Altenbach & Skrzypek
(1999); Haddad (2000a,b); Hergert et al. (2004); Lemaitre (2001); Lemaitre & Chaboche (1985)
and Skrzypek & Ganczarski (2003).

2.1 Continuum mechanics background

The basic equations in Continuum Mechanics of deformable bodies can be divided into to
groups, see Lai et al. (1993)
o the material independent equations and

e the material dependent equations.
The first group is following from the general balance equations, added by the statement of
stresses and geometrical relations. As the main result one gets the equilibrium equations or
the equations of motion. Since the material behavior can be reversible or irreversible from the
energy and the entropy balance some statements of the physical admissibility of the deformation
processes can be made.

The second group of equations allows the description of the individual response of any mate-
rial on the applied stresses/forces or strains. The so-called constitutive equations (added, may be,
by evolution equations) are related to some of the general balances (they describe the theoreti-
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cal and the mathematical framework), but the concretion must be performed without any general
physical rules. The theoretical framework for the concretion is presented by Haupt (2002); Kraw-
ietz (1886) or Palmov (1998).

In addition, the coefficients or parameters of the constitutive and the evolution equations must
be identified by tests. There are different possibilities, discussed in Altenbach et al. (1995). Let
us assume a macroscopic test, for example, the tension test. In this case one observes the stress-
strain curve assuming that the stress and the strain is acting in the same direction. The problem
is now how to describe mathematically this curve. At first, it is impossible to find a general
analytical function for all stress and strain values. At second, it is clear that such a description is
acceptable only for a very specific situation (for example, some parameters like the temperature
or the moisture are fixed, the stresses lie in a small range, etc.). So we get from the tension test
only a special law of the constitutive behavior.

It must be noted that this approach cannot be used for the modelling and simulation of the
three-dimensional behavior, especially in the case of anisotropy since one needs experimental
benefit from an infinite number of tests. In such a situation one has to perform a finite number of
tests, that means one has to realize, for example, the tension test, the compression test, the shear
test (torsion of a thin-walled cylindrical specimen), the two-dimensional tension test (biaxial
tension test) and the hydrostatic compression test. In all these cases as a result one obtains
stress-strain curves, but the curves can differ significantly. In addition, since the choice of tests
is not unique the results depend on the kind of tests that are performed. Note that tests realizing
homogeneous stress and strain states are preferred.

Limiting our further discussions to pure mechanical performances the mathematical descrip-
tion of the material behavior can be simplified since for the formulation of the constitutive and
evolution equations one needs only a few variables. Let us introduce these variables.

At first let us focus our attention on the strains. In Fig. 1 typical strains are shown. One can
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Figure 1. Possible strains: extensional (left) and shear (right) strains
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consider that there are two types of strains:

e Extensional strains ¢: The body changes only its volume but not its shape.

o Shear strains v: The body changes only its shape but not its volume.
Concerning Fig. 1 in the one-dimensional case one can define the stresses and strains as follows.
Assuming a uniform distribution of the forces ¥ and T on the cross-section we introduce

F
o = — normal stress &,
Ao
l—1g Al . .
E = — = — extensional strain &,
lo lo
T
T = — shear stress 7,
Ao
Av .
¥y = tany = N shear strain -y
0

In the general case of the classical material behavior the stress state is characterized by the
stress tensor o. This is from the mathematical point of view a second rank tensor and assuming
a orthonormal co-ordinate system (Cartesian co-ordinates x; with the unit basic vectors e; which
have to fulfil the following conditions: |e;| = 1,e; - €; = 4,5, d;; is the KRONECKER symbol,
1,7 = 1,2, 3). The following representation is valid

g = O','jeiej (21)

Using o we are applying the absolute or invariant notation, o;; are the coordinates in the index
notation. The invariant notation used here is presented, for example, by Lurie (1990).

Let us discuss the meaning of the components of the stress tensor. The normal stresses are
related to ¢ = j and the shear stresses to ¢ # j. Note that o;; = o; and for this case the stresses
are shown in Fig. 2 The three-dimensional state of strains is characterized by the strain tensor

1033 | €33
032 €32
es K -
023 £93
|t | — -
022 £
o |/ | ez | 22
e g21 €21
€1

Figure 2. Stress and strain tensor components for Cartesian coordinates

€;; with the extensional strains in the case ¢ = j and the shear strains for 3 # j. Note that ¢;;
with ¢ # j are the tensor shear coordinates, 2e;; = 7,5, % # j the engineering shear strains. The
coordinates of the strain tensor are also shown in Fig. 2.
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Any second rank tensor can also be presented as a [3 x 3] matrix. For the stresses we obtain

o1l 012 013 o1 Ti2 T3
021 022 033 | = | To1 02 T3 (2.2)
031 032 033 T31 Taz O3

Since the symmetry of the stress tensor is assumed (o0 = oT or 0ij = 0j;) the representation
can be simplified as

011 012 013 01 Ti2 Ti3
o12 022 023 | = | T2 02 T2 (2.3)
013 023 033 713 T23 O3

In addition, the following vector representation is possible
O'=[ gy 09 03 04 05 O0Og ]T (24)

Between the components of the stress tensor (2.1) or the stress matrix (2.3) and the stress vector
(2.4) the following relations exist

011 = 03, Og22 =02, 033 =03, 023 =04, O013=05, 012=0¢
Considering small deformations the following strain tensor can be introduced
1
€= [Vu]¥™ = 5[Vu + (Vu)T] (2.5)

Here u denotes the displacement vector and V is the Nabla operator. Assuming again Cartesian
coordinates one can write

1 6Uj 8u, 1
€54 = — = —(u;; +ui; 2.6
(¥ 9 <6III1 + 6.’L’j 2( 75 ZaJ) ( )
The strain tensor written down as a matrix
€11 2812 2g13 €11 Y12 M3
€= | 2612 €22 223 | = | 712 €22 Y23 @7
2e13 2e23 €33 Y13 Y23 €33
or as a vector
e=[¢e1 & €3 264=71 2655=75 26=" 1T 2.8)

The components of the strain tensor are shown in Fig. 2.

It can be established that the symmetry of the stress tensor results in a symmetry of the strain
tensor. This is not a general statement in Continuum Mechanics, but writing down the elastic
energy, for example, one can see that only the symmetric part of the strain tensor plays a role
in further discussions if the stress tensor is symmetrically. From the symmetry condition of the
strain tensor follows that the strains can be represented by (2.8).

Remark: The starting point of discussion of the anisotropic behavior is connected with three
principal assumptions:

e classical continuum assumption (no polar continua),
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e small strains assumption, and

e elastic behavior assumption.
For many composite material applications these assumptions are valid since composites are
mostly brittle, that means they behave linear elastically with the exception of the limit state
characterized by the failure. From the Material Science it is well known that brittleness can be
observed at small strains and after the elastic range the fracture starts immediately. The assump-
tion of the stress tensor symmetry is under discussion, but using non-symmetric stress tensors the
identification of the material properties is more complicated (Nowacki (1985)). So we decided
for the main part of this contribution that the assumption of the stress tensor symmetry is valid.

2.2 Elastic behavior

The history of the theory of elasticity is presented in several monographs and textbooks (Tod-
hunter & Pearson (1886), Todhunter & Pearson (1893), Love (1927), Timoshenko (1953), Het-
narski & Ignaczak (2004) among others). In parallel the theory of strength and failure was
developed. Some important steps in the development of models for the elastic behavior were

e the establishment of HOOKE’s law,
the introduction of the YOUNG’s modulus,
the stress and strain concepts,
the theory of linear elasticity,
the discussion related to the number of material parameters,
the anisotropic elasticity,
isotropic failure and strength criteria,
the anisotropic failure and strength,
the application of continuous fiber reinforced composites, and
particle reinforced composites.

It is easy to see that both the theory of elasticity and the failure/strength theories were developed
by the inductive way (the generalization was made step by step). Only during the last fifty years
the deductive theory was formulated by Truesdell & Noll (1992) and others.

Let us now discuss the elasticity condition more in detail. The starting point is the intro-
duction of two second rank tensors (the stress tensor o and the strain tensor €) which are sym-
metrically and characterize the stress and the strain state. Now the question is how to formulate
a constitutive equation for the elastic behavior.

The simplest case is the HOOKE’s law

o= FEe 2.9)

containing only one material parameter. From the mathematical point of view the HOOKE’s law
is an algebraic linear equation of two scalar variables (the stress o and the strain €). The general
form of a linear function of two variables is

oc=ac+b

The coefficients can be estimated as follows: « is equal to £ (the YOUNG’s modulus) and b in
many applications can be assumed to be O otherwise b characterizes the eigenstress. The result
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b = 0 is identical to the statement that from the stress free state assumption follows no strains
and vice versa.

The HOOKE’s law is a special constitutive equation connecting the mechanical variables only.
So, for example, isothermal conditions must be considered. The basic idea is coming from the
original HOOKE’s proposal that the loading state and the deformation state are proportional. At
present this statement can be formulated for the normal stresses and strains as (2.9). For the shear
stresses and shear strains the following relation is valid

T = G, G = I, G shear modulus (2.10)
v

From the mathematical point of view (2.9) is, as was mentioned, a linear function of two
variables. By this equation eigenstresses and eigenstrains cannot be described, and the nonlinear
behavior cannot be presented. Since the stress and the strain states in the three-dimensional
case are presented by the stress tensor and the strain tensor one has to built up a linear function
between second rank tensors

g = (4)E“ g, O0i; = ijklgk‘l;k7l = 1,2,3 (211)

The role of the proportionality factor plays the fourth rank HOOKEan tensor (Y E. Now the
main probiem is the analysis of the fourth rank tensor WE = E;jrie:e;exe; which must be
related to the material properties of the linear-elastic anisotropic continuum. The experimental
identification of the components of this tensor is non-trivial.

Considering the three-dimensional space R? the number of the elasticity tensor components
Eiji is 3% = 81 with 3 as the dimension of the space and 4 as the rank of the tensor. With
respect to the experimental effort one has to reduce this number. There are three main ideas for
the reduction:

s to use general statements of the theory like the statements of symmetry for the stress and

for the strain tensor or the statement of the elastic potential,

e to use symmetry considerations for the material behavior like the statement of monoclinic,

orthotropic or transversally-isotropic material behavior and

o the statements of approximative stress or strain states (plane stress or plain strain condi-

tions).
Let us focus our attention to the first and the second item. From the first item, see for example
Altenbach & Altenbach (1994), 0;; = 0; results in Eyjp = Ej and ey = €15 in Eijry =
E; ;1. Using both assumptions the number of tensor components is reduced to 36. In addition,
further reduction one gets from the existence of the elastic potential W. In this case one can
write down

1 1 1 1
W = _2_0- g = 55 LWE. e, W= §Uij5ij = §Eijkl5ij5kl 2.12)
Calculating the first and the second derivatives with respect to the strain tensor
oW FwW
o= WE. RAASR €YY -
oe 7 & Tgez
or )
oW oW
 —gi=E.. , ———— =F,;
6Eij Tij ijkl€kL afij Denl ikl
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one can conclude that E;;;,; = Ep;;. So finally, from the statements of the first item we obtain a
reduction of the number of independent components E;;x; from 81 to 21.

The discussed possibility of reducing the number of components allows to use a second re-
presentation of the elastic behavior. Considering the six stresses and the six strains as vectors
(2.4) and (2.8) a linear functional relationship between these vectors can be formulated with the
help of a [6 x 6] matrix (instead of the fourth rank elasticity tensor)

[0i] = [Eijlles); 4,5 =1,2,...,6

with the elasticity matrix F;;. Assuming again the existence of an elastic potential one gets
further reduction of the number of independent coordinates of the elasticity tensor. The elastic
strain energy can be expressed by the strain energy density function
1 1
W(El) = 50'161' = EEijEjEi
Let us calculate once more the first and the second derivatives of this function with respect to the
strain vector

oW W PwW 8w W

. — Ui, A a. — Eiﬁ a. a. jis =
661‘ 7 861‘85]' 7 (981'651‘ 7 85,»653» 853-851-

From the last equation one can make the conclusion that the elasticity matrix must be symmetri-
cally

E;; = Ej;
and the number of the independent material coefficients is only 21.

The generalized relations in the contracted vector-matrix form in the case of the linear aniso-
tropic elastic behavior can be written as follows

o1 En Ep Ei3 Euw Eis Eis €1
o] Esy Eys FEoy FEas Eog €2
o3 E33 E3q E3s Ejze €3

= 2.13
o4 Ey Ey Ege €4 @13)
o S Y M Ess  Ese €5
ol Ege €

Let us summarize the basic formulae for transformation of the stress, the strain and the elasticity
tensors in the relevant vectors or matrices. In Table 1 the transformation rules for the stress and
the strain tensor coordinates are shown. Table 2 summarizes the transformation rules for the
elasticity tensor.

In some cases it is more convenient to use the elasticity equation in the inverse form

€1 S11 Sz Siz Sis Sis Sie o1
€2 S22 S2z Sas S25  Sas o9
€3 Sz S3s Sz Sie 03

= 2.14
€4 S4a Sss Sae o4 @14
x5 S Y M S55 556 (249

€6 Se6 o
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Table 1. Transformation of the tensor Table 2. Transformation of the tensor coordi-
coordinates o;; and ¢;; to the vector co- nates £;;5; to the matrix coordinates Ep,
ordinates o, and €, l B l E,, J
[ oy opl &5 & ;. 11, 22, B p: 1, 2, 3
J11 g1 €11 €1 23, 31, 12 4, 5, 6
J99 (o] £99 £9 kil : 11, 22, 33 q: 1, 2, 3
J33 g3 £33 £3 23, 31, 12 4, 5, 6

023 =To3 | 04 | 2603 = Y23 | €4
031 =1T31 | 05 | 2631 =731 | €5
012 =Ti2 | O¢ | 2612 = V12 | €6

It is easy to show that

1 i=k .
[Eij][sjk}:[fsik]:{ 0 Z;ék i,5,k=1,...,6

and
o0 =FEe,0,=E;jje;, €=80,6i=>58;05 4,j=1,...,6

with E = [E;;] as the stiffness matrix and § = [S;,] as the compliance (flexibility) matrix.

2.3 Material science background

Further reduction of the number of independent components is possible if we take into ac-
count the material symmetry, see Nye (1992) among others. In dependence of the scale size
each material has a special kind of symmetry. For example, metals have a crystalline microstruc-
ture. In this case each crystal has an individual orientation and the symmetry of each crystal
can differ. In addition, they are oriented arbitrarily. On the macroscopic level the materials are
polycrystalline materials with a huge number of crystals. Averaging the properties and the indi-
vidual orientations over the volume one obtains an isotropic behavior on the macroscopic level
in contrast to the anisotropic behavior on the microscopic level.

Another situation follows from technological treatment of materials. For example, aniso-
tropic behavior can be established for initially isotropic materials after rolling processes. In
the case of reinforced materials the situation is more complicated. The individual response of
the matrix and the reinforcement can be isotropically, but the combination of both results in
a macroscopic anisotropic behavior. The analysis of possible reductions of the number of the
fourth rank material tensor components which are related to the independent material properties
will be shown for special cases of the anisotropic behavior later.

In material science structural materials are classified as follows: metals, ceramics, and poly-
mers. It is difficult to give an exact assessment of the advantages and disadvantages of these three
basic material classes, because each category covers whole groups of materials within which the
range of properties is often as broad as the differences between the three material classes. But at
the simplistic level some obvious characteristic properties can be identified:

* Most metals are of medium to high density. They have good thermal stability and can be

made corrosion-resistant by alloying. Metals have useful mechanical characteristics and it
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is moderately easy to shape and join. Metals became the preferred engineering material,
they posed less problems to the designer than either ceramic or polymer materials.

e Ceramic materials have great thermal stability and are resistant to corrosion, abrasion, etc.
They are very rigid but mostly brittle and can only be shaped with difficulty.

o Polymer materials (plastics) are of low density, have good chemical resistance but lack
thermal stability. They have poor mechanical properties, but are easily fabricated and
joined. Their resistance to environmental degradation, e.g. the photomechanical effects of
sunlight, is moderate.

The main problem in modelling the material behavior is the necessity to describe the similar
behavior (for example, the elastic behavior) using similar equations. This is the reason for the
introduction of some basic terms.

A material is called homogeneous if its properties are the same at every point and therefore
independent of the location. Homogeneity is associated with the scale of modelling and the
so-called characteristic volume. In this sense the definition can be useful only for the average
material behavior on a macroscopic level. On a microscopic level all materials are more or
less inhomogeneous but depending on the scale, materials can be described approximately as
homogeneous, otherwise as inhomogeneous. A material is inhomogeneous or heterogeneous
if its properties depend on location. But in the average sense a material can be regarded as
homogeneous, quasi-homogeneous or heterogeneous.

A material is isotropic if its properties are independent of the orientation, they do not vary
with direction. Otherwise the material is anisotropic. A general anisotropic material has no
planes or axes of material symmetry, but some special cases of material symmetries like or-
thotropy, transverse isotropy, etc., will be discussed later in detail.

Furthermore, a material can depend on several constituents or phases, single phase materials
are called monolithic. The above three mentioned classes of conventional materials are on the
macroscopic level more or less monolithic, homogeneous and isotropic.

3 Composites

3.1 Classification

The group of materials which can be defined as composite materials is extremely large. Its
boundaries depend on definition. In the most general definition one can consider a composite
as any material that is a combination (composition) of two or more materials (constituents) and
have material properties derived from the individual constituents. These properties may have
the combined characteristics of the constituents (for example, established by the weighted mix-
ture rules) or they are substantially different. Sometimes the material properties of a composite
material may exceed those of the constituents.

This general definition of composites includes natural materials like wood, traditional struc-
tural materials like concrete, as well as modern synthetic composites such as fiber or particle
reinforced plastics which are now an important group of engineering materials where low weight
in combination with high strength and stiffness are required in structural design.

In the more restrictive sense a structural composite consists of an assembly of two materials
of different nature. In general, one material is discontinuous and is called the reinforcement, the
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other material is mostly less stiff and weaker, but continuously distributed. It is called the matrix.
The properties of a composite material depend on

e the properties of the constituents,

e the geometry of the reinforcements,

e their distribution, orientation and concentration usually measured by the volume fraction

or fiber volume ratio, and

e the nature and quality of the matrix-reinforcement interface.

In a less restrictive sense, a structural composite can consist of two or more phases on the
macroscopic level. The mechanical performance and properties of composite materials are supe-
rior to those of their components or constituent materials taken separately. The concentration of
the reinforcement phase is a determining parameter of the properties of the new material, their
distribution determines the homogeneity or the heterogeneity on the macroscopic scale. The most
important aspect of composite materials in which the reinforcement are fibers is the anisotropy
caused by the fiber orientation. It is necessary to give special attention to this fundamental char-
acteristic of fiber reinforced composites and the possibility to influence the anisotropy by material
design for a desired quality.

The reinforcement constituent can be described as fibrous or particulate. The fibers are con-
tinuous or discontinuous. Continuous fibers are arranged usually uni- or bidirectional, but also
irregular reinforcements by continuous fibers are possible. The arrangement and the orientation
of continuous or short fibers determines the mechanical properties of composites and the be-
havior ranges between a general anisotropy to a quasi-isotropy. Particulate reinforcements have
different shapes. They may be spherical, platelet or of any regular or irregular geometry. Their
arrangement may be random or regular with preferred orientations. In the majority of practical
applications particulate reinforced composites are considered to be randomly oriented and the
mechanical properties are homogeneous and isotropic. The preferred orientation in the case of
continuous fiber composites is unidirectional (UD) for each layer or lamina (UD-lamina). Ex-
amples of composite materials with different constituents and distributions of the reinforcements
are shown in Fig. 3. Various classifications of composites are presented in the literature. One
possibility is shown in Fig. 4.

Composite materials can also be classified by the nature of their constituents. According to
the nature of the matrix material we classify organic, mineral or metallic matrix composites.

¢ Organic matrix composites are polymer resins or thermoplastics with fillers. The fibers

can be mineral (glass, etc.), organic (Kevlar, etc.) or metallic (aluminium, etc.).

o Mineral matrix composites are ceramics with metallic fibers or with metallic or mineral

particles.

e Metallic matrix composites are metals with mineral or metallic fibers.

The use of composites is connected with several functional requirements of fibers and matrices:

o fibers should have a high modulus of elasticity and a high ultimate strength,

e fibers should be stable and retain their strength during handling and fabrication,

e the variation of the mechanical characteristics of the individual fibers should be low, their

diameters uniform and their arrangement in the matrix regular,

¢ matrices have to interface the fibers and protect their surfaces from damage,

e matrices have to transfer stress to the fibers by adhesion and/or friction, and

e matrices have to be chemically compatible with fibers over the whole working period.
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Figure 3. Classification of laminates. a Laminate with uni- or bidirectional layers, b irregular re-
inforcement with long fibers, ¢ reinforcement with particles, d reinforcement with plate strapped

particles, e random arrangement of continuous fibers,

f irregular reinforcement with short fibers,

g spatial reinforcement, h reinforcement with surface tissues as mats, woven fabrics, etc.

At present the main topics of composite material research and technology are
e investigation of all characteristics of the constituents and the composite material,
e material design and optimization for the given working conditions,
¢ development of analytical modelling and solution methods for determining material and

structural behavior,
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Figure 4. Classification of composites after Agarwal & Broutman (1990)
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Fiber-matrix interface

Fiber

Laminate interface

Figure 5. Hierarchical modelling of laminates

o experimental methods for material properties, stress and deformation states, failure, etc.
characterization,
¢ modelling and analysis of creep and damage behavior of composites and their life predic-
tion,
¢ development of new and efficient fabrication and recycling procedures.
The most significant mainspring in the composite research and application was weight saving
in comparison to structures of conventional materials such as steel, alloys, etc. However, to
have only material density, stiffness and strength in mind when thinking of composites is a very
narrow view of the possibilities of such materials like fiber-reinforced plastics because they often
may score over conventional materials like metals not only owing to their mechanical properties.
Fiber reinforced plastics are extremely corrosion-resistant and have interesting electromagnetic
properties. In consequence they are used for chemical plants and for structures which require
non-magnetic materials. Further carbon fiber reinforced epoxy is used in medical applications
because it is transparent to X-rays.

3.2 Modelling

Composite materials consist of two or more constituents and the modelling, analysis and
design of structures built up of composites are different from conventional materials such as
steel. There are three levels of modelling (Fig. 5):

o At the micro-mechanical level the average properties of a single reinforced layer have to
be determined from the individual properties of the constituents, the fibers and the matrix.
The average characteristics include the elastic moduli, the thermal and moisture expan-
sion coefficients, etc. The micro-mechanics of a lamina does not consider the internal
structure of the constituent elements, but the heterogeneity of the ply is regarded. The
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micro-mechanics is based on some simplifying approximations. These concern the fiber
geometry and packing arrangement, so that the constituent characteristics together with
the volume fractions of the constituents yield the average characteristics of the lamina.

¢ The calculated values of the average properties of a lamina provide the basis to predict the
macrostructural properties. At the macro-mechanical level, only the averaged properties
of a lamina are considered and the microstructure of the lamina is ignored. The properties
along and perpendicular to the fiber direction, these are the principal directions of a lamina,
are recognized and the so-called on-axis stress-strain relations for a unidirectional lamina
can be developed. Loads may be applied not only on-axis but also off-axis and the rela-
tionships for stiffness and flexibility, for thermal and moisture expansion coefficients and
the strength of an angle ply can be determined. Failure theories of a lamina are based on
strength properties. This topic is called the macro-mechanics of a single layer or a lamina.

e A laminate is a stack of laminae. Each layer of fiber reinforcement can have different
orientations and in principle each layer can be made of different materials. Knowing the
macro-mechanics of a lamina, one develops the macro-mechanics of the laminate. Average
stiffness, flexibility, strength, etc. can be determined for the whole laminate. The structure
and orientation of the laminae in prescribed sequences to a laminate lead to significant
advantages of composite materials when compared to a conventional monolithic material.
In general, the mechanical response of laminates is anisotropic.

When the micro- and macro-mechanical analysis for laminae and laminates are carried out, the
global behavior of laminated composite materials is known. The last step is the modelling on
the structure level where the global behavior of a structure made of a composite material is to
analyze.

By adapting the classical tools of structural analysis on anisotropic elastic structure elements
the analysis of simple structures like beams or plates may be achieved by analytical methods,
but for more general boundary conditions and/or loading and for complex structures, numerical
methods are used. For laminated composites, assumptions are necessary to enable the mathema-
tical modelling. These are an elastic behavior of fibers and matrices, a perfect bonding between
fibers and matrices, a regular fiber arrangement in regular or repeating arrays, etc. Summarizing
the different size scales of mechanical modelling of structure elements composed of fiber rein-
forced composites it must be noted that, independent of the different possibilities to formulate
beam, plate or shell theories, three modelling levels must be considered:

¢ The microscopic level, where the average mechanical characteristics of a lamina have to

be estimated from the known characteristics of the fibers and the matrix material taking
into account the fiber volume fracture and the fiber packing arrangement. The micro-
mechanical modelling leads to a correlation between constituent properties and average
composite properties. In general, simple mixture rules are used in engineering applica-
tions. If possible, the average material characteristics of a lamina should be verified exper-
imentally. On the micro-mechanical level a lamina is considered as a quasi-homogeneous
orthotropic material.

o The macroscopic level, where the effective (average) material characteristics of a laminate
have to be estimated from the average characteristics of a set of laminae taking into account
their stacking sequence. The macro-mechanical modelling leads to a correlation between
the known averaged laminae properties and effective laminate properties. On the macro-
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mechanical level a laminate is considered generally as an equivalent single layer element
with a quasi-homogeneous, anisotropic material behavior.

e The structural level, where the mechanical response of structural members like beams,
plates, shells etc. have to be analyzed taking into account possibilities to formulate struc-
tural theories of different order.

4 Elastic composites as anisotropic solids

4.1 Basic assumptions

The classical theory of elastic solids is based on the following assumptions:
o The material behavior can be approximated as ideal linear elastic.
All elastic properties are the same in tension and compression.

o All strains are small.

e The stress and the strain tensors are symmetric.

o The material behavior is homogeneous and isotropic.

All these assumptions are fulfilled in a satisfactory manner in the case of modelling and ana-
lysis of structure elements made of conventional monolithic materials like steel. The structural
analysis of elements composed of composite materials is more complicated and based on the the-
ory of anisotropic elasticity (see, for example, Ambarcumyan (1991), Berthelot (1999), Decolon
(2002), Lekhnitskij (1981), Malmeisters et al. (1977) and Rabinovich (1970)) since the elastic
properties of composite materials now depend on the direction. In addition, the material is not
homogeneous at all. The material is piecewise homogeneous and only after averaging it can be
regarded as quasi-homogeneous.

For materials with isotropic and anisotropic behavior the governing equations are mostly
the same. The equilibrium equations, the kinematic equations and the compatibility equations
are identical because they do not depend on the behavior of the material. Let us summarize
the material independent equations (see Altenbach & Altenbach (1994), Hahn (1985), Lai et al.
(1993) among others). At first, we have the dynamic equilibrium equations

V-o+p=pt, o04;+p;=pij 4.1

with p as the density and p being the body force vector. In the index notation the spatial differ-
entiation is written as (.. .) ; (differentiation with respect to the coordinate ;). At second, in the
case of small strains the Eqs. (2.5) or (2.6) are valid. And last but not least the compatibility can
be expressed as

Vxex V=0, &jpter—¢€ijk—Eka=70 4.2)

All these equations are independent of the elastic properties of the material. Only the constitutive
equations differ significantly for an isotropic and an anisotropic body.

Let us now consider that the material behavior can be anisotropically. Below the anisotropic
elasticity in the most general form of the linear constitutive equations will be assumed. In ad-
dition, special cases of elastic symmetries are deduced (for example, the classical HOOKE’s law
for an isotropic body and the piane stress and plane strain cases). The final constitutive equations
are applied in the analysis of the laminate stiffness and compliances.
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4.2 Elastic constitutive equations, transformation rules

The composite material engineering modelling neglects the real on the microscopic scale
discontinuous structure and considers on a macroscopic or phenomenological scale the material
models as continuous (quasi-homogeneous). Fiber and particle reinforced composites are highly
heterogeneous materials as the consequence of the two constituents (fibers/particles and matrix).
It must be defined a representative volume element of the material on a characteristic scale at
which the properties of the material can be averaged and such a procedure results in a good
approximation. If such an averaging is possible the composite material is macroscopic homoge-
neous, the designing structural elements composed of composite materials can be solved in an
analogous manner as for conventional materials with the help of the average material properties
(effective properties concept).

Let us present the main approaches in averaging material properties. We assume that a pris-
matic bar is composed of different materials as shown in Fig. 6. The starting point of the

Ey . -
i - A J
? F | F
I 7 e E| 1 | ET™
: L 1]
E,
! _ l

Figure 6. Prismatic bar composed of different materials

analysis of the mechanical behavior of such a bar is the stress definition o = F'/A and the one-
dimensional elastic law o = Ee. From this follow 0 A = F = EAe and finally ¢ = (EA)~'F.
EA is the tensile stiffness and (EA)~! the tensile flexibility or compliance. Now we assume
that the different materials of the prismatic bar are arranged in parallel or series.

In the first case the arrangement is in parallel (VOIGT’s model) that means

n n
FIZFi, AZZAQ, E=¢&;
i=1 i=1
The F; are the loading forces on A; and the strains ¢; are equal for the total cross-section
n n
F=EAs=F,=FEAe, Y F=F=Y EjAe
i=1 i=1

By coupling the equations for the stiffness F; A; one observes the effective stiffness

EA=)_EA;, (EA)™' = 1

=1 z”: E;A;
i—1
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Figure 7. Rotation of the coordinate Figore 8. Rotation of the coordinate
system. Reference system: ej,es,es, system around the direction e3

rotated system: e/, e}, e}

The second case is the arrangement in series (REUSS’ model). With Al = > | Al; and
F = F; one gets

Al =le =U(EA)TIF, Al =le; =1L(BA) ' F
and

F

i Al; =
=1

By coupling the equations for the stiffness F; A; one observes the effective stiffness as

z”: L(EA;) !
i=1

z": L(E:iA)™
i=1

! (BA)! = =

k03 ¥

> L(EA)T

=1

FA=
l

The averaging in the VOIGT’s or REUSS’ sense can be applied as a first approximation for the
properties of unidirectional reinforced layers. This is demonstrated, for example, by Altenbach et
al. (2004). But it is well-known that the agreement with experimental data is partly not satisfying,
see Hult & Rammerstorfer (1994) and Malmeisters et al. (1977). So there are many proposals
for improvements of the effective properties.

4.3 Transformation rules

Let us consider the rotation of the coordinate system as shown in Fig. 7. In this case the
following transformation rules

I 7 — 7 — 7
e; = R;je;, e = Rje;, R;j= cos(e;,e;), Rj; = cos(e;,e})
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and
¢ =Re, e=R ‘¢ =R"¢
are valid. R is the transformation or rotation matrix. R is symmetric and unitary (Det R =
|Rij|=1,R™1 = RT).
Considering the special case of rotation ¢ around the direction e3 (Fig. 8) the transformation
matrix takes the form

3 c s 0 3 7-1 3 17T c —s 0
|iRiJ} = -s ¢ 0 N i:RZ]:{ = I:R”} = S C 0 s
0 0 1 1

Now the transformation rules are

e; c s 0 €1 e ¢c —s 0 e
es | =] -s ¢ 0 ex |, e |=|s ¢ O €5
es 0 0 1 e es 0 0 1 e;

with ¢ = cos ¢, s = sin ¢.

After the introduction of the transformation rules for the coordinate axes one has to discuss
the transformation rules for the tensors. Let us start with the second-rank tensors. For the stress
tensor one gets

0i; = RiRj1001, 0y = RiiRijoy 4.3)
The transformation rules for the contracted notation result in
—~1
O’; =Tp0q 0p= (qu) a;, pg=1,...,6 4.4

The transformation matrices Ty, and (ng’q)_]L follow by comparing (4.3) and (4.4). By analogy
one gets for the strain tensor (contracted notation)

’ -1 _
€, = TpeEqs ep:(T;q) €y Pg=1,...,6

Summarizing all derivations the following equations can be established
o' =T, €& =T%€, o= (T°) 'd, e=(T°) "¢ (4.5)

Considering these equations the transformation relations for the elasticity matrix can be deduced.
The starting point is the HOOKE’s law

oc=FEe¢, o =FE%¢
With Eqgs (4.5) one can write down

(T°)'o' =0 = Be = E(T)"'¢ = o =T°E(T%)"' = B¢,
T°0c =0’ = E'¢’ = E'T% = o= (T°)"'E'T°¢ = E¢,

and the transformation relations for the stiffness matrix are

E =T°E(T°)", E=(T°)"E'T*
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or in index notation

!/ __ oo _ e e !
Eij - iijlEkl, Eij = Tz‘ijlEkl

Analogically the transformation relations for the compliance matrix can be formulated.

starting point is now
e=80, & =80

and after some calculations

(T¢) e’ =e =80 =8(T°) ¢/ =
Te=¢'"=8¢"=5T =

' =T8(T°) o' =80,
= (T%)"18'"T?0 = So,
one finally gets

S =T8(T5)T, §=(T°)'S'T’,

or in index notation
/ _TE Te _. oo ol
Sij — tik jlsklv Sij =T lekl

The

The complete estimation of the transformation rules is presented in Altenbach et al. (1996) and

Altenbach et al. (2004).

For the special case of a rotation ¢ around the e3-direction (Fig. 8) the transformation matri-

ces take the form

2 2 00 0 2cs
2 2 00 0 —2s ) .
s 0 0 1 0 O 0 3 - 3
{qu] = 0 0 0 ¢ —s 0 J {qu] = [Tzfq]
0 0 0 s ¢ 0
| —cs s 00 0 -5 |
[ 2 s2 0 0 0 cs
5% & 00 0 —cs . r
3 0 0 1.0 0 0 31 3
[Tzfq] = 0 0 0 ¢ —s 0 ) [Tzfq} = [qu]
0 0 0 s ¢ 0
i 28 2s 0 0 0 ¢2—¢2

4.4 Symmetry Relations of Stiffness and Compliance Matrices

The most general case of the three-dimensional generalized HOOKE’s law is connected with
the stiffness and the compliance matrices containing 36 non-zero material parameters £;; or S;;,
but due to the potential assumption only 21 are independent constants. In many cases the material

show symmetries in their behavior. Important material symmetries are
e monoclinic material behavior,

¢ orthotropic material behavior,

transversally isotropic material behavior, and

isotropic material behavior.
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Figure 9. Example of monoclinic Figure 10. Example of orthotropic material behavior.
material behavior. 20 non-zero el- 12 non-zero elements E;; or S;;, 9 independent ele-
ements E;; or S;;, 13 independent ments

elements

In all these cases the number of independent components of the stiffness or compliance matrices
can be reduced.

Let us assume monoclinic (monotropic) material behavior. If we have one plane of symmetry
(for example, Fig. 9) the elasticity matrix takes the form

Eyn Ep Eiz 0 0 Eie
Eyy Ex Ey 0 0 Eux
0 Ejsg

]MC | 13 Eaz Esz3 O
0 0 0 Fy Fys 0
0 0 0 Esup Es5 O

Ewe Ez FEz 0 0  FEegs

(Eij

Assuming orthotropic material behavior (for example, Fig. 10) the elasticity matrix takes the
following form
Eyy Epp Ejz 0 0
Ey FEon FE O 0
[Eil]O _ | B1s Eas Esz O 0
0 0 0 Eg4 O
0 0 0 0 Esxs O
0 0 0 0 0 Fes

OO oo

The next example is the transversely isotropic material behavior. Now one obtains 12 non-zero
elements and 5 independent elements

Enw Epp Eip 0 0 0

Eis Epy Ey 0 0 0

2 .]TI _ | Bri2 E Ex 0 0 0
K 0 0 0 %(EQQ el Ezg) 0 0

0 0 0 0 FExy 0

0 0 0 0 0  Ess
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Table 3. Compliance matrix elements

Material model Compliance matrix [S;;]

S11 S12 Siz Suu S5 Sis
Sap Soz Saa Sos  Sag

Anisotropy: S3z Sza Sss Sse

21 independent

. Saa Sas Sae
material parameters S Y M Ses  See
Se6

Symmetry plane z3 = 0 :
S14 = S15 = So4 = Sa5 = S34 = S35 = Sy6 = Ss56 =0
Symmetry plane zo = 0 :
S14 = S16 = S24 = S = S34 = S36 = Sa5 = 56 =0
Symmetry plane z; = 0 :
S15 = S16 = Sa5 = Sog = S35 = S36 = Sas = S46 =0

Monoclinic:
13 independent
material parameters

Orthotropic: 3 planes of symmetry z1 = 0,z2 = 0,23 =0
9 independent S14 = S15 = S16 = S24 = Sos5 = Sos = S34
material parameters = S35 = S36 = S5 = S4 = S56 = 0

Plane of isotropy 23 = 0 :
S11 = S22, S23 = S13, Saa = Ss5, Se6 = 2(S11 — S12)

Transversely isotropic: Plane of isotropy x2 = 0 :
5 independent 511 = 533, Slz = 523, S44 = SGG» Sss - 2(533 - SIS)
material parameters Plane of isotropy z1 = 0 :

S = Ss33, 513 = S12, S55 = Se6, Saa = 2(S22 — S23)
all other S;; like orthotropic

811 = S22 = S33, 512 = S13 = Sas,

Si4 = Ss5 = See = 2(S11 — S12)

all other S;; =0

Isotropy: 2 independent
material parameters

The classical isotropic material behavior can be represented by

Fiw Ey, Ey 0 0 0

E, FEy Eis 0 0 0

iz .]I _| Bi2 Er2 En 0 0 O
0 0 0 FE, O 0

0 0 0 0 E. O

0 0 0 0 0 E,

with E, = %(Eu — E12). There are 12 non-zero elements, but only 2 independent parameters.
The results for the tree-dimensional compliance matrices are shown in Table 3. The results for
the three-dimensional stiffness matrices can be summarized as shown in Table 4.

The structural analysis in engineering is mostly based on the so-called engineering constants.
Considering orthotropic material behavior with material parameters E;, G;; and v;; one can write
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Table 4. Stiffness matrix elements

Material model

Elasticity matrix [E;;]

Anisotropy:
21 independent
material parameters

[ By B Ens
Eyy  Eas

Es33

S Y M

Eyy
Esay
Es3y
Eyy

Eys Eig
Eas  FEog
E3s  Esg
Eys  Ege
Ess  Esg

Egs

Monoclinic:
13 independent
material parameters

Symmetry plane zg = 0 :
Ei\4 = E15 = By = Eps = E34 = FE35 = Eys = E56 =0
Symmetry plane o = 0 :
E1y = FEig = Eyy = Fog = E34 = E36 = Egs = E56 =0
Symmetry planez; =0 :
Ei5 = Eig = FEys = FEpg = E35 = E3g = Egs = Eys =0

Orthotropic:
9 independent
material parameters

3 planes of symmetry z; = 0,22 = 0,23 =0
Evy = Ej5 = F1g = Epy = Eos = Eyg = E34
= E35 = B3¢ = Eys = Eug = Fs6 =0

Transversely isotropic:
5 independent
material parameters

Plane of isotropy 3 =0 :
Ey| = Ey, Ey3 = Ey3, B4 = Es5, Egs =
Plane of isotropy o = 0 :
Ey = E33,Ey3 = Eo3, B4y = Ege, Ess =
Plane of isotropy 1 = 0 :
Eyy = E33, Ey2 = Ey3, Ess = Ege, B4 =

all other E;; like orthotropic

(Ell - El?)

N

(Es3 — Ers)

[N

+(Eaz — Ea3)

Isotropy: 2 independent
material parameters

Ey = Eyy = B33, B3 = F13 = Fag3,
Es4 = Es55 = E¢s = 5(E11 — En2)

all other E;; = 0

down

o1 = Ene1 + Eraeg + Ejzes,
02 = Ey3e; + Eazea + Eozesy,
03 = Ey3e; + Eozey + Eszes,

The inverted generalized HOOKE’s law takes the form

€1 = 51101 + S1202 + S1303,
€2 = S1201 + S2202 + S2303,
€3 = S1301 + Sa2302 + Sa33073,

Let us now identify the constants.
At first, we perform the tension test. The uniaxial tension in x;-direction, o1 # 0, g; = 0,
t = 2,...,6 can be presented by

€1 = 51101,

€9 = 81201, €3 = 51301,

04 = Ey4ey,
o5 = Esses,
o6 = Eggce
€4 = 84404,
g5 = S55075,
€6 = Se606

g4 =65 =¢c¢g =0,
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Physical tensile tests yield the elastic constants 1, 12,13

g1 1 E9 €3
Ei=—=—, vipg=——=-S1pk;, viz=—-—=-S3k
€1 St €1 €1
or .
Viz V1ig
Suu=—+, Se=-,4, Ss=-4]
Ey’ By’ Ey

Analogous relations resulting from uniaxial tension in z2- and x3-directions and all S;; are re-
lated to the nine measured engineering constants (3 YOUNG’s moduli and 6 POISSON’s ratios)
by uniaxial tension tests in three directions z1, z2 and x3. From the symmetry of the compliance
matrix one can conclude

Vis _ Va1 Va3 Vsa V31 _ V13
E1 EQ’ E2 E’37 E3 El
or E
Vij Vi Vij % .. : .
YR KA — = 175=1,23 (i
E B v, B (i #J)

Remember that the first and the second subscript in POISSON’s ratios denote stress and strain
directions, respectively.
At second, one can perform the shear test

€4 = 54404, €5 = S5505, €6 = Se606

The compliances can be estimated as

S — 11 11 G = L _ _1_
44_G23_E4’ 55_G3—E5’ 66—G12—E6
Finally one gets
mo1 Vig V13 T
— == —-== 0 0 0
E, 51 Ey
V23
&1 E_2 "F—Q 0 0 0 o1
£9 g2
es | _ —E—3 0 0 0 o3
E4 _1_ 0 0 04
Es Ey ) o5
€6 S Y M A 0 06
o
L B

Let us now estimate the components of the elasticity matrix. The following trivial relations
between stiffness and compliance matrices can be obtained

1 1 1
=g Gaos, Ess 5o Gis, 55 = Gog 12
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In addition, a symmetric [3x3}-matrix must be inverted

" S11 S12 S
I 11 S12 O3
E;; = S;l = ()—Uz, Det[Sij] =| S12 Sy 823
Det[Sij] Si3 So3 Sas

The U;; are submatrices of S to the element .S;;

892533 — S35 513523 — S12533 _ S33S11 — Siz

—0RIB OB g By = 23321~ 213
" Det[S;;] 12 Det[S;] = Det|[S;;]
o — S12513 — 523511 Ean = S11822 — 5%, B = S12823 — S13522
23 Det[Si]‘] 3= Det[Sij] ’ 13 Det[Sij]

Finally, the stiffness matrix can be expressed by engineering constants as follows

(112 + vi3vs2) By (v13 + viav23) Es

(1 — vo3v32) E4

E = y E = B E = 3
11 A , Eyp A 13 A
(1 —wv31v13)Es (va3 + vo1113) Es (1 — va1v12)E3
Jo N S 10 Vs A N | Egy = o 2UN2)ES
22 A 23 A 33 A
with A =1 — va1v12 — V32103 — Vi3Va1 — 2v21V13V32.
Taking into account E; /A = E;,1/S; = E; one gets
o1 (1 —vogvs2)E1 (V12 + 1/13V32)_E2 (vi3 + V12V23)Es €1
o2 | = (1 —vaivi3)Ea  (vos + v21vi3)Es €2 |,
o3 SYM (1 —vov12)Es €3
04 FE, 0 0 €4
o5 = E5 0 £s
o6 SYM Es || e

The most general case of monoclinic material behavior with the plane of elastic symmetry
(z1 — x3) results in

1 va v 0 o et i
E; Es E;3 Fe
- A o .2
£l Ey £y E3 Es a1
& _ns v Loy T || 02
€3 _ E1 E2 Eg 1 E6 g3
€4 0 0 o = By o4
Ex E4 .E15 05
Has
€6 0 0 0 — — 0 O6
Ey Ej
he 26 136 0 0 1
X E1 E2 E3 E6 -

with the following reciprocal relations

Mot _ Mo Tz _The  Tes _ Tss  hsa _ flas

E6 E1 ' E5 E2 ’ E6 E3 ’ E5 E4
The u;; are the shear-shear stress coupling parameters, the 7;; the normal-shear stress coupling
parameters (Lai et al. (1993)).
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4.5 Two-dimensional Material Equations

A thin lamina can be considered to be under the condition of plane stress with all stress com-
ponents in the out-of-plane direction being approximately zero (Fig. 11). The two-dimensional

T

Figure 11. Plane stress statements

generalized HOOKE’s law for the plane stress state with respect to the 1 — x2 plane can be
formulated as follows

€1 Si1 S12 Sz Sia Si5 Sie o1
€2 Saz  Sa3 Sa2a Sos Sae op
ez | _ Saz 831 Szs Sz 0
ea | | S S44 Sss Sse 0
Es Y S55 S56 0
s i L M 566 L (X

In this equation is assumed 03 = 04 = 05 = 0. In addition we ignore the shear strains ¢4 ~
€5 =~ (). Based on these statements so-called reduced constitutive equations can be set up. Three
in-plane constitutive equations can be established

€1 = S1101 + 81203 + S1606
€2 = S1201 + Sa202 + S260%, Si; = S
€6 = S1601 + S2602 + Se606

and an additional equation for the strain €3 in x3-direction can be formulated
g3 = S1301 + S2302 + S3606

The inverse relations are

o1 En Ep Eiz3 Eu Eis Eg €3
o2 Eyy Eyy Eyy Exs Egg €2

0 | _ Fs3 FEss Eszs Ese | _ | €3
06 L M Egs €6




26 H. Altenbach

or again three in-plane equations

o1 = Ey1e1 + Eqg6y + Ej3e3 + Eiscs,
02 = E9e1 + Egze9 + Egzes + Eoges,
o6 = E1661 + Eopeo + E3ges + Eggcs

Ei; = Ey

The reduced stiffness can be deduced taking into account the condition
g3 = E1361 + E23€2 + E3383 + E3656 =0

Now the strain £3 can be eliminated

1

g3 =
E33

(Er3e1 + Easea + Esscs)

and the three in-plane equations can be rewritten

0, = (E‘L— EIBE]B)EszijEja ivj:17276
Es3

Q;; denotes the reduced stiffness matrix since the values of the elasticity (stiffness) matrix will

be partly reduced. The number of unknown independent parameters of each of the matrices S;;,

E;; or ¢Jy; is six. In Table 5 the elements of the compliance matrix are shown. The results for

the reduced stiffness matrix are presented in Table 6. Similar discussion one can perform for

the plan strain state. In this case a reduced compliance matrix with the components V;; can be

Table 5. Compliance matrix representation (plane stress state)

Material model e=S8o
Anisotropy: Compliances S
€1 S Sz Swe o1
6 independent material parameters €2 | = S22 S26 02
€6 Ses o
1
Orthotropy: S16 = S26 = 0, S11 = B
4 independent material parameters | Sao = 1 S12 = et
p p 22 = By’ 12 B By
1
Reference system: on-axis Seg = ——
G2
Isotropy: S16 = S26 =0
. . 1 v
2 independent material parameters | Sy = S0 = ok S12 = 5
2(1 1
Reference system arbitrary See = 2(S11 — S12) = % =G
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Table 6. Stiffness matrices (plane stress state)

Material model o=Qe
Anisotropy: Reduced stiffness Q;
a1 Quu Q12 Qs €1
6 independent parameters oy | = Qa2 Qo €2
o6 Qs6 €6
Orthotropy: Q16 = Q26 =0, Qos = 51(; = Gi2
. So2 E, S Ey
4 independent parameters | Q3 = AN T T v 2N T 1 v
. S12 v12Eo
Reference system: on-axis | Q1o = N T—:Twu—m
A = 51182 — 5%
E
Isotropy: 2 parameters Q16 = Q26 =0,Q11 = Q22 = -
. vE E
Reference system arbitrary | Qo = T2 Qe6 = 1) G
Table 7. Number of non-zero elements
| Material model [ Non-zero parameters | Independent parameters |
Three-dimensional Eij; Sij Eij; Si;
stress- or strain state ,j=1,...,6 i,j=1,...,6
Anisotropic 36 21
Monotropic 20 13
Orthotropic 12 9
Transversely isotropic 12 5
Isotropic 12 2
Plane stress state Qij; Sij Qij; Sij
(r1 — z2)-plane 1,7=1,2,6 i,7=1,2,6
Anisotropic 9 6
Orthotropic 5 4
Isotropic 5 2
Plane strain state Ei;i Vij E;;; Vi
(z1 — x2)-plane 1,7=1,2,6 i,7=1,2,6
Anisotropic 9 6
Orthotropic 5 4
Isotropic 5 2
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introduced. All details are presented in Altenbach et al. (2004). Finally, the number of non-zero
elements for the three-dimensional and the two-dimensional equations are presented in Table 7.

5 Failure and strength criteria

5.1 Introductional remarks

The description of the material behavior which is the basis of the engineering analysis of
structural elements, etc., should be mathematically correct and correspond to some physically
based experiences. Due to the complexity of the behavior of real materials the establishment of
suitable equations for the material behavior description is sometimes connected with difficulties
and increasing effort. At present the models of isotropic and anisotropic elastic behavior are
well established, but the formulation of models for the inelastic and failure behavior is under
discussion. This statement is valid for all materials including composites.

In this section we pay our attention on the failure behavior. In the literature one can find
various proposals for modelling the failure behavior, see Paul (1968); Altenbach et al. (1995);
Yu (2004) among others. The main problem is the selection of the description level reflecting
adequate the knowledge of the physics of solids and/or material science. Concerning this fact
one can classify again the proposed models as microscopic, mesoscopic, macroscopic, etc. (cp.
Sect. 3.2). Note that the use of microscopic models in the analysis and calculation of struc-
tural elements, which geometry is much larger in comparison with the characteristic size of the
microstructure, is impossible since the computer power till now has been limited. On the other
hand, there exist various phenomenological (engineering) models which are unable to reflect all
details of the microstructure but they are a powerful tool for engineering calculations.

Limiting the discussion below by failure analysis two phenomenological models are intro-
duced and discussed. The starting point of both is the assumption that a limit stress can be estab-
lished. For example, in the case of the loss of the overall stiffness this is the ultimate strength,
which is a material characteristic specific for the given material. It must be underlined that its
experimental estimation is connected with difficulties but the accuracy is enough for engineering
applications.

Modelling the limit behavior the use of the equivalent stress concept allows to compare the
multi-axial limit states with uniaxial experimental data. For many materials and loading con-
ditions the classical proposals of HUBER, VON MISES and HENCKY or TRESCA describe with
the necessary accuracy the failure condition or the beginning of yielding. In addition, for the
case of monolithic materials such as metals it is sufficient to use one observable characteristic
such as the ultimate tensile, compressive, or shear stress to describe the failure, see Vinson &
Sierakowski (1987). Taking into account non-classical effects like different behavior in tension
and compression a generalization of the classical limit criteria must be introduced. In this case
like in the case of composites one has to select a suitable failure criterion based upon a number
of observable characteristics.

Let us assume that the stress estimated Cesgimated (from the calculations) must be compared
with a critical stress (from tests) o¢ritical

Oestimated S Ocritical
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The problem is that the three-dimensional stress state is characterized by the stress tensor o.
How to compare this tensorial quantity with any scalar-valued critical stress Ocritica1? There
is one engineering solution: the definition of an equivalent stress geq = 0eq(0, - ..) Which is
scalar-valued '

Oeq < Ocritical

This method is well-established in the case of classical isotropic structural materials like steel.
For composites one has to consider the anisotropy and the existence of various, quite different
failure modes (see, for example, Vinson & Sierakowski (1987); Puck (1996)). So the question
is how to define the equivalent stress. A similar situation we have if we introduce strain based
criteria.

From the strength of materials we know that we have to make at first some engineering
assumptions, after that we have to formulate a criterion (hypothesis), and last but not least we
have to perform an experimental proof. The anisotropy can be included if we are able to extend
the classical isotropic criteria. The extension of the classical criteria can be based mathematically,
but the identification of the material parameters can not be solved in a satisfying manner since
relevant tests can not be performed.

Let us briefly discuss the main classical isotropic limit criteria which are summarized, for
example, in Paul (1968); Altenbach et al. (1995); Lemaitre (2001); Yu (2004):

o Maximum principal stress criterion

Oeq = 01

Assuming this criterion the solution steps are: solving the eigenvalue problem for the stress
tensor, estimation of ¢; which is the maximum of the eigenvalues.
o Maximum strain criterion
Oeq = 01 — V(o2 + 03)
Here the solution steps are: solving the eigenvalue problem for the strain tensor, estimation
of the maximum strain, recalculation of the stresses assuming the HOOKE’s law.
o Maximum shear stress criterion
Oeq =01 — 03
Now the solution steps are: solving the eigenvalue problem for the stress tensor, estimation
of the maximum eigenvalue and the minimum eigenvalue.
o Distorsion energy criterion

Oeq = \/%[(01 —02)? + (02 — 03)2 + (03 — 01)?]

After calculating the eigenvalues the criterion can be applied.
The use of isotropic failure and strength criteria is connected with the following statements:
o the comparison of the estimated stresses and the critical values must be performed for each
point of the structure,
o the first and the second criterion are suitable for very brittle materials,
o the third and the fourth criterion are more suitable for ductile materials,
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e the experimental verification must be performed with respect to the material behavior (duc-
tile, brittle), the loading and other conditions, and

e the anisotropy is not taken into account.

With these statements one can make the conclusion that the introduced criteria can be used also
in the case of yielding.

5.2 Failure mechanisms and criteria for composites

The failure of structural elements can be defined in a different manner:
e As in the case of buckling, a structural element may be considered as failure though the
material is still intact, but there are excessive deformations.

e Here failure will be considered to be the loss of integrity of the composite material itself.
In the case of monolithic materials stress concentrations, e.g. around notches and holes, cause
localized failures. For brittle materials local failure may lead to complete fracture and therefore
to a total loss of load-carrying capability. For ductile materials local failure may be in the form
of yielding and remains localized, i.e., it is tolerated better than brittle failure. Since composites
are not monolithic materials now we have to consider a more complex situation.

The fail-safe philosophy has been employed in the design of metallic structures and is stan-
dard in engineering applications. Similar procedures for composite materials are not well defined
and are the object of intensive scientific research up to now, see Puck (1996); Christensen (1997).
Main causes of failure are design errors, fabrication and processing errors or unexpected service
conditions. Design errors can be made in both material and structure. The stress level carried
by each lamina in a laminate depends on the elastic moduli. This may cause large stress gradi-
ents between laminae which are oriented at considerably large angles to each other (e.g. 90Y).
Such high levels of internal stresses in adjacent laminae may develop a result of external applied
loads but also by temperature and moisture changes. Service anomalies can include improper
operation, faulty maintenance, overloads or environmental incurred damage.

If structural loadings produce local discontinuities inside the material we speak of a crack.
Micro-cracking is considered as the nucleation of micro-cracks at the microscopic level starting
from defects and may cause the initiation of material fracture. Macro-cracking is the propagation
of a fracture by the creation of new fracture surfaces at the macroscopic level. For composite
materials the fraction initiation is generally well developed before a change in the macroscopic
behavior can be observed. If in a laminate macro-cracks occur, it may not be catastrophic, for
it is possible that some layers fail first and the composite continues to take more loads until all
laminae fail. The failure of a single layer plays a central function in failure analysis of laminates.

Composite fracture mechanisms are rather complex because of their anisotropic nature. Fail-
ure modes depend on:

e the applied loads and

o the distribution of reinforcements in the composites.
Continuous fiber reinforced composites show
e intralaminar fracture,

e interlaminar fracture, and

e translaminar fracture.
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Intralaminar fracture is located inside a lamina, interlaminar fracture shows the failure developed
between laminae and translaminar fracture is oriented transverse to the laminate plane. The frac-
ture of a UD-lamina is the result of the accumulation of various elementary fracture mechanisms:
fiber fracture,

transverse matrix fracture,

longitudinal matrix fracture, and

fracture of the fiber-matrix interface.

Elementary failure mechanisms are shown in Fig. 12. How to estimate the basic strength

Figure 12, Elementary failure mechanisms. a Fiber fracture by pure tension o1, > 0 or compres-
sion o1, < 0 (micro-buckling), b Matrix fracture by pure tension ot > 0, pure shearing oy and
pure compression op < 0

parameters can be seen in Fig. 13. The in-plane shear failure modes are shown in Fig. 14.

Besides the basic failure mechanisms for a single layer another fracture mode occurs: delam-
ination (separation of layers). The matrix material that sticks the laminae of a laminate together
has substantially smaller strength than the in-plane strength of the layers. Stresses perpendicular
to the interface between laminae may cause breaking of the bond between the layers in mostly lo-
calized, small regions. They may affect the integrity of a laminate and can degrade their in-plane
load-carrying capability.

The definition of failure may change from case to case and depends on the composite mate-
rial and the kind of loads. For composite materials, such as UD-laminates, the end of the elastic
domain is associated with the development of micro-cracking. But in the first stage, the initi-
ated cracks do not propagate and their development changes the stiffness of the material very
gradually but the degradation is irreversible.
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a b
o, >0 o, >0 01 <0 oL <0

« L > -t

material property: o1y  material property: or.

c TUT >0 d laT <0

ioT >0 TO’T <0
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material
i T property:
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ULT ——

Figure 13. Definition of basic strength parameters. a Longitudinal tensile strength oy, b lon-
gitudinal compressive strength o, ¢ transverse tensile strength o7y, d transverse compressive
strength or., e in-plane (intralaminar) shear strength 75

Let us now discuss failure criteria for composites. This must be done with respect to the
following items:

¢ The simplest form of such criteria is similar to those used for isotropic materials.

e The major difference between isotropic materials and unidirectional fibrous composite ma-

terials is the directional dependence of the strength on a macrosopic scale.

o The criteria presented here are purely empirical with the minimum of test data.

o The failure criteria are usually grouped in literature into three different classes: limit crite-

ria, interactive criteria, and hybrid criteria.
In the following we discuss only selected criteria of the first two classes.

Laminate failure criteria are applied on a ply-by-ply basis and the load-carrying capability
of the entire composite is predicted by the laminate or sandwich theories. A laminate may be
assumed to have failed when the strength criterion of any of its laminae is reached (first-ply
failure). However, the failure of a single layer not necessarily leads to a total fracture of the
laminate structure. The following criteria are mostly applied (note that here the English terms
are used, in the Russian literature are similar criteria proposed, but named by other scientists,
Malmeisters et al. (1977); Tamuzh & Protasov (1986)):

e maximum stress theory,

e maximum strain theory,

e deviatoric or distorsion strain energy criteria of TSAI-HILL, and

e interactive tensor polynomial criterion of TSAI-WU (1971).
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Figure 14. In-plain shear failure. a Positive and negative shear stresses along the principal ma-
terial axes, b positive and negative shear stresses at 450 with the principal material axes

Other criteria which are completely different are presented, for example, in Hashin (1980), but
they are not discussed here.

Let us present criteria for UD-laminates considering plane stress state and assuming

¢ orthotropic material behavior,

e thin layers, and

¢ quasi-homogeneous behavior.
The maximum stress and the maximum strain criteria assume no stress interaction while the other
ones include full stress interaction. The maximum stress theory assumes that failure occurs when
at least one stress component along one of the principal material axes exceeds the corresponding
strength parameter in that direction

oL = OLt, o, > 0, oTr = 0T, or > 0,
o1, = OLe¢, o < 0, oT = OTe, or < 0,
lovr] = 73,

The layer failure does not occur if

—0Le < 0L <  OLt,
-0t < or < OTts
—Tg < o < T§
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Figure 16. Off-axis tension or compression of
Figure 15. Maximum stress criterion a UD-lamina

For a two-dimensional state of normal stresses, i.e. o, # 0,01 # 0,opr = 0, the failure
envelope takes the form of a rectangle (Fig. 15). Note that the formulated criterion contains
the assumption of different behavior in tension and compression. Such a behavior is typical for
composites.

In the case of off-axis loading (Fig. 16) the strength properties must be recalculated.

o, = o1 cos? 8 = o0 o1 = oL/c
or = o1 sin® = 08 = o = or/s?
oLt = —018infcosfd = -—o0;1sC o1 = -—our/sc

—OLe < 0’162 < OLsy
—01c < 0132 < OT,
—Tg < o018¢ < Tg

Ultimate strength for o, corresponds to the smallest of the following six values

_ 2 _ 2 -

o1 = oL/’ o, =01 /%, on =Tg/sc, o1 >0,
_ 2 _ 2 -

O1c = 0L/, 01 = O1c/8°, 01c = T5/8c, 01 <0

The failure modes depend on the corresponding ultimate strength o1,

o014 = o1t /c?  fiber failure,
01y =0Tt/ s% transverse normal stress failure,
0140 = Ts/sc  in-plane shear failure

Because of the orthotropic symmetry, shear strength is independent of the sign of o1 and there
are five independent failure modes. There is no interaction among the modes although in reality
the failure processes are highly interacting. The maximum stress criterion can be applied to
brittle failure modes.

Maximum strain theory is similar to the maximum stress theory

£L = €Lt L, > 0, ET = ETt ET > 0,
€L = €Lc e, < 0, ET = €T¢ er < G
lerr] = es

The lamina failure does not occur if

—E€Le < €L < €Lty —ETc <eT <E€1t, —€s <eérr <€s
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Figure 17. Maximum strain criterion

The engineering moduli in the principal directions Ey,, 1, Grr, vir, 11, can be introduced

1

= E—L(C2 - VLT52)0'1,~5T =

2 2
€1, —(s* —vrLc)or, e = —5—5001

Er LT

The maximum strain and stress criteria must lead to identical values in the cases of longitudinal
loading and § = 0° or transverse unidirectional loading and # = 90°. The identity of the shear
equations is given in both cases. This implies that

OLt OLe 0Tt OTc 7s

ELt = - 5 €Le = T » ETt = oy ETe = € = ~—
EL’ C EL, ET’ C ET) GLT

and the maximum strain criterion may be rewritten as follows

2 2

—0ore < ou(ef —vprs®) < owg,
2 2

—ore < o01(s® —vpLe’) < oty

—Ts < 018¢C < g

By comparing maximum stress and strain theories we establish that the two criteria differ by the
introduction of the POISSON’s ratio vy in the strain criterion. In practice these terms modify
the numerical results only slightly. In the special casc of a two-dimensional stress state o1, # 0,
ot # 0,opr = 0 the failure envelope takes the form of a parallelogram for the maximum strain
criterion (Fig. 17).

The next criterion is the distorsion strain energy criterion of TSAI-HILL (Hill (1950)). This is
an interactive criterion applied to anisotropic materials and was introduced by HILL. The starting
point is the classical isotropic HUBER-VON MISES-HENCKY criterion

a? + 0%1 —OJ0I] = Oeq
or in a general reference system
02+ 02 — 0109 + 308 = Oeq
with o7, o7 as the principal stresses. HILL’s modification can be formulated as

Ac? + Bo? + Coy00 4+ Do2 =1
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A, B,C, D are material parameters. Note, in in the case of anisotropy distorsion and dilatation
energies cannot be separated like in the isotropic case. The proposed criterion was applied to
UD-laminae by TSAI et al.

Aot + Bo? + Copor + Doir =1

A, B, C, D must be identified by tests
OL = OLu, o1 =0, orr=0 = A=—5,
oL =0, or=0r.. orr=0 = B=—,

o = 0. ot =0, our=Ta = D=—

7—Ll
In dependence on the failure mode, the superscript u must be substituted by t, ¢ or s and denotes
the ultimate stress value at failure under tension, compression or shear. The remaining parameter
C must be determined by a biaxial test. Under identical biaxial normal loading o, = o1 #
0.0t = 0 it can be assumed that the failure follows the maximum stress criterion, i.e failure
will occur when the transverse stress reaches the transverse strength o, which is much lower
than the longitudinal strength o7y,

2 2
1

OLu OTu O

The TSAI-HILL criterion in the case of plane stress state and on-axis loading can be formulated

oL \? or \? Lo o\
() + () -5 (5 =
OLu OTu Ol a Tu

In the case of tension or compression off the principal material directions the TSAI-HILL criterion

becomes
2\ 2 2y 2 2 2
01C 018 J1CS 018C
OLu OTu OLu Tu

and the strength parameter o1, in x-direction is

2 2 2 2 2
1\? c? 52 1 1 2 2 ? s cs

- = + + = T 3 c'sT = + | — + )

J1u OLu OTFu Ta Oiu OLu OTu T
The approximated form presumes o, > 7,. The TSAI-HILL criterion is a single criterion
instead of the three subcriteria required in maximum stress and strain theories.

Another suggestion for an anisotropic failure criterion was made by GOL’DENBLAT and
KOPNOV (1968): the tensor polynomial criterion. TSAI and WU modified this criterion by

assuming the existence of a failure surface in stress space. The general statement is that fracture
of an anisotropic material occurs if

Aij0ij + QijkiOijOk = 1
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or in a contracted notation
a;0; + Qi;0i0; = 1

For an orthotropic composite material one gets
2 -
a1,0L, +aror + asog + aLLaﬁ + aTTU?r + assos + 2(aLToLoT 4 aLsoLos + atsoros) =1

Here vi 1 = as.
In a similar way the VON MISES-HILL criterion can be introduced. Now the representation
is made for the principal stress axes

Elof + EgO’% + E3(0’1 — 0’2)2 + 2E4T122 =1
E,, ..., E4 are material parameters. The first application of this criterion was made by NORRIS
(1950). His formulation can be given as

2 2 2
Ul 02 0109 T12
Oul Ou2 Ou10u2 T4

Here 0,1, 0,2 are the tension strength in the principal direction 1 and 2, respectively. Ty is the
shear strength for the plane 1,2. The problem in application of this criterion is the identical
behavior in the case of tension and compression (the principal axes are symmetry axes).

Another criterion for composites was introduced by ZAKHAROV (1961; 1963). The starting
point is the 6-dimensional stress space

6 6
E Qi jWiws; + Zﬁjw]' =1
=1 j=1

with wy, we, w3 as normal stresses and wy, ws, wg as shear stresses. 5, §; are material parame-
ters estimated by tension, compression and shear tests.
MALMEISTER (1966) also discussed a polynomial criterion

PafOap + DapysTafOys + ... =1
The matrix representation can be given as
0i0; + oo + ... =1
In the plane stress state one obtains
P101 + P20 + PeTe + P1107 + Prads + 2p120102 + 4Pe60s + 4p160106 + 4p2soa0s =1
Assuming the invariant form (no linear contribution of og) one gets
P1O1 + D203 + P110s + Pa20s + 2p120102 + 4peso = 1

Let us now discuss the interactive tensor polynomial criterion of TSAI-WU. The linear terms
take into account the actual differences between composite material behavior under tension and
compression. The term apropoT represents independent interaction among the stresses oy, and
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o7 and the remaining quadratic terms describe an ellipsoid in stress space. Since the strength of
a lamina loaded under pure shear stress 75 in the on-axis system is independent of the sign of the
shear stress, all linear terms in og must vanish

as =ars =ats =0
The TSAI-WU criterion for a single layer in on-axis system can be expressed as
2
a1, 01, + atroT + aLLoi + aTTU% + agsog + 2arroLor = 1

The four quadratic terms correspond to the four independent elastic characteristics of orthotropic
materials, the linear terms allow the distinction between tensile and compressive strength. The
coefficients of the quadratic TSAI-WU criterion are obtained by applying elementary basic load-
ing conditions to the lamina

1 1
_ _ _ 2 _ ay, = -
oL=oL, or=0s5=0 N aLoLe + aLLU%t =1 N OLt . OLe
0L = —0OLc, or=0s5=10 —aL0Lc +aLLoip, =1 app, =
OLt0Lc
1 1
_ o 2 _ ar = — —
OT = 0Ty, o, =0s=0 N arory + aTTUg‘t =1 N o1y . OTe
oT = —0T¢, OL=05=0 —aT0oTc + arTot, = 1 apr =
OTt0Te

1
os=17g, op=o0or=0 = assT52=1 = aSS:?
S
The remaining coefficient a,r must be obtained by biaxial testing
op=or=o0y, 0s=0 = (ap+ar)oy+ (aL +arr + 2arr)of =1

oy is the experimentally measured strength under identical biaxial tensile loading o1, = or. In
many cases the interaction coefficient is not critical and is given approximately, e.g.

1
arr = — 3 VaLLarT

Summarizing the considerations on interactive failure criteria leads to the conclusion that the
TsAI-HILL and the TSAI-WU failure criteria are quadratic interaction criteria which have the
general form
FijJiO'j-f-FiO'i =1, i,j:L,T,S

F;; and F; are strength parameters and o;, 0; the on axis stress components. For plane stress state
six strength parameters Fiy, Frrr, Fss, Fur, FL, Fr have to be implemented into the failure
criterion, F1s = Frs = Fs = 0. Five of these strength parameters are conventional tensile,
compressive or shear strength terms which can be measured in a conventional experimental test
programme. The strength parameter Fyr is more difficult to obtain, since a biaxial test is ne-
cessary and such a test is not easy to perform. The two-dimensional representation of the general
quadratic criterion in the stress space can be given in the equation below

2 2 2

o o o 1 1 1 1

— +-L—2T+2FLTUL0T+<—— >0L+<—— >0T=1
O140Lc OTt0Tc 78 0Lt OLc
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The general form is reduced, e.g., for

1
OLt = OLe; OTt = OTe; FLT = —5—
207,
to the TSAI-HILL criterion, for
1
oLy # OLe,  OTt # 07, Frr = —%—0;‘
Lt C
to the HOFFMAN criterion, and for
1
OLt # OLes,  OTt # Ore,  Frr = ﬂ%/tﬁjm
t C t [

to the TSAI-WU criterion. HOFFMAN’s criterion is a simple generalization of the HILL crite-
rion that allows different tensile and compressive strength parameters. Using the dimensionless
stresses

of, = vV FuLon, o7 =+ Frror, ofpr =+ Fssour

and the normalized strength coefficients

F =F./\Fu, Ft=Fr/\/Fr, Fip=Fuo/VFoFrr

one gets
*2 *2 *2 * x k2 * k2 * %2
oy +or +oit + 2Fropor + Fro” + Fror =

For isotropic materials with o1y = opc = o1y = o, follows F{* = Ff = 0. For the principal
stress state o7 = opr = 0is valid. A reducing with F{ip = —% leads to the known VON MISES
criterion.

5.3 Generalized Criteria

Considering classical and non-classical material behavior (Altenbach et al., 1995, 1999) the
following statements can be given. The classical material behavior equations are based on several
assumptions:

o identical behavior under tension and compression,

¢ the identity of the equivalent stress-equivalent strain diagrams in the case of tension and

torsion,

o the independence of the inelastic material behavior from hydrostatic pressure,

e etc.

If we ignore one or more of these assumptions the mathematical expressions of the constitutive
equations and the limit conditions must reflect non-classical effects.

The classical approach of formulating a limit state criterion is connected with the following
items: the stress state in the material or in a structural element will be represented by the stress
tensor ¢, based on the stress tensor one can construct an equivalent stress oeq = F'(a), this
equivalent stress will be compared with an experimental limit value by 0eq < Ojr (Ofgss 18 @
material characteristic for the description of the limit case). This approach is not restricted by
the assumed limit state of the material and can be extended to the non-classical cases.
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For the classical material behavior one assumes

ofP (Tension) & —of > (Compression), o> (Tension) & £v/375<" (Torsion)
and the influence of the hydrostatic pressure can be ignored.
Non-classical behavior is named the material behavior if different behavior in tension and
compression is obtained. The strength-differential effect is well known

orn, (Tension) &~ —0, 9072 (Compression)
In addition, the material behavior is called non-classically if the tension behavior cannot be
described by torsion tests (experimentally observed for some polymers, graphite, etc.), since
a fixed relation between both states cannot be established, etc. Several experimental results
manifest non-classical behavior, an overview is given, for example, by Altenbach et al. (1995).

Let us formulate generalized limit criteria which are able to reflect non-classical effects of
the material behavior. The first one is based on three basic invariants of the stress tensor (see,
for example, Zyczkowski (1981)) and is more suitable for ductile materials. The second one
is based on the NOVOZHILOV’s invariants, Novozhilov (1951), and is suitable for a satisfying
description of the loss of stiffness which is more characteristic for brittle materials. In both
cases we assume monotonic quasi-static loading under isothermal conditions, isotropic material
behavior, non-polar material, stress based criteria presuming an equivalent stress geq > 0.

Let us introduce the invariants. The basic invariants are

Loc)=0-1I IL(e)=0-0, I3c)=(0c-0)-0 (5.1)
The NOVOZHILOV’s invariants can be introduced as

27 det .
Lioy=0-1, o= §.s»s, sin3§:———2 with  [¢€] <

(5.2)
2 2 ‘731\4

S

with s as the stress deviator. Using these invariants two 6-parameter criteria can be formulated:
o using the basic invariants I, (o), Is(0), I3(o)

Ouq = 01+ 02+ 05 = Ly + \Jpal? + pala + Y pal} + pshila + pels  (53)
o using the NOVOZHILOV’s invariants I1(0), o, (0), ()
Oeq = /\10’vM sin§ + /\QO'VM COS£ + /\3JVM + )\4[1 + A5Il Sinf + )‘6-[1 COSf (54)

In both cases one gets as a special case the VON MISES-criterion. The unknown parameters f;
and \; must be specified.

The identification can be performed as follows. As an example we show the identification for
the criterion based on the NOVOZHILOV’s invariants. In this case one can perform the following
tests:

1. uniaxial tension o017 > 0

J11 =0T

o is the limit stress in tension.
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2. uniaxial compression o117 < 0

011 = —0C
o¢ is the limit stress in compression.
3. torsion gy # 0
012 = 7L
71, 18 the limit stress in torsion.
4. thin-walled tube under inner pressure
OB
011 = —» 022=0B
2
with
pR
0B = —|/—
h

p is the inner pressure, R the radius of the tube and & the tube thickness. From this follows
2011 = 092 = op and og plays the role of a limit stress.

5. thin-walled tube under inner pressure and tension

F Jy
011 = — +

A ’2—7 022 = O

with the tensile force F' and
_ PR
T h

The tensile force and the inner pressure are controlled by the limit stress og

Tt

011 = 022 = 0OE
6. uniaxial tension in a high pressure chamber

F
011 = — — D, 0O20=033=—P

A

The pressure and the tensile force are controlled by the limit stress on

1
011 = =0 090 = 033 = ——0OH
11 = 30H, 22 33 3
As a result of the tests one estimates the limit stresses o, oc, 71, 08, g and oy.
The mathematical analysis of these tests results in
1. uniaxial tension

—)\1+\/§)\2+2/\3+2)\4—>\5+\/—g)\6:2

2. uniaxial compression

/\1+\/§>\2+2)\3—2/\4~)\5—\/§)\6=22—T
C
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3. torsion
agr

)\2+/\3: \/37_
L

4. thin-walled tube under inner pressure
V3 + VB3 + 30 + 3 = 2%
5. thin-walled tube under inner pressure and tension force
Ap+ VB + 22 + A + 225 +2v3)g = 2‘;—;
6. uniaxial tension in a high pressure chamber

A VB 20 =278
OH

Solving the last six equations with respect to the unknown coefficients A; one obtains

1
/\1 = —(22’1‘__30_’1‘_*_.0’_’2)’
3\ oc oy OE
1
Ay = ———(233—2\/§U—T+30—T+0—T),
3(2-+3) \ oc L 0" OE
1 oT oT oT 0’T>
A3 = ——— (228 _3ZL 43T L 7T
: 32-v3) \ oc L oH OE
1
o= __(3_0_T+«§U_T_mzz_30_'f+?£),
3(2 - V3) oc L OB OH OE
1
As = __(3+U_T_3_U_T__U_T ,
3 ac 0u OE
1
X = ————<3—0—T+2”—T—4"—T—30—T+0—T)
3(2 —V3) oc TL OB OH OE

From this system we can make the following conclusions:
e If one can perform the six tests and estimate the material properties o, oc, 71, 0B, OE, OH
the coefficients A; can be established in a unique way.
e By changing the tests and estimating other material properties one gets other coefficients.
An example is given in Altenbach et al. (1993). The choice of the basic tests is connected
with technical feasibilities in the laboratories, with the kind of material, with the kind of
loading conditions, etc., Altenbach & Zolochevsky (1996).
o In addition, fixing the \; one can find the needful conditions for the practical use of special
criteria.
The last item can be explained as follows. For example, from the generalized criterion (5.4) the
VON MISES-criterion can be deduced setting Ay = Ay = Ay = A5 = A¢ = 0, A3 = 1. Taking
into account these values one can calculate the relations for the material properties

1
O_T:L ET_:\/Q gI=~\/§’ O_T:L T 4
oc T, OB 2 OE OH



Modelling of Anisotropic Behavior in Fiber and Particle Reinforced Composites 43

If these relations are fulfilled the use of the VON MISES-criterion can be recommended. That
means a material must show a behavior which is connected with identical properties in tension
and compression and a fixed relation between the tension and the shear limit stress. The last
statement is a standard statement in several textbooks on solid mechanics and agrees with exper-
imental results, see e.g. Kachanov (1974).

5.4 Outlook

The use of limit criteria is till now under discussion. The reason for this is that the designer
want to predict the safety of structures in the early stage of the design process. For this purpose
extensions of classical strength and limit criteria can be recommended. The problem is that
in contrast to the case of classical structural materials not only one failure mode must taken
into account. That means in some cases for composite materials an unique criterion cannot be
applied. Considering polymer and composite materials on the application of the generalized
criteria is reported, for example, in Altenbach et al. (1996); Altenbach & Zolochevsky (1996),
on some improvements in Altenbach & Tushtev (2001).

6 Polymer Suspensions

6.1 Introductional Remarks

Let us now discuss the mechanical behavior of polymers reinforced with short glass fibers.
An example of such a material is DuPont Zytel® PA66ZYTEL 70G43L with a polyamide matrix.
The typical geometrical and mechanical properties are shown in Fig. 18. With the fiber length {

Polymer: Fibers:
1 d

l
E, ~2.8-10° MPa t~0.2mm, G ~25
B ~72-103MPa ~ 26 E,

Composite: fiber volume fraction vs ~ 0.25

(=

Ej ~ 12-10°MPa ~ 43E,
E, ~ 53-10°MPa ~ 18K,

Figure 18. Example of a short fiber reinforced material

E~6.5-10*MPa~ 23E,
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and the fiber diameter d one gets for the given material a fiber length to diameter ratio of about 25.
In addition, it must be noted that the YOUNG’s moduli of the fiber E¢ and the polymer matrix [,
are quite different (the modulus of the fibers is 26 times higher). With respect to this difference
the effective mechanical behavior is different: if one obtains an arbitrary distribution of the fibers
an isotropic behavior can be assumed, otherwise for the regular distribution as shown in Fig. 18
on the right hand side we get transversally isotropic behavior. For a fiber volume fraction vs of
about 25 % the isotropic modulus F ranges between the moduli for the direction parallel to the
fiber £ and the direction perpendicular to the fibers £, . The geometrical and the mechanical
properties of the fibers and the matrix material assumed here were taken from the data basis of
the commercial code Moldflow Plastic Inside®. On the application of this material is reported,
for example, in Glaser & von Diest (1988), Michaeli (1995) and Whiteside et al. (2000).

Thin-walled structural elements based on particle reinforced composites are manufactured,
for example, by injection molding. This technology has a number of advantages compared with
other manufacturing techniques: short cycle time of the manufacturing, high degree of automati-
zation, excellent possibilities of manufacturing structural elements with complex geometries. In
addition, the injection molding technology allows to improve the stiffness and strength proper-
ties of the composite by changing the technological conditions like the temperature, the injection
pressure, the injection point, etc. The basic steps of the injection molding technology are shown
in Fig. 19 (after Michaeli (1995), Menning (1995) and Altenbach et al. (2003b)).

a mold cavity b

hic pper

L F -8 & 3§ —§ § § 3§ -] RS DR TEEN S S O e e

barrel ; SCrew
& d
mold plates
L8 B __8_ 8 N _§ B __§ 1} { S T RS B e DA T

Figure 19. Basic stages of the injection molding processing cycle. a filling stage, b packing
stage, ¢ cooling stage, d ejection

The mechanical properties of a particle reinforced composite depend significantly on the ori-
entation of the fibers during its manufacture process. During the filling stage the flow translates
and rotates the fibers. As a result the distribution of the fibers becomes nonuniform and the
overall stiffness characteristics are anisotropically. There are a lot of influence factors like the
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viscosity of the polymer melt, the filling conditions, the geometry of the cavity, and so on (Hegler
(1984)). All these features must be taken into account during the design process and even then
the estimation of the distribution of the reinforcement is possible and the degree of anisotropy
can be predicted. The microstructure of the composite is formed during the filling and the estab-
lished microstructure remains the same after solidification (see, for example, Hegler (1984), Bay
& Tucker (1992) and Vincent & Agassant (1986)). Micrographs of the cross section of moldings
(Bay & Tucker (1992), Saito et al. (2000)) show that the orientation pattern of fibers has a lay-
ered structure. In the core layer, the fibers are oriented predominantly perpendicular to the flow
direction. In contrast, in the skin layers close to the mold wall they are oriented mainly parallel
to the flow direction. Finally, in the neighborhood to the wall lower fiber concentration and a
random orientation can be observed. An example of such a micrograph is presented in Fig. 20.

Flow direction

Figure 20. Section of injection molded part (after Saito et al. (2000))

The conditions of the flow of polymer suspensions is discussed in detail by Altenbach et al.
(2003b), Dupret & Verleye (1999) and Tucker & Advani (1994). Let us summarize the main
items:

e non-isothermal flow with phase transitions,

e non-stationary flow with free surfaces,

e the average volume content of particles is 15 - 45 %, and the local concentration of fibers

can vary within the flow region, and

e since the mold cavity is usually thin, its walls affect the movement of fibers considerably.
All these factors play an important role in the design process since the formation of the mi-
crostructure (or with other words the arrangement of the fibers) is influenced by them. However,
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we do not know of any theory which takes into account all these items mentioned above.

The existing theories can be divided into two classes. The first group includes models based
on the concept of an "anisotropic viscous medium”. The presence of fibers and their local orien-
tation are taken into account only in the constitutive equations by introducing orientation tensors
(see, for example, Dupret et al. (1999), Tucker & Advani (1994) and Dupret & Verleye (1999)).
The second group can be related to the so-called micropolar theories, which are based on the
assumption of a continuum with independent rotational degrees of freedom (see Altenbach et al.
(2003b) or Eringen (2001)). The first approach is the basis of the commercial software Moldflow
Plastics Insight® (MPI), which allows to model the complete cycle of the injection molding pro-
cess. As aresult one can determine the particle orientation. The injection molding simulation can
be combined with a Finite-Element-Analysis and the stress-strain estimation can be performed.
Below this approach will be discussed in detail. Finally some examples are presented.

6.2 Modelling of the microstructure based on Moldflow Plastics Insight®

Let us briefly present the approach realized in the MPI program complex. For details we refer
to Tucker & Advani (1994), Dupret et al. (1999) and Dupret & Verleye (1999). The suspension
is modelled as a quasi-homogeneous anisotropic medium. According to this approach, the main
problem is the formulation of a rheological equation allowing to relate the stresses caused by the
liquid flow to local characteristics of the motion V' (velocity vector of the particles). For a slow
motion of a viscous liquid can be assumed (cp. Batchelor (1970))

o=-pE+ Wp-A, A=VV, (6.1)

where p is the pressure in the medium and Yy is the fourth-rank viscosity tensor. The deter-
mination of the viscosity tensor is discussed in the review on suspension rheology published by
PETRIE (1999) and in the monograph by Huilgol & Phan-Thien (1997). The applied approach is
based on the method of orientational averaging.

As an example, we will consider the model for describing semiconcentrated suspensions (cp.
Dinh & Armstrong (1984))

— _pE T 4) ﬁﬁ 4)
oc=-pE+ u(A+A")- E+12H<p A (6.2)

7 is the number of fibers in a unit volume, [ the length of fibers, y the polymer viscosity, (, an
empirical coefficient determined as

2wl
%= In(2h/d)’

where d is the fiber diameter, h = (nl)~1/2 for oriented fibers and h = (n{?)~? for a random
orientation. The fourth-rank tensor (*) A represents the current fiber orientation

WA= / U(mmmemmdA, (6.3)

W (m) is the distribution density of the fiber orientation, m the unit vector along the particle axis,
d A the differential element on the unit sphere. For the orientation density one can write (cp. Doi
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& Edwards (1988) and Tucker & Advani (1994))
U+ Va (Vw—d,V,40)=0 (6.4)

w is the angular velocity of a particle, d, the empirical coefficient of rotational diffusion, (. ..)
the material derivative and V 4 the tangential differential operator on the unit sphere

a(..)

VA<. ) Zekﬁijkmia.—nlj-, m-m=1

€35 denotes the LEVI-CIVITA symbol. For w the JEFFERY-solution can be assumed, Jeffery

(1922), which was obtained as the angular velocity with which an ellipsoidal particle rotates in

an infinite field of a viscous liquid. For an ellipsoid of revolution one gets (Altenbach et al.
(2003b))

_ (12 _ b2
a2+
a and b are the semi-axes of the ellipsoid, D the strain rate tensor and ¢ the spin vector of the
undisturbed flow. For the strain rate tensor D one can consider

w=(p+ xmxD-m), A (6.5)

1 1
D= 5(VV +VVh), VvV =0, ¢= ~5V x Vv
The moments of the distribution function ¥(m) are defined as

(M4 = /\I!(m)m®"dA, n=24,...
(4)

(") A denotes the nth rank orientation tensor, (...)®" is the nth tensor product. Equation (6.4)
with regard to the angular velocity (6.5) is transformed into an infinite system of coupled equa-
tions. The first two equations of the infinite system of coupled equations are

Y4 = Aw-w-P4+ 2D - P4+ ®4.D-2"A-D) 64, <(2)A - ;15‘) ,
YA = “aw-w-“41xD-“4+“4.D-4"4-D)
- eQW- (4)A-ei +ei-(4)A-W®ei
A <ei ®D- (4)A-ei +e;- (4)A-D®ei) + 2d, <E®(2)A
“ACE+ PA-e,@Eve +er 0 AR e
onei Re, e, Qe +e;, Qe RVe; Deg - (2)A - 10(4)A>
W = ¢ x E is the flow vorticity tensor. The two equations are presented in Advani & Tucker

(1987) in the coordinate form. In practical calculations @4 is usually found from the first evo-
lution equation and “4 from the closure approximation. Mostly used is the hybrid closure
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approximation which is incorporated in the MPI code

(4)A

&

HUAL + fUAQ f =1 - 27det P4,Y40 =P 4074,

(1-

1
e —(E® A+P49E+P4 e, 9EQer +er 0 Aes
(2)14>

1
+£(E®E+ek®E®ek +e e e Qey)

+ A-ei®ek Re; Qe +e, Ve, Re; Ve -

Finally, let us summarize the governing equations for the filling stage:
o the balance of momentum

thV of +V-o

e the balance of mass
p=const = V.V =0

o the energy balance

DT
Py = 0--VV + V(kVT)

o the constitutive equation
. . (2
o the evolution equation for the structure tensors ‘A

. . 4
o the closure approximation for the tensor 4
¢ the conditions on the boundary I”

V=V. T=T, zcl, p=0, zcI}

e and the initial conditions on a given part of the domain

(2)

Az, 0) ="

V(z,0) = VO, A°
Here ¢,. &, T, T and V denote the heat conductivity at constant pressure, the thermal expansion,
the temperature, the given temperature on the boundary and the given velocity on the boundary.
The elastic properties of a short-fiber reinforced composite strongly depend on the volume
content and the orientation of the fibers. In the case of randomly distributed and oriented fibers
the elastic properties differ significantly. For estimating the influence of the orientation on the
elastic properties one can use the method of orientational averaging, Lagzdins et al. (1992). First
we write the constitutive equation for the transversely isotropic unidirectional elastic composite,

see Boehler (1987),
o(m)=MreE+oe-NE+2ure+otre N+ fFe-- NQN +2(pr, — pr) [N -€+e€-NJ, (6.6)

where N = m ® m and ¢, 3, A, ur, and pr are five invariants which must be determined from
the engineering constants. The second step is connected with the averaging over all directions of



Modelling of Anisotropic Behavior in Fiber and Particle Reinforced Composites 49

the vector m
o = /\Il(m)&(m) dA
“ 2 1 4 1
+ 2 (B-€+€-B)+n.e--B®B,

with f - )
a*_)\_*_ﬂ?? ; /3*204+/3—7——, W*Z#T+ﬁ?,
g*:HLAMT+ﬂT7 n*:fﬁ7
B=“4_ %E F=1-27det "4

Let us discuss the representation of the 2nd rank structure tensor. In Fig. 21 the visualization
of the fiber orientation is presented. Any second rank tensor can be represented by an ellipsoid

AR
o

Figure 21. Visualizing the fiber orientation

with the principal values as the semi-axis. Three examples of the structure tensor are shown.

6.3 Examples

Uniformly filled thin strip The first example is related to the filling of a thin strip (Fig.
22). The geometrical parameters of the mold are (Bay & Tucker (1992)): L = 203.2 mm,
b = 25.4mm and h = 3.18 mm. The material is DuPont Zytel® PA66ZYTEL 70G43L 43 %
with a relative volume content 25 % of glass fibers of length 0.2 mm and a diameter-length ratio
1/25. The processing conditions are: the inlet temperature of the material Tiper = 550 K, the
temperature of the mold walls Ty = 297 K, and the filling time ¢ = 0.4 s. Figures 23
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A 2

Figure 22. Geometry of a thin strip

Fiber orientation tensor
S Normalized thickness = 1.000

--------------- 0.9802

06148

0.4930

Scale (100 mm)

Figure 23. First principal value of the orientation tensor - skin layer

and 24 show the orientational distribution of fibers after the filling stage, as well as the first prin-
cipal value of the second rank orientation tensor on the skin layer and the core of the strip.

In the skin layer one obtains a homogeneous orientation (except the injection part, where the
orientation is along the flow direction). In the core layer one gets a significant inhomogeneous
orientation. In addition, let us investigate the bending problem under a line load ¢ = 2560 N/m
(Fig. 25). The unidirectional composite has the following elastic constants (plane of isotropy



Modelling of Anisotropic Behavior in Fiber and Particle Reinforced Composites 51

Fiber orientation tensor

....................

NotdHow

Figure 24. First principal value of the orientation tensor - core layer

Scale (100 mm)

2,3): E7 = 8980 MPa, E; = 5420 MPa, 113 = 0.42, v53 = 0.54, and G12 = 2260 MPa. The
results of the stress analysis are shown in Figs 26 and 27.  The calculations were performed
considering large displacements. On the details of the numerical analysis (for example, conver-

y

o =
L)2 L/2

Figure 25. Strip with line load
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Figure 26. Distributions of normal stresses (in Pa) on the top side of the strip. a anisotropic
behavior, b isotropic behavior
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Figure 27. Distributions of shear stresses (in Pa) on the top side of the strip. a anisotropic
behavior, b isotropic behavior

gence) is reported in Altenbach et al. (2003a). The analysis of stresses demonstrates a significant
distinction between the anisotropic and the isotropic solution in the case of shear stresses.

Thin rectangular plate In Fig. 28 the geometry and the loading conditions for a thin simply
supported plate are presented. The geometrical properties are L = 150 mm and s = 3.18 mm.
The material is the same as in the first example. The processing parameters are: the inlet temper-
ature of the material Ti,y = 563 K, the temperature of the mold walls T\ = 338 K, and the
filling time ¢4, = 1.5 s. The filling was performed in different ways: uniformly filling the mold
along one edge (injection case a), filling by means of a point gate located in one corner (injection
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Figure 28. Simply supported plate

Skin layer Core layer

Figure 29. First principal value of the orientation tensor. Case a

case b) and filling by a point gate at the middle of one mold sides (injection case ¢). Figures 29,
30 and 31 show the distributions of the first principal value of the second rank orientation tensor.

From the analysis of case a (Fig. 29) one can make the conclusion that in the skin layer the
fibers are oriented mainly in the flow direction, whereas in the core layer they are perpendicular
to the flow direction (except the near-edge zones). In case b (Fig. 30) one obtains a similar situa-
tion. In Fig. 32 the stresses for the three filling cases are shown. The load was ¢ = 10.000 N/m?.
For the same loading situation the deflections were estimated too (Fig. 33). The analysis show a
significant influence of the processing conditions on the stresses and deflections. One can clearly
see that the best results (minimum of stresses and deflections) one gets in the case of the injection
along the edge.

Thin-walled shell of revolution In the next example let us consider the manufacture of a thin-
walled shell of revolution. The geometry is given in Fig. 34. Let us assume the same material
as in the previous cases. The manufacture conditions are: the inlet temperature of the material
Tinlet = 563 K, the temperature of the mold walls Ty, = 368 K, and the filling time tg; = 1.
In Fig. 37 the distributions of circumferential (a) and axial stresses (b) are shown. The shell was
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Figure 32. Distribution of stresses o, (in Pa) in the surface layer of the plate for the three cases
of filling

loaded by internal pressure ¢ = 1.000.000 N/m?. From the analysis one can conclude that the
axial stresses are less dangerous to this shell than the circumferential ones, since the fibers in the
surface layers of the shell are oriented mainly in the axial direction. The strength will be higher in
this direction. However, for the circumferential stresses an opposite situation is observed: these
stresses are acting perpendicularly to the fibers. Thus the stresses oy are dangerous and can lead
to the crack formation on the shell surface.

Comparison with experimental results In Fig. 35 the model of the filling of a center gated
disk is presented. Geometrical parameters of the model are following Bay & Tucker (1992):
R = 76.2 mm, h = 3.18 mm. The material is again DuPont Zytel® PA66ZYTEL 70G43L. The
processing conditions are: the inlet temperature of the material - 550 K, the temperature of the
mold 347 K, time of filling 2.5 s. Experimental results for this problem were published by Bay &
Tucker (1992). The simulation performed by Pylypenko (2003) is compared with the experimen-
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Figure 38. Comparison of MPI results for the first principal value (2) A; of the orientational
tensor with experimental data Bay & Tucker (1992)

tal results. This comparison is shown in Fig. 38. The figure illustrates the distributions of the
first principal value of the fiber orientation tensor A across the thickness direction z in different
radial zones of the disk. The analysis shows a good agreement of experimental with calculated
data in zones far from the gate. A non-satisfying agreement was observed in the gate region.
This can be explained by the model assumptions of a planar flow used in the simulations.
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Abstract The contribution starts with a discussion of various phenomena in lami-
nated composite structures that can lead to failure: matrix cracking, delamination
between plies, and debonding and subsequent pull-out between fibres and the matrix
material. Next, the different scales are discussed at which the effect of these non-
linearities can be analysed and the ways to couple analyses at these different length
scales. From these scales — the macro, meso and micro-levels — the meso-level is
normally used for the analysis of delamination, which is the focus of this chapter. At
this level, the plies are modelled as continua and interface elements between them
conventionally serve as the framework to model delamination and debonding. After
a brief discussion of the cohesive—zone concept and its importance for the analysis
of delamination, various finite element models for the plies are elaborated: three—
dimensional, generalised plane-strain and solid-like shell models. This is followed
by a derivation of interface elements and a discussion of advanced techniques for
solving the nonlinear equations that ensue after discretisation. In the last part of
this chapter a new, recent method to numerically model delamination is discussed.
It exploits the partition—of—unity property of finite element shape functions. The
approach offers advantages, since interfaces — and more generally, discontinuities
— can be inserted at the onset of delamination only and not a priori, as in the
conventional approach. As a consequence, artificial elastic compliance of the in-
terface prior to onset of delamination, spurious traction oscillations ahead of the
delamination front, and spurious wave reflections because of the presence of a high
stiffness value are avoided. Moreover, unstructured meshes can be employed.

1 Introduction

Failure in composites is governed by three mechanisms: matrix cracking, delamination,
and fibre debonding and pull-out. Often, matrix cracking occurs first when loading a
specimen. Together with stress concentrations that occur near free edges and around
holes, matrix cracks trigger delamination. Normally, delamination is defined as the sep-
aration of two plies of a laminated composite, although it has been observed that delam-
ination not necessarily occurs exactly at the interface between two plies. For instance, in
fibre—metal laminates delamination rather resembles a matrix crack in the epoxy layer
near and parallel to the aluminium—epoxy interface.
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An important issue when modelling physical phenomena is the proper definition of
the scale at which the (failure) mechanism under consideration is modelled. This holds a
fortiori for composites, since the in—plane dimensions of a laminated composite structure
exceed the length scale at which delamination, matrix cracking and fibre debonding take
place by one to several orders of magnitude. This complicates an efficient, accurate and
meaningful analysis. Typically, the in—plane dimensions of a laminated structure are
in the order of meters, while its thickness can be just a few millimeters. Each ply is
then less than a millimeter thick. Since, at least in conventional finite element analysis,
each ply has to be modelled separately in order to capture delamination between two
plies. and since the aspect ratio of finite elements is limited if one wishes to obtain a
reliable stress prediction, the maximum in-plane dimension of a three-dimensional solid
element will be around one centimeter. It is obvious that the number of elements that is
needed to model each layer is already big, and the total number of elements required to
model the entire structure, including possible holes and stiffened areas, can easily exceed
computational capabilities when the analyst wishes to simulate nonlinear phenomena,
such as delamination.

The same reasoning holds when considering matrix cracking. For most laminated
composites, matrix cracks reach a saturation distance, which is in the order of the ply
thickness. This implies that, when this phenomenon is to be included in the analysis in a
truly discrete format — that is, matrix cracks are modelled individually and not smeared
out over the plane — the in—plane discretisation must even be somewhat finer than for
an analysis that includes delamination only, roughly one order of magnitude.

A further refinement of the discretisation of several orders of magnitude is required
when individual fibres are to be modelled with the aim to include debonding and pull-out
of individual fibres. It is evident. that such a type of modelling exceeds computational
capabilities even of the most powerful computers nowadays available, if the analysis would
consider the entire structure.

Multiscale approaches provide a paradigm to by-pass the problems outlined above.
In these methods, the various aspects of the entire structural problem are considered at
different levels of observation, each of them characterised by a well-defined length scale.
The different levels at which analyses are carried out, are connected either through length
scale transitions, in which the structural behaviour at a given level is homogenised to
arrive at mechanical properties at a next higher level {Ladevéze and Lubineau , 2002), or
through (finite element) analyses which are conducted at two levels simultaneously and
in which are connected by matching the boundary conditions at both levels (Feyel and
Chaboche , 2000). In the former class of methods, the Representative Volume FElement
(RVE), the volume of heterogeneous material that can be considered as representative
at a given level of observation and is therefore amenable to homogenisation, plays an
important role.

This chapter will not address methods for length scale transition or approaches for
carrying out multi-level finite element analyses. Instead, we shall focus on so-called meso-
level approaches, in which delamination is assumed to be the main degrading mechanism.
For this purpose, the different levels of analysis — macro, meso and micro — are defined
in the context of laminated composite structures. At the meso-level as well as at the
micro-level, fracture along internal material boundaries, delamination and debonding,
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respectively, governs the failure behaviour. While constitutive relations for such inter-
faces are treated elsewhere in this Volume, most of them have in common that a so-called
work of separation or fracture energy plays a central role. For this reason, a succinct
discussion of cohesive—zone models, which are equipped with such a material parameter,
follows the discussion.

Next, we shall formulate the three—dimensional finite element equations for arbitrarily
large displacements gradients, but confined to small strains. Both the continuum ele-
ments for the plies and the interface elements will be treated. For the continuum elements
thermal and/or hygral strains, which are relevant because of the manufacturing process,
will be included. Since delamination in strips can often be analysed using a generalised
plane-strain formulation, the equations will be elaborated for this case. Furthermore,
solid-like shells will be introduced, which can be used to model the plies in a 3D-like
manner, but allowing for much larger aspect ratios (up to 1000) than standard solid ele-
ments would allow. This section will be concluded by a discussion on solution techniques,
where the importance of selecting the proper control parameter is emphasised.

The final part of this chapter discusses a recent development in numerical models
for fracture. It exploits the partition-of-unity property of finite element shape functions
and allows discontinuities to be inserted during a finite element analysis, either within
a matrix, or, as used here, along interfaces between two materials. The concept will
be elaborated for large displacement gradients, for the solid—like shell element discussed
before and will be complemented by illustrative examples.

® geometrical node
m internal node

Figure 1. Shell element for macroscopic analysis of a laminated composite structure
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Figure 2. Finite element model of a laminated composite. The individual layers are
modelled with three-dimensional, generalised plane—strain or shell elements. Interface
elements equipped with a cohesive—zone model are applied between the layers

2 Multi-Level Analysis of Composite Structures

2.1 Levels of Observation

At the macroscopic or structural level the plies are normally modelled via a layered
shell approach, where the different directions of the fibres in the layers are taken into
account through an anisotropic elasticity model, Figure 1. If this (anisotropic) elasticity
model is augmented by a damage or plasticity model, degradation phenomena like matrix
cracking, fibre pull-out or fibre breakage can also be taken into account, albeit in a
smeared manner. At this level. the in-plane structural dimensions are the length scales
that govern the boundary-value problem.

Indeed, discrete modelling of delamination, matrix cracking and fibre-debonding is
not possible at this level, as also argued in the Introduction. The level below, where the
ply thickness becomes the governing length scale, allows for the modelling of delamination
and matrix cracking. At this meso—level the plies are modelled as continua and can either
be assumed to behave linearly elastically or can be degraded according to a damage
law. In the approach suggested by Schellekens and de Borst (1993, 1994a), elastic
anisotropy and curing of composites are taken into account by including possible thermal
and hygral effects, but eventual damage which can evolve in the plies is lumped into the
interface. This approach is reasonable as long as the energy dissipation due to processes
like matrix cracking is small compared to the energy needed for delamination growth,
as for mode-1 delaminations and for mixed-mode delaminations where the fibres are
(almost) parallel to the intralaminar cracks. If this condition is not met, the interface
delamination model must be supplemented by a damage model for the ply, which has
been proposed by Allix and Ladeveze (1992). A drawback of existing damage approaches
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for modelling intralaminar cracks, fibre breakage and debonding is that no localisation
limiter is incorporated, which renders the governing equations ill-posed at a generic stage
in the loading process and can result in a severe dependence of the results on the spatial
discretisation (de Borst , 2004).

At the meso-level, delamination as a discrete process has conventionally been mod-
elled as shown in Figure 2, where the plies are considered as continua — and are discre-
tised using standard finite elements — while the delamination is modelled in a discrete
manner using special interface elements (Allix and Ladeveze , 1992; Corigliano , 1993;
Schellekens and de Borst , 1993, 1994a; Allix and Corigliano , 1999; Alfano and Crisfield ,
2001). Generalised plane-strain elements are often used to model free—edge delamination
as in Schellekens and de Borst (1993, 1994a), while stacks of solid or shell elements and
interface elements are applicable to cases of delamination near holes or other cases where
a three—dimensional modelling is necessary, e.g., (Hashagen et al. , 1995; Schipperen and
Lingen , 1999).

6.4 [um]

Figure 3. Layer which is unidirectionally reinforced with long fibres (above) and finite
element discretisations for three different levels of refinement of a representative volume
element composed of a quarter of a fibre, the surrounding epoxy matrix and the interface
between fibre and epoxy (Schellekens and de Borst , 1994b)

The greatest level of detail is resolved in the analysis if the fibres are modelled indi-
vidually. In such micro-level analyses the governing length scale is the fibre diameter.
Possible debonding between fibre and matrix material is normally modelled via interface
elements, equipped with cohesive—zone models, quite similar to models for delamina-
tion. An example is given in Figure 3, which shows an epoxy layer, which has been
reinforced uniaxially by long fibres, together with three levels of mesh refinement for a
Representative Volume Element of the layer.
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Figure 4. Stress-displacement curves for ductile separation (left) and quasi-brittle sep-
aration (right)

2.2 The Cohesive-Zone Concept
Delamination in the interfaces between the plies is modelled using a discrete relation
between the interface tractions t; and the relative displacements v:

ti = ti(V,FL) (21)

with x a history parameter. After linearisation, necessary to use a tangential stiffness
matrix in an incremental-iterative solution procedure, one obtains:

t; =Tv (2.2)

with T the material tangent stiffness matrix of the discrete traction—separation law:
. 8t1- 8t1- Ok
S 9v Ok Ov
Whichever type of modelling is used, plasticity or damage, a key element is the pres-
ence of a work of separation or fracture energy, G., which governs delamination growth

and enters the interface constitutive relation (2.1) in addition to the tensile strength f;.
It is defined as the work needed to create a unit area of fully developed crack:

Ge = /00 odu (2.4)

=0

T (2.3)

with ¢ and wu the stress and the displacement across the fracture process zone. It thus
equals the area under the decohesion curves as shown in Figure 4. Evidently, cohesive—
surface models as defined above are equipped with an internal length scale, since the
quotient G./F, with E a stiffness measure for the plies, has the dimension of length.

3 Standard FE Approach to Debonding and Delamination

3.1 Three-Dimensional Framework

We denote the material coordinates of a point in the undeformed reference configu-
ration by X = (X3, X3, X3), while in the deformed configuration the spatial coordinates
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of the point become x = (x1, x2,x3). Between x and X we have:
x=X+u (3.1)

with u the displacement vector. The deformation gradient F is obtained by differentiating
x with respect to X

F=__=i+_ = (3.2)

with 4 the second-order unit tensor. In the formulation of constitutive relations an ob-
jective strain measure is required. Because of its computational convenience the Green—
Lagrange strain tensor is often selected:

_1 _83_*_ @ T+ _6_11 T.él_ (33)
TT3lax T\ax ax ) ax ‘

The incremental strain tensor is then given by:

7:1(@+<@)T+(@>T.@+(@>T.8_u+(@Au)?@x)

2\ 60X 0X o0X X X 0X X X
(3.4)

The incremental strain tensor counsists of a part that is linear in the incremental dis-

placement field and a part that is quadratic in the incremental displacement field. For
computational convenience we introduce

Ay = Ae+ An (3.5)

Ae_ L[0Au (9AuNT (ou\T 9Au (9Au T du (3.6)
2\ X X X X X X ‘
1 (/8Au\" 9Au
2\ 38X oX
Furthermore, we introduce the variation of the displacement field as du, so that we can

define the variation of the Green-Lagrange strain as:

Gy — L [000  (06u T+ Ou T.%_“Jr osu\" ou (3.8)
TEo5lax T\ax 5x) “ax "\ax ) ax '

In the actual configuration and ignoring inertia effects, the balance of momentum
reads:

with

An (3.7

Vx-0+pg=0 (3.9)

where the subscript x denotes differentiation with respect to the current configuration,
o is the Cauchy stress tensor, p is the mass density in the current configuration and g
is the gravity acceleration. The weak form of the momentum equation is obtained in
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a standard manner by multiplying the balance of momentum by a test function w and
integrating over the domain 2. After using the divergence theorem, one obtains:

/ ViMw odQ) = / w - pgd + / w - tdl (3.10)
0 Q r

with I' the external boundary to the body € and the superscript sym denoting a sym-
metrised operator. In a total Lagrange description, which is employed predominantly
in computational structural analysis, static and kinematic variables are functions of the
undeformed, or reference configuration Q2° and it is computationally convenient to trans-
form eq. (3.10) to the reference configuration. After some algebraic manipulations, using
conservation of mass, p°dQ° = pdQ2. and identifying the test function w with the variation
of the displacement field. du. one obtains:

6'yz'rdQO:/ su-pgdQ®+ [ Su-t® dr° (3.11)
(20 . Qf) Ff)
where t° is the (nominal) traction vector referred to the undeformed state, p° is the mass
density in the undeformed configuration, I'? is the surface in the undeformed state, and
T is the second Piola—Kirchhoff stress tensor, which is related to the Cauchy stress tensor
o by:

o = (detF) F .7 - FT (3.12)

with detF = p/p°.

In general, eq. (3.11) is highly nonlinear, because of the nonlinear dependence of 7 ony
and because of the nonlinear dependence of 4 on u: 7 = 7(y(u})). Solution of eq. (3.11) is
therefore achieved using some iterative procedure, usually the Newton—Raphson method
in computational structural analysis. Linearising the stress—strain relation 7 = 7(y) to
give the material tangential stiffness tensor,

or

= — 3.13
D= (3.13)

we obtain for the unknown stress 7; at iteration j:
T;=D:dy+T1; (3.14)

with 7;_; the known stress at the previous iteration j — 1 and the d-symbol signifying
the iterative change of a quantity from iteration j — 1 to iteration j. With eq. (3.14), we
obtain instead of eq. (3.11):

6y : D :dydQ° + / Sy :7j1dQ0 = su - plgd® + Su - t0dre (3.15)
Qo Qo

Qo o

Elaborating this equation using the strain decomposition (3.5) and consistent linearisa-
tion leads to:

/&e:D:dedQO+/ 6p:7;1dQ° = [ Su-p’gdQ’+ 6u-t0dF0—/ de : 7;_1dQ°
0o 00 Y 0o

(3.16)

Qo
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Figure 5. T-bone shaped AS-3501-06 graphite-epoxy laminated strip subjected to uni-
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Figure 6. Quarter of T-bone shaped laminated strip

After a standard discretisation of the displacement field u, a discrete set of (nonlinear)
algebraic equations is obtained. Such a discretisation will be elaborated in the next
subsection for the specific case of generalised plane-strain elements and comments on
the solution of the nonlinear set of equations will be made later in this section.

At the beginning of each load increment, so for j = 0, the possible influence of hygro-
thermal effects is taken into account. Assuming that there are no nonlinear effects in the
plies other than hygral and thermal strains the stress increment is then given by

dro = AT =D : (Ay — ATa — ACB) (3.17)

with AT and AC the incremental changes in temperature and moisture content in the
current Joading step, respectively. The vectors @, 8 contain the thermal and hygroscopic
expansion coeflicients, respectively.

Due to mismatch of the Poisson effect between the layers of a laminated structure,
as caused by the different orientation of the fibres, interlaminar stresses will develop
between the plies at the free edges. At a generic stage in the loading process, these edge
stresses will lead to delamination. Depending on the stacking sequence of the laminate
and the position of the delamination zone in the laminate, delamination occurs purely as
mode-I delamination or as delamination due to a combination of several cracking modes,
so-called mixed-mode delamination. For the three-dimensional example of Figure 5, we
will consider a lay-up that causes pure mode-I delamination, which is the dominant
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Figure 7. COD wvs axial stress for the full T-bone specimen and for an approximated
3D solution using the rectangular specimen of Figure 8

mode if delamination occurs in the mid-plane of a symmetric laminate. Consequently,
only the upper (or equivalently, the lower) half of the laminate needs to be analysed.
The interface delamination model was based on a damage formalism, see Schipperen and
Lingen (1999) for details, where also the relevant material parameters can be found.
The strip that has been analysed, has a laminate lay-up of [25, —25, 90]; and is man-
ufactured of an AS-3501-06 graphite-epoxy. The initiation of delamination occurs at a
threshold deformation &; = 51.6 - 10~ "mm in the normal direction of the interface. This
threshold deformation is determined from the tensile strength of the material and the
normal elastic stiffness in the interface d,,. Because of the zero thickness of the interface
this parameter is in fact a dummy stiffness. The use of a dummy stiffness in the determi-
nation of k; makes the initiation of damage somethat arbitrary. However, the opening of
the interface after damage initiation is controlled by the fracture energy of the material,
Ge = 0.175N/mm, which ensures that delamination propagation is predicted properly.
The specimen that has been analysed is depicted in Figure 6 in more detail. The linear
elastic ends of the specimen are a simplification of the real situation in an experiment
and have been included in the analyses to limit the influence of the boundary conditions.
Furthermore, to reduce the computation time, the radius of the transition zone has been
taken fairly small compared to data suggested in norms. The COD versus axial stress,
measured as the average stress in the narrow part of the strip, is shown in Figure 7.
Numerical solutions of boundary-value problems involving materials that show a de-
scending branch after reaching a peak load level, can be highly mesh sensitive (de Borst ,
2004). However, in the present situation, where the degrading phenomena are limited to
a discrete interface where the crack opening is controlled by a fracture energy (cohesive—
zone approach), the boundary value problem remains well-posed and, consequently, no



Computational Mechanics of Failure in Composites at Multiple Scales 73

Elastic zones

2 mm 2 mm

>
Som | D > o

JANNRAN AN FANRIVAN

10 mm

Figure 8. Quarter of the rectangular specimen used in the approximate 3D solutions

mesh sensitivity should be observed. This is confirmed in a mesh refinement study of
a three-dimensional rectangular plate, Figure 8, which is used to approximate the orig-
inal T-bone specimen, but, because of its simpler geometry, is less expensive in mesh
refinement studies. The load—displacement curves for the original T-bone specimen and
the approximate 3D specimen are close, Figure 7, justifying the approximation for the
purpose of a mesh refinement study.

Three different meshes have been used in the calculations. The coarse mesh consisted
of 20 elements over the width and 25 elements over the length of the plate. For the
two finer meshes the element distribution over the width was not equidistant. For the
2.5 mm of the width of the plate closest to the free edge a finer mesh was used. This
leads to 35 elements over the width and 25 elements over the length of the plate for the
second mesh and to 70 elements over the width and 50 elements over the length of the
place for the finest mesh. The crack opening displacement of a node near the centre
of the free edge has been plotted versus the applied axial stress for all three meshes in
Figure 9. No mesh sensitivity can be noticed. In Figure 10 the delamination zone of
the plate is shown at several stages during the computation. Until the peak load the
delamination is uniform, since the slight waviness is purely due to visualisation aspects.
However, in the descending branch of Figure 9 the delamination zone becomes more and
more non—uniform.

3.2 Generalised Plane-Strain Formulation

If the length of a laminate is large compared to the width and the thickness we may
assume that, for uniaxial tensile or compressive loadings, at a certain distance from the
ends of the specimen, the in—plane displacements in the Xs, Xs—plane are independent
of the X-coordinate, Figure 11. This results in the following set of equations for the
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Figure 10. Evolution of the delamination zone in simplified three—dimensional analysis

displacement field of a cross section (Pipes and Pagano , 1970; Pagano , 1974; Schellekens
and de Borst , 1993):

ul(Xl,XQ,Xs) = denn X1 +U1(X2,X3) (318&)
u2 (X1, X2, X3) = ua(Xo, X3) (3.18b)
uz(X1, X2, X3) = uz(Xo, X3) (3.18¢)

with €11 a normalised strain that is prescribed in the X;—direction of the specimen and
A a load parameter. With the increment of the Green—Lagrange strain tensor, eq. (3.4),
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Figure 11. Uniaxially loaded laminate strip

and noting that, for generalised plane-strain conditions, Auy x, = AXe1r, Aug x, =0
and Aug x, = 0, we obtain for the strain increment Asy

Ay = Ade; + Aeg + A€y + Ay (3.19)

where, using Voigt’s notation, the contribution Ale1 is due to the applied strain loading,

m

S oo oo
jan

€ = (3.20)

Ag is of the order zero in the incremental displacements,

(F11 — 1)A/\€11 + %A)\Qe%l
0
0
FiaAXen
0
FizAdeiy

Aeg = (3.21)

and Ae and An are linear and quadratic in the displacement increments, respectively:

0
FioAuq x, + Faolug x, + FaoAus x,
FisAuy x, + FosAug x, + Fa3Aus x;,
(FH + A)\ell)Aul’Xg
FioAuy x, + Fi3Auy x, + FoaAug x, + FazAug x, + FzeAusz x, + F33Aug x,
(F11 + A/\en)Aul,Xa
(3.22)
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and
0

(Aui)& + Au%x2 + Au%,xz)

1

2

1 2 2 2

3 (AU x, + B4 x, + Auj x)

Ap = (3.23)

Aul,x,‘,AuLxg + AUQ’XQ A'U,Q’Xs + AU3’X2 Au3’x3
0

Because of the absence of external loadings in the X5, X3-plane the weak form of the
balance of momentum (3.16) reduces to:

5eTDdedQ°+ / 60" (1;_1+d\De;+Ddep)d° = — [ 8€T(7j_1+d\De;+Dde)dQ°
QO

Qo
(3.24)
where, in conformity with the use of Voigt’s notation, matrix—vector notation has been
adopted. de is linear in the iterative nodal corrections da:

Qo

de = Brda (3.25)
with By, given by, cf eq. 3.22:
0 0 0
Fish x, Fyh x, Fyu x,
Fish x Fosh x F33u x
B; = X Xs Xs 3.26
L (F11 + ('1/\611)11,)(2 0 0 ( )
Fioh x, + Fish x, Faoh x, + Fash x, Fsoh x, + Fash x,
(FH -f—d/\éu)h,xz 0 0

where h x, contains the derivatives of the interpolation functions in the X,;—direction.
Using eq. (3.25), the first term in eq. (3.24) becomes

5eTDdedN° = sa* / BIDB.d0° da (3.27)

Qo Qo

We next introduce the matrix

0 0 0
0 0 0
0 0 0

0.x, 0 0

By = 0 0.x, 0 (3.28)

0 0 0 x,

0 x4 0 0
0 3.x4 0

L 0 0 6’)(3 ]

with 0 x, = 3/0X;. Now, the second term in the left hand of eq. (3.24) becomes

/QO n" (11 + d\De; + Ddey)d° = 5aT /0 By, (Tj_1 +E;)Byz d2%da  (3.29)
Q!
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where
T11,j-1L T2 511 7e15-11
Tj1 = m2j-11 7011 723,11 (3.30)
T31,5-11 7a3 ;11 Tzl jg g
and
Tguil 710l Tl
Ej: Tg,lgl ’Tg’zgl Tg,ggl (331)
Tgs1l 7ol To33l g 4
with

T4 = D(deg + dAe) (3.32)

Substitution of eqs (3.27) and (3.29) into eq. (3.24), and requiring that the result holds
for any virtual displacement yields:

K,da = — / BT (r;_1 + dADe; + Dde;)d2° (3.33)
QO

with
K;= [ BIDB;dQ°+ [ BY.(T;—: +E;)By. dQ° (3.34)
Q0 Qo
the tangential stiffness matrix.

The three-dimensional analysis of the preceding subsection has been repeated us-
ing generalised plane-strain elements. The analyses have been carried out for two—
dimensional meshes of a cross section of a laminate subjected to a uniaxial strain under
the assumption of uniform delamination at a certain distance away from the loaded edges,
see Figure 5.

The first analysis has been performed on a strip with an individual ply height of
0.132 mm and a specimen width of 25 mm. For this specimen three different finite
element, discretisations have been considered, with element lengths of 0.05, 0.1 and 0.2
mm, respectively, near the free edge. This fine discretisation has been used only at the
5 mm nearest to the free edge of the specimen. The remainder of the laminate has been
modelled with a coarser mesh with an clement length of 2.5 mm. For the two—dimensional
analyses, symmetry has been assumed, so that only one quarter of the cross section of
the laminate has been modelled. This assumption has been made to reduce the problem
size and thus the computation time. Of course, the assumed symmetry axis in the
midplane of the laminate is valid due to the symmetrical ply lay—up. The other assumed
symmetry axis is not a real symmetry axis of the laminate due to the fibre orientation
in the plies. At the symmetry edges of the model supports were added according to
the symmetry conditions, viz. u1(0,0,X3) = 0,u2(0,0,X3) = 0 and u3(0, X2,0) = 0.
Prior to delamination, the interface elements have been assigned a high dummy stiffness
dn = ds = 1078 N/mm?2, in order to minimise the artificial elastic deformations in the
interface.

The average axial stress (total axial load divided by the surface of the cross section) vs
the applied axial strain is shown in Figure 12 for all three meshes. Clearly, no mesh sensi-
tivity occurs. A comparison of the computed value for the ultimate strain, ¢ = 0.00518,
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Figure 12. Average axial load vs applied axial strain for [25, —25, 90]; laminate using a
generalised plane—strain approximation

with numerical results using a plasticity-based interface model, ¢; = 0.00516 (Schellekens
and de Borst , 1993), and with experimental data, ¢ = 0.0053 (Wang , 1989), shows a
good agreement.

The influence of the temperature drop that occurs during the manufacturing process
has been taken into account by simulating a temperature drop AT = —125 °C. If the
temperature drop that occurs in the manufacturing process is not taken into account,
the ultimate strain of the laminate is overestimated significantly, Figure 14, in which the
delamination length from the free edge versus the applied axial strain is shown for the
mesh with an element length of 0.1 mm near the free edge.

A comparison of the results of a two-dimensional analyses of this laminate and the
three-dimensional analysis is given in Figure 14. The two—dimensional approximation is
close, but it should be noted that this three-dimensional analysis has been carried out
for the simplified three-dimensional model of Figure 8.

As an example of mixed—mode free—edge delamination, a composite strip loaded in
uniaxial tension has been considered. The material was a Fibredux 6376C/35/135/HTA
graphite epoxy. To introduce the initial stresses that are caused by the manufacturing
process, a temperature drop AT = —150 °C has been imposed prior to incrementing
the axial elongation. A cross section of the example that we have considered, is shown
in Figure 15. For this specific lay—up, the delamination jumps from one of the -35/90
interfaces to that which is located at the other side of the symmetry line and back (mixed-
mode delamination). The energy that is dissipated in the crack that runs through the
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Figure 14. Comparison of load—displacement curves obtained from generalised plane-
strain and from three—dimensional analyses

plies is negligible, because the fibres in this layer are parallel to the crack. Figure 16
shows the results in terms of the axial strain at onset of delamination for three different
lay—ups. A clear size {thickness) effect is predicted because of the presence of the energy
of separation G, in the constitutive model for the interface. This computed size effect
was confirmed by experiments carried out at the Catholic University of Leuven after
completion of the computations (Schellekens and de Borst , 1994a).
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Figure 15. Mixed-mode delamination in a uniaxially loaded laminated strip: jumping
of a delamination front between two -35/90 interfaces
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Figure 16. Computed and experimentally determined values for the ultimate strain €,
as a function of the number of plies (Schellekens and de Borst , 1994a). Results are shown
for laminates consisting of eight plies (n = 1), sixteen plies (n = 2) and twenty-four plies
(n = 3). The triangles, which denote the numerical results, are well within the band of
experimental results. The dashed line represents the inverse dependence of the ultimate
strain on the laminate thickness

3.3 Solid-Like Shell Formulation
We consider the thick shell shown in Figure 17. The position of a material point

in the shell in the undeformed configuration can be written as a function of the three
curvilinear coordinates [£, 7, (]:
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Figure 17. Kinematic relations of the solid—like shell element

where Xo(&,n) is the projection of the point on the mid-surface of the shell and D(€,7)
is the thickness director in this point:

Xo(€,7m) = 5 [Xu(€,n) + Xo(6,7)] (3.36)

D(E.n) = 5 [XelE ) ~ X (6 1)] (337)

The subscripts (-); and (-); denote the projections of the variable onto the top and bottom
surface, respectively. The position of the material point in the deformed configuration
x(&,7,() is related to X(&,n, () via the displacement field ¢(£,7,¢) according to:

x(&m,¢) = X(&,1,¢) + (&,1,¢) (3.38)
where:
¢(§a 1, C) = u0(§7 77) + Cul (6’ 77) + (1 - CQ)UQ (Ea 77) (339)

In this relation, ug and u; are the displacements of Xy on the shell mid-surface, and the
thickness director D, respectively:

u0(£? 77) = [ut (57 77) + (67 77)] (340)

= N

u(§,n) = 5 [w: (&, m) — wp (&, m)] (3.41)

and uz(&,n) denotes the internal stretching of the element, which is colinear with the
thickness director in the deformed configuration and is a function of an additional ‘stretch’
parameter w:

uz(§,n) = w& D +uy(§,n)] (3.42)

The displacement field ¢ is considered as a function of two kinds of variables; the ordinary
displacement field u, which will be split in a displacement of the top and bottom surfaces
u; and up, respectively, and the internal stretch parameter w:

¢ = ¢(ur, up, w) (3.43)
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Figure 18. Geometry of a Glare panel with a circular initial delamination

The derivation of the strains and the finite element formulation are given in Hashagen
et al. (1995) and Parisch (1995).

Using the solid-like shell element, the behaviour of a Glare panel with a circular initial
delamination and a sinusoidally shaped out—of—plane imperfection (with an amplitude of
0.003 mm) subject to a compressive load has been examined. The failure mechanism is
slightly complicated, since the delaminated zone grows in a direction perpendicular to
the main loading direction. As a result, the delaminated area transforms from a circular
area into an ellipsoidal one. Consequently, the buckling mode will change as well, and
some parts of the top layer will tend to move inwards. For this reason, the possibility of
self-contact has been included and a contact algorithm has been activated.

The specimen of Figure 18 consists of an aluminium layer with thickness by = 0.2 mm
and a Glare3 0/90° prepreg layer with a thickness ho = 0.25 mm, (Remmers and de Borst
, 2002). An initially circular delamination area with radius 8 mm is assumed. The layers
are attached to a thick backing plate in order to prevent global buckling. A uniaxial
compressive loading in z—direction is considered (o, = —0y, oy = 0.0).
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Figure 19. Mesh used for the simulation of delamination growth in the Glare panel.
The initial delamination is located at the darker elements. Note that just one quarter of
the panel (z > 0, y > 0) has been modelled

Table 1. Material parameters for 0/90° Glare3

Ei1 | 33170 MPa | Gi2 | 5500 MPa | vi2 | 0.195
Ey | 33170 M Pa | Gz | 5500 M Pa | ez | 0.032
E33 9400 M Pa G13 5500 M Pa Vis 0.06

The finite element mesh is shown in Figure 19. The material parameters for the Glare3
layer are taken from Hashagen and de Borst (2000), see Table 1. The ultimate traction
in normal direction in tension and compression are assumed to be &, = 50 M Pa and
t¢ = 150 M Pa, respectively, and the ultimate traction in the two transverse directions
equals t5; = t;o = 25 M Pa. The work of separation is G, = 1.1 N/mm. An initial
stiffness of the interface elements of d,, = 50000 N/mm? has been assumed.

The analytical estimation for the local buckling load of a clamped unidirectional panel
with thickness h; subjected to an axial compressive load og was derived in Shivakumar
and Whitcomb (1985). For this configuration, the lowest critical buckling load is equal
to g9 = 113.2 M Pa.

For the contact algorithm the penalty stiffness has been set equal to the initial stiffness
of the interface elements with the delamination model, dpen, = 50000 M Pa. The out-
of-plane displacement of the centre point of the panel is shown in Figure 20. The local
buckling load is in agreement with an eigenvalue analysis (Remmers and de Borst |,
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Figure 20. Out-of—plane displacement of top layer versus applied axial compressive load
0o. The dashed line corresponds to the critical buckling load obtained by an eigenvalue
analysis (Remmers and de Borst , 2002)

delamination growth

Figure 21. Final deformation of the Glare laminatc under uniaxial loading (Remmers

and de Borst , 2002)

2002). Initial delamination growth does not start until a load level o = 300 M Pa, while
progressive delamination begins at an external load level o9 = 950 M Pa. As this value
is far beyond normal stress levels, the analysis suggests that delamination buckling is
of little concern in uniaxially compressed Glare panels. As expected, the delamination
extends in a direction perpendicular to the loading direction, Figure 21.

3.4 Interface Elements

We consider an N-noded line or plane interface, e.g. Figure 22 for a line interface. In
a general three-dimensional configuration each node has three translational degrees-of-
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Figure 22. Line interface element and transformation from the reference to the current
configuration

freedom, which leads to an element nodal displacement vector a
T
a= (a1 ...... Ja al o, al,...... , aiv) (3.44)

where n denotes the direction normal to the interface surface and s and t denote the
directions tangential to the interface surface, respectively. The continuous displacement
field is denoted as

u=(u¥ ub,ul,u u}‘,ui)T (3.45)

ny 'n? Y8 V87

where the superscripts u and [ indicate the upper and lower sides or planes of the interface,
respectively. 'With aid of the interpolation polynomials collected in the array h the
relation between the continuous displacement field and the nodal displacement vector is
derived as:

u=Ha (3.46)
with
h 0 0 0 0 O
0 h 0 0 0 O
0 0 h 00 O
H= 0 0 0h 0 O (3.47)
0 0 0 0 h O
0 0 0 0 0 h

To relate the continuous displacement field to the relative displacements an operator
matrix L is introduced:

-1 0 0
41 0 0
0 -1 0

L=| 4 1 o (3.48)
0 0 -1
0 0 +1

With the relative displacement vector vI = (v, vs,v:) we obtain

v=Lu (3.49)
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The relation between nodal displacements and relative displacements for continuous el-
ements is now derived from eqs (3.46) and (3.49) as:

v =LHa = Ba (3.50)
where the relative displacement—nodal displacement matrix B now reads

~h h 00 00O
B=| 00 -hh 00 (3.51)
00 00 -h h

For an arbitrarily oriented interface element the matrix B subsequently has to be trans-
formed to the local coordinate system of the integration point or node-set.

In interface elements tractions and relative displacements are evaluated between the
upper and the lower interface sides or planes. The components of the traction and
relative displacement vector are determined by the orientations of the element sides or
planes, and are thus fixed. With the Cauchy traction vector at the interface, t;, a relative
displacement vector v which refers to the current configuration and I' the actual element
surface, the first variation of the internal energy in the current configuration is given by

W = / svTt;dr (3.52)
r

which has to be added to the left-hand side of eq. (3.10). Similar to the previous
continuum element formulations we will recast this expression in terms of static and
kinematic variables that refer to the undeformed reference state. We first introduce
dl' = (detJ/detJ?)dI® with detJ and detJ? the determinants of the Jacobian matrices
in the current and the reference configuration, respectively. We next define an interface
traction vector that refers to the reference configuration, tY = (detJ/detJ?)RTt;, with
R a rotation matrix as in Figure 22, and a relative displacement vector with respect to
the reference configuration: v0 = R"v. Subsequently, we can rewrite eq. (3.52) as:

SW = [ (6v°)T0ar? (3.53)
T0

Hence, the auxiliary traction vector t? is energetically conjugate to the relative displace-
ment vector v¥ measured with respect to the reference configuration and can therefore
be employed as an interface traction measure in a geometrically nonlinear formulation of
interface elements.

In a nonlinear analysis and assuming small strains, a traction vector t’ at the end of
an iteration j can be expressed as

t) =t , + Tdv® (3.54)

cf., egs (2.2) and (2.3), and dv® denotes the iterative change in the relative displacement
vector. Introducing eqgs (3.50) and (3.54) in the virtual work expression (3.53) and
considering that no external actions are acting on the interface elements, one obtains:

sa” [ BTTBdI%da = — / B't) dI° (3.55)
To

o
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Figure 23. Geometry of symmetric, notched three-point bending beam

The element stiffness matrix K and the internal force vector f;_; can thus be defined as

K= [ BTTBAI® (3.56)
o

and
£ =— /F ] BTt9_,dr° (3.57)

In the foregoing examples, interface elements equipped with a cohesive—zone model
have been inserted a priori in the finite element mesh. Before the tensile strength in
the interface element is exceeded, which is monitored in the integration points of the
interface element, no deformations should occur, since (elastic) deformations before the
onset of fracture only take place in the bulk. Nevertheless, the formulation of conventional
interface elements requires a finite stiffness prior to the onset of cracking, thus giving rise
to (unphysical) deformations in the interface before crack initiation.

Prior to onset of delamination the stiffness matrix in the interface reads:

dn 0 0
T=| 90 d, 0 (3.58)
0 0 d

with d,, the stiffness normal to the interface and d, and d; the tangential stiffnesses. The
undesired elastic deformations can be largely suppressed by choosing a high value for
the stiffness d,,. Depending on the chosen spatial integration scheme, this high stiffness
value can lead to spurious traction oscillations in the pre—cracking phase, which may
cause erroneous crack patterns (Schellekens and de Borst , 1992; Remmers et al. , 2001).
An example of an oscillatory traction pattern ahead of a notch is given in Figure 24 for the
notched three-point bending beam of Figure 23. When analysing dynamic delaminations,
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Figure 24. Traction profiles ahead of the notch using linear interface elements with
Gauss integration. Results are shown for different values of the stiffness D = d,, in the
pre—cracking phase (Schellekens and de Borst , 1992; Remmers et al. , 2001)

spurious wave reflections can occur as a result of the introduction of such artificially high
stiffness values prior to the onset of delamination. Moreover, the necessity to align the
mesh with the potential planes of delamination, restricts the modelling capabilities, in
particular for thin composite structures.

3.5 Solution Control

Depending on the lay—up, laminated composite structure can fail in a very brittle, and
sometimes explosive manner. When plotting the axial load vs the axial elongation, this
brittleness translates in snap—through and even in snap—back behaviour, see Figure 12
that contains results for the generalised plane-strain approximation of the T—bone spec-
imen of Figure 5, which fails in mode-1. Use of standard load control prohibits the exam-
ination of the post-critical behaviour. However, path-following procedures, also known
as arc—length procedures (Riks . 1970, 1972; Ramm , 1981; Crisfield , 1981), provide an
elegant way to overcome this limitation of standard load control. This class of methods al-
lows continuation of the computation beyond limit and turning points in the equilibrium
path. While originally devised for and applied to purely geometrically nonlinear struc-
tural behaviour, there is no conceptual limitation to also apply the method to physically
nonlinearities such as delaminations. However, it has been observed that, especially in
case of highly localised deformations, the method tends to become less effective and that
it can be more efficient to only consider one of more dominant degrees-of-freedom (de
Borst , 1987). In delamination analyses the constraint equation is then based on the
relative displacements in the delamination front.

Elaborating for the generalised plane-strain case, we observe that in a conventional
strain loading the iterative change in nodal displacements da for iteration j is determined
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Figure 25. Crack Opening Displacement (COD) control

from eq. (3.33) If we define q as a normalised external load vector,
q=- [ B{Dedf (3.59)
Qo
and the internal force vector p;_; as
pj_1=— | Bf(rj_1 — A)j_1De + Ddeo)dQ° (3.60)
Qo
eq. (3.33) can be rephrased as:
da = K; ' (A\q+p;j-1) (3.61)

since dXA = A\; — AXj_;. In an arc-length modification of strain loading this process:
can be represented by the following set of equations

daI = Kj_lpj—l (362)
da" = K;'q (3.63)
da = da' + A);da"! (3.64)

The correction da is determined by the requirement that the Crack Opening Displacement
(COD) of the interface between the two plies where delamination occurs should have the
same value for each iteration, Figure 25:

d(COD) =0 — dap, —dag =0 (3.65)

with da, the change in displacement of node p in the direction normal to the interface
from iteration j — 1 to iteration j. Combination of egs (3.64) and (3.65) yields the value
for the change of the load parameter:

I 3.1
dap daq

AN = -~ " g
J da%,I — daéI

(3.66)
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4 Modelling of Delamination and Debonding Based on the
Partition-of-Unity Concept

4.1 The partition—of—unity concept

Considering the restrictions that adhere to the use of interface elements, the search
has continued for a proper representation of the discrete character of cracks and inter-
faces, while allowing for an arbitrary direction of crack propagation, not biased by the
initial mesh design. Meshless methods (Huerta et al. , 2004) were thought to provide
a solution for this problem, but they appear to be less robust than traditional finite
element methods, they are computationally more demanding and the implementation
in three dimensions appears to be less straightforward. However, out of this research,
a method has emerged, in which a discontinuity in the displacement field is captured
exactly. It has the added benefit that it can be used advantageously at different scales,
from microscopic to macroscopic analyses.

nr

Figure 26. Body composed of continuous displacement fields at each side of the discon-
tinuity 'y

The method makes use of the partition—of-unity property of finite element shape
functions (Babuska and Melenk , 1997). A collection of functions ¢,, associated with
nodes ¢, form a partition of unity if > | ¢,(x) = 1 with n the number of discrete nodal
points. For a set of functions ¢, that satisfy this property, a field u can be interpolated

as follows: .
() (al +y zpj(x)a,]) (4.1)

with @, the ‘regular’ nodal degrees—of-freedom, ¢,(x) the enhanced basis terms, and
d,; the additional degrees—of-freedom at node : which represent the amplitudes of the
Jth enhanced basis term 1,(x). In conventional finite element notation we can thus
interpolate a displacement field as:

u = N(a + Na) (4.2)

where N contains the standard shape functions, N the enhanced basis terms and a and
a collect the conventional and the additional nodal degrees—of—freedom, respectively. A
displacement field that contains a single discontinuity, Figure 26, can be represented by
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choosing (Belytschko and Black , 1999; Moés et al. , 1999):

N = Hp,I (4.3)
Substitution into eq. (4.2) gives
u= Ni+Hr, Na (4.4)
o o

Identifying i = Na and @ = Na we observe that eq. (4.4) exactly describes a displace-
ment field that is crossed by a single discontinuity, but is otherwise continuous. Accord-
ingly, the partition-of-unity property of finite element shape functions can be used in
a straightforward fashion to incorporate discontinuities in a manner that preserves their
discontinuous character.

As before, we take the balance of momentum

V.o+pg=0 (4.5)

as point of departure and multiply this identity by test functions w, taking them from
the same space as the trial functions for u,

w=1uw+Hr,w (4.6)

Applying the divergence theorem and requiring that this identity holds for arbitrary @
and @ yields the following set of coupled equations:

/ V%% : odQ) = / ﬁ)-png-l—/-ﬂ)-tdF (4.7)
Q Q r

V¥R odQ +/

ﬂ)-tidF:/ ﬁ;.pgdsz+/dea;-tdr (4.8)
'y [9hs T

Q+

where in the volume integrals the Heaviside function has been eliminated by a change of
the integration domain from Q to Q1. With the standard interpolation:

(4.9)

and requiring that the resulting equations must hold for any admissible W and W, we
obtain the discrete format:

/ BTod = / pBTgdQ + / NTtdr (4.10)
Q Q r

/ BTodQ + / NTt,dl = / pBTgdQ + / Hp,NTtdT (4.11)
Q+ Ty Q+ r

After linearisation, the following matrix—vector equation is obtained:

Koo Kaa | [ da ) _ [ fot — £
[ Kao Kaa ] ( da ) =\ fert - £ (4.12)
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with £, £ given by the left-hand sides of eqs (4.7)—(4.8), ££%!, £¢** given by the right—
hand sides of eqs (4.7)—(4.8) and

Koo = / BTDBAQ (4.13)
Q

Kaz = BTDBJN (4.14)
o+

Ki:a = / BTDBJQ (4.15)
0+

Kiz = / BTDBAQ + / NTTdr (4.16)
Q+ |

If the material tangential stiffness matrices of the bulk and the interface, D and T re-
spectively, are symmetric, the total tangential stiffness matrix remains symmetric. It is
emphasised that in this concept, the additional degrees—of-freedom cannot be condensed
at element level, because it is node—oriented and not element—oriented. It is this prop-
erty which makes it possible to represent a discontinuity such that it is continuous at
interelement boundaries.

At variance with conventional interface elements, a criterion is needed for the place-
ment of the discontinuity upon propagation. This criterion is based on the stress state
at the delamination front, which can be monitored by adding temporary sample points.
When the criterion exceeds a threshold value, the discontinuity is extended into the new
element. The corresponding nodes of this element are enhanced with an additional set
of degrees—of-freedom.

Originally, the partition—of-unity concept was applied within the context of linear
elastic fracture mechanics (Belytschko and Black , 1999; Moés et al. , 1999), thus neces-
sitating special functions to simulate the near-tip singularity. For this reason, close to
the crack tip the enhanced basis terms were introduced as:

¥ = (Vrcos(8/2) , /rsin(6/2) , /rsin(6/2)sin(8) . \/;COS(O/Q)Sin((Q))T (4.17)

where r is the distance from the crack tip and # is measured from the current direction
of crack propagation. Away from the crack tip Heaviside functions were employed as
discussed above.

The partition—of—unity property of finite element shape functions is a powerful method
to introduce cohesive surfaces in continuum finite elements (Wells and Sluys , 2001; Wells
et al. , 2002; Moés and Belytschko , 2002). Using the interpolation of eq. (4.4) the relative
displacement at the discontinuity I'y is obtained as:

v=u |x€l"d (4.18)

and the tractions at the discontinuity are derived from eq. (2.1). A key feature of the
method is the possibility of extending a (cohesive) crack during the calculation in an
arbitrary direction, independent of the structure of the underlying finite element mesh.
It is also interesting to note that the field @ does not have to be constant. The only
requirement that is imposed is continuity.
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Even though traditional interface elements equipped with cohesive—zone models are
able to capture the failure behaviour of laminated composites accurately, the simulation
of delamination using the partition—of-unity property of finite element shape functions
offers some advantages. Because the discontinuity does not have to be inserted a priori,
no (dummy) stiffness is needed in the elastic regime. Indeed, there does not have to be an
elastic regime, since the discontinuity can be activated at the onset of cracking. Conse-
quently, the issue of spurious traction oscillations in the elastic phase becomes irrelevant.
Also, the lines of the potential delamination planes no longer have to coincide with ele-
ment boundaries. They can lie at arbitrary locations inside elements and unstructured
meshes can be used.

4.2 Extension to Large Displacements

The above approach for capturing discontinuities can be generalised to large displace-
ment gradients in a straightforward and consistent manner. To this end, one extends
eq. (4.4) as:

x=X+u+Hpou (4.19)

with Hpo the Heaviside function at the interface in the reference configuration, I'Y. The
deformation gradient follows by differentiation:

F=F + HpoF + 6po (i ® no) (4.20)

with F = 4 4+ 9a/06X, F = dua/0X and dpo the Dirac function at the interface in the
reference configuration.

Figure 27. Body crossed by a discontinuity I'; with normals np- and Np+ at both sides
of the discontinuity

With aid of Nanson'’s relation for the normal n to a surface I'":
dre
dr

the expressions for the normals at the - side and at the + side of the interface can be
derived:

n = det F(F~D)nro (4.21)

. dr9
np.— = det F(FT)npo —4¢ (4.22a)

adr;
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N dl“g b
an+ = det(F + F)(F + F) o (4.22 )

Fadr
see Figure 27. Distinction between np- and np+ is possible because u is not spatially
constant. In the cohesive—zone approach, interface tractions t; are transmitted between
I'" and I'T with different normals n.- and npy. In a heuristic assumption, it has

been assumed that an average normal ¢an be defined for use within the cohesive-zone
model (Wells et al. , 2002):

F)(F + %F)~T

dr¢

nr- = det(F + nro are

(4.23)

DO |

We now recall the equilibrium equation in the current configuration, cf. eq. (3.9):
Vx-0+pg=0

In a Bubnov-Galerkin method the test functions w for a single discontinuity are given
by:
w=1w-+ Hr‘gﬁl (424)

Multiplying with this test function, integrating over the current domain {2 and requiring
that the result holds for arbitrary @ and # yields:

/ Vxw : 0df} = / w - pgdQ + / - tdl’ (4.25a)
Q Q r

Vxib : 0d2 +/ w-t,dl' = / w - pgd + / Hrp, - tdl’ (4.25Db)
o+ Iy o+ r

with the subscript x signifying differentiation with respect to the current configuration
and tg = nrs .o the traction at the discontinuity in the current configuration. With a
standard interpolation:

w=Nw , w=NWw (4.26)

where N contains the interpolation polynomials and w and W contain the discrete values
for the test functions, the discrete format of eqs (4.25a)—(4.25b) reads:

/ BTod( = / pBTgdQ + / NTtdl (4.27a)
Q Q r

BTodQ + / NTt,dl' = / pBYgdQ + / Hr,NTtdl (4.27b)
Qt Ta Q+ T

After substitution of the constitutive relations for the plies and that for the interface,
and transforming back to the reference configuration, a nonlinear set of algebraic equa-
tions results, which can be solved in a standard manner using an incremental-iterative
procedure. If a Newton-Raphson procedure is used, these equations have to be linearised
in order to derive the structural tangential stiffness matrix, see Wells et al. (2002) for
details.
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Figure 28. Double cantilever beam with initial delamination under compression
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Figure 29. Load-displacement curves for delamination-buckling test (Wells et al. |
2003)

To exemplify the possibilities of this approach to model the combined failure mode
of delamination growth and local buckling we consider the double cantilever beam of
Figure 28 with an initial delamination length @ = 10 mm. Both layers are made of the
same material with Young’s modulus E = 135000 N/mm? and Poisson’s ratio v = 0.18.
Due to symmetry in the geometry of the model and the applied loading, delamination
propagation can be modelled with an exponential mode—I decohesion law:

t
%, = tulc €XP (—5—%35) (4.28)
[+

where t%,. and v}, are the normal traction and displacement jump respectively. The
ultimate traction ty) is equal to 50 N/mm?, the work of separation is G. = 0.8 N/mm.
This case, in which failure is a consequence of a combination of delamination growth
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Figure 30. Deformation of coarse mesh after buckling and delamination growth (true
scale) (Wells et al. , 2003)

and structural instability, has been analysed using conventional interface elements in
Allix and Corigliano (1999). The beam is subjected to an axial compressive force 2P,
while two small perturbing forces Py are applied to trigger the buckling mode. Two
finite element discretisations have been employed, a fine mesh with three elements over
the thickness and 250 elements along the length of the beam, and a coarse mesh with
only one (!) element over the thickness and 100 elements along the length. Figure 29
shows that the calculation with the coarse mesh approaches the results for the fine mesh
closely. For instance, the numerically calculated buckling load is in good agreement
with the analytical solution. Steady-state delamination growth starts around a lateral
displacement u = 4 mm. From this point onwards, delamination growth interacts with
geometrical instability. Figure 30 presents the deformed beam for the coarse mesh at a
tip displacement u = 6 mm. Note that the displacements are plotted at true scale, but
that the difference in displacement between the upper and lower parts of the beam is for
the major part due to the delamination and that the strains remain small.

4.3 Delamination in a Solid—Like Shell Element

The excellent results obtained in this example for the coarse discretisation have moti-
vated the development of a layered plate/shell element in which delaminations can occur
inside the element between each of the layers (Remmers et al. , 2003). Because of the
absence of rotational degrees—of-freedom, the solid—like shell element was taken as a
point of departure. The shell of Figure 31 is crossed by a discontinuity surface ', which
is assumed to be parallel to the mid—surface of the thick shell. The displacement field
#(€,7m,¢) can now be regarded as a continuous regular field ¢ with an additional contin-
uous field :;5 that determines the magnitude of the displacement jump. The position of a
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Figure 31. Enhanced nodes (black) whose support contains a discontinuity (grey sur-
face). The nodes on the edge of the discontinuity are not enhanced in order to ensure a
zero delamination opening at the tip

material point in the deformed configuration can then be written as:
x =X+ +Hrod (4.29)

Since the displacement field ¢ is a function of the variables u;, u, and w, we need to
decompose these three terms as:

uy = l_lt + HF% flt
up = up + Hrgﬁb (4.30)
w=w++ Hpgw

Inserting eq. (4.30) into eqs (3.40)—(3.42) gives:

ug = 0 + Hrouo

w = + Hroly (4.31)
up = us + Hpgle
where:
I 1
U = 5 [8: + W) fio = 58 +
a; = %[ﬁt — ) i = -;—[ﬁt — ) (4.32)
iy = @ ([D + 1y | fiy = @([D + T + ] + ¥iy

It is noted that the enhanced part of the internal stretch parameter uo, i.e. tio, contains
regular variables as well as additional variables. The elaboration of the strains, the
equilibrium equations and the linearisation follows standard lines (Remmers et al.
2003).

The magnitude of the displacement jump at the discontinuity is governed by an ad-
ditional set of degrees—of-freedom which are added to the existing nodes of the model.
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Figure 32. Load-displacement curve and deformations of shell model after buckling and
delamination growth (true scale) (Remmers et al. , 2003)

Figure 31 shows the activation of these additional sets of degrees of freedom for a given
(static) delamination surface in the model. Both the geometrical and the internal nodes
are enhanced when the corresponding element is crossed by the discontinuity. This im-
plies that each geometrical node now contains three additional degrees—of-freedom next
to the three regular ones, giving six degrees—of-freedom in total. Each internal node has
one extra degree—of freedom added to the single regular degree—of—freedom. As in the
continuum elements, the discontinuity is assumed to always stretch through an entire
element. This avoids the need for complicated algorithms to describe the stress state in
the vicinity of a delamination front within an element. As a consequence, the discon-
tinuity ‘touches’ the boundary of an element. The geometrical and internal nodes that
support this boundary are not enhanced in order to assure a zero crack tip condition.

The example of Figure 28 has been reanalysed with a mesh composed of eight node
enhanced solid-like shell elements (Remmers et al. , 2003). Again, only one element in
thickness direction has been used. In order to capture delamination growth correctly, the
mesh has been refined locally. Figure 32 shows the lateral displacement u of the beam as
a function of the external force P. The load—displacement response for a specimen with a
perfect bond (no delamination growth) is given as a reference. The numerically calculated
buckling load is in agreement with the analytical solution. Steady delamination growth
starts around a lateral displacement u ~ 4 mm, which is in agreement with the previous
simulations (Allix and Corigliano , 1999; Wells et al. , 2003).

5 Concluding Remarks

Numerical models with separate finite elements for interfaces and plies are a powerful tool
to analyse delaminations in composite structures, but have some restrictions. Because
the interface elements have to be inserted a priori, spurious elastic deformations will occur
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prior to delamination onset. These undesired deformations can be partially suppressed
by assigning a high value to the normal stiffness modulus in the elastic range, but this
can result in traction oscillations ahead of the crack tip and in erroneous wave reflections
when dynamic delaminations are analysed. Furthermore, this methodology restricts the
freedom of the discretisation in the sense that element boundaries have to be aligned
with surfaces of potential delamination.

Exploiting the partition—of-unity property of finite element shape functions enables
placement of (cohesive) interfaces at arbitrary positions at the onset of delamination.
Since interfaces are created at the moment when they are needed, the necessity of as-
signing an artificially high stiffness in the elastic regime no longer exists and traction
oscillations or spurious wave reflections are no longer an issue. The fact that alignment
of the discretisation with potential planes of delamination is no longer necessary, makes
possible that unstructured meshes can be used. The versatility of the method is further
enhanced by a consistent extension to large strains and by the incorporation in a solid-
like shell element. It is the latter extension which enables large—scale computations of
composite structures taking into account delaminations.
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Abstract These lecture notes will describe a procedure for modelling the com-
plete macroscopic response (including strain hardening and tension softening) of
two short fibre reinforced cementitious composites and show how their microstruc-
tural parameters influence this response. From a mathematical point of view it is
necessary to examine how bridging forces imposed by the fibres alter the opening
of multiple cracks in elastic solids under unidirectional tensile loading. The strain
hardening is essentially due to elastic bridging forces which are proportional to
crack opening displacements. After a certain critical crack opening displacement
is reached, some fibres progressively debond from the elastic matrix and thereafter
provide a residual bridging force by frictional pull-out, while others continue to
provide full bridging. This results in a kind of elasto-plastic bridging law which
governs the initial tension softening response of the composite.

Besides the usual square-root singularity at crack tips, the elasto-plastic bridging
law introduces a logarithmic singularity at the point of discontinuity in the bridging
force. These singularities have been analytically isolated, so that only regular func-
tions are subjected to numerical integration. Unbridged multiple crack problems
have in the past been solved using double infinite series which have been found to
be divergent. Here, a superposition procedure will be described that eliminates the
use of double infinite series and thus the problem of divergence. It is applicable to
both unbridged and bridged multiple cracks.

These developments will then be used to show how the model of multiple bridged
cracks can accurately predict the prolonged nonlinear strain hardening and the
initial tension softening response of two cementitious composites. Finally, we will
study the transition from the strain hardening to the tension softening behaviour
as an instability phenomenon.

1 Introduction

The nonlinear behaviour of quasi-brittle materials such as concrete and other cementi-
tious composites is most often caused by the growth of pre-existing microcracks and by
the nucleation and growth of new microcracks, which eventually lead to crack localiza-
tion and failure. In order to include this phenomenon in the constitutive relationships,
Kachanov (1958) introduced a scalar damage variable D, which increased linearly under
increasing stress. More sophisticated continuous damage concepts for brittle materials
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were later developed by Krajcinovic and Fonseka (1981), Fonseka and Krajcinovic (1981),
and others. One simplified way to model a microcracked solid from a fracture mechan-
ics point of view is to assume that the cracks are arranged in regular patterns. Most
studies so far have been devoted to modelling of doubly periodic rectangular arrays of
cracks. Sahasakmontri et al. (1987), using the pseudo-traction technique and double
infinite summations, revealed an anomaly in the use of double infinite series (Delameter
et al. (1975); Karihaloo {1978)). They showed that if a superposition procedure was
implemented first for an array of R rows by C columns of cracks, and the number of the
cracks was then increased while keeping the ratio C/ R constant, the mode I and mode II
stress intensity factors depended on the chosen ratio C'/R. This anomaly was resolved by
Karihaloo et al. (1996) by using a proper superposition procedure and pseudo-traction
technique.

Here we shall first present the mathematical details for solving the problem of doubly
periodic arrays of cracks when the cracks are free of traction and when they are subjected
to a closure pressure. The solution is also based on pseudo-traction formalism, but the
superposition procedure makes use of the exact solution for an array (a row) of cracks,
thus avoiding divergent double infinite summations (Delameter et al. (1975)). The results
for unbridged (traction-free) crack arrays are shown to be identical to those obtained by
Isida et al. (1981} who used the boundary collocation method.

The mathematical solutions are then used to study the influence of microstructure
upon the complete macroscopic tensile response, including strain hardening and tension
softening, of a conventional fibre-reinforced cementitious composite and a high perfor-
mance DSP-based fibre composite.

A full description of the observed strain hardening behaviour will be given by consid-
ering elastically bridged doubly periodic arrays of cracks. The strain hardening regime is
assumed to end when the fibres begin to pull out from the matrix. Thereafter, the crack
bridging force drops to the level of frictional pull-out force, so that the crack opening
increases. This results in a progressive reduction in the tensile carrying capacity of the
composite and a corresponding increase in deformation, i.e. in tension softening.

The tension softening response will be modelled by a collinear array (row) of cracks
subjected to bilinear bridging forces. This model is akin to that used by Horii et al.
(1989) and Ortiz (1988) for the tension softening of unreinforced quasi-brittle materials.
It differs from that used by Li et al. (1991) in that the localized damage in the present
model is regarded as being discontinuous, whereas Li et al. (1991) assumed that the
localized damage has resulted in a through crack. The model developed here is therefore
suitable for describing the initial post-peak tension softening response of a fibre-reinforced
quasi-brittle matrix. Finally, we will study the transition from the strain hardening to
the tension softening behaviour as a material instability phenomenon and derive the
conditions for instability on the macroscopic level.

2 Formulation of the problem

An infinite, isotropic elastic solid containing a doubly periodic array of bridged cracks is
shown in Fig. la. It is subjected to a uniform remote stress ¢ normal to the cracks. As
the cracks are bridged, their faces are subjected to a normal bridging traction p,. This
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(0 — pn) on crack faces

0'
Original problem Homogeneous problem Subsidiary problem

Figure 1. A doubly periodic array of cracks and the decomposition of the problem

traction is not uniformly distributed along the surfaces of a crack but, by symmetry, has
the same distribution along all cracks.

In terms of the standard superposition procedure, the original problem shown in Fig.
la can be decomposed into the homogeneous problem of Fig. 1b and the subsidiary
problem shown in Fig. lc. It is only needed to solve the subsidiary problem. Its solution
can be obtained by the pseudo-traction technique and by proper superposition. To apply
the method of the pseudo-tractions (Horii and Nemat-Nasser (1985)), the problem 1c is
further decomposed into an infinite number of sub-problems, designated 1,...,7,...,00
in Fig. 2. Each sub-problem contains only one row of cracks, each of which is subjected to
a normal pseudo-traction oP. Because of the inherent symmetry of the original problem,
the pseudo-tractions are the same for all cracks.

Sahasakmontri et al. (1987) decomposed the subsidiary problem of Fig. 1c differently.
In their decomposition, each sub-problem contained only one crack, so that superposition
required summation of two infinite series. The decomposition in the present paper is
such that superposition requires the summation of a single infinite series. As we shall
see below, the elimination of double infinite series overcomes the problems of divergence
and results in highly accurate solutions.

The distribution of unknown pseudo-tractions o? will be determined in such a way
that the traction-free condition on the crack faces of the problem 2(a) is satisfied when
the stress perturbations caused by all the sub-problems are superposed (Hu et al. (1994)).
We shall use the basic solution for an infinite body containing a row of cracks each of
which is subjected to two pairs of concentrated normal surface loads of opposite direction,
as shown in Fig. 3. The exact solution for this problem can be readily deduced from the
results in the handbook by Tada et al. (1985). In the sequel, the loads shown in Fig. 3
will be referred to as a set of crack surface tractions at position x.

Because of symmetry, we need consider only one crack in a sub-problem, e.g. the one
labelled with the set of crack surface tractions o”(x) and coordinate system in Fig. 3.
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al bl o

—(o — pn) on crack faces o? on crack faces o? on crack faces

Subsidiary problem Sub-problem 1 Sub-problem i

Figure 2. Decomposition of the subsidiary problem of Fig. lc into an infinite number
of sub-problems. o? is the pseudo-traction on the faces of each crack in the row in each
sub-problem

The stress 0, at point x of the crack ¢ is given by the superposition of the contributions
from all the sub-problems

400 +a
—oP(z) + Z K {(z,29)oP(27)dz?, z,27 € [0,+a) (2.1)

JT -0,
where the kernel K, (x, z7) represents the stress at = induced by a set of unit crack surface

tractions at 27 in sub-problem j. Denoting the distance between the crack rows ¢ and j
(Fig. 3) by y, Ks(z,z?) can be written as
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Figure 3. Superposition of sub-problems, showing pseudo-tractions on faces of cracks in
rows i and j. Note that because of symmetry, z and 27 only vary from 0 to a (half-crack
length)

where z =z + iy and i = v/—1.
For the crack configuration of Fig. 3, the summation in Eq. (2.1) is obviously carried
out subject to the geometrical condition

y=4H, j=-00,...,—1,+1,...,+0c0. (2.3)

Because of the symmetry of the problem with respect to the x axis, eqn (2.1) can be
rewritten as

—oP(x +2Z/ (z,27)oP(x?)dx?, x,77 € [0,+a) (2.4)

By superposition of the sub-problems, the traction-free condition on each crack in the
subsidiary problem of Fig, 2a can be written as

—o?(z) +zz / (2,2)07(2)de? = —(0 —pn), mad €[0,4a)  (25)

Equation (2.5) is a simplified form of the general formula for two-dimensional inter-
acting cracks derived by Hu et al. (1994). It can be rewritten as

- 22/ K, (z,27)oP(z?)dz? + p, =0, z,27 € [0,+a) (2.6)
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In common with many previous works, the bridging traction p, is expressed as a func-
tion of the crack opening displacement

DPn = fn(’l}(.ilf)) (27)

where v(z) is solely induced by the pseudo-tractions oP(z*) on the cracks in sub-problem
i (Hu et al. (1994)). It can be easily obtained from

+a
v(z) = Ky(z,z9)oP(z")ds?, z,2" € [0,+a) (2.8)
0

where the kernel K,(r,z") represents the crack opening displacement at x induced by
a set of concentrated unit loads at z? on the crack surfaces in sub-problem i, see Fig. 4.
This kernel can be derived in a closed form from the results in the handbook by Tada
et al. (1985)

2

1w Jl—(cos%/cos%)2+,/1—(cos%/cosfv—f,i)
= 1

G 2 2

\/1—(005%‘—,‘5/005%) — 1—(cos’;—‘%/cos%>

Under general plane stress conditions v is replaced by v/(1 + v).

Ky(z,z") (2.9)

—xl k7

Figure 4. Sub-problem i, showing a set of pseudo-tractions on faces of a crack in a row.
Note that because of symmetry, z* only varies from 0 to a (half-crack length)

It is seen that by substituting Eq. (2.6) into Eq. (2.5), and using the relation between
the pseudo-traction and the crack opening displacement (2.8), we need only to solve an
integral equation for the pseudo-traction ¢”(x). The kernel K, (z,z’) is not singular
provided that H > 0. The kernel K, (x, %) has an integrable logarithmic singularity at
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z = z* which can easily be handled by the regularization

+a
v{z) = Ky(z,2")oP (2" )dx’

0

+a . . .
= Ky(z,z") [0 (") — 0P (z)] da’+
0
+a . . .
+ oP(x) Ky(z,z%)dz* x,z* €0, +a). (2.10)
0

The integrand in the first integral of {2.10) is finite everywhere. The singularity of
the integrand K, (z, ') in the second integral can be isolated by introducing a function
which has a singularity of the same order at z = z*. The isolated singular integral can
then be calculated analytically. To show this, we rewrite (2.9) as

N2
1—y \/1—(cos%/cos%)2+\/1—(005%/008%’) o
In
TG 2 i
\/1—(cos%/cosfwz) -—%—(cos%&/cos%)
(2.11)

Substituting (2.11) into the second integral on the right hand side of Eq. (2.10) and
after some algebraic manipulations, we get

Ky(z,2") =

2 — gt

K,(z,z")dx" = K} (z,z")dz" + Ki(z,z")dz® (2.12)
0 0 0
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The second integral on the right hand side of Eq. (2.12) is
+a — +a . .
Ky(z,z%)de’ = — 1-v / In|z —z*|dz’ =
0 G Jo
1—v
=— [zlnz + (a — z)In(a — z) — ] (2.16)
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We shall use Gauss-Legendre quadrature to solve the integral Eq. (2.5) and write
(with t = z/a)

N

P(ty) —220,2[ (tl, )O’p (ti)] wr+pn(t) =0
j=1 k=1
t,t] € (b1, tN); L=1,...,N. (2.17)

The equation for the crack opening displacement (2.10) can be similarly discretized

N
vt =a Y Kot t]) [o7 (1) - o7 (t)] wt
k=1,k#l
N 1
+ 0P (t))a [Z K™ (1, £, )wy +/ K (t, ) dtj]
k=1 0

thtl € (b, tn); L=1,...,N.  (2.18)

In Egs. (2.17) and (2.18), t;,...,ty are the collocation points and, at the same time,
the integration points of the Gauss-Legendre quadrature, wy (kK = 1,...,N) are the
corresponding weights.

It can be seen from (2.2) and (2.3) that as j — +oo, K,(x,2’) decays exponentially
so the infinite summation in Eq. (2.17) is uniformly convergent for z € [0, W/2). This
feature makes it possible to approximate the infinite summation using the sum of finite
terms while the truncation error can be made as small as desired.

3 Unbridged cracks

When the cracks are not bridged (p,, = 0), the integral Eq. (2.5) is particularly easy to
solve with the numerical quadrature (2.17)—(2.18), whereafter the mode I stress intensity
factor at each crack tip in the array and the overall effective Young’s modulus E, along
the direction of loading can be determined. The non-dimensional mode I stress intensity
factor is shown in Fig. 5, as a function of the deusity of cracks defined by a2/(W H)
and the arrangement (or shape) of the rectangular array characterized by H/W. When
H/W < 0.8, the SIF decreases with increasing density of cracks suggesting that the
mutual influence of closely spaced cracks reduces the crack driving force. On the other
hand, when H/W is large, the mode I SIF increases rapidly with the density of cracks.
This is due to the fact that in order to maintain a high density when H is large, the
neighbouring crack tips in a row must approach each other.

Table 1 compares the results obtained by the present superposition technique with
those reported earlier by Isida et al. (1981) and with the first-order approximation of
Sahasakmontri et al. (1987). It is seen that the present method gives exactly the same
results as those of Isida et al. (1981) for all crack geometries. For small values of a/W,
the results of Sahasakmontri et al. (1987) are also quite close to both the present results
and those of Isida et al. (1981). This is because for small a/W and a/H, the interactions
among the cracks are not significant, so that the pseudo-traction on the crack faces is
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Figure 5. Variation of normalized mode I stress intensity factor with the density and

shape of crack arrays

Table 1. Comparison of the normalized mode 1 SIF

a/W 00 005 010 015 020

H/wW
1.0 0984 0.948 0.922 Present method

0.5 1.0 0983 0.948 0.922 Isida et al.
1.0 0982 0.948 0.838 First-order approximation
1.0 1.003 1.012 1.031 Present method

1.0 1.0 1.003 1.012 1.031 Isida et al.
1.0 1.003 1.011 1.025 First-order approximation
1.0 1.004 1.017 1.039 1.074 Present method

1.5 1.0 1.004 1.017 1.039 1.074 Isida et al.
1.0 1.004 1.016 1.036 1.074 First-order approximation

reasonably accurately approximated by a constant value. The interactions are significant

for large values of a/W, thus rendering the first-order approximation less accurate.

The overall tangent modulus of the body along the direction of loading is of prime
interest. However, it is obvious that the cracked body is no longer a macroscopically
isotropic medium but an orthotropic one. Its instantaneous shear modulus in the zy
plane can be calculated by subjecting the body to an in-plane {zy) shear stress, but we
shall not attempt this calculation here. Horii and Nemat-Nasser (1993) have given the
constitutive relations for a cracked body

1 1
€ij = DijriGr + v /S 5([vi]nj + [vj]n;)dS

(3.1)
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where [v;] denotes the displacement jump across the crack with unit normal vector n;,
Dy is the elastic compliance tensor of the uncracked body, and the integration is carried
over the crack surface S contained in a representative volume V of the solid. Application
of (3.1) to the stress and strain in the loading direction gives the tangent modulus E, in
that direction

ﬂ = > 11 (3’2)
E 14 82 [y v (t)dt
with
E
v (t) = U—(t—)—; te[0,1] (3.3)
2a o

v(t) is half crack opening displacement at the position t = z/a, and E is plane stress

Young’s modulus of the uncracked body. Under plane strain, E is replaced with E/(1 —
2

ve).

Figure 6. Variation of normalized tangent modulus with the density and shape of the
array of cracks

Figure 6 shows the variation of E,/E with the density and shape of the array of
cracks. In contrast to the stress intensity factor, the instantaneous elastic modulus in
the direction of loading does not seem to be very sensitive to the shape of the array
(i.e. H/W). It depends primarily on the crack density (i.e. a?/(WH)). The tangent
modulus E}, in the direction of loading for the crack geometry under consideration may be
regarded as a lower bound on the value for a solid containing randomly oriented cracks.
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4 Bridged cracks

4.1 Elastic bridging

In this section we shall study the effect of the bridging stiffness on the stress intensity
factor at the tips of cracks and on the crack opening displacement, assuming that the
bridging force is linearly proportional to the latter

pa(t) = kv (). (4.1)

Here, k is the bridging stiffness and ¢; (I = 1, ..., N) denote positions on the crack surface
in the notation of Egs. (2.17)—(2.18).

Figure 7 shows the non-dimensional crack opening displacement (for a quarter of the

crack) for different values of the non-dimensional bridging stiffness ¢ = kg(llf:—'ﬂ)a. The
geometry of the array of cracks is described by W/a = 2.5 and H/a = 2.0. The results
indicate that the crack opening displacement is very sensitive to small bridging stiffness.
The same is also true for the mode I stress intensity factor at the crack tips (Fig. 8) and
the tangent modulus (Fig. 9). It appears that the influence of bridging stiffness peaks at
about ¢ = 10. A similar variation of the mode I stress intensity factor for three parallel,
but offset bridged cracks is also seen in the work of Hu et al. (1994).

4.2 Bilinear bridging

It is assumed that when the crack opening displacement reaches a critical value v,
some of the fibres bridging the crack will debond from the matrix, resulting in a sudden
drop in the bridging force (BC in Fig. 10), whereafter these fibres will exert a reduced
closure force by frictional pull-out (CD in Fig. 10). If the fibres bridging the crack
break, then o = 0. A bridging law with o = 0 has been earlier considered by Bao and
Suo (1992). Several analytical models for fibre pull-out in cementitious composites have
been developed by Gopalaratman and Shah (1987), Stang and Shah (1986), and Lim
et al. (1987). These are based on single fibre pull-out tests giving a relationship between
pull-out force P (or interfacial shear stress r = P/(ndl.) where d is the fibre diameter
and I, its embedded length) and fibre slip v (Fig. 11a). From this single-fibre (7 — v)
relationship, the average closure force on crack faces bridged by many fibres is obtained
through an approximation to the fibre distribution function (Fig. 11b). The slope of
the elastic part of this averaged pull-out diagram gives directly the parameter k in (4.1).
When the crack opening exceeds the critical value v, the bridging stress p = kv(t;)
drops to the constant frictional pull-out value p,.

As the stress drop introduces a logarithmic singularity in the gradient of the crack
opening displacement, the problem is subdivided into two sub-problems: (a) perfect
elasto-plastic bond with no stress drop (Fig. 12a), and (b) a constant stress drop Ap =
Py — pg (Fig. 12b). The superposition of the two solutions gives the final result. The
first sub-problem is solved exactly as an elastically bridged crack but with the closure
stress replaced by an constant stress p, over the part of the crack where v(¢;) exceeds
the critical crack opening v, .
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Figure 7. Influence of bridging stiffness on normalized crack opening displacement

The crack opening displacement caused by the partial crack surface traction in Fig.
12b can be calculated as follows

b B B b o
v () = (p —pg)/ K{}S(m,xi)dmi — 1 Vu/ In|z — z*|dz*
0 G T 0

z€{0,a] and b<a

(4.2)
where K7*(x,z%) is non-singular and is given by Eq. (2.13).
It is easy to show that
b o zlnz+ (b—z)ln(b—z) —b forx <b,
/ In|z — z*|dz* = (4.3)

zlnz — (z—b)In(x —b) —b forz >b.

From Egs. (4.2) and (4.3), it is clearly seen that the gradient of crack opening
displacement has a logarithmic singularity at = b.

5 Application to short fibre reinforced concrete

In the following, we shall use the above model to predict the pre-peak (strain hardening)
and initial post-peak (tension softening) behaviour of short fibre reinforced conventional
and DSP-based cementitious composites. The material parameters are given in Table 2.
DSP stands for Densified Systems containing homogeneously arranged ultrafine Particles.
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Figure 8. Influence of bridging stiffness on normalized stress intensity factor

5.1 Strain hardening due to multiple cracking

The decrease in the elastic modulus in the direction of loading induced by multiple
elastically-bridged cracks can be used to predict the tensile strain hardening behaviour
of random short fibre reinforced composites. There is ample experimental evidence
from tests on fibre-reinforced brittle (Kim and Pagano (1991)) and quasi-brittle ma-
trices (Mobasher et al. (1990); Tjiptobroto and Hansen (1993)) that suggests that the
tensile strain hardening in these composites is due to the formation of microcracks whose
density increases with increasing tensile/flexural loading until it reaches a saturation
level.

To account for the increase in the density (number) of microcracks during the stage
of strain hardening, we need a proper evolution law for the multiple cracks. Since the
distribution of the size and spacing of multiple cracks in fibre-reinforced composites is of
random nature, investigations have been conducted to predict the stochastic tendency of
the development of the multiple cracks. Zok and Spearing (1992) considered a nonlinear
relation between the spacing of cracks and applied stress. However, experimental obser-
vations on glass/ceramic GAS/SiC composite and theoretical predictions of Spearing and
Zok (1993) based on stochastic simulations showed that the average spacing of cracks is
reasonably linear in the applied stress during the course of multiple cracking until a state
of saturation is reached. A linear relation between the average crack spacing and applied
stress was also reported by Evans et al. (1994)

[US/Umc — 1]

= fome =) o
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Figure 9. Influence of bridging stiffness on normalized tangent modulus

where o, is the stress level at the initiation of the cracks; /£ is the crack spacing at stress
level o and ¢, is the saturation spacing at stress level o.

Following the same line of reasoning as in the works just cited, we propose the fol-
lowing two-dimensional linear evolution law for multiple cracks analogous to the one-
dimensional law (5.1)

o (%&)S[Us/amc—l]

=1+ WH
a

(5.2)

Omc

where 0,,. is the stress level at the initiation of the cracks, and the subscript s denotes the
value of the corresponding parameter at the saturation of multiple cracks. The initiation
value o,,. may be equated to the tensile strength of the matrix, whereas the saturation
value o, will represent the ultimate tensile capacity of the composite.

The variation of tangent modulus with the applied stress during the evolution of
the multiple cracks can be determined from Eqs. (3.2) and (5.2). Once the variation
of tangent modulus with the applied stress during the evolution of the multiple cracks
is known, the stress-strain relation past the initiation stress level o,,. can be obtained
incrementally via ‘

€ =0/Ey(o) (5.3)

sic N <ai> / (Ef) (5.4)

where we have used the definition €, = pc/E. When 0 < 0pme, Ey = E, so that the
stress-strain relation is linear. When o > oy, Ey/E changes with 6/0m. so that we

or
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Figure 10. A linearized bridging law describing the relation between the bridging force
and the crack opening displacement

have to calculate the increment of the strain using the current value of E,/E at each
step. The accuracy of the incremental formulation is the better, the smaller the step
length. The normalized stress-strain curves predicted by (5.4) via Eqgs. (3.2) and (5.2)
are shown in Fig. 13. The curves predicted by the one-dimensional evolution law (5.1)
are shown for comparison.

From Fig. 13, it is seen that both evolution laws (5.1) and (5.2) produce similar
variations of the stress-strain curves. As the final crack densities are assumed to be the
same for the two evolution processes, the final values of E,/FE are also equal, for the
same value of 05/0,,.. As expected, the two-dimensional evolution law predicts a stiffer
response than does the one-dimensional law. The response of a composite with randomly
oriented cracks can be expected to be even more stiff.

5.2 Modelling of tension softening

The microcrack model of Horii et al. (1989) and Ortiz (1988) for modelling the tension
softening process of un-reinforced cementitious materials will be extended to short fibre
reinforced composites. In this model (Fig. 14) the damage at peak load is assumed to
localize along the eventual failure plane. The damage is in the form of fragmented cracks
interspersed by unbroken material. At peak load each crack is bridged by fibres, some of
which are on the verge of pulling out from the matrix. Let the average maximum opening
displacement at this instant be #... The initial part of tension softening is a result of the
progressive growth of the cracks into the unbroken material, for which two conditions
must be simultaneously met: the stress intensity factor at the tips of each crack Kj;
must attain the critical value Ky, of the composite and the fibres must pull out when
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Figure 11. Conversion from pull-out properties of a single fibre to interfacial properties
averaged over the cross-section, a) Single fibre pull-out b) averaged interfacial properties
for many fibres randomly distributed

Table 2. Material parameters

Parameter DSP-based FRC  Conventional FRC
E  (Young’s modulus) [GPa] 40.0 40.0
om (matrix strength) [MPa] 10.0 3.0
v (Poisson’s ratio) 0.2 0.2
Ty (interfacial shear strength) [MPal 9.0 2.0
Tg  (frictional shear strength)  [MPa) 5.0 1.0
l (fibre length) [mm] 20.0 20.0
d (fibre diameter) (mm] 0.4 0.4

the crack opening reaches ¥... Mathematically these two dynamic conditions for crack
growth are

K[(Uvavl) :KIC (55)

v(o,a,l) = g 5.6

where v(o, a,l) is the crack opening at z = [ and ¢ denotes the reduced tensile carrying
capacity. Note that at the onset of tension softening | = 0, so that Eq. {3.3) can be used
to calculate the average critical crack opening ¥... K. is related to the fibre content,
the critical stress intensity factor of the matrix and the interfacial bond strength.

Here, we introduce an equivalent critical stress intensity factor K. based upon the
ultimate tensile strength of short fibre-reinforced concrete. The ultimate tensile strength
of a composite containing a moderate fraction of fibre can be calculated using the simple
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Figure 13. Normalized stress-strain curves during multiple cracking (strain hardening).

Solid line corresponds to Eq. (5.2), and dashed line to Eq. (5.1)

law of mixtures (Karihaloo (1995))

7
o= aop(l - Vi) + 5TVfE

(5.7)

where V; is the volume fraction of fibre, 7 is the average bond strength of the fibre-matrix
interface, and [/d is the aspect ratio of the fibre, @ and 8 are empirical constants which
are to be determined from tests. In order to retrieve o, = o, when Vy = 0, we take
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Figure 14. A microcrack model for tension softening process. The fibres in the central
region of length 2! of each crack are assumed to pull out, so that the bridging traction
in this region is reduced from ps to ap, as shows in Fig. 10. The bridging traction in
the shaded regions where the fibres are still fully bonded to the matrix is proportional
to crack opening, kv

o = 1. Aveston et al. (1971) have proposed a value § = 0.5 for randomly distributed
short fibres. Note that o, equals o, in the present model.

In the initial part of tension softening regime the growth of fragmented bridged cracks
takes place at constant stress intensity factor equal to the effective fracture toughness of
composite Kj.. Its value can therefore be calculated using the stress and crack length
at the onset of tension softening. The stress equals o, (= o) given by (5.7) and the half
crack length is ag, so that

l
K. =To/mag |com(l — Vi) + ﬂTVfa (5.8)

The geometrical factor [y for the row of elastically bridged cracks at the onset of tension
softening is calculated using the procedure described in Sect. 4 with H — +o0.

From Eqgs. (5.5), (5.6) and (5.8) it is now possible to determine the reduced tensile
carrying capacity o and the length of crack ! over which the fibres exert closure force
due to frictional pull-out only. To complete the description of tension softening process
it remains to determine the average inelastic crack opening along the localized damage
band. given by

. i /[ 1 [oo
wr = (v;) = W [a[vt}dx W _ao[ue]dm (5.9)
where [v;] is the total opening of the crack faces ([v;] = v;f — vy, with ”+” and ”—”
referring to the upper and lower crack faces), and [v,] is the elastic (recoverable) opening

w
of the crack faces. Note that over the unbroken ligaments |z| < 5 o [v] = 0.
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Figure 15. Complete pre- and post-peak tensile response of the materials of Table 2
and V¢ = 0.04. Note that the pre-peak response is given in terms of stresses and strains,
whereas the post-peak response is via a stress-average crack opening measure

Figure 15 shows the complete pre- and post-peak curves for the material parameters
of Table 2. The values of W and ag in eqn (5.9) are assumed to be 50 mm and 4.83 mm,
respectively. § in Eq. (5.7) is taken as 0.5. For convenience of graphical presentation of
strain hardening and tension softening on the same diagram, it is assumed that o. = o,
and o, = o, although in the latter instance it might be more appropriate to set
Ome = 0m/(1—Vy). Moreover, the pre-peak behaviour is presented as a relation between
the applied remote stress o and strain £, whereas the post-peak behaviour is presented
as a relation between the diminishing applied stress o and the average inelastic crack
opening w = w*E /mago,,. Again for ease of comparison of the two response curves o,
has been arbitrarily chosen equal to 4 MPa. In reality, E of DSP-based FRC is nearly
twice that of the conventional FRC (60 GPa compared with 30 GPa), while its oy, is more
than three times that of the latter (see Table 2). The ratio E/o,, is DSP-based FRC
is therefore around 6, whereas that of conventional FRC is around 10. This difference
should be borne in mind in evaluating the response curves in Fig. 15.

Figure 15 is in very good agreement with the typical load-elongation responses of these
two materials. The stress-strain curve of DSP-based matrix is in excellent agreement with
that measured in four-point bending by Tjiptobroto and Hansen (1993). The present
model predicts that the improvement in the toughness of the material is primarily due
to the enhancement of the ultimate strength (or the equivalent critical stress intensity
factor K.) of the composite. The high strength of the DSP-based matrix itself and the
high interfacial bonding strength between the fibre and this matrix makes significant
contribution to the improvement in the overall properties of the composite.
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6 Material instability in the tensile response of short fibre
reinforced quasi-brittle composites

We described above the complete constitutive behaviour of short-fibre-reinforced cemen-
titious composites under unidirectional tension. We could not however predict the tran-
sition from the strain-hardening to tension-softening. This led to a discontinuity in the
slope of the stress-strain/displacement curve at the peak load (see Fig. 15). In other
words, conditions for localisation are still not clear. In this section, the mechanisms for
the material instability which lead to deformation localisation and tension softening will
be revealed. The study will be based upon an analytical procedure which allows the con-
ditions for the material instability in short-fibre-reinforced composites to be highlighted.
The material instability is examined using the classical bifurcation criterion, with an
emphasis on the role played by fibre bridging in the macroscopic instability. It is found
that while the microscopic instability in the bridging traction plays a major role in the
macroscopic instability of the composite, it is the level of damage in the matrix that
determines when the macroscopic instability is induced by the bridging instability. The
satisfaction of the classical bifurcation criterion is identified with several failure modes,
depending on the degree of damage in the matrix. The phrase 'microscopic instability’
is used to define the instant when the bridging stiffuess momentarily vanishes.

6.1 General formulae for multiple cracks

The prediction of the effective elastic and fracture properties of a medium containing
multiple cracks has received considerable attention. Among the studies are the solutions
based upon the non-interacting approximation, when the interaction among the cracks
is neglected. Under this assumption, the effective elastic properties can be expressed
in explicit forms. The interactions among multiple cracks complicate the prediction of
the overall material behaviour. The schemes based upon indirect considerations of crack
interactions, such as the self-consistent method and the differential scheme may consid-
erably underestimate the overall moduli, as has been pointed by Wang et al. (2000a).

Here, we shall present an analytical approach for the calculation of the overall tensile
modulus of bodies containing multiple parallel bridged cracks. For this, we shall make
use of the procedures described above, and those in the works of Wang et al. (2000a),
Wang et al. (2000b).

The overall (average) strain and stress of a cracked body are related via (e.g. [6])

1
€5 = zpjklakl + W Z/S ([ui]nj + [u]]nz) dSn (6.1)
N Y8~

where ¢£;; and oy; are the average strain and stress components, respectively. u; and n;
are the total crack opening/sliding displacement (COD/CSD) and the component of the
unit vector normal to the crack faces. C?j % 1s the compliance tensor of the uncracked
material. For parallel flat cracks when n; is a constant, eqn (6.1) can be rewritten as

1 _ .
Eij = C?jklakl + o Z ([ul]n] + [Uj]ni) SN (6.2)
N
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where [u;] is the average COD/CSD for a single crack over its faces, and Sy is its area.
We note that eqn (6.2) can be written as

€ij = C?jklo'kl + % <[ul]nj + [uj]nz) (6.3)
where w is a non-dimensional crack density parameter, and L is an internal length scale,
which will be defined later. In the above expression, [u;] is taken to be the COD/CSD
for a representative crack.

We consider only infinitesimal deformation and rotation. Taking the time-derivative
of the above equation gives

€ij = C?jkzdkl + % ([Ui]”j + [uj]ni> %(m + % (g[:;l] n; + ?9[:;] "z‘) Okl (6.4)
Here, we have assumed that the crack density is a function of the applied stress. Strictly
speaking, [u;] is also a function of w, which is in turn a function of ox;. However, eqn
(6.3) implies that [u;] is a generic crack opening/sliding displacement in a representative
element. In analogy with the usual non-interacting solution, we assume at this stage
that this generic crack opening/sliding displacement is not related to the crack density,
so that the derivative of [u;] with respect to w vanishes. Equation (6.4) gives the tangent
compliance tensor

oo Ll e\ Oww (O] O]
Cijri = Cij + 7 ([ul]nj + [uj]nl) Bor + 7\ o n; + Bous n; (6.5)

whence the rate form of the constitutive relation (6.4) can be written as

€5 = CijriOki (6.6)
We now return to the determination of [u;]. For bodies containing multiple cracks, the
effect of crack interactions and of any bridging tractions must be taken into account in
the calculation of the crack opening displacement. Using the pseudo-traction formalism
Horii and Nemat-Nasser (1985), the average crack opening displacement is calculated
by applying a pseudo-traction on the faces of a single crack, as we did in the preceding
sections. In order to determine [u;] and thus C;ji; for a body containing randomly
distributed multiple parallel bridged cracks, we shall first invoke the analytical procedures
in the works of Wang et al. (2000a), Wang et al. (2000b) for two regular arrays of bridged
cracks, namely, a doubly periodic rectangular array and a doubly periodic diamond-
shaped array of bridged cracks, shown in Figure 16. We consider the two-dimensional
case, when the parallel cracks are perpendicular to, say, the direction 2. Following the
procedures in the above works, the traction consistency condition on each crack in either
of the two doubly periodic configurations is expressed as follows:

+oo a
of(z)-23 /0 Kijp(,27)of, (a7)da? + piy(2) = 0% z€l0,0)  (6.7)
j=1
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Figure 16. Doubly periodic rectangular (a) and diamond-shaped array (b) of bridged
cracks

where Ufj is the pseudo-traction on the crack faces, U?j is the applied stress, p;; is the
bridging stress exerted by the fibres. and a is the half length of a crack. Kijkl(.r,.rj )
is the stress influence tensor which was described above (see Eq. (2.6), where we used
a slightly different notation).

However, in this section, in order to trace the non-linear behaviour of the material,
we shall recast the traction consistency condition (6.7) in an incremental form

+oc a
Aot (x) — 22/0 Kijni(z,27) Aok (2! )dz? + Apgj(z) = Acly  x € [0,a) (6.8)
j=1

For the two-dimensional case under study, the parallel cracks are perpendicular to
direction 2, so that we need only the pseudo-tractions o5, and o7, for calculating the
crack opening/sliding displacements. Following the procedure in the work by Wang et al.
(2000a), it is found that the incremental pseudo-tractions for the two periodic arrays of
cracks shown in Figure 16 can be written as

Aogy ¢r
{Aggg} = {Cd} Ao, (6.9)

AO.PT (s
{A Z} = {ZC’} Ao, (6.10)
12
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where
- — —1
H 2k W2
("= {l—f—élsin2 %ae‘z%” 1+2W7rj — ——]i%ln (cos %)} (6.11)
Ta
- 1 - -1
9 2
il = {1—4sin2 fw‘ie—z%w 1—1—2%# _%m (cos %)} (6.12)
Ta
- — 9 -1
n = {1 +4sin? D28 |1 _ 2£7r — QkIQZ (cos %)} (6.13)
Ta
r . - -1
d_ L9 TG _9H H 2k, W? Ta
Nt = {1 — 4sin e w _1 — 2W7T_ — —;ﬁ/—ln (cos _VI7) (6.14)

E' = F for plane-stress, and E' = E/(1 — v?) for plane-strain deformation. In deriving
equs (6.9)-(6.10), a linear relationship between the incremental bridging stress Apas(z)
and incremental COD/CSD has been assumed

Ang(.’L‘) = EQQA[UQ]($); Aplz(x) = ElgA[ul](.’t) (615)

where [u;](z) and [u2](x) are the crack opening/sliding displacements. It is evident that
k12 and kg9 in the above expression should be the tangent bridging stiffnesses.

We presented above the incremental pseudo-tractions on the crack faces following the
asymptotic analysis of Wang et al. (2000a), Wang et al. (2000b). They are found to
be constants (in an average sense only) and dependent upon the geometry of the crack
arrays and the instantaneous tangent bridging stiffnesses. Ac%}(Ac®;) and Aoy (Ao®d)
are the two incremental pseudo-tractions for the doubly periodic rectangular array and
diamond-shaped array, respectively. According to the analysis in the work by Wang
et al. (2000a), these two regular patterns should represent the two extreme interactions
among multiple parallel cracks, namely, the maximum “shielding” and “magnification”
effects under unidirectional tension and the maximum “magnification” and “shielding”
effects under in-plane shear. Based upon this analysis, Wang et al. (2000a) deduced that
the overall modulus of a body containing randomly distributed multiple parallel cracks
should be within a pair of bounds corresponding to the moduli for the doubly periodic
rectangular and diamond-shaped array, respectively. Moreover, it was found that when
the the terms 4 sin? %6_2%” [1 + 2%%] and 4 sin? ”—V[‘}e_Q%’r [1 — 2%71‘] were neglected
in the expressions (6.11)—(6.14), i.e., when these expressions reduced to

— -1
2k22W2 ma
—d1_ = 1
¢ {1 p—T In (cos W) (6.16)
— -1
2k12W2 ma
—Jq_ = 6.17
n {1 p— ln(cosW>} ( )

the overall moduli so calculated for low to moderate crack density were alwz}Iys in the mid-
dle of the range bounded by those obtained when the terms 4 sin? %e‘QW” [1 + 2%{,—7@

and 4sin® %6_2%“ [1 — 2%#] were retained. Expressions (6.16)—(6.17) are nothing
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but the so-called non-interacting solution. Numerical computations of Kachanov (1992)
for random discrete unbridged parallel cracks also were found to be close to the non-
interacting solution. Thus, it is reasonable to use the expressions (6.16)—(6.17) to calcu-
late the pseudo-tractions

Adh, = (Ao, Aoty = A0ty (6.18)

Having obtained the pseudo-tractions, the average crack opening/sliding displace-
ments can be easily found

Afug] +a [ Aluy](z 2 Ad?
_[_1_] = —1—/ () dr = — 2W In (COSH) 12 (6.19)
ATe]f 20 )0 | Alugl@) ra B W) | Al
The subsequent development is for plane-stress deformation condition. Substituting
(6.18) into (6.19) gives

A ul] 2w2 ra UAU(BQ
{Au—z]} =~ F In (cos W) {CAJO } (6.20)

which can be rewritten as

Ao?, v 0 Al

E | _| Z¥nn(cos ) W (6.21)
Agy, 0 S — . 7

E ZW ¢ 1n (cos 1) W

Expression (6.21) describes the local behaviour of the cracked material. The global
constitutive behaviour of the material can be determined from (6.6), together with (6.5).

6.2 Analysis of Material Instability

In this Section, we shall study the material instability in the macroscopic tensile re-
sponse of the composite, especially that induced by the microscopic bridging mechanism.
For this, we use the classical bifurcation criterion for discontinuity localisation across
parallel planes of Rudnicki and Rice (1975). As will be seen later, for the case studied
here, this criterion is equivalent to other bifurcation criteria identified by Neilsen and
Schreyer (1993) for the study of material instabilities. The classical bifurcation criterion
is

det[Qij] =0 (622)
where @);; is the acoustic tensor defined as
Qij = nkDrijimy (6.23)

Dy is the tangent stiffness tensor which is the inverse of the tangent compliance tensor
Ckijl in Eq (6.5).
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In order to obtain the acoustic tensor (6.23), we need to calculate the tangent compli-
ance tensor from eqn (6.5). For this, we need the total crack opening/sliding displacement
[u;], and its partial derivative with respect to oy;. As pointed out previously, in fibre-
reinforced quasi-brittle composites, it is observed in experiments that the density of the
multiple cracks increases with increasing load until it reaches a saturation level wg, when
the localisation sets in. Moreover, in these materials the damage localisation usually
coincides with the pull-out of fibres from the matrix. This implies that at localisation,
the partial derivative Ow/Joy; in Eq (6.5) can be equated to zero. Of course, the second
term in Eq (6.5) is essential to the strain hardening description which may be found in
the work of Karihaloo and Wang (2000). The tangent compliance tensor (6.5) at the
instant of localisation therefore reduces to

Cijrl = ngkl + Ls (6{7%]” + Mn) (6.24)

L aO'kl I 80kl t

Let us consider the localisation into a planar band under unidirectional tension gas.
For the considered two-dimensional case, the conventional crack density parameter w is

defined as

a2

T WH

The rate form of the stress-strain relations (6.6), after making use of (6.24), are

(6.25)

w

1 _r .
éll E E 0 011
k3 v 1 w 672_ .
€ =|"F E + 21‘1%0—221 0 -4 0922 (626)
£12 0 0 2(1;"/) + 2%; gE;Lllz 012

Calculating Ofus]/8093 and duq]/do12 from Eq (6.20), and noting that for the con-
sidered case, L = a, we get the tangent compliance matrix

: - 0
Cal = | =% #—4(%)" #¢In (cos ) 0 (6:27)
0 0 2(itv) 1;'/) —4(%)2%771n (cos 3%)
and, by inversion, the corresponding tangent stiffness matrix
E[1_4<%2)%&Lt] Ev 0
M—v2—a(¥)P2ap,]  [1-02-4(¥) 2aL,]
1 — Eyv E
e e e T A ey 0 (6.28)

a

2((1+v)—-2(*% )" 2 Lo]
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Here, we have introduced two non-dimensional parameters

L;=(ln (cos %) (6.29)
L;=nln (cos %) (6.30)

where the subscripts ¢ and s denote tension and shear, respectively.
Substituting the tangent stiffness tensor into Eq (6.23) gives the acoustic tensor whose
components in a matrix form are

L 0
2[(14v)—2( ) ey,
[Ql—j] = a (6.31)
[1—1,2_4(%)2%}@]

As we are interested in the unidirectional tensile case, we only discuss L; in the
sequel. We first rewrite L, (6.29). using Eq (6.16), and omit the subscript 22 from Kao
for brevity,

In {cos T2
Ly = ZEWSQ W) na (632)
1-<-g1n (cosW)

The ratio 2a/W represents the cracked area to the nominal area in the direction
perpendicular to the loading direction. It therefore represents the conventional damage
parameter in the context of damage mechanics. Denoting 2 = 2a/W, L, can be rewritten
as

In (cos 52
L= e (1 :9) (6.33)
1— 252 L In(cos 3Q2)

It is seen from Eq (6.31) that the satisfaction of the localisation criterion (6.22)
requires that L; — oc. When this condition is met, it is seen from (6.28) that the deter-
minant of the tangent stiffness matrix. det[D;;]. also vanishes. [D;] is symmetric, as is
[Q;;]. Therefore, the condition L; — oo leads to the satisfaction of all bifurcation crite-
ria identified by Neilsen and Schreyer (1993), namely, the classical bifurcation criterion
(6.22), the general bifurcation criterion, the limit point bifurcation criterion and the loss
of strong ellipticity criterion. In the following, we shall use the phrases “localisation” or
“material instability” to refer to the consequences of det[Q;;] = 0, i.e. when L; — oo.

6.3 Conditions for Material Instability

Several features of the material instability are revealed by the above results. First, for
unbridged material (k = 0), it seen from eqn (6.33) that the satisfaction of the localisation
criterion det[Q;;] = 0 requires that L, = In (cos Q) — oo. This simply means that the
damage parameter, or any effective quantity, 2, tends to 1. In this case, L, also becomes
zero. So the material loses instability both under unidirectional tension perpendicular to
the crack and under in-plane shear. Thus, the bifurcation criterion is identified with the
damage induced rupture of the material.

When k # 0, it is seen from (6.33) that L, is determined by the tangent bridging
stiffness k. For short-fibre-reinforced cementitious composites, a trilinear bridging law,
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Figure 17. An idealised trilinear bridging law OABC and a more realistic smooth bridg-
ing law OAD with continuous slope

such as OABC shown in Figure 17, is commonly used. This is obviously an idealisation
of the actual fibre pull-out test results. The problem with the idealised trilinear bridging
law is the discontinuity in the tangent bridging stiffness k. In real materials, especially
when the average effect of randomly distributed fibres is considered, the tangent bridging
stiffness varies gradually, as shown by OAD in Figure 17. This continuous bridging
traction can, for example, be described by

[u]

p= k{u}e feler (634)

The tangent bridging stiffness can thus be written as

A
k= k'() — —— e luer (635)

[u} cr

where kg is the initial tangent bridging stiffness when the fibres are bonded to the matrix

(Figure 17). It is evident that the tangent bridging stiffness vanishes at [u] = [u]_, and it

becomes negative, when [u] > mcr. The expression (6.35) is in line with the simple local
constitutive law that Jirasek and Bazant (1994) used in their study of the localisation
phenomenon within the formalism of the non-local theory. The initial tangent bridging
stiffness ko can be calculated from the linear bridging model developed by Lange-Kornbak
and Karihaloo (1997).
— To - R
ko =Vy i EfL (6.36)
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where 74 and 7, are the frictional bond strength and the adhesive bond strength, respec-
tively. h is the so-called snubbing factor, L is the length of fibres, and E their modulus
of elasticity.

When k > 0, it follows from (6.33) that L; has the following property

Q—-0: L:—0 (6.37)

In other words, no instability can set in, if there is no damage in the material. Thus, as
expected, the case @ — 0 can be excluded from the instability analysis.

When 0 < © < 1, the bifurcation criterion (L; — oo) can only be satisfied when the
following condition is met (cf. (6.33))

8ka 1 T
-— = -Q) = 6.38
1 WEQQIH(Cosz ) 0 (6.38)
that is )
L L N S | (6.39)
8a In (cos %Q)
with
Q-1: & =0 (6.40)

The variation of the normalised &* with  given by (6.39) is shown in Figure 18.

From the above analysis and Figure 18, we are able to discern several features of
incipient material instability. First, it follows from eqn (6.39) that for all values of
in the range 0 < Q < 1, no instability can set in, if the tangent bridging stiffness & is
greater than 0. In other words, no matter how much the matrix is damaged, as long as
the fibres are still bonded to it (k > 0) , the composite will not exhibit any instability
at the macroscopic level, even when a through crack has formed in the matrix (Figure
19(a)). The tangent stiffness of the composite will continue to be positive. This is
exactly what happens, for example, in strong continuous fibre-reinforced composites, as
is demonstrated by the ACK model Aveston et al. (1971).

The second feature is that k can vanish before or after a through crack has formed,
i.e., 2 — 1. Here, we discuss the formation of a through crack (€2 — 1) when the fibres
are still bonded to the matrix, i.e., £ > 0. In this case, L; can be approximated by

ma F

Ly=—"= 6.41
AT (6.41)

Here, W loses its meaning, although its appearance in the above formula simply points
to the existence of an internal length scale. The expression (6.41) indicates that the
bifurcation condition (L; — oo) requires that the fibre bridging stiffness vanishes k=0.
In other words, after a through crack has formed or is about to form, the macroscopic
instability of the composite coincides with the (microscopic) bridging instability (Figure
19(b)).

The third feature is that when the localisation band is still not a through crack (i.e.
0 < © < 1), the localisation criterion can still be satisfied when %°" is given by (6.39). We
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Figure 18. Variation of normalised tangent bridging stiffness at macroscopic instability
with damage parameter. No instability is possible when = 0. Thus the point on the
axis of ordinates at 1 is excluded, as highlighted by the open circle

recall that the average crack opening displacement for a row of periodic cracks without
the bridging action of fibres can be rewritten as (see, e.g. Karihaloo (1995)).

mE 02 —
Aoy = ———+—=Afu 6.42
" 8a In (Cos %Q) g ( )
When the cracks are bridged by fibres, the total instantaneous resistance of the composite
material to crack opening can be written as the sum of matrix and fibre contributions

TE Q2 —
Sl —— 6.43
8a In (cos %Q) + ( )

Thus the condition (6.39) implies that the resistance of the composite material to crack
opening displacement vanishes because the instantaneous resistance of the matrix itself
to crack opening is exactly counterbalanced by the loss of the bridging resistance (Fig.
19(c)).

The parameter k" in (6.39) includes the physical effect of several factors on the incep-
tion of localisation. First, instability of the composite at the macrolevel is possible, when
k < 0, i.e., the fibres are only exerting the residual friction bridging action. The closer
Q2 is to 1, the smaller the absolute value of k. When © = 1, the macroscopic instability
occurs at k = 0, i.e. it coincides with the microscopic (bridging) instability. Second,
the dependence of the absolute value of k¢ on the modulus E of the uncracked matrix
indicates that the stiffer the matrix, the less susceptible the material is to microscopic
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Figure 19. Relationship between bridging stiffness and macroscopic response of the
composite material, (a) no instability, when the fibres are bonded to matrix (k > 0) even
though a through crack has formed in it (@ = 1); (b) macroscopic instability induced
by loss of bridging stiffness (k = 0) and formation of a through crack (Q = 1); (c)
macroscopic instability induced by a combination of matrix damage (2 < 1) and initial
softening of bridging stiffness equal to k" < 0; (d) macroscopic tension-softening caused

by matrix damage (2 < 1) and considerable softening of bridging stiffness (k < 0)
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instability. Third, £ contains a length scale, here the half length a of a crack. As the
parameters  and F are scale insensitive, k" introduces a scale effect into the loss of
macroscopic instability of short-fibre-reinforced materials. The macroscopic response of
large specimens made from these composites will be more sensitive to vanishing of bridg-
ing stiffness than that of small specimens with the same level of damage (0 < < 1).

1t is seen from Figure 18 that the absolute value of k<" increases rapidly when the
value of Q deviates from 1. This means that in order to delay macroscopic instability
of the composite, it is very important to prevent or delay the coalescence of the discrete
microcracks. In principle, if the microcracks are somehow prevented from coalescing
whilst at the same time the tangent bridging stiffness is maintained above the critical
value given by (6.39), macroscopic instability of the composite cannot occur. In practice
though, the discrete microcracks are likely to propagate and coalesce once the fibres begin
to be pulled out, i.e., once k reaches zero. Figure 19(d) illustrates such a possibility
whereby the composite exhibits tension-softening, while the cracks in the localisation
band are still fragmented (0 < Q < 1) but the tangent bridging stiffness is equal to or
less than the critical value (6.39). This provides a softening model which is different from
that introduced by Li et al. (1991) in which the softening is a result of fibre pull-out from
a through crack (2 = 1).

Based upon the pseudo-traction technique and an asymptotic analysis, the tensile
stress-strain relation was established analytically for short-fibre-reinforced composites
containing multiple parallel bridged microcracks. This allows an analysis to be made of
the macroscopic material instability in the tensile deformation process of these compos-
ites. The material instability at the macrolevel is examined using the classical bifurcation
criterion, with an emphasis on the role of the bridging action of fibres. Conditions for
the incipient macroscopic instability are obtained as functions of damage in the matrix,
crack length, and the microscopic bridging stiffness. It is found that no macroscopic
instability is possible as along as the tangent bridging stiffness is positive, i.e., as long as
the fibres remain bonded to the matrix. However, whilst the bridging instability at the
microievel plays a major role in the macroscopic instability, it is the damage in the matrix
that determines when the macroscopic instability is induced by the bridging instability.
The microscopic bridging instability does not necessarily induce macroscopic instability.
Indeed, macroscopic instability may be delayed until the fibres are only exerting residual
frictional action. Likewise, the formation of a through crack is neither a necessary nor
a sufficient condition for the onset of tension-softening in the composite. The results also
suggest that in order to delay macroscopic instability in the tensile response, it is very
important to prevent or to delay the coalescence of the discrete microcracks that form
in the strain-hardening stage.
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Optimum Composite Laminates Least Prone to
Delamination under Mechanical and Thermal Loads

B. L. Karihaloo

School of Engineering, Cardiff University
Cardiff CF24 OYF, U.K.

Abstract In this Chapter we will describe how optimum laminate configurations
are sought for multidirectional fibre-reinforced composite laminates under combined
in-plane mechanical and thermal loads. The design objective is to enhance the
value of the loads over and above the first-ply-failure loads which are judged by
a transverse failure criterion and the Tsai-Hill criterion, respectively. The in situ
strength parameters previously obtained are incorporated in these criteria. It is
found that the optimum designs under combined mechanical and thermal loads are
not the same as those under pure mechanical loads for three of the four loading
cases studied. For all cases the optimum loads are significantly larger than those
for a quasi-isotropic design.

1 Introduction

Optimum strength designs of continuous fibre-reinforced composite laminates have been
pursued since the early days of these materials. For example, Sandhu (1969) used
a parametric study to investigate the fibre orientation of a unidirectional lamina yield-
ing maximum strength under in-plane stress conditions. Brandmaier (1970) found that
the strength of a unidirectional lamina under in-plane stresses could be maximized an-
alytically with respect to the fibre orientation. The results based upon Tsai-Hill failure
criterion indicated that the optimum fibre orientation depended upon the stress state and
the relative value of the transverse and in-plane shear strengths of the lamina. When the
strength of a multidirectional composite laminate is to be maximized, more complicated
and explicit optimization techniques are needed. The work by Chao et al. (1975) was
probably the earliest study that sought the optimum strength design of multidirectional
laminates using a search technique. Many studies have been devoted to the optimum
strength design of multidirectional laminates in the recent two decades. Among these are
the works by Park (1982), Fukunaga and Chou (1988), Miravete (1989), Fukunaga and
Vanderplaats (1991). Considering that most of the advanced fibre-reinforced composite
laminates are prone to cracking and delamination, and that the properties of laminates
are tailorable, Wang and Karihaloo (1994a), Wang and Karihaloo (1996¢), Wang and
Karihaloo (1996b) posed optimum strength design problems of multidirectional lami-
nates in a different way from the conventional ones. They applied fracture mechanics
analyses in the optimum strength designs of multidirectional laminates against delami-
nation and transverse cracking. We shall summarise these results in later sections.
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In measuring the in situ transverse strength of unidirectional laminae in laminates, it
was found by Flaggs and Kural (1982) that the thermal residual stress resulting from the
manufacturing process might consist of a large portion of the in situ strength (more than
half for [03/90,]s and [£30/90,]s for n = 1,2,...,8). A composite structure will also
experience temperature variations in service. Because of the remarkable difference in the
thermal expansion coefficients as well as the stiffnesses of a unidirectional lamina in its
longitudinal and transverse directions, the stresses caused by temperature variations may
be quite significant in practice. It is obvious that the thermal stresses in a multidirectional
laminate are functions of the laminate configuration, that is, functions of the ply angles in
the laminate. In the present chapter, we shall pursue the optimum in situ strength design
of multidirectional composite laminates subjected to combined mechanical and thermal
loads. We shall first introduce the in situ strength parameters, and then incorporate them
into the formalism of optimization problems. Details of these calculations will be given
in later sections. The optimization problems will be solved by a nonlinear mathematical
programming technique.

2 In situ strength formulae

Chang and Lessard (1991) fitted experimental data with two formulae to calculate the in
situ transverse tensile and in-plane shear strengths of unidirectional laminae in general
multidirectional laminates, namely,

Y, A
0~ 1+ ~NEB sin(A#6), (2.1)
Sc c .

© — 2.2
=, 1+ ~ND sin{Af), (2.2)

where T and S are the transverse tensile strength and in-plane shear strength measured
with a thick unidirectional lamina. A, B, C and D are to be determined by experiments.
N is the number of plies in a unidirectional lamina in a multidirectional laminate. A8
represents the minimum difference between the ply angle of a lamina and thosc of its
neighbouring plies.

In order to reveal the physics of the phenomenon of in situ strengths, Wang and
Karihaloo (1996¢) studied the in situ strengths using fracture mechanics . Based upon
the fracture mechanics analyses, they proposed two formulae to calculate the in situ
strengths

Y: A
=1+ 55 £:(A0), (2.3)
Sc C
A - 2.4
50 L+ 5 fs(A0), (24)

Here, the two functions f;(A#) and fs(A#f) represent the influence of the neighbouring
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laminae on the strengths of a lamina. They are given by

. sin?(Ad,) sin?(Ady)

Jo(A9) = min [1 Fsin?(A6y) 1+ sinQ(AHb)] ’ (23)
. sin?(2A6,) sin?(2A65)

fs(A6) = min [1 Y sin?(206,)" 1+ sin2(2Ae,,J ' (2:6)

The parameters A, B, C' and D in formulae (2.1)—(2.4) are to be determined from
experimental results. As these formulae also contain the ply-angle influence functions,
ie. sin{Af), fi(Af) and f,(A8), the investigation of the dependence of A, B, C and
D on the laminate configuration is very important. They must be independent of the
laminate configuration, if they are to be regarded as material constants. Otherwise the
above in situ strength formulae cannot be applied to a general multidirectional laminate.
Therefore, in order to determine the values of these constants for a particular composite
material, extensive experiments are needed. Currently, there are very few experimental
results available, of which the results of the in situ transverse tensile strength obtained
by Flaggs and Kural (1982) are widely cited in the literature. Regarding the in-plane
shear strength, Chang and Chen (1987) studied its dependence on the ply thickness
in unidirectional and cross-ply laminates. There is a dearth of experimental data to
determine the dependence of the in situ shear strength on the laminate configuration.

In Fig. 1, the in situ transverse strength predicted by Egs. (2.1) and (2.3) are
compared with the experimental results of Flaggs and Kural (1982) for the material
T300/934. In fitting the experimental data, different values of A are used in Eqgs. (2.1)
and (2.3) (1.7 and 3.4, respectively). Chang and Lessard (1991) used A = 1.3 and
B = 0.8 previously to fit the experimental data. It is seen that both the theoretical
formulae fit the experimental data reasonably well. The most important conclusion
drawn from Fig. 1 is that for the material and laminate configurations studied by Flaggs
and Kural (1982) the parameters A and B appear to be independent of the laminate
configuration. It appears that they can indeed be treated as material constants. On the
other hand, due to lack of experimental data, the dependence of the parameters C' and
D on the laminate configuration cannot be judged. Chang and Lessard (1991) found
that formula (2.2) fits the experimental data well for T300/976 cross-ply laminates with
D = 2.0 and C = 1.0. In the sequel, we shall use formula (2.3), which has a fracture
mechanics basis, to calculate the in situ shear strength of laminae in multidirectional
laminates with C = 4.0 and D = 1.0.

In most cases, transverse cracking is the first noticeable damage in a laminate. Al-
though the transverse cracks generally do not result in the immediate failure of the whole
laminate, they have the potential to induce failure by stress concentration and delam-
ination. For instance, the experimental results of Herakovich (1982) indicate that the
failure of angle-ply laminates with thick laminae under in-plane unidirectional tension is
entirely due to transverse cracking. In the optimum strength design to follow, we shall
use a transverse tensile failure criterion (Chang and Lessard (1991)) to judge the trans-
verse failure of a unidirectional lamina in a multidirectional laminate. This criterion,
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Figure 1. Comparison of theoretical and experimental results of the in situ transverse
tensile strength. A = 1.7 and B = 0.8 are used in formula (2.1), and A = 3.4 and B = 0.8
are used in formula (2.3)

into which the in situ strengths are incorporated, is written as

(%)Z(%)%gl (i=1,2...,L), (2.7)

i i

where Y and S are the in-plane transverse and shear stresses in the lamina. L is the total
number of unidirectional laminae in the laminate. In the previous optimum strength
design of laminates by Wang and Karihaloo (1996h), it was found that the optimizer
aims at distributing the stresses according to the strengths of an anisotropic material
in different directions. In the failure criterion (2.7), the strength and stress in the fibre
direction are not taken into account. Therefore, the optimizer always gives optimum
designs of laminates in which the stresses in the fibre directions of the laminae are very
large. This may increase the risk of failure in the fibre direction. Thus, here we also use
the following simplified Tsai-Hill criterion to consider the effect of the stress in the fibre
direction in the optimum design

2 2 2
gy, Y S .
— — < = s .
<FL)Z'+(Yt>i+<Sc>i_l (i=1,2,...,L), (2.8)

where ¢, and Fp are the stress and strength of a unidirectional lamina in the fibre
direction.
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3 Formulation of optimization problem

For a multidirectional laminate subjected to in-plane loads, let us denote the left-hand
terms of Egs. (7) and (8) by ¢7. For a composite laminate under given in-plane loads, if
the ply angles and thicknesses of the constituent laminae are so chosen that the values of
¢? for all laminae are reduced, then the loads corresponding to the transverse cracking
or failure will be enhanced. This objective is achieved by minimizing the maximum
value of ¢?. Following the procedure in the work by Wang and Karihaloo (1996b), the
optimization problem is formulated as

i 3.1
i 3
subject to
™ T
Tep <X 3.3
2- T2 (3:3)

Sti=h (i=1,...,L), (3.4)

t<t, <1 (3.5)

The above optimization problem is solved by a constrained variable metric method.
The non-differentiability of fi(A6) and fs(A6) with respect to the design variables 0; is
treated using the procedure in the work by Wang and Karihaloo (1996b).

As mentioned in Section 1, the thermal residual stresses resulting from the man-
ufacturing process may constitute a large portion of the in situ strength (more than
half for [02/90,]s and [£30/90,]s for n = 1,2,...,8). It is obvious that the thermal
residual stresses in a multidirectional laminate are also functions of the laminate config-
uration, that is, functions of the ply angles in the laminate. Therefore, in the optimum
strength design of laminates, the laminates are assumed to be under combined thermal
and mechanical loads. Thus, following the classical lamination theory, the total stresses
in a generic lamina in a multidirectional laminate are calculated from

g; = QU [Aj_k:l(Nk + le:) - 6;} (27.7’k = 17276)7 (36)

where o; the stress components in the reference coordinate system for the laminate, Qij
the off-axis stiffnesses of the lamina, and A;; the in-plane stiffnesses of the laminate, N, 4
the equivalent thermal loads, and 6; the thermal strains.

4 Design examples

The above optimization procedure was applied to the optimum design of a multidirec-
tional laminate shown in Figure 2. Fig. 2(a) shows the in-plane loads, and Fig. 2(b)
shows the detailed configuration of one half of the laminate. This laminate is com-
posed of L laminae of different ply angles and thicknesses. "It is physically symmetric
with respect to its geometric middle plane, i.e. the laminae are stacked in the order
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(Brs2/ .. /01)s. The stiffness and strength constants used in the calculation of the in
situ strengths are adapted from the work by Chang and Lessard (1991) on T300/976.
The thermal expansion coefficients are taken as those of T300/934 (Flaggs and Kural
(1982)), i.e. ar = 0.09 pstrain/°C, ar = 28.8 ustrain/°C. The thickness of a single ply
is assumed to be 0.14 mm. The temperature variation is taken as AT = —147°C, i.e.
the temperature drop in the manufacturing process. It can be arbitrary otherwise.

al 28

b Ory2,tLs2

61,1

Mid plane

Figure 2. The laminate configuration. The in-plane loads shown represent the resultant
mechanical forces over the thickness

Because of the highly nonlinear nature of the functions ¢;, and of the fact that they can
attain their minima at different combinations of design variables, the above optimization
problem can have many local minima. In the computational scheme, the global minimum
is sought by a random search technique. The optimization process is begun from different
initial design points (x?)fn (j=1,...,L;m=1,..., M) (m denotes the mth initial design
point) in the space of design variables (z;)T (j = 1,...,L). These random initial design
points are chosen so that they are uniformly distributed in the design space, and the
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global minimum is sought from among the local minima corresponding to these randomly
chosen initial designs. In all cases, M was chosen to be equal to 400.

The above optimum design is demonstrated on an eight-ply symmetric laminate with
the four ply angles being the design variables. Given a mechanical load [N, N9, N,
the improvement in the design is represented by

ke —t (i=1,2,...,4) (4.1)

maxgq;

We first seek the optimum designs without the thermal effect, that is, the laminate
is only subjected to mechanical loads. The change of the load factor k during the op-
timization process for four in-plane loading combinations is shown in Figs. 3 and 4 for
the failure criteria (2.7) and (2.8), respectively. The initial guesses to ply angles (chosen
pseudo-randomly) and their final optimum values, the optimum load factor kmax and the
ratio of kmyax to the initial load factor ki, are given in Table 1, where the load factor kig,
is for a quasi-isotropic laminate design [45/90/ — 45/0];.

k{a,b,c) k(d)
30 T T T T T T T 10000
25 F b d 4 8000
20 F

-1 6000
a
15 I~ c
- 4000
1.0 -
-1 2000
0.5 r—
0 1 1 i 1 1 | 1 0
0 20 40 60 80 n

Figure 3. Evolution of load factor k for a symmetric laminate of four ply angles for
four mechanical loading cases without thermal effect: (a) [N?, N9, N§]T = [200, 200, 0]
KN/m; (b) [N?, N9, NOIT = [200,0,2007 kN/m; (c) [N, N9, N = [400,200,0]7
kN/m; (d) [N?, N9, N§]T = [200,200,200]7 kN/m. The transverse cracking criterion
(2.7) is used

The results shown in Table 1 and in Figs. 3 and 4 exhibit several features. First,
for each of the loading cases (a)—(c), the mechanical load corresponding to the first-ply-
failure in the optimally designed laminate is increased several fold compared with that
of a randomly chosen design. Secondly, when the transverse cracking criterion (2.7) is
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Figure 4. Evolution of load factor & for a symmetric laminate of four ply angles without
thermal effect. The mechanical loading cases are the same as those in Fig. 3. The

Tsui-Hill failure criterion (2.8) is used

used in the optimization, the optimizer aims at reducing the transverse and in-plane
shear stresses and distributing the stress in the fibre direction of a lamina in a laminate.
For example. for loading case {b) in Fig. 3, the final stresses in the four laminae in the
optimized laminate are {o1.02,06} = [{—349.39.0.5}, {541, —19,0.3}, {-36, 18, —38},

Table 1. Summary of optimized ply angles in a symmetric laminate of four ply angles

without thermal effect

In-plane Initial design Final design kmex  kmax/kin  Kiso
loading 91\92,93,94 91,92,03,94
Transverse cracking criterion
a 82.4,88.5,75.3,46.6 46.8,89.6,44.0, -30.4 162 5.34 1.37
b —78.1,72.5,82,5,18.2 —56.6,32.7,86.6,30.5 2.28  3.27 0.93
c —0.9,76.1,—2.2,48.3 —33.5,70.0,—33.8,204 1.5 3.0 1.40
d 33.9,27.3,35.2,38.9 45.0,45.0,45.0,45.0 oo 00 0.77
Tsai-Hill failure criterion
a 21.1,7.2,38.6, —40.9 40.6,—4.4,54.7, —58.5 145 2.13 1.32
b —61.5,10.6, -59.7,86.1 —58.4,32.0,—-57.6,31.3 2.50 4.5 0.90
c 13.6,54.2, —74.0,61.7 —48.9,52.3,-44.7,106 1.28 3.46 1.18
d 23.0,55.2,52.5,21.4 45.5,43.6,47.0,43.7 4.22 3.08 0.76
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{540, —19,3}] MPa. For loading case (c), these values are {o1,02,06} = [{439,48,24},
{364, 53, —23}, {436,28,24}, {726,29,5}] MPa, In terms of the optimum design under
loading case (b), the failure load corresponding to the first transverse cracking will be
kmax % [N?, N, NQ], in which case the maximum tensile stress in the fibre direction of
the second ply (lamina) will be 2.28 x 541 MPa = 1233 MPa. This value is close to
the longitudinal tensile strength 1515 MPa of the material 1300/976. For this reason,
optimum strength designs are pursued using the Tsai-Hill failure criterion (2.8) in which
the contribution of the stress component in the fibre direction is also taken into account.

The results obtained using the Tsai-Hill failure criterion are also shown in Table 1.
However, it is found that the use of the Tsai-Hill criterion does not result in a signifi-
cant change in the stress distribution in the laminae in the optimally designed laminate.
For instance, for loading case (b) in Fig. 4, the final stresses in the four laminae in
the optimized laminate are {o1, 02,06} = [{—213,41,2}, {537,—8, -5}, {—213,41, 10},
{537, —8,3}] MPa. The reason for this may be due to the large strength of the uni-
directional lamina in the fibre direction. The optimizer always distributes the stresses
according the strengths in different directions of the anisotropic material.

Loading case (d) is simply to check the "smartness” of the optimizer. As this load-
ing case is simply a unidirectional tension along 45° with respect to the l-axis of the
reference coordinate system for the laminate, the theoretical optimum design should be
a unidirectional laminate in which all the fibres are along 45°. In this case, all ¢; are 0,
which is obviously the absolute minimum of the optimization problem. This theoretical
optimum design is captured by the optimizer for both failure criteria, as shown in Table
1. This theoretical optimum design was not obtained in the previous work by Wang and
Karihaloo (1995).

The results of the optimum designs when the thermal effect is included are shown in
Table 2 again for the two failure criteria. The evolutions of the load factor it are shown
in Figs. 5 and 6 for the two failure criteria, respectively. Due to the thermal stresses,

Table 2. Summary of optimized ply angles in a symmetric laminate of four ply angles
with thermal effect

In-plane Initial design Final design kmax  kmax/kin  Kiso
loading 01,02,03,04 01,02,0s3,04
Transverse cracking criterion
a —29.9,-13.6,—75.6,13.6 -56.3,-30.5,—49.2,44.4 0.81 1.66 0.60
b —7.1,-35,-19.2,16.4 23.7,—36.5,23.7,27.0 224 875 0.72
c —27.37,-63.1,69.8, —63.4 43.7,—51.1,43.7,—18.6 0.82 3.31 0.62
d 57.3,41.3,45.8,35.6 45.0,45.0,45.0,45.0 o0 o0 0.50
Tsai-Hill failure criterion
a —-32.6,-27.7,—-77.8,14.9 —53.0,-29.2,-47.2,45.8 0.79 1.56 0.60
b 86.6,73.4,—36.0,61.2 27.4,24.3,-36.6,24.3 1.91 5.66 0.71
c —64.8,11.1, —88.6,—44.0 —42.8,49.1,-42.8,19.4 0.77 195 0.60
d 86.7,61.6,22.8,22.6 45.0,45.0,45.0,45.0 4.24 575 0.50




146 B.L. Karihaloo

k{a,b,c) k(d)
3.0 T T T T T T T 2500
251 d .
F__ b 2000
20
- 1500
15
~ 1000
1.0
a c
05 k - 500
0 1 [IVAN 1 1 1 1 0
0 20 40 60 80 n

Figure 5. Evolution of load factor k for a symmetric laminate of four ply angles subjected
to mixed thermal and mechanical loads. The mechanical loading cases are the same as
those in Fig. 3. The transverse cracking criterion (2.7) is used

the absolute enhancement of the load factor is not as large as those in Table 1.
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Figure 6. Evolution of load factor k for a symmetric laminate of four ply angles subjected
to mixed thermal and mechanical loads. The mechanical loading cases are the same as
those in Fig. 3. The Tsai-Hill failure criterion (2.8} is used



Optimum Composite Laminates Least Prone to Delamination... 147

Table 3. Summary of optimized ply angles in a symmetric laminate of four ply angles
with thermal effect using the initial designs in Table 1

In-plane Initial design Final design kmax  Emax/kin
loading 91, 02, 93, 94 91, 92, 03, 94
Transverse cracking criterion
a 82.4,88.5,75.3,46.6 35.2,60.7,41.8, —44.9 081 27
b —78.1,72.5,82,5,18.2 —84.7,39.6,37.0,37.0 1.78  2.59
c —-0.9,76.1,—-2.2,48.3 —43.9,50.9,-43.9,184 0.82 2.16
d 33.9,27.3,35.2,38.9 45.0,45.0,45.0,45.0 oo 00

Tsai-Hill failure criterion

a 27.1,7.2,38.6,—40,9 54.2,30.3,48.1,—-45.1  0.79  1.37
b —61.5,10.6, —59.7,86.1 —55.9,33.2,—69.0,32.9 1.66 4.05
¢ 13.6,54.2, —74.0,61.7  —42.9,49.2,-42.9,19.3 0.77  2.64
d 23.0,55.2,52.5,21.4 45.5,45.0.45.0,45.0 424  4.08

However, the values of the ratio kmax/kin are of the same level as those in Table
1. Because all the optimum designs are sought starting from multiple random initial
designs, the initial designs in Table 2 are not necessarily the same as those in Table 1.

Although the optimum values of kj.x in Tables 1 and 2 are likely to be the global
maxima in the design domain, the optimum ply angles as well as the initial ply angles
leading to the same optimum angles are not unique because of the high nonlinearity and
the inherent symmetry of the problem. To get a better insight into the influence of the
thermal effect on the optimum strength design, we use the initial ply angles in Table 1 to
seek the optimum designs of the laminate when subjected to the combined mechanical
and thermal loads. The results are shown in Table 3.

A comparison of the results in Tables 1 and 3 shows that for loading cases (a), (b),
and (c), the optimum designs without the thermal effect are not the optimum designs
under mixed mechanical and thermal loads. On the other hand, for loading case (d),
the optimum design under pure mechanical loads is the optimum design under mixed
mechanical and thermal loads, for both the failure criteria.

5 Matrix crack-induced delamination in composite laminates
under transverse loading

Fibre-reinforced multidirectional composite laminates are observed in experiments un-
der transverse static or low-velocity impact loading to suffer considerable delamination
damage. The intensity of this damage depends on the difference in the ply angles above
and below the interface. Here a fracture mechanics model is presented for investigating
the role of matrix cracks in triggering delaminations and the influence of ply angles in
adjacent plies on delamination cracking. The fracture mechanics analysis shows that
for a graphite fibre-reinforced composite laminate containing a transverse intraply crack,
the crack-induced largest interfacial principal tensile stress is the maximum when the
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difference between the ply angles across the interface is 90°, and it attains a minimum
when the difference is 40°. When the crack tips touch the interfaces, the minimum mode
IT stress singularity which is weaker than the usual square-root type appears when the
difference between the ply angles is about 45° for one glass fibre-reinforced laminate
and three graphite fibre-reinforced laminates. These results are in agreement with the
experimental observation that the largest delaminations appear at the interface across
which the difference between the ply angles is the largest, i.e. 90°. The analytical results
indicate that in the commonly used quasi-isotropic laminate in which the ply angles are
usually 0°. £45° and 90°, it would be advantageous to interleave the 0° and 90° plies
with the +45° plies in order to increase its damage tolerance to transverse static or
low-velocity impact loading.

5.1 Introduction

It is widely known that under transverse static or low-velocity impact loading, matrix
cracks in the laminae of a fibre-reinforced multidirectional laminate can cause delami-
nations between the laminae (Chester and Clark (1992); Doxsee et al. (1993); Jih and
Sun (1993): Liu et al. (1993): Pavier and Clarke (1995); Wang and Karihaloo (1994a)).
As the low-velocity impact-induced delaminations in laminates are the major source of
the reduction in their post-impact-compressive strength, the mechanisms of onset of the
impact-induced delaminations has attracted the attention of many researchers in recent
years (Chester and Clark (1992); Choi and Chang (1992); Davies et al. (1997); Jih and
Sun (1993); Pavier and Clarke (1995)). There have been numerous experimental ob-
servations and finite element computations in this area. As the damage in laminates is
always related to cracks (matrix and/or interfacial cracks), a strict fracture mechanics
analysis is likely to provide a better physical insight into the damage mechanisms in these
materials than the finite element analysis.

For fibre-reinforced multidirectional composite laminates under low-velocity impact,
Chester and Clark (1992), and Pavier and Clarke (1995) found that the intensity of
delaminations depended on the difference between the ply angles above and below the
interface. Figure 7 shows the relative intensity of the observed delaminations in a com-
posite laminate caused by transverse impact. It is seen that the largest delaminations
appear at the interface across which the difference between the ply angles is the largest,
i.e. 90°. A damage model which shows the matrix cracks and delaminations in a compos-
ite laminate under transverse impact has been presented by Chester and Clark (1992),
and is reproduced in Figure 8.

In this section an idealized fracture mechanics model is presented for investigating
the role of a transverse shear crack in triggering delaminations and the influence of
ply angles in adjacent plies on delamination cracking. The model consists of a cracked
[(iﬁzu/(QO)m/(:FH)nQ] laminate. The inner layer is assumed to contain an intraply or
interply crack, whereas the two outer layers are assumed to have no cracks (Wang and
Karihaloo (1994a); Wang and Karihaloo (1994b)). A solution is obtained when the
crack is subjected to transverse shear, i.e. mode 1I in fracture mechanics, for two crack
configurations. First, when the crack is contained wholly within the inner layer, the
crack driving-force and the crack-induced interfacial stresses are calculated. The fracture
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Figure 7. A composite laminate subjected to transverse impact and the relative intensity
of delaminations at the interfaces caused by the impact (after Chester and Clark (1992))

delamination

Figure 8. A damaged composite laminate showing matrix cracks and delaminations
caused by a transverse load or low-velocity impact (after Chester and Clark (1992))

mechanics analysis shows that for a graphite fibre-reinforced composite laminate, when
the transverse crack is an intraply crack, the crack-induced largest interfacial principal
tensile stress is the' maximum when 6 = 0°, that is, the difference between the ply angles
across the interface is 90°, and it attains a minimum when 6 = 50°. Secondly, when the
crack tips touch the interfaces, the minimum mode IT stress singularity, which is weaker
than the usual square-root type, appears when # is about 45° for one glass fibre-reinforced
laminate and three graphite fibre-reinforced laminates. These analytical results indicate
that in the commonly used quasi-isotropic laminate in which the ply angles are usually
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0°, £45° and 90°, it would be advantageous to interleave the 0° and 90° plies with the
+45° plies in order to increase its damage tolerance to transverse static or low-velocity
impact loading.

5.2 Fracture mechanics model

The damage model in Figure 8 clearly shows that the delaminations are related to
the transverse cracks. Clark and Saunders (1991) also noted that delaminations in fibre-
reinforced composite laminates under impact appear to initiate at the crossover points of
matrix cracks in adjacent plies. It is noted in Figure 8 that the matrix cracks are mainly
subjected to a shear stress in the zy-plane. Only when the top layer fails at this stress
state can the transverse load be transferred to the lower layer and the delaminations
result. Liu et al. (1993), and Jih and Sun (1993) have classified the matrix cracks caused
by a transverse load or low-velocity impact into two types: transverse shear cracks and
bending cracks. The transverse shear cracks occur near the loading site due to the high
transverse shear stress in this area, whereas the transverse bending cracks are mainly
caused by the flexing of the laminate. It is concluded by Liu et al. (1993) that the
delaminations caused by a transverse shear crack are catastrophic in that, once formed,
they propagate unstably. On the other hand, the delaminations caused by a transverse
bending crack are stable. Therefore, in order to investigate the role of a transverse
shear crack in triggering the delaminations, the idealized fracture mechanics model of
the composite laminate shown in Figure 9 (Wang and Karihaloo (1994a); Wang and
Karihaloo (1994b)}) is used.
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Figure 9. A fracture mechanics model for investigating the role of a transverse matrix
crack in triggering delaminations when the crack is subjected to an in-plane shear stress,
mode II in fracture mechanics, (a) laminate configuration; (b) an intraply transverse
matrix crack; {c) an interply transverse matrix crack
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In the idealized fracture mechanics model of Figure 9, the two outer layers of thickness
b are assumed to be each an (+6),,, angle-ply laminate. They are regarded as transversely
orthotropic in the xy-plane whose principal elastic axes are parallel with the x and y axes,
respectively. The elastic constants are calculated using the classical lamination theory
(Wang and Karihaloo (1994a)). The inner layer of thickness 2d is taken as a transversely
isotropic material in the zy-plane. Figure 9(b) shows an intraply transverse matrix crack
of length 2a which is in the center of the inner layer, whereas Figure 9(c) shows an
interply matrix crack whose tips touch the interfaces.

5.3 Solution of intraply crack

The fracture mechanics problems shown in Figures 9(b) and 9(c) can be solved using
the Fourier transforms and superposition procedure (Wang and Karihaloo (1994a); Wang
and Karihaloo (1994b}). We first give the results for the intraply crack problem of Figure
9(b). For this problem, the most relevant parameters which are related to the damage
of the laminate are the mode II stress intensity factor at the crack tips and the crack-
wnduced interfacial stresses. The mode II stress intensity factor at each of the tips of the
crack is

K =Frmva (5.1)

where Fyj is determined by the configuration of the laminate. For a typical graphite/epoxy
fibre-reinforced composite material (M1 in Table 4), the variation of Fry is shown in Fig-
ure 10. In the figure, F{a/d) represents the value of Fy; when the two outer layers are
absent. It is seen that these layers considerably reduce the crack-driving force at the tips
of the crack. From this point of view, the outer layers have the strongest constraining
effect on the propagation of the crack when # is 0°, that is, the laminate is a cross-ply
one. The constraining effect decreases when 6 increases from 0° to 90°.

The presence of the transverse matrix crack will inevitably cause stress concentration
in the areas ahead of the crack tips. As the interfacial area is generally a weak part of the
laminate, we now consider the crack-induced interfacial stresses. The non-dimensional
(normalized by 7) crack-induced largest interfacial principal tensile stress o, which
occurs immediately ahead of the crack tips (xz = +d, y = 0), is shown in Figure 11.

The results show that the magnitude of o7 is influenced by the outer ply angle §. In
contrast to the mode II intensity factor, whose magnitude is determined by Fry, 67 has

Table 4. Material properties

Property Er Er Grr Grr VLT v
Materials [GPa] [GPa] [GPa] [GPa] [] -]
M1: T300/934 (Gr/Ep) 138.0 11.7 4.56 4.18 0.29 0.40
M2: Glass/Ep 41.7  13.0 3.40 4.57 0.30 0.42
M3: AS4/3501-6 (Gr/Ep) 140.1 8.36 4.31 3.20 0.253 0.297

M4: AS4/Tactix 556 (Gr/Ep) 151.1 7.09  3.63 272 0241 0.304
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Figure 10. Variation of F7; with the relative crack length % and the outer ply angle ¢
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Figure 11. Variation of the normalized crack-induced largest interfacial principal tensile
stress with the relative crack length a/d and the outer ply angle 8§

the maximum value when 6 is 0°. The situation worsens as the tips of the crack approach
the interfaces, as the influence of # becomes more prominent.

If the design objective is to minimize the crack-driving force at the tips of the crack
so that the laminate is least prone to transverse cracking when subjected to a transverse
load, # = 0° should be chosen. However, if the design objective is to minimize the
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crack-induced, interfacial stress so that the risk of delamination is minimized or delayed,
# should take on a non-zero value. We can deal with these conflicting design objectives
by trying to find a compromise design using optimization techniques. The compromise
design can be obtained by solving two optimization problems (Wang and Karihaloo
(1994a)).

In the first optimization problem, the crack-driving force, represented by Fpj, is min-
imized, whereas constraints are imposed on or, or < (1 + ) and the flexural rigidity of
the laminate, D > (1 —)Dy. D is the normalized flexural rigidity of the laminate, and
Dy is its value, when 6 = 0°. «a and + are tolerance factors on the stress gain and stiff-
ness loss, respectively. Upper (0,b) and lower limits (4,b) are also placed on the design
variables @ and b/d, respectively (6 = 90°, b = 4.0; § = 0°, b = 0.0). From the solution
of this optimization problem it was found that for small a/d, the active constraints were
the lower limit on § and the upper limit on b/d. The minimum of F; always occurred
at § = 0°. When a/d was large, the interfacial stress constraint became critical to the
design. For the satisfaction of this constraint the design angle 6 had to take on a non-zero
value. Tt was found that for & = 0.5, v = 0.15 and b = 4.0, when a/d exceeded 0.73,
no optimum design was possible because of the violation of the constraint on interfacial
strength. For this reason an alternative formulation of the optimization problem was
considered.

In the second optimization problem, the largest interfacial tensile stress or was min-
imized subject to the constraint that ®(1) not exceed 1.0 and that the flexural stiffness
be adequate. The solution of this minimization problem is shown in Figure 12. In this
case, o7 reaches its minimum when 6 = 50° and b/d = b.

[UT]min gopt
1.3 T T T T 80°
1.2 r— ]

— 60°
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-
- 30°
10+ .
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09 i 1 I 0°
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Figure 12. Results of the optimization problem in which the normalized crack-induced
largest interfacial principal tensile stress o7 is minimized
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5.4 Solution of interply crack

In this section, we show the results of the fracture mechanics solution of the crack
problem shown in Figure 9(c). In this case, the problem leads to the solution of a singular
integral equation {(Wang and Karihaloo (1994b)). When the tips of the crack touch the
interfaces, the asymptotic value of the stresses near the tips can be expressed as

Kir

O’ij = mfij(r, 0) (52)
where 0;; (4,7 = 1,2) are the stress components in the zy-plane. Kj; is the mode II
stress intensity factor and v is the singularity of the stress field, r is the distance away
from the tips of the crack, and f;;(r, 8) are the angular functions with the origin of polar
coordinates at the crack tip.

The variation of the stress singularity v, for the four composite materials (three
graphite/epoxy composites and one glass/epoxy composite) listed in Table 4 is shown
in Figure 13. The strongest and weakest mode II singularities are given in Table 5. It
is seen from Figure 13 and Table 5 that the mode I stress singularity has its minimum
value when the outer ply angle § is about 45°, that is, the difference between the ply
angles in the adjacent plies is about 45°. For the three graphite/epoxy composites the
strongest singularity occurs at 8 = 90°, that is when the composite laminate in Figure
9(a) degenerates into a transversely isotropic layer.

Y2
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Figure 13. Variation of the mode II stress singularity v with the outer ply angle 8
for four composites. M1, M3 and M4 are graphite/epoxy composites, whereas M2 is
a glass/epoxy composite
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Table 5. Strongest and weakest mode 11 stress singularities

Materials M1 M2 M3 M4

Y2 max 0.500 0.510 0.500 0.500
Oinax 90° 0° 90° 90°
Y2 min 0.468 0.468 0.470 0.468
Omin 45° 45° 41° 42°

5.5 Discussion

For a muitidirectional composite laminate under transverse static or low-velocity im-
pact loading, the matrix cracks are obviously caused by a combination of the tensile
stress perpendicular to the fibre direction and the shear stress, as shown in Figure 8.
It was shown by Davies and Zhang (1995) that for quasi-isotropic laminates, the trans-
verse shear stress near the impacted site is very high. Following this observation and
the analyses by Liu et al. (1993), and by Jih and Sun (1993), it is quite reasonable to
assume that the occurrence of transverse cracks near the loading point is dominated by
the transverse shear stress.

From the idealized fracture mechanics model presented above, the following conclu-
sions may be drawn:

1. When the transverse crack is wholly within the inner layer (intraply transverse
crack), the crack-induced interfacial principal tensile stress is influenced by the
difference between the ply angles in the inner and outer layers. When the difference
between the ply angles is 40°, the stress reaches its minimum for the graphite/epoxy
composite material considered.

2. For an interply transverse crack where the crack has run through the thickness of
the inner layer, the mode II stress singularity reaches its minimum for the three
graphite/epoxy composites and one glass/epoxy composite when the difference be-
tween the ply angles is about 45°.

3. It is therefore suggested that in the design of the commonly used quasi-isotropic
laminates, say, [(£45°/90°/0°),]s, it would be advantageous to interleave the 0° and
90° plies with the +45° plies in order to increase its damage tolerance to transverse
static or low-velocity impact loading. The configuration [(++45°/90°/ — 45°/0°),],
would be more damage tolerant than the configuration mentioned above.

6 Multiple cracking in angle-ply composite laminates

The stress field in a cracked [(£6°),2/(90°),1]s angle-ply fibre-reinforced composite lam-
inate is solved by using Fourier transforms and dual integral equation formulation. The
(90°),,1 sublaminate is characterized by periodically distributed multiple transverse in-
tralaminar cracks. The stress intensity factor at each crack tip and the crack-induced
interfacial stresses are calculated. Both are found to be significantly influenced by the
closeness of the crack tip to the bimaterial interface, the crack spacing and ply angle 6
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of the constraining sublaminates. The variation of the SIF explains the physical mecha-
nisms behind constrained cracking in composite laminates, while the perturbation of the
interfacial stress field caused by the transverse cracks reveals that as the cracks approach
the bimaterial interface, there is a considerable increase in interfacial stresses. The crack
driving force and the crack-induced interfacial stresses decrease considerably when the
multiple cracks are densely distributed. From the design point of view, the results also
suggest that by a proper choice of ply angles in angle-ply laminates the crack growth in
the individual lamina can be greatly retarded.

6.1 Introduction

The strength and stiffness of unidirectional fibre-reinforced composite laminae are
quite sensitive to the direction of load with respect to the fibre orientation. For this
reason, they are often used in the form of multi-angle-ply laminates. In these laminates,
because of the inherent weakness of the laminae in their transverse direction, multiple
transverse cracks are the most frequently observed form of damage. They can be found
in the very early loading stage or even before external service loading Bailey and Parvizi
(1981). The propagation of these cracks results not only in the fracture of the lamina,
but also in the delamination failure between the sublaminates. Experimental results and
theoretical calculations Crossman and Wang (1982), Fish and Lee (1990), Kim (1989),
Wang and Karihaloo (1994a) have revealed that transverse cracks, especially when they
are close to the interfaces, are directly responsible for the delamination failure.

Recognizing the transverse cracks as a basic damage feature of fibre-reinforced angle-
ply laminates, many studies have been devoted to estimating the perturbations induced
in the stress fields and laminate properties by these cracks. Thus Garrett and Bailey
(1977) used a one-dimensional shear-lag model to predict the stress redistribution due
to multiple transverse cracks in the 90° ply of cross-ply laminates. Crossman and Wang
(1982) made detailed experimental observations of the phenomena of multiple transverse
cracks in 90° and delamination in [£25°/90%]s angle-ply laminates. The stress redistri-
bution and the stiffness reduction due to the existence of multiple transverse cracks were
extensively investigated in the works of others (Gudmundson and Zang (1993); Hashin
(1985); Highsmith and Reifsnider (1982); Lee et al. (1989); Nairn (1989); Talreja (1985);
Tan and Nuismer (1989)). Most of these works considered pre-existing through-thickness
transverse cracks in the 90° plies. However, through-thickness cracks do not normally ex-
ist in laminates but originate as microcracks or small flaws in the 90° ply and propagate
under increasing load until they reach the interfaces, resulting in the complete fracture
of the 90° ply. Moreover, because of the weak constraint provided by the adjacent plies
on the crack propagation, the initial microcracks are most likely to occur away from the
interfaces (Kaw and Besterfield (1992); Wang and Karihaloo (1994a)) so that they are
wholly within the 90° ply. On the aspect of the intralaminar crack problem, Fan et al.
(1989) calculated the stress intensity factor at the tip of a single transverse crack in
the 90° ply of a cross-ply laminate. Bai (1989) studied the tensile stiffness reduction of
cross-ply laminates due to the existence of these multiple intralaminar cracks in the 90°
ply. For angle-ply laminates under out-of-plane shear load, Wang and Karihaloo (1994a)
calculated the stress intensity factor at the tip of a single intralaminar crack in the 90°
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sublaminate and the crack-induced interfacial stresses. These results were applied to the
design of angle-ply laminates that were least prone to delamination failure Wang and
Karihaloo (1994a).

In this section, the results of Wang and Karihaloo (1994a) for a single transverse crack
wholly within the (90°),,,, sublaminate are generalised to [(£68°)s,/(90°),,]s angle-ply
laminates with multiple intralaminar cracks in the (90°),; sublaminate. The general-
isation is accomplished by the superposition procedure of Nied (1987), and Kaw and
Besterfield (1992) and requires the solution of a boundary-value problem. This solution
is obtained by an extension of Copson (1961) procedure {Sih and Chen (1981); Wang and
Karihaloo (1994a)). In this procedure the stress intensity factor is computed from the
solution of a Fredholm integral equation rather than a singular integral equation. The
effect of the crack spacing and ply angle € on the in situ stress intensity factor is studied.
The relationship between the crack-induced interfacial stresses and the crack geometry
is also investigated.

The results reveal the constraining effect of the outer £6° sublaminates on the crack
driving force at the crack tips in the 90° sublaminate. This constraining effect can be
exploited in designing the ply angle configurations of multi-angle-ply laminates so that
the crack propagation in the individual unidirectional lamina can be retarded. As in
a homogeneous medium containing a parallel array of cracks under mode I, the stress
intensity factor (SIF) at each crack tip decreases with decreasing crack spacing. The
interactive effect of multiple cracks considerably decreases the SIF when the cracks are
densely distributed. At the same time the crack-induced interfacial stress is also reduced
by the existence of the multiple cracks, which therefore serve as stress relaxers.

6.2 Boundary-Value Problem and Solution

Model and Basic Solution We consider a symmetric {(or antisymmetric) angle-ply
[(£6°)52/(90°)n1]s fibre-reinforced laminate under unidirectional in-plane (yz) tension,
shown in Figure 14. It consists of a central sublaminate in which the fibres are ori-
ented normal to the plane of the paper (90° ply) and two outer sublaminates which are
composed of an equal number of +6° and 0° angle plies. The (90°),; sublaminate of
thickness 2d is transversely isotropic (in zy plane) and is assumed to contain a series of
parallel, periodically distributed transverse cracks of length 2c. Each outer sublaminate
of thickness b is treated as being homogeneous orthotropic with average elastic properties
of [£6°], laminate, consistent with the classical lamination theory.

It is assumed that the composite laminate is subjected remotely to a uniform tensile
deformation along y direction. Because of the orthotropy of the outer sublaminates, the
90° sublaminate also undergoes a uniform tensile deformation along y direction except
near the free edges. This free-edge effect is not considered here. From a mathematical
point of view, one needs only to solve the problem of cancellation of a uniform stress
over the faces of all the cracks. Because of symmetry, it is enough to consider a quarter
of the laminate, say x > 0, y > 0.

The solution to the above problem must satisfy the following boundary, and symmetry
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Figure 14. The cracked composite laminate and co-ordinate axes

conditions
90 . ) —

Oyy(T,nA) = —0; 0<x <e n=012...,4 (6.1)
u?(x.nX) = 0; z > n=0,1,2,...,+00 (6.2)
u®(z,n)) = 0; d<z <d+b n=20,1,2,...,+x (6.3)
7'22(:1:,71)\):0 c<x<d; n=0,1,2,...,+00 (6.4)
Tfy(a”,n)\)zo d<z <d+b n=0,1,2,...,400 (6.5)

and the following continuity and free surface conditions (0 < y < +00):
(d y) = Om(d Y) (6.6)
vy) = 7oy (d,y) (6.7)
90(d y) = u’(d,y) (6.8)
v?(d,y) = ( y) (6.9)
o (d+by) = (6.10)
(d +b,y) = (6.11)

The solution of the above boundary-value problem for multiple cracks is simplified
by the superposition procedure of Nied (1987), and Kaw and Besterfield (1992) applied
to the solution of the boundary-value problem for a single crack, given by Wang and
Karihaloo (1996a). The relevant expressions from that solution, identified by n = 0 will
be cited here without detail. With the single crack located at y = 0, the stress oyy(:z y)
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and displacement v%°(z,y) are

2 [t

s
022(7“, Yln=o = 5 5 G (E,r) cos (3%) ds+
2 +oo s y Y
= Z Z) e85 12
e ), E (c> (1 + sc) e % cos(sr)ds (6.12)
90 2 [t s . )
(T Y) |n=o = o 5 Go (E’T) sin (SE> ds+
2 [t y
- —/ -F (§> [2a11 ~ (a12 — ay1)sy] e < cos(sr)ds (6.13)
TJo 8 \c
where
s 3 s .
G1 (E’ 7") =A (E) cosh(sr) + B (2) [2 cosh(sr) + srsinh(sr)] (6.14)
S 1 s
Ga (E’T) :; {_A ('c‘) (CL12 - CLH) COSh(S’r‘)+
+B (Z) [2a11 cosh(sT) — (@12 — a11)sr sinh(sr)]} (6.15)
and .
r=-= (6.16)
c

The functions A(s/c) and B(s/c) are determined from the continuity and free surface
conditions (6.6)—(6.11).

The perturbation of the stress and displacement fields caused by the infinite array of
cracks can be obtained by superposing the contributions of cracks located at y = £nA,
n=10,...,+0o. Using the above superposition procedure on (6.12) and (6.13) and noting
that v°°(z, y) must be an odd function of y, we get the following two integral equations

+oo s 7 too s
/0 [1 +G (Z)} E (E) cos(sr)ds = — {700 —l—/o G <Z’r) .
= A
1+ 22 cos (sn—c—>} ds} : 0<r<1 (6.17)

n=1
+o0 1
/0 ;E (%) cos(sr)ds =0; r>1 (6.18)
where N
s 2e7%%C A 1
-] =—1 - 6.19
g(c) 1_e~5%{ +Scl_e-8%] (6.19)
Denoting
1
T2 s
=(— = 6.20
o =(5) 2(2) (6:20
and noting that
1
ST 2
cos(sz) = (—2—) Iy (s2) (6.21)
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where J_ 1 is the Bessel function of the first kind, the dual integral eqns. (6.17)—(6.18)
can be rewritten as

+oc 1 e +o00
/0 s[1+G(s)] F(s)J_1(sr)ds = — 7 {70 + ; Gi(s,r)-
+oc
1 +2nz::1cos (sn%)} ds} ;o 0<r<l1l (6.22)
" F(s)J_% (sr)ds =0; r>1 (6.23)
0

The above dual integral equations can be solved by generalising the procedure of
Copson (1961) (see also Sih and Chen {1981)), as shown in the Appendix. From (6.40)
of the Appendix. E(s) can be expressed as

E(s):—%co{ (1)1 (s¢) — /ng c€) 72 Rﬁ?}dg} (6.24)

where ®(€) is the solution of the following Fredholm integral equation

B(€) + / K (6.m) + Ka(€,m)] @(m)dn = V/E (6.25)

The kernels K;(£.m) and K»(£.n) in eqn (6.25) are

+oc S(’._s% 4
Ki(€.m) :\/6_77/0 Als) Io(sg)ZKUEﬁ
J=1

+[200(s€) + €I (s€)] Z } 142 Z cos <sn )} (6.26)

A 1
Kol Ve [ s- {1 g EXS VIS (6.27)
— e <
where K;; (i =1.2: j = 1.....4) may be found in Wang and Karihaloo (1996a), and

d
E, = (2 - s;) Io(sn) + snly(sm),

d
P = (12 ) o)+ s o).

d

Es =apky +an |i5210(877) - 377]1(377)} ,

d
E4y =(2a11 — a12)FEs + all {(1 + SE) To(sn) — snIl(sn)} .
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Iy() and I;() are the modified Bessel functions of the first kind.
That the integral of K;(£,n) is convergent follows from the integral

/Om s™e P8 cos(nas)ds = (—1)™ o ( b ) (6.28)

aﬁm n2a2 + /82

The integral of K3(€,7) is evidently convergent.
The necessary stress and displacement components can be obtained, once F(s) has
been found from the solution of (6.24)—(6.27).

Stress intensity factor We now calculate the mode T stress intensity factor at each
crack tip. The relevant normal stress component around the crack tip is

“+oo
oo (z,0) :%/ [1+ G(s)] E(s) cos(sz)ds+
0

+o00 +oo
+ 2 Gi(s,z) |[1+2 Z cos(sn/\)} ds (6.29)
TJo n=1

Substituting eqn (6.24) into eqn (6.29) gives

oy =~ o +w[1+g(s)] ®(1)J1(sc) — lgjl(scg)i 2(©) d¢ b cos(sx)ds+
o} 0 df \/E

9 [t =
+— Gi(s,z) |1+2 Z cos(sn)\)} ds (6.30)
0 n=1

The mode I stress intensity factor at the crack tip is

K= lim /s(z —c)oyy(x,0) = ®(1)ove (6.31)

z—ct
If the 6° plies on the two sides are absent then the stress intensity factor is
Kio=F (2) o\/C (6.32)
®(1) alone is affected by stiffness properties of the sublaminates, the density of the

cracks and the laminate configuration, i.e. the ply-angle # and the relative thicknesses
of the sublaminates. For the graphite/epoxy material properties (Tan and Nuismer

Table 6. Material properties

Properties Eyr Er Grr Grr vir vrr Ply thickness
and material (GPa) (GPa) (GPa) (GPa) — — {mm)
T300/934 138 11.7 4.56 4.18 0.29 0.40 0.132
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Figure 15. Variation of ®(1) with ¢/d and ¢ for a single crack
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Figure 16. Variation of ®(1) with # and )\/d for multiple cracks of length ¢/d = 0.7

(1989))listed in Table 6 in the notation of Tsai and Hahn (1980) , the variation of ®(1)
with ¢/d, A/d, and different & are shown in Figures 15 and 16.
In order to examine the constraining effect of the outer sublaminates, we first show in
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Figure 15 the variation of ®(1) with § and ¢/d, for a single crack (i.e. when A/d — o).
b/d =1 is used here and throughout the computations presented below.

®(1) exhibits two notable features. First, it always increases with increasing 6, ir-
respective of the crack size. This means that the constraining effect of the outer plies
decreases with increasing 6. In other words, transverse cracks in the 90° ply of [£6°/90°],
laminates will propagate at smaller stress levels, the larger the ply angle §. This result
agrees with the experimental observations which show that in situ tensile strength of
the 903, layer in [£0°/90;], laminates reduces with an increase in 6 (Flaggs and Kural
(1982)). Tt is also seen that if the size of the initial cracks or flaws is less than a certain
critical value, the in situ stress intensity factor increases with an increase in the thickness
of the 90° sublaminate. Thus, the thicker the 90° layer, the smaller the in situ trans-
verse tensile strength. This deduction also confirms experimental observations made by
Garrett and Bailey (1977), Parvizi et al. (1978), and Flaggs and Kural (1982).

Secondly, for 0° < 6 < 90°, ®(1) is always less than F(;%y;) — the corresponding
geometry factor at each crack tip in a finite homogeneous isotropic strip, otherwise there
would be no point in using composite materials. It is also for this reason that the 6°
sublaminates are regarded as constraints for the central layer. However, it is found that
this constraining effect has the following important characteristic which can be exploited
in the design of crack-insensitive laminates. When 6 is not greater than a certain critical
value 8., (1) decreases with the increasing crack length, so that the crack-driving force
decreases during the propagation of the crack. This suggests that for arbitrary multi-ply-
angle laminates, the difference between the fibre orientations in the adjacent plies should
exceed a certain minimum value @,,, if the laminae are going to play the role of mutual
crack arrestors. For the material properties of Table 6, this critical value 8, is around 70°,
i.e. the ply angle difference between the central sublaminate and the outer sublaminates
should exceed 6,, = 20°. The configurations with smaller ply angle differences should be
avoided in order not to exaggerate the crack growth in the central sublaminate.

Figure 16 shows the variation of ®(1) with # and ¢/d. The interaction among the
multiple cracks helps to reduce the value of the stress intensity factor at each crack tip.
This effect comes from the stress relaxation caused by the crack arrays on the two sides
of a particular crack. Theoretically, when A/d — 0, ®(1) — 0 (a paradoxical result from
a practical view point). Experimental results (e.g. Highsmith and Reifsnider (1982))
reveal that the number of the multiple cracks (the crack density) in the 90° sublaminate
increases with increasing tensile load, reaching a saturation value at a certain load level.
This saturation phenomenon is evidently a result of the interplay between ®(1) and A/d
just mentioned.

Interfacial Stresses The non-dimensional crack-induced stresses at the interfacial
point in front of each crack tip are
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Oan(d,0) [T se=st d\ < d d\ <
— :/0 AG) cosh SE ZKUGJ'WLSESlnh 57 ZKQJGj

=1 j=1
oC /\ 1 4o
|14+2 Z Ccos <sn;> ds + / (E)G(£)dE — K5Gsds (6.33)
n=1 ’ 0 0
) 4
4y (d. 0) /‘+°° st d d\ d . d
e : - G hi{s— —sinh { s— )| -
- | X cosh sc ;KMGJ+ 2 cos Sc + Csm sC
ZngGj . l—l-QZcos (sn—) ds+
j=1 n=1 ¢
1 + 00
[ e@cds— [ KaGods (6.34)
0 0
where

(f) - (2)2 2 \/z 2 2 + 2 2 (635)
-G -] | oo V-G
1
G, = i VER(E)E (s, 6)dE (i=1.....4)
1
Gs = Co= | VED(€)Jo(sE)dE
ems% A1 d
Ky = 2(9:? [1 =57 ﬁ] cos (5;) (6.36)
K¢ = 23L7A [1 + si%} cos <5C—i> (6.37)
1—e % Cl—e %c c

The tensile stress perpendicular to the interface area is most likely to cause delami-
nation. For the crack configuration and loading, the interfacial stresses in front of each
crack tip o, and oy, are found to be always positive. Therefore, under plane strain
conditions. the interfacial area is subjected to an unfavourable three-dimensional tensile
field. The variation of crack-induced interfacial normal stress o, with A/d and ¢/d for
f = 0° and 0 = 45° is shown in Figures 17(a,b), respectively. The crack-induced inter-
facial oy, is almost of the same order as o,,. The total interfacial oy, is obtained by
adding the applied homogeneous stress o to the crack-induced value.

As the crack tip approaches the interface (¢/d — 1), the interfacial stresses increase
rapidly for all 8. For small cracks though, the interfacial stresses are fairly insensitive to
changes in 6, but as ¢/d increases so also does its sensitivity to outer ply angle 6. An
examination of Figures 16 and 17 shows that for all ¢/d, both the crack driving force ®(1)
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and the interfacial stresses take on their minimum values when # = 0°. It confirms the
fact that the outer sublaminates of a cross-ply laminate have the strongest constraining
effect on the inner 90° layer. The crack-induced interfacial stress field due to an isolated
crack that terminates at the interface (¢/d = 1) has been given for modes I, II and IiI
by Wang and Karihaloo (1994h), Wang and Karihaloo (1996a).
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Figure 17. Normalised interfacial normal stress: (a) 8 = 0°; (b) 6 = 45°
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6.3 Discussion

In a [(£0°),,/(90°),, |]s angle-ply laminate, the constraining effect of the outer [(£6°),,]
sublaminates on the inner [(90°),,] sublaminate is determined by the stiffness, geometry
and ply angle 8, with the stiffness of the outer sublaminates playing the most dominant
role. In order to retard the growth of transverse cracks in the inner sublaminate the
difference in the fibre orientations in the adjacent laminae must exceed a certain critical
value. For the same reason, the inner sublaminate should not be very thick.

Transverse cracks can induce high interfacial stresses, the more so when these cracks
are close to the interface. This is a major cause of the crack-induced delamination in
angle-ply laminates.

Appendix

Solution of dual integral equations
Copson (1961) showed that the dual integral equations

/OC A(s)J,(rs)ds=0 r>c (6.38)
0
/oo s A(s)J,(rs)ds = f(r) r<c (6.39)
0
are solved by
As) = 51*“/ H(t)Jyra(st)dt (6.40)
0
provided that
0<a<l (6.41)
v>—a (6.42)
: v+a-—1 _
Tim [+ (1)] =0 (6.43)

The function ¢(¢) is given by

1« t ,,,1+1/ r
B(t) = i(a)tl—"—a /0 ﬁ%dr (6.44)

provided that the function r* f(r) and its first derivative are continuous in the interval
[0.c]. The above solution procedure was also cited by Sih and Chen (1981) in relation to
crack problems in composite materials.

Wang and Karihaloo (1994a) showed that the solution (6.40) is also valid when a =
v =1/2 as in the dual integral equations

/ A(s)J 1ds=0 r>c (6.45)
0

/000 sA(s)J_rds= f(r) r<c (6.46)
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resulting from the boundary-value problem for a single crack.
The dual integral equations (6.5)—(6.6) are a variation upon (6.38)-(6.39)

/w A(8)d,(rs)ds =0 r>c (6.47)
0
/000 22 F(s)A(s)J,ds = f(r) r<e (6.48)

These may however be formally given the form of (6.21)-(6.22)

/ A(s ds=0 r>c (6.49)
/ S22 A(s),ds = fx(r) r<c (6.50)
0
where -
f=(r)=f(r)— /0 s2*[F(s) — 1]A(s)J,(rs)ds (6.51)

The solution (6.44) now becomes

- t 14v
/ S(E)K (€, m)dn = ;a)tl“"-“/() (t’;—_%ﬂ—a (6.52)

in which the additional kernel K(&,7n) is

e}

K(mn) =t A s[F(s) — 1] Jarv(5E)Jasv(st)ds (6.53)
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Abstract. The main questions discussed here are how to bridge the micro- and
mesomechanics of laminates and how this affects the understanding and prediction of
localization and final fracture of engineering composite structures.

1 Motivations: the Scientific and Industrial Challenges

The last quarter-century has witnessed considerable research efforts in the mechanics of
composites in order to understand their behavior and to model or calculate them — the ultimate
goal being the design of the materials/structures/manufacturing processes. Even in the case of
stratified composites (which are the most studied and, therefore, the best understood), the
prediction of damage evolution up to and including final fracture remains a major challenge in the
modern mechanics of composite materials and structures. Today, the use of stratified composites
in the aerospace industry always involves characterization procedures consisting of huge numbers
of tests, which shows the low level of confidence in models. A significant improvement in this
situation, i. e. a drastic reduction in the number of industrial tests, could be achieved if one could
create a real synergy among the approaches on different scales which, today, are followed quite
independently of one another in the case of stratified composites. One could jokingly say that
there is, on the one hand, the micromechanics of laminates where one counts cracks and, on the
other, the meso- or macromechanics of laminates where one measures stiffnesses — with only few
links between the two. How to bridge the micro- and mesomechanics aspects and how this affects
the understanding and prediction of localization and final fracture are the two main questions
discussed here.

Up to now, there have been numerous theoretical and experimental works on the
micromechanics of laminates (see the two review papers Nairn and Hu, 1994, Berthelot, 2003,
our references herein, and in particular the book of Herakovich, 1998); the micromechanics
approach provides a relatively good understanding of damage mechanisms, such as matrix
microcracking. However, these micromechanics models are lacking in some respects: in
particular, they are far from being complete for the prediction of localization and final fracture.

Alternative, pragmatic computational approaches have also been developed. In our lab, we
focus on what we call a “damage mesomodel for laminates” (see Ladevéze, 1986, Ladevéze et
al., 2000, and our references herein). In this approach, one assumes that the behavior of any
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laminated composite for any loading and any stacking sequence can be modeled using two
elementary constituents which are continuous media: the ply and the interface. Another important
point is that the state of damage is assumed to remain constant throughout the thickness of the
single layer (of course, it can vary from one layer of the laminate to the next).

The central question we aim to discuss here is: how can one bridge the micro- and
mesomechanics of damage? The belief that such a complete bridge could exist is not shared by all
the people working in micromechanics. A first attempt at building such a bridge was made in
Ladevéze and Lubineau (2001, 2002) for plane macrostresses. The mesomodel was found to be
fully compatible with the microdamage mechanisms. The micro-meso relations introduce
quantities or relations which we call “approximately ply-material”, which are intrinsically related
to the cracked ply's characteristics and, therefore, independent of the characteristics of the other
plies. Recently, additional work has extended this approach to out-of-plane stresses (see
Ladeveéze et al., 2004). This more complex situation involves non-local mesomodels, as there are
interactions between the interface's damage and the microcracking mechanisms of the adjacent
plies. The method of investigation is now entering what is called a “virtual testing” stage, in
which numerous numerical experiments using the micromodel and involving various possible
stacking sequences, thicknesses... are performed. One can show that the micromechanisms
within the plies and interfaces can be homogenized; relations between the micro- and
mesoquantities can be obtained through the resolution of several basic problems.

The second question being discussed here is the impact of such a bridge on the micro- and
mesomodels themselves, the objective being to calculate the intensities of the damage
mechanisms at any point of a laminated structure subjected to complex loading and at any time
until final fracture resulting from strain and damage localization. These improved models require
a multiscale approach. A first example is an improved damage mesomodel for laminates allowing
the calculation of the intensities of the damage micromechanisms. A second example is a
“computational damage micromodel” which is rather simple, yet semi-discrete and probabilistic.
It is detailed here for the first time. Unfortunately, this model leads to prohibitive calculation
costs if one uses current industrial codes. The use of a multiscale computational strategy is
absolutely essential. Several examples are worked out in order to show the capabilities and the
limitations of the different models.
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2 The Micromechanics of Laminates — Damage Modelling

2.1 The Working Scale

I
W (o W W Zoom « Super »

e R a T zoom W,
== _‘ } Sl

Micromechanics

« fiber-matrix material »

4
cracks

Figure 1. The studied structure at the microscale.

Up to now, there have been numerous theoretical and experimental works on the micromechanics
of laminates (see the two review papers Nairn and Hu, 1994, Berthelot, 2003, our references
herein, and in particular the book of Herakovich, 1998). The working scale in micromechanics is
between the dimension of the structure and the diameter of a fiber. The structure at state is in fact
described as an assembly of cracked interfaces and cracked layers made with a “fiber-matrix”
material prescribed homogeneous or quasi-homogeneous.

2.2 Phenomenology at the Microscale
Figures 2, 3, 4 show the different scenarios on the microscale. Scenarios 3 and 4 are generally
missing in micromechanics.
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Figure 2. Scenario 1: transverse microcracking.
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Figure 3. Scenario 2: local delamination.
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Scenario 4
Diffuse delamination

Scenario 3
Diffuse damage (matrix-fiber debonding)

Figure 4. Scenarios 3 and 4: diffuse damage inside the plies and interfaces.

In most practical cases, the chain of scenarios follows the figure 5. Scenarios 3 and 4 start,
leading to a rather diffuse damage inside the plies and interfaces. Through a percolation
phenomenon, transverse microcracks appear and then Scenario 1 is active. The competition
between transverse microcracking and local delamination ends with the saturation of Scenario 1
and is relayed by the catastrophic development of Scenario 2. Finally, the final fracture arrives
with fiber breaking and delamination.

material

scenario 1 scenario 2

Final
fracture

=~

Percolation Saturation §

Scenario3and4  mmlp -'- =5
()CD

Figure 5. The chain of scenarios.

2.3  Several Keypoints in Micromechanics
Hereafter are displayed several keypoints which characterize in our opinion the behavior of a
laminate on the microscale.

Keypoint 1: need of Scenarios 3 and 4. The Scenarios 3 and 4 which are usually missing in
micromechanics can be witnessed when performing the tension test [45°, — 45°]p,; a clear
definitive experimental proof has been done recently in Lagattu and Lafarie-Frénot, 2000:
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Figure 6. Shear modulus and microcracking density versus the longitudinal stress
for the tension test [45°, — 45°] 2.

A major consequence is that there are at least two main damage mechanisms: Scenarios |
and 3. Therefore, mesomodels with one mesodamage variable per layer are only valid for
particular loading; that is the case for the most alternative approaches to our mesomodel
(see Paragraph 3).

Remarks:

* These scenarios are also responsible of the (visco)plastic behavior which can be observed at
the mesoscale.

* The better understanding at the scale of the fiber of the surprising non-percolation
phenomenon which occurs with shear is an open question.

Keypoint 2: Initiation/propagation modelling — thickness effect. Most of the basic papers are
not recent: Garrett and Bailey (1977), Parvizi ef al. (1978), Wang and Crossman (1980), Boniface
et al. (1997), Yang et al. (2003). For stacking sequences built with 0° and 90° plies, two main
observations have been done for tension tests.

First, the behavior of thick 90° plies is different from the one of thin 90° plies. For thick plies,
the transverse microcracks always cross the width of the tension test specimen. For thin plies,
they can stop near the edges.

Another observation is related to thickness effect (see Figures 7 and 8) which is quite
important. Let us note that the longitudinal stiffnesses of the different stacking sequences are very
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similar: the contribution of the 90° plies is negligible. The transition thickness % is about twice the
thickness of the elementary ply.

Figure 7. Microcracking density versus the longitudinal stress for different stacking sequences.

longitudinal stress

|

—

—p thickness

h : transition thickness
Figure 8. Failure stress versus the number of 90° plies.

The theoretical explanation is both quite old and well-known. Let us consider a flaw i. e. a
penny-shape crack (see Figure 9) which could propagate in the longitudinal direction or in the
transverse one (thickness direction). It has been proved that the transverse value of the energy
release rate is much larger than the longitudinal one; consequently, the flaw primarily propagates
itself in the transverse direction.

Before introducing a cracking process modelling, let us build the damage force. Let
Grunneling be the tunneling energy release rate used classically in micromechanics. A significant
property is shown in Figure9; its wvalue is practically independent of the ratio

O = %{ for & = 0.8 .Then, the transverse damage force is:
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h (1)

Ghrans = min[Gtunneling » Grunneling 7

and the longitudinal one: Gympeling.
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Figure 9. Energy release rate versus the ratio J = %I .

The cracking process modelling is then without separating the different modes for staking
sequences made with 0° and 90° plies:
* initiation

Gyans 2 Ge 2
* propagation of existing cracks

Gtunneling =z G (3)
Applied to thick ang thin 90° plies, one gets for tension tests:
* Thick plies: # = h

If the initiation criterion is active, the propagation one is also active. A rapid crack
propagation in the width direction follows.
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* Thin plies: 4 = h

There is only one criterion for both initiation and propagation. An overstress occurs near the
edges that explains why the cracks start at the edges. After, they cand stop if the energy release
rate diminishes. Such an edge effect has been stressed recently in Pagano et al. (1998). We add
that it is responsible for the odd behavior of certain stacking sequences.

Keypoint 3: Microcracking as a stochastic phenomenon. Several probabilistic models have
already been proposed: Wang et al. (1984), Fukunaga er al. (1984), Laws and Dvorak (1988),
Masters and Reifsnider (1982), Berthelot and Le Corre (2000). Heuristic coefficients have been
introduced to characterize the non-perfect periodicity for large cracking density (see Laws and
Dvorak, 1988, Nairn et al., 1993, and Ladevéze and Lubineau, 2002). This is necessary in order
to get a reasonable agreement with experiment (see Yahvac et al., 1991).

Here, we defend the idea that the process is stochastic but quasi-independent of the
probabilistic law. Let us consider the G-curve defined Figure 10; a new crack should appear at the
maximum. Being piecewise flat, the cracking process is necessarily stochastic at the beginning.
Our proposed model is very simple. It is prescribed a uniform probability density to get a new
crack over the domain:

{M_i max G(M) —G(M_)sA} @
M

with maxG(M") = G..
M
G denotes the tunneling energy release rate and A a small parameter. G, is the critical value
associated to the fiber-matrix material.

{MPa)

T
|:

Figure 10. G-curve as the function of the longitudinal abscissa — domain associated to A,



180 P. Ladeveze

Figure 11 shows several samples for different values of A; the “mean” curve which is used for
identification appears to be insensitive to A and to the samples. It is a quasi-deterministic curve
(practically independent of A) which is quite different from the curve related to a perfect periodic

pattern.
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Figure 11. Max., mean and min. values for the microcracking rate versus the longitudinal strain.

Such a model has a reasonable agreement with experiments (see Figure 12); the test results
are given in Naim and Hu (1994) for AS4/Hercules 3501-6.
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Figure 12. Comparison tests-model.
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3 A First Damage Mesomodel: a Pragmatic Approach

3.1  Basic Aspects

An initial step is to define what we call a laminate mesomodel (see Ladevéze, 1986, 1989). At the
mesoscale, characterized by the thickness of the ply, the laminate structure is described as a
stacking sequence of homogeneous layers through the thickness and of interlaminar interfaces
(see Figure 13). The main damage mechanisms are described as: fiber breaking, matrix
microcracking and debonding of adjacent layers. The single-layer model includes both damage
and inelasticity. The interlaminar interface is defined as a two-dimensional mechanical model
which ensures traction and displacement transfer from one ply to the next. Its mechanical
behavior depends on the angle between the fibers of two adjacent layers. 4 priori, 0°/0° interfaces
are not introduced. Herakovich (1998), in his book, calls this theory “mesoscale composite
damage theory”.

characteristic length: thickness of the single layer

Figure 13. Laminate modelling.

The damage mechanisms are taken into account by means of internal damage variables. A
mesomodel is then defined by adding another property; a uniform damage state is prescribed
throughout the thickness of the elementary ply. This point plays a major role when trying to
simulate a crack with a damage model. As a complement, delayed damage models are introduced.

One limitation of the proposed mesomodel is that material fracture is described by means of
only two types of macrocracks:

» delamination cracks within the interfaces,
» cracks orthogonal to the laminate's mid-plane, each cracked layer being completely cracked
through its thickness.

The layers — in our sense — are assumed to be not too thick. Another limitation is that very
severe dynamic loadings cannot be studied; the dynamic wavelength must be larger than the
thickness of the plies.

Two models have to be identified: the single-layer model (see Ladeveze and Le Dantec, 1992)
and the interface model (see Allix and Ladevéze, 1992, and Allix et al., 1999). The appropriate
tests used consist of: tension, bending and delamination. Each composite specimen, which
contains several layers and interfaces, is analyzed in order to derive the material quantities
intrinsic to the single-layer or to the interlaminar interface.
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Various comparisons with experimental results have been performed to show the possibilities
and limits of our proposed computational damage mechanics approach for laminates
(see Ladevéze, 1995, Daudeville and Ladevéze, 1993, and Allix, 1992).

The Ply Mesomodel

Damage kinematics. The composite materials under investigation in this study have only one
reinforced direction. In the following, subscripts 1, 2 and 3 designate the fiber direction, the
transverse direction inside the layer and the normal direction respectively. The energy of the
damaged material defines the damage kinematics. Using common notations, this energy is:

— 0 J y
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& is a material function which takes into account the nonlinear response in compression
(see Allix er al., 1994). dr,d and d’ are three scalar internal variables which remain constant

through the thickness of each single-layer and serve to describe the damage mechanisms inside.
The unilateral aspect of microcracking is taken into account by splitting the energy into a
“tension” energy and a “compression” energy; () denotes the positive part.

The thermodynamic forces associated with the mechanical dissipation are:
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«» denotes the mean value through the thickness.

Damage evolution law. From experimental results, it follows that the governing forces of
damage evolution are:

Y = [Ya+bYs )Y = Yo +b'Va]¥r
where band b’ are material constants which balance the influence of the transverse energy and
the shear energy. For small damage rates and quasi-static loading, we get:

d - f,(¥")fords1
d = fd,(zl/z)fora"sl )

d, = fF(y_FW)fordFsl

where: Kl’ = sup r]t.
T=<t
fd, fa' and fF are material “functions”; progressive damage evolution (generally defined

by a linear function) and brittle damage evolution (defined by a threshold) are both present. The
thresholds involve the thickness because they are related to Scenarios 1 and 2. fF is generally

associated with a brittle damage mechanism. The model stays valid for a rather large temperature
range (see Allix ef al., 1996). At room temperature, a typical material function fgz is given in

figure 14. For large damage rates, we have introduced a damage model with delay effects:
— 1 1/2 . _ .
d = —|l1-expl-a fd(Y )—d if d<1,d = 1otherwise
TC

dl

%[1 - exp(— a<fd, (Y’m) - d'>)] ifd' <1,d" = 1otherwise (®)

c

dF

T%[l—exp(—a<fF(YF‘/2)—dF>)] if d, <1,d, = 1otherwise

The same material constants, 7. and a, are taken for the three damage evolution laws. For
this damage model with delay effects, the variations of the forces Y, Y and YF do not lead to

instantaneous variations of the damage variables d, d’ and dF . There is a certain delay, defined
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by the characteristic time 7. . Moreover, a maximum damage rate, which is l/rc , does exist. A

first identification consists of taking half the Rayleigh wave speed combined with the critical
value of the energy release rate. Let us also point out here that a clear distinction can be made
between this damage model with delay effects and viscoelastic or viscoplastic models: the
characteristic time introduced in the damage model with delay effects is several orders of
magnitude less than in the viscous case. This characteristic time is, in fact, related to the fracture
process.
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Figure 14. Shear damage material function Y;/z — fd(Y;,/z ) of the single-layer for the M55J/M18

material at room temperature.
Remarks:

* Two damage variables are used to describe the damage associated with matrix microcracking
and fiber-matrix debonding. They seem to account for all the proposed damage kinematics,
including all of them starting from an analysis of the microcracks. Many works have
established, experimentally or theoritically, a relation between the microcrack density and
our damage variable d, which can be very useful for the identification of a damage fatigue
model.

* What we call the single-layer is the assemblage of adjacent usual elementary plies of the
same direction. The damage forces, being mean values through the thickness of the single-
layer, can be interpreted as energy release rates divided by the thickness. It follows that the
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damage evolution law of the progressive part is thickness-independent. At the contrary, the
thresholds are thickness-dependent.

* The damage variables are active for [0°, 90°],, laminates even if the apparent modulus does
not change. The model predicts this hidden damage (see Ladevéze, 1992).
* For fatigue loadings, we introduce:

d=ds+dF (9)
d =dg+dp

where dgandd's are the quasi-static part of the damage defined by Equations4 and 5.
dF and dF denote the fatigue part characterized by the following fatigue evolution laws:

od
8_1\1; a(d, [v,+ bYd,])

ad, (10)
SNF‘ “,(d/’ [Yd'])

where a, a’ are two material functions. [] denotes the maximum value over the cycle.

Coupling between damage and (visco)plasticity. The microcracks, i. e. the damage, lead to

sliding with friction, and thus to inelastic strains. The effective stress and inelastic strain are
defined by:

(8} g
0, =0, 0, = “<— 022>+ (i _2;>,) O3 = "<" 033>+ (i —3;1>’)
_ Oy - UOxn - _Ys
0-12 - (l—d) O'23 - (l—d) 031 (l—d)
£

np = €np €y = <822p>(1_d,)_<_622p> €33, = <g33p>(1_d’)_<—£33p>
€pp = 812p(1_d) €y, = 823p(1—d) €3p = 531p(1—d)
(11)

gjjp for j& {1, 2, 3} denotes the usual inelastic strain. The idea is to apply classical plasticity

or viscoplasticity models to effective quantities. A very simple plasticity model is defined by the
following elastic domain:

.. 12
f(S,R) = [0122+o§3+o§1+a2(o§2+()§3)] ~-R-R, (12)
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Hardening is assumed to be isotropic, which means that the threshold R is a function of the
cumulated strain p; p ~> R(p) is a material function, p being defined by:

t 1/2
1
2 2 2 2 2
p = fdt [612p+623p+£3]p+;2—(822p+£33p)] (13)
0

a is a material coupling constant. The yield conditions are:

*pf =0,p=20,f=<0
e, = 2p—20 foriwjii jE{1,2.3} (14)
l]P 2 R+RO v b 9 k]
2
*g,, = p a9 fori€{2,3}

R+R,

An example of such a hardening curve is given for the T300-914 material in figure 15.
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Figure 15. Hardening curve at room temperature for IM6/914.

Identification of the material parameters. The single-layer model and the interface model have
been identified for various materials. Aside from the elastic constants, the model depends on:

« three coupling coefficients b, b’, a2,

* the damage “functions” fy4, f4', fF describing progressive and brittle evolutions,

* the hardening function p — R(p),
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» the function & defined practically by one parameter characterizing the compressive stiffness
loss in the fiber direction (see Allix et al., 1994).

The identification is developed here for low-stiffness matrixes. It is based on three canonic
tests [0°, 90°Tps, [+ 45°, — 45°]25, [+ 67.5°, — 67.5°]25. The measured experimental quantities are:

¢ the tension F which is related to the macrostress O‘z by az = % where § is a specimen’s
section,

* the laminate's axial strain ¢+ and the transverse one £-.
L T

Consequently, the inelastic strains and moduli variations are determined
* Tensile test on [0°, 90°], laminate

This test defines fF , i. e., in many cases, the fiber's limit tensile strain.
* Tensile test on [+ 45°, — 45°]» laminate

The following relations allow to reconstitute the ply's shear behavior:

O*
0, ==
2
(8* e*)
L= ¢r * *
&p = Epe T &y, (15
2
*
g, =0,

For many materials, one has:
€12 = (811, 522)
o] 202

Consequently, the transverse stress and strain do not affect the behavior. The damage function
Jfd is defined using:

0 *
Y = 2G12 €12¢

*

(16)
(1 -d) = _GL_;_

0
2G12 £12¢



188 P. Ladeveéze

0 *
R+Ry = Gy, €12e

*
€12e a7

f2(1 ~d)de
0

* Tensile test on [+ 67.5°, — 67.5°],; laminate
b' can be taken to zero for many materials. Then, the stresses and strains in the upper layer
are:

* [ " __* [o}
0, =50, 0, =50, 0, =50, 8=2615
2 * . 2 * . * *
£, =0 &, =cos"0¢, +sin"O¢, ¢, = cosBsmH(sL —ST)
where s, s', s" are coefficients depending on 8 and the single-layer's characteristics. This test

allows one to identify the two coupling coefficients b and a? and the material function fg'. A

complete numerical simulation of the model is needed here. Let us note that a more robust test
should be welcome.

3.2 The Interface Mesomodel

Damage kinematics of the interface. The interlaminar connection is thus modeled as a two-
dimensional entity which ensures stress and displacement transfers from one ply to another. The
interlaminar connection can be classically interpreted as a ply of matrix whose thickness (denoted
by e) is small compared to the in-plane dimension.

ply +
rierace %

1 2.3)0rthotropic direction of the interfacs

Figure 16. “Orthotropic” directions of the interface.

[U ] =U+-U- = [U 1 ]7V1 + [U 2 ]’Vz + [U 3 ]’\13 denotes the difference in displacements

between the upper and lower surfaces of the “3D interface”. Thus, at the first order, the strain
energy is:

ef [U]THMdA (18)
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where I"is the area of the mid-plane interface, and H is a (3,3) symmetrical matrix. For the 2D
interface model, [U ] is the displacement discontinuity between two adjacent layers. We assume
that the bisectors (N} and N7 ) of the angle formed by the fiber directions of the adjacent plies

are orthotropic directions. The interface material model is built following the same approach used
for deriving the single-layer model. The effect of the deterioration of the interlaminar connection
is taken into account by means of internal damage variables. The behaviors in “tension” and in
“compression” are distinguished by splitting the strain energy into a “tension energy” and a
“compression energy”’.

More precisely, we use the following expression for the energy per unit area:

E - lf (‘033>2+ (05) + o + O3 JT

2 K K(-d,) K(1-d) K(1-d,)

(19)
2

r

Three internal damage indicators, associated with the three Fracture Mechanics modes, are
thereby introduced.

Damage evolution laws of the interface. These evolution laws must satisfy the Clausius-

Duheim inequality. Classically, the damage forces, associated with the dissipated energy w, are
introduced as follows:

2
<033>2 . "321 . _ O3

vy, -1 19880 0 1 v, =L T2
Po2d-a T 2k20-a P 260(-d P

(20)

with 0 = Y, d;+Y,d, +Y,d, (0=0).

The damage evolution laws used in this study are based on the assumption that the evolutions
of the various damage indicators are strongly coupled and driven by a unique equivalent damage
force. The following mode!l considers that the damage evolution is governed by means of the
following equivalent damage force:

+ (yszz ) )W}

a

Y(t) = [(Ydf +(V1Yd,)

T=!

@n

where y{,y2 anda are material parameters. In terms of delamination modes, the first term is
associated with the first opening mode, and the two others are associated with the second and
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third modes. A damage evolution law is then defined by the choice of a material function #, such
that:

n

n (Z‘Y0>+

W) =
) n+l Y. -1y

(22)

where a critical value ¥, and a threshold value Yy are introduced. A high value of n corresponds
to a brittle interface. For small damage rates, one obtains:
d3 =dy =dy =W(X) ifd<l;, d3 = d| = dp = lotherwise.

In the general case, a damage model with delay effects is used:

1 | .
—[1-exp(-a(wr)-g))] if o<1 (23)

c

d=d, =d =d,

0 =d, =d =d, =1 otherwise

To summarize, the damage evolution law is defined, except for T¢ and @', by means of six
intrinsic material parameters Y., Yy, v1, 72, and r . The threshold value Yp is introduced here
in order to expand the possibility of describing both the initiation of a delamination crack and its
propagation. As regards the initiation of a delamination crack, the significant parameters are
Y0, nand a . It will be shown hereafter that Y., y1,y2 and a are related to the critical damage
forces.

ldentification of the interface model's material constants. A simple way to identify the various
material constants is by comparing the mechanical dissipation yielded by our damage mechanics
approach and classical linear fracture mechanics; classical delamination tests are used
(see Daudeville and Ladevéze, 1993, and Allix et al, 1998). One main result reported in
Ladevéze et al. (1998) is that the interface parameters seem to be independent of 8 for all =6
interfaces with 8 = 0° (see Table 1). Let us also note that the (0°/0°) interface appears to be
something artificial. However, such an “artificial” interface can be introduced, for example, to
describe a crack inside a thick layer. It should also be pointed out that the same model is
applicable for both delamination propagation and delamination initiation.

0°/0° : Y.,= 0,1 N/mm,y,= v,= 0,35, a= 2
6 : Y.= 0,18 N/mm,y,= v,= 0,35, a= 1

Table 1. Interface model parameters.
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Remarks:

¢ y1 and y2 characterize the ratio between interface toughness in mode II and mode I, and
mode 11T and mode I, respectively. Until now, we have taken practically: y1 = y2. The a

value can be different from 2; its value is identified from the measured interface toughness
for combined delamination modes. Interface material parameters have been characterized in
Daudeville and Ladevéze (1993) and Allix ef al. (1998). 7 and a’ could be identified using

pressure-shear impact test (see Espinoza, 1995); however, they do not play an important role
for fracture prediction in most engineering quasi-static situations.

* The different damage indicators must be equal for the completely destroyed zones; their
value is one. It follows that to define same damage rate for modes I, II and III is very
convenient for calculation; it means that the interface damage state is characterized by a
scalar state internal variable. However, a model with different damage rate for modes I, I
and I1I is given in Allix and Ladevéze (1992) and Ladevéze (1992, 1995).

3.3  Objective Prediction of Final Fracture

An important issue is the objective prediction of final fracture which is rather well-understood
nowadays. It is well known that classical damage models are non-consistent. A visible lack 1s the
abnormal sensitivity to the mesh of the finite element solution. Several remedies have been
proposed, in particular;

* non local damage model (see Bazant and Pijaudier-Cabot, 1988)

* second-gradient regularization (see Belytschko and Lasry, 1988, and Slyuis and De Borst,
1992)

* rate dependent damage model (see Needleman, 1988, and Loret and Prevost, 1990).

Here, we have followed a specific approach to laminate composites introduced in
Ladeveze (1989, 1992). It is prescribed that the damage state is piecewise constant in the
thickness of the laminate. Moreover, as a complement, we use damage models with delay effect
combined with a dynamic analysis. Further developments can be found in Ladevéze (1992, 1995)
and Ladevéze et al. (2000).

3.4  An Ilustration

Several calculations done with the mesomodel are presented in the special issue (see Allix and
Johnson, 2004). Here, it is shown that the damage mesomodel predicts the response of a
composite structure in dynamics until its ultimate fracture. This response is computed using the
explicit dynamic code LS-DYNA3D. Figure 17 defines the studied structure and its loading. It is
a [+ 22.5°, — 22.5°]¢ holed laminated plate; the material is a SIC/MAS-L composite with silicon
carbide fibers and a glass matrix made by EADS. The fiber stiffness (200 GPa) is higher than the
matrix stiffness (75 GPa), and cracks first appear in the matrix. Let us note that reasonable values
have been chosen for the material constants of the interlaminar interface model.
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In particular, the values of the critical times 7. and T, and the constants a and &’ are:

=17 =210"s

=qa =1

TC
(24)
a

Y

PLY #2235

INTERFAC \
-

/‘

PLY -22.5

ViHmig

1 [ms]

SYMMETRY PLANE

Figure 17. Holed laminate submitted to dynamic tension loading.
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Figure 18. Interface damage map at several times.
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Several computations have been performed especially for the stacking sequence [#0°]. These
reasonable constant values correspond to a fracture zone size whose order of magnitude
corresponds to the ply's thickness. Figure 18 reveals the degradation of the [+ 22.5°] interface; the
dark area represents the completely destroyed zone and then the delamination crack. Figures 19
and 20 present the microcracking intensity maps and the fiber-direction damage maps at different
times. It is clear that a transverse crack orthogonal to the fibers appears and then grows inside
each ply. One can consider that the final fracture occurs around ¢ = 100is ; the size of the
transverse cracks is about 2 mm. Last, the global load versus the prescribed displacement is
plotted in Figure 21. No particular numerical difficulty with respect to time discretization and
mesh sensitivity has appeared.

Ply -22.5° Ply +22.5°
| - T a ®
T=50us " [ @&
e o @V
0,333
0,500
0,667
0833
[ | a J
T=100ps | & ¥ | | &%
S| Sy

15w (v

Matrix damage
Figure 19. Shear damage maps for the plies at several times.
Ply -22.5° Ply +22.5°

™ | it T=50us
< ' 0000

W = | 0,167

T

T=100pus

0,333

0,500

0,667

0833

T—— T 1,000
Vl

\
(
|

|
|

Fiber damage

Figure 20. Longitudinal damage maps for the plies at several times.
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Global response
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Figure 21. Global load versus the prescribed displacement.
3.5 Concluding Remarks

The laminate mesomodel proposed herein is able to compute the intensities of the damage
mechanisms inside both the plies and the interfaces at any time, until final fracture; the main
limitation for severe dynamic loadings is that the dynamic wavelength has to be larger than the
thickness of the plies. Simulations have shown the macrocracks' initiation and propagation.
Comparisons with experimental results have proved to be satisfactory; however, a better
agreement could be welcome for delamination prediction.

4 A Bridge Between the Micro- and Mesomechanics of Laminates

A rather complete bridge has been built in Ladevéze and Lubineau (2001, 2002) and Ladevéze et
al. (2004).
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4.1 The Method to Bridge

«micro» «meso»

:1__ large wavelenght phenomena

=+

Figure 22. The two-scale computational scheme.

Figure 22 describes the used two-scale computational scheme. At the left, the real structure
submitted to a given loading is defined at the “microscale”. It is made with the fiber-matrix
material and there are crack, delamination and transverse ones. The problem to solve is clearly a
two-scale one, and then the solution consists in two parts: the large wavelength part for which the
characteristic length is the structure dimension and the small wavelength part which has a
characteristic length equal to the ply thickness.

A classical scheme to solve this two-scale problem is to separate the calculation of the two
parts. In a first step, one determines the large wavelength part solving the so-called homogenized
problem where the real structure is replaced by the homogenized structure. Its solution defines the
mesoquantities. In a second step, the microquantities that make the small wavelength part of the
solution are determined in term of the mesoquantities.

This approach is applied to two basic problems which represent all engineering situations: the
ply basic problem and the interface basic problem. They are defined Figures 23 and 24. Periodic
conditions and elastic behavior are prescribed. The upper and lower parts of the studied cell are
homogenized.



196 P. Ladeveze

«micro» «meso»

Residual loading:

o,  periodic
ally | periodic

Figure 23. The ply basic problem.

«micro» &«meso»

Residual loading:
alN, perodc o}’ . penodc Same « interface » ene ray
al;  periode olN'; | penodc

Figure 24. The interface basic problem.

As classically, the solution of the homogenized problem is built first (see Figure 25). For the
real structure, this solution needs to be corrected; the residuals associated with discontinuities
have to be equilibrated.

solution on the homogenized structure
|]:> (without cracks) with given boundaries
conditions : (&,8)

I

residuals related to discontinuities
corrections : (0, E)

I '*::“

S

+

UMJEFO

Emicro—

i
i

OGN

Figure 25. To solve the “micro” problem.
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It is supposed that the wavelength of the homogenized problem is smaller or of the same order
of the ply thickness. It follows that the residuals can be considered as locally uniform. Another
interesting property comes from the fact that the resultant and the moment of each residual are
zero-value; according to Saint-Venant's principle, corrections are relatively local.

The equivalence should hold for any value of the residual which can be written in term of
mesoquantities. The fundamental micro-meso link which defines the so-called homogenized
structure holds exactly for the two basic problems; it could be written:

VI Ie meso T = <I1& yyicpo XT>

S meso N3 =< picro N3 > (25)

1
where <> = -dS' .
sF-I[

me.

mesocell microcell

Figure 26. Fundamental micro-meso link — the cell for the interface basic problem.

I"is any cross-section orthogonal to N3 and compatible to the periodicity associated to the

layer or interface containing I'. Practically for large crack densities, I" could be replaced by any
large cross-section with respect to the plate thickness. 7 is the projector on the plane orthogonal
to N

N3

4.2 The Solving of the Microproblem

The solving of the microproblem has been a major issue in micromechanics; quasi-analytical
approximations have been derived (see Hashin, 1985, Nairn, 1989, Aboudi et al., 1988, Nuismer
and Tan, 1988, Zhang et al., 1992, McCartney, 1992, 2000, Schoeppner and Pagano, 1998, Varna
et al., 1992, Berthelot et al., 1996, Selvarathinam and Weitsman, 1999...) Such approximations
have been quite interesting for a better understanding of laminate behavior but they have some
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limits which are displayed in Figure 27. It computs three stacking sequences which follow three
very close curve microcracking rate/transverse mesodamage; using Hashin approximation, one
gets three different curves and consequently, one loses a remarkable property. It is why we follow
here another calculation method which is in fact a functional analysis: the solution is first
determined in term of material operators which depend on the microdamage variables and the
different additional parameters. After that, these operators are computed for all the values of
parameters and microdamage variables (practical range: pE[O, 0.7]r€[0, 0.4]). Consequently,

a very large amount of calculations have been performed.

B P

™

Hashin approximation

o T300-914]
0 0102 03 04 05 06 07 08 09 1
Transverse damage indicator

Figure 27. Limit of quasi-analytical calculation.

4.3  YVirtual Testing Dealing With the Ply
The ply basic problem. The mesoenergy of the cracked ply can be written:

1
Cmeso (T poso I 1pogo N 3) = ETr[ HIE 1050 ITHTIE 50 IT)

1
+ O oo N3 AT oo N3+ oo N3y o Bl 00, 0T (26)
2

where H, A, B depend on the microdamage variables and the parameters of the upper and lower
parts.

Numerically, it has been proved:

The operators H, A, B are quasi-intrinsic homogenized operators. They do not depend
practically on the parameters of the upper and lower parts. An illustration is given Figure 28 for
two coefficients, the mesodamages d27 and d33.
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(1]

delamination ratio (t+=1-) ®* ° microcracking density delamination ratio(r+=1-) ° ° microcracking density

Figure 28. Mesodamages dy3 and d33 in term of parameters for different values of the
microdamage variables.

Additional results:

The mesoenergy has the following remarkable expression:

0

Cmeso (T peso IL'S g0 —M3 ) - €meso

2 2
d
_1) 9 0" dip o @n

2
—_— ———+H‘UE3 .CH(UN?’
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All stresses involved are mesoquantities; moreover, the mesodamage variables d22, d12, d33

and € which is diagonal can be computed in a very simple way in terms of the microdamage
variables:

dij(p’t+7t_)=ﬁ'j(p7r+)+fij(pst_) (28)

' am w1 em T T S TR T 1

delamination ratio delamination ratio

Figure 29. Functions f37 and f33 related to the ply basic problem.

The extended ply basic problem.

Figure 30. The extended ply basic problem.
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From calculations, it follows that:

The damage mesomodel of the ply is quasi-intrinsic to the ply and its adjacent interfaces. Its
mesodamage variables are defined in term of the microdamage variables of the ply and its
adjacent interfaces.

Additional result:

The damages 5 and dj; for the ply i depend on pj, 7}, 7.

Remarks:

Such results allow an easy calculation of the ply mesomodel. Let us note that it is easy to
introduce the different behaviors due to the closure and the opening of microcracks. For example,
in the left member of the Equation (27), 0©22 and 033 should be replaced by

<022>+ and (033>+ .

4.4  Virtual Testing Dealing With the Interface
The interface basic problem is a 3D one with the following microdamage variables:

* transverse microcracking rates: p = %, p = H %),

¢ local delamination rates:

v+ = RO o - R%{’Tw - R’%{,,T'- - R'%I,

» total delamination ratio: A = delaminated are%otal area

1 and 1’ direction of fibers

- transverse microcracking rates
_H LH
P=h PTHET
- local delamination rates
. R* _ R _._R"

== = =/ 1"

H H H '
- total delamination ratio

1l
re

T

_ delaminated area
total area

Figure 31. The interface basic problem and its parameters.
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The interface is only active under out-of-the plane loading. The mesoenergy can be written:

1
Emeso(":f meso N—3): Em meso M3 - DT peso ﬂ?» 29

where D is a positive definite symmetric operator which depends on the microdamage variables
and the parameters of the upper and lower parts. This expression has to be compared with the
expression of our previous interface damage mesomodel:

2 2 2
O3 O3 Oy

1
— - + +
2|(1-Dy)k; (1-Dy)kl  (1-Dy)k;

Emeso (@ meso E?, )= (30)

where D33, D13, D23 are associated to the delamination modes 1, II, III. Numerically, it has
been proved:

The operator D does not depend practically on the parameters of the lower and upper parts.
The interface mesomodel does depend on the interface and its adjacent plies. Illustrations of this
property are given Figures 32 and 33.

p=0.5,p'=035,A"=2"=0.25,A "=A"=0.105

0F - L+ L 0F ~-

o D 2 4 am— D 13. S o8~ D 1

Figure 32. Mesodamage variables in term of orientation parameters of the upper and lower parts.
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p=0.5, p'=035,A"=2"=0.25,A"=A"=0.105
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Figure 33. Mesodamage variables in term of thicknesses of the upper and lower parts.

Additional results:

The mesodamage D33 related to the opening delamination mode (mode I) does depend only
on the total delamination ratio (see Figure 34). Figure 35 shows the other mesodamages
D13 and D73 associated to modes II and III when orthotropic conditions are prescribed; it

quantifies the interaction between intra and interlaminar mesodamages.
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parameters:
H:__“:H.”’l 0, 8=90 and H=H' 0 6.“ .
_ delaminated area D33
" total area 0.4

|
’r

Figure 34. Mesodamage D33 of the interface in term of the total delamination ratio for different
values of microcracking rates.
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Figure 35. Interface mesodamages D3 and D,3 related to modes II and III.

Remarks;

Through calculations, it is relatively easy to build the interface mesomodel. Let us note that a
good approximation could be obtained by solving two 2D-problems similar to the ply basic
problem.

It is also relatively easy to introduce the different behaviors due to the closure and the opening
of the delamination microcracks by considering that the cracks are shut when the meso-stress
033 is negative and that the normal stiffness then remains the initial one.
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5 Perspectives to Damage Computation

Two computational approaches could be distinguished:

* an enhanced damage mesomodel
* a computational damage micromodel of laminates.

5.1  An Enhanced Damage Mesomodel

Engineering calculations with the standard mesomodel. An example of a 3D finite element
computation is presented in order to demonstrate the ability of the damage mesomodel to predict
the response of a composite structure in dynamics until its ultimate fracture (see Paragraph 3.5).

Other engineering examples can be found in Allix and Johnson (2004). They show that the
standard mesomodel is a pragmatic and efficient model for engineering problems but it should be
improved:

* to get a better coupling between ply-microcracking and delamination
* to get a better answer to Edge Delamination Tension tests.

The enhanced versions. Firstly, the progress lies in the enhancement of the delamination
prediction by considering a nonlocal interface damage mesomodel which takes into account the
damage of adjacent plies. Another application of the bridge that we have built is the use of micro-
meso relations for describing damage in terms of micromechanics.

A first open question is to come back to the identification process by using micro- and macro-
information. A further step is to develop the true mesomodel which is nonlocal not only for the
interface but also for the ply mesomodel.

5.2 A Computational Damage Micromodel of Laminate

Basic aspects. One starts with the initial state where residual stresses occur which can be
calculated from the process simulation. A more pragmatic and standard approach is simply to
introduce a uniform negative variation of temperature and then the corresponding residual
stresses calculated in elasticity.

At the microscale, the structure is described as an assembly of layers and interfaces which
could be cracked; the layers being made with the fiber-matrix material. A hybrid modelling is
proposed. The fiber-matrix material is described following the classical continuum mechanics
framework and the cracked surfaces follow a discrete model by introducing “minimum cracked
surfaces”. This enters in what is called “Finite Fracture Mechanics” (see Hashin, 1996).

Modelling of the fiber-matrix material. Here, we follow the mesomodel limited to Scenarios 3
and 4. The Scenarios 1 and 2 which appear through thresholds are not included. Therefore we
describe the diffuse damage in plies and interface through a model which includes damage and
(visco)plasticity.

Modelling of delamination and microcracking. One introduces minimum cracked surfaces, the
characteristic length being the thickness of the elementary ply (see Figure 36).
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Microcracking in the plies Delamination cracking

Figure 36. Minimum cracked surfaces.

¢ Initiation criterion of transverse microcracks
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* Delamination cracking

’ ’

(04 (04
Gyel Gaal
—Ie + ——~Hel e =1 (34)
G, G.’
* Fiber breaking

It is supposed brittle. A minimum volume to fracture is introduced: a cube of height 4. So, we
have:

<£11> = Ol,((yf), (Ta))=1
(35

GHE O, r) =1

<> denotes the mean value over the cube of height 4. /7 and /. define the criteria for traction

and compression.

* Complements

When an elementary surface is cracked, unilateral contact conditions with friction occur. The
critical values G, G; are stochastic fields for which we suppose that the correlation length is not
larger than the thickness 4. Then, after discretization, they could be replaced by independent
stochastic variables for which a modified normal law is introduced.

* Remarks

The energy release rate related to microcracking could be computed simply by using the
tunneling value. More generally, the computation of the different energy release rates could be
vastly simplified by using analytical expressions.

Numerical difficulties. Let us consider as an example the low velocity impact problem defined
Figure 37.
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@ Low Velocity impact problem

Discrete model
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Two macro scales = 10° dof

Experimental C-Scan reaults

Figure 37. A low velocity impact problem.

A reasonable mesh for the classical finite element method leads to 2.10'"° degrees of freedom!
A research challenge is then to derive alternative computational strategies capable of solving such
engineering problems. This is a hot topic named “multiscale computational strategies including
uncertainties”. Several answers have already been given (see Fish et al., 1997, Zohdi, 1998, Oden
et al., 1999, Feyel, 2003, Geers et al., 2003, Ghosh, 1995, Ladevéze et al., 2001, Ladevéze and
Nouy, 2003...)

Following Ladevéze and Nouy (2003), one gets with two scales: 4.10% degrees of freedom. To

get reasonable calculations, it is necessary to introduce one more scale, a macro one; one has
10° ddls.

6 Conclusion

Let us come back to the central question discussed in this paper: does a bridge exist between the
micro- and the mesomechanics of laminates?
The answer is positive but the mesomechanics of laminates is not so simple, it is nonlocal.
Applications of the bridge which has been built are computational approaches for final
fracture prediction, the most promising approach being the computational micromodel of
laminates. To become true engineering tools, further researches, especially in computational
mechanics, are needed.
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Abstract. Interface damage and delamination is usually accompanied by fric-
tional slip at contacting interfaces under compressive normal stress. Under tensile
stress the separation and opening mode develops. The present study provides a
simplified analysis of progressive interface failure under applied in plane tractions
and normal compressive traction. The cohesive crack model is used to simulate
damage frictional traction present at contact. Both monotonic and cyclic load-
ings are considered for an elastic plate bonded to a rigid substrate by means of
cohesive interface. The analysis of progressive delamination process revealed three
solution types, namely short, medium and long plate solutions. For cyclic loading
the states of frictional slip accompanied by shake down or incremental failure are
distinguished. The finite element solutions confirm the validity of simplified anal-
ysis. The thermal loading case is studied separately under monotonic and cyclic
temperature loading history. The cracking of plate is now accompanied by frictional
slip and progressive delamination of the interface layer. The analysis predicts the
cracking pattern and the size of delaminated zones.

1 Introduction

The propagation of interlayer cracks and the resulting failure of the interface is one of
more important modes occurring in composite materials, rocks and ceramics. A detailed
survey of research in this area can be found, for instance, in the article by Hutchinson
and Suo (1991) who discussed mixed mode crack propagation using the Griffith energy
condition. A promising approach to analyse interface failure seems to be the concept of a
cohesive zone assumed ahead of crack tip at the interfacial region. It follows the pioneer-
ing works by Barenblatt (1962) and Dugdale (1960) and so far has been used by numerous
researchers in investigating crack growth, cf. for instance, Ortiz (1996), Hillerborg et al.
(1976), Yang and Ravi-Chandar (1997). The asperity interaction modes at cracked in-
terfaces and associated effects were studied in some papers, c¢f. Gross and Mendelsohn
(1989), Bennison and Lawn (1989), Evans and Hutchinson (1989). The analysis of as-
perity models and the effects of interface micro-dilatancy in problems of fiber pulling or
pushing was presented by Mréz and Stupkiewicz (1995). However, the effects of interface
friction have not yet been fully investigated. In general, several major topics should be
considered, namely, formulation of slip and wear rules at the delaminated interface por-
tions, damage zone evolution rules and also localized temperature effects due to cyclic
slip and interface dissipation. In fact, the coupled phenomena occur at the interface such
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as wear and damage growth, frictional slip and localized temperature effects, asperities
crushing or flattening with the associated dilatancy phenomena.

The interface failure can be closely related to segmentation cracking of structures hav-
ing large surface area subjected to axial strains. Both segmentation and delamination
processes can be distinguished as failure modes in thin films technologies, when a film
is attached to a thick substrate. The segmentation cracking can result in delamination
phenomena, since there are new damaged zones created at the interface in the vicinity
of every segmentation crack, leading to a potential slip mechanism. On the other hand,
delamination can reduce the risk of potential segmentation. Both cracking and delam-
ination resistance has to be considered in practical applications in a way that a proper
balance between these two factors is maintained.

The segmentation and delamination failure is related to systems of either macro and
micro scale. Crack development within concrete structures occurring as a result of drying
shrinkage or thermal cyclic loading is often observed in engineering practice. In many
cases the cracks are formed in structures having either one dimension dominant with
respect to the others or when a large surface area is subjected to tension. Failure can
be a consequence of either external temperature loading changing in time, or of internal
material shrinkage driven by drying or concrete production process, both influencing
crack patterns, their development in time and opening gap. Due to the production
process, concrete is first subjected to tension stresses owing to drying shrinkage. In order
to protect the material from potential failure, reinforcement in the form of randomly
distributed steel fibers is needed. If their resistance is not sufficient to compensate
tension stresses, a fragmentation occurs which can lead to functional or structural failure.
In addition to the drying shrinkage, concrete is also subjected to environmental loading.
Daily and seasonal temperature changes play a dominant role as a crack development
factor.

It is often observed that uniformly spaced longitudinal cracks are normal to the direc-
tion of applied axial strain. The so called thermal cracks can also propagate in asphalt
pavements on a granular base, extending across the width of the pavement ( Timm et al.
(2003), Hiltunen and Roque (1994)) and allowing for infiltration of water leading to
structure deterioration. They usually appear as a consequence of a sudden temperature
drop causing excessive tension in a pavement system.

Although thermal cracking of pavements is related to large scale systems, the same
mechanical modelling can be applied to thin film coatings attached to metal substrates
(Shieu et al. (1990), Agrawal and Raj (1989, 1990), Chen et al. (2000), Xia and Hutchin-
son (2000),. Baker et al. (2002)). When subjected to temperature loading and tension
stresses, cracks typically develop within a coating before actual failure of substrate. After
initiation they propagate through a film thickness and upon reaching coating-substrate in-
terface several failure mechanisms can follow: cracks enter the substrate material (Chung
and Pon (2001), Zhang and Zhao (2002), Chi and Chung (2003)), deviate and propa-
gate along the coating-substrate interface (Nairn and Kim (1992), Kokini and Takeuchi
(1998), Erdem Alaca et al. (2002)) or remain arrested. In this particular case new cracks
may form during the course of loading ( Kim and Nairn (2000a,b), Schulze and Erdogan
(1998)). It has been observed that the crack density initially increases and then stabilizes
at a constant value, unaffected by further loading ( Agrawal and Raj (1989, 1990)).
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Fragmentation of thin brittle coatings seem to be well suited to examine the interac-
tion between elastic properties of solids and statistical aspect of failure phenomena. It is
obvious that crack formation is strongly dependent upon the existence of randomly dis-
tributed microcraks that promote failure. These issues have been addressed in the papers
by Handge et al. (2000, 2001), accounting for stochastical effects in multiple cracking.

The present work is aimed at analytical solutions of damage growth at the interface
between an elastic plate and a rigid foundation, assuming compressive normal traction
acting on the interface. A cohesive zone is assumed ahead of crack tip and an influence
of various softening constitutive relations for the bond is analysed. Both mechanical or
temperature loadings are assumed, the former leading to delamination process, the latter
related to plate segmentation and delamination. The states of frictional slip accompanied
by shake down or incremental failure are distinguished in the case of cyclic loading, related
to the load amplitude and structural dimensions. With regard to monotonic loadings,
the analysis clarifies the character of instability points, occurring due to interaction of
damaged zone with the boundary and can serve as a reference solution for more complex
cases.

2 Problem Formulation

Consider a plate resting on a rigid foundation as schematically presented in Figure 1. The
plate is bonded to the foundation by a thin interface layer of thickness much smaller than
the plate thickness. The upper plate surface is acted on by surface tractions t inducing
compressive normal stresses at contact interface. The edge traction T' may induce three
modes of delamination or their combination, namely opening, longitudinal and transverse
shear modes, analogous to fundamental modes in fracture mechanics. Assuming the plate
thickness to be small as compared to its other dimensions, its response may be described
within linear elasticity equations and the interaction tractions of the bonding interface
can be treated as in-plane body forces acting on the plate. If there is no opening mode
at the interface, the plate deformation state can be described by assuming plane stress
conditions.

~

s . S/
opening
mode

transverse
shear

longitudinal
shear

Figure 1. Basic modes of delamination.

By assuming that there is a frictional contact at the interface between the plate
and the substrate governed by the Coulomb’s law, the traction ¢ normal to the upper
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i SUBSTRATE

Figure 2. A plate in plane stress condition resting on a rigid substrate.

plate surface induces the frictional stress having the magnitude |7| = p|t|. The friction
stress direction remains unknown. When a rigid-frictional interface is assumed, we have
two zones developed at the interface, namely Q{1 where the structure is fully bonded
and Q2| where the bond is damaged and there is a frictional contact. Let ¥ denote the
delamination front between regions Q1) and Q(?), as schematically presented in Figure 2.
The displacement field w has to be continuous across X:

Jw| =0, (2.1)

where [m(z)| = m(z*) — m(z~). € ¥ is the discontinuity of function m(x) across &
(@ ==z, 2t € QU 2= € Q?). On the other hand, for a rigid-frictional interface
there is discontinuous switch of shear stresses at the interface across the boundary %:

[Tn] #0, (2.2)

where m is a unit vector pointing into (1) and normal to the delamination front.
The time derivative of condition (2.1) provides a relation between the velocity field
v = w = Ow/0t and the discontinuity of displacement gradient across ¥:

[w] +v.[(Vw) -n| =0, (2.3)

where v, is the velocity of delamination front. The frictional tractions at the interface
can be treated as in-plane body forces, so the equation of equilibrium takes the form:

Divé + 7 = 0, (2.4)

with &;; = to,; (i,j = 1,2) being a stress tensor in the plane stress case. The interfacial
frictional tractions satisfy the Coulomb’s law:

|7] < pit] for |w} = 0,

Tl= it r/irl =i/l for o] > 0. (25)
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The boundary conditions on S; are
6N =T, (2.6)

where N is the unit normal vector to S;. Additional boundary conditions on the delam-
ination front ¥ are provided by Equations (2.1) and (2.3) and have the form:

[w] =0 [w] = —u,[(Vw) - n]. (2.7)

To fully formulate the delamination process for an elastic plate bonded to a rigid
substrate, we define the strain rate tensor é:

¢ = - (Vw + VTw) (2.8)

b

and the linear constitutive equation for the plate material:
& = CE, (2.9)

where C is the elastic tensor.
The rate of dissipated energy is a difference between the rate of work done on the
system by external forces T' and the rate of change of elastic energy:

D[ T wis- [ vean, (2.10)
s, dt Q@

where U(e) = 1eCe is the specific elastic energy per unit volume. The time derivative
of the total elastic energy can be rewritten in the form:

d
dt Q@

U(e)dQ = /

&-édQ+/ Ule)vndy, (2.11)
Q) b

where the fact, that the delamination front ¥ changes with time and propagates during
the loading process has been used to derive the second term on the right side of above
equation. By substituting (2.4), (2.6), (2.7) and (2.11) into Equation (2.10) and making
use of Gauss theorem, we can write the formula for the rate of dissipated energy

D= ,/9(2) T udQl + L[(&n) (Vu-n) —U(e)]v,dX. (2.12)

The first term in the above equation refers to frictional dissipation at the interface, the
second is related to the energy dissipated at the delamination front.

In the present paper, the bonding layer will be treated as an elastic-plastic interface for
which the response is expressed in terms of contact stress components and the conjugate
displacement discontinuities. As the substrate is assumed as rigid, the plate displacement
field at the interface represents the displacement discontinuity for the interface. The
constitutive equations for the interface will be referred to elastic, elastic-plastic and
frictional slip regimes. We shall now discuss these relations in more detail.
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2.1 Constitutive Relations for the Interface

Considering an interface S, we neglect the in-plane stress components and express the
deformation response in terms of the interface traction components o,,, 7, Tin, Where

0 =1, OCln, T =1 Oly, Tom = tm * Oy, (2.13)

and 1, is the unit normal vector to S, 4; and 1,, are the unit vectors within the S, forming
the orthonormal basis. The displacement discontinuity vector 4 on S can also be decom-
posed into normal and tangential components 4,, & and d,,. The total displacement
discontinuity and its rate are decomposed into elastic and slip components, thus:

§=6°+6° =6 +6". (2.14)

The constitutive equations relating the interface tractions and the reversible part of
displacement discontinuity are of the form:

o =KndS, =K, im=Kib, (2.15)

where K, and K, is an interfacial stiffness respectively in tension and shear. The irre-
versible part of displacement discontinuity is related to the failure process at the interface
and expressed in the framework of theory of plasticity by an evolution of failure function
F. The proposed failure function has the form:

T+ po = 1.(0) <0 for o <0
Flo.7) = 5 2.16
D= (@) o - ) <0 foro o, (210

where:

— /2
T=/T+ T2,

p is a friction coefficient and 7.(d.) the critical shear stress for ¢ = 0. The failure
parameter d. is defined as

&:iL (83)2 + M2(83)2dE 67 = \/(67)* + (83.)%, (2.17)

where M is a material constant expressing the influence of opening mode on failure
evolution.

Thus, for the compressive traction acting at the interface we have the Coulomb friction
law relating the shear and normal stresses, whereas for tension the damage surface is an
ellipse. The function F is presented in Figure 3.

The assumed slip potential is of the form:

T — 70(8e) for o < 0
Glor) = 2 2.18
i (57) 0%+ 12— 71e(8) foro=0. .

Thus, we have an associated flow rule for positive normal stresses and non-associated
flow rule for interface subjected to compression. The reason for doing that is to neglect
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Figure 3. VYield function F' and plastic potential G.

the contact dilatancy. It should be noted, that the slip rule remains contimious when the
normal stress ¢ changes sign, though the damage function F' has a slope discontinuity
for ¢ = 0, see Figure 3.

The sliding rule has a form:

5;5:}%, 5’5:A§, F<0, AF=0, (2.19)
or do

where A is a positive slip multiplier.

The evolution equation expresses the failure development at the interface and relates
the increasing separation 8° with the vanishing interfacial traction. In the present study,
the linearly decreasing function has been assumed:

o

0 _ T
7-6(66) _ Te Krde, 63 < I: (220)
0, be 2 %

For 70 = 0 we have only elastic-frictional contact with no stress softening and subse-
quently the failure function does not evolve in {o, 7} space. For K,, = K; — oo one can
neglect the elasticity of interface layer and obtain rigid-softening-friction or rigid-friction
interface models.

In the case of monotonically varying shear loading and constant compressive normal
traction ¢ = const, Equations (2.19) can be integrated in order to provide the total slip
displacement:

6 = ,\%g =)\,  Ff<o, M=o (2.21)
T

However, when unloading and reverse slip occurs, the memory of the previous slip dis-
placement must be stored and added to the reverse slip displacement. Figure 4(a)
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Figure 4. (a) Stress — displacement response for elastic-plastic layer under constant
compressive normal stress. (b) Stress — displacement response for rigid-plastic layer
under constant compressive normal stress.

presents the shear stress — tangential sliding response for the interface layer in the case
of progressive delamination. For specified o, the shear stress first reaches the maximum
critical value 7. and then in the elasto-plastic softening process, decreases to the limit
friction value po in the fully damaged state. We can therefore write:

T:Kt(st, 0<(5t <6tC: %7 (222)
=1 — Ky(6, — 5. 5 < 6, < 87 = 65 + ke, (2.23)
T = o, 8 > 0r, (2.24)

where K, > 0 is the elasto-plastic softening modulus. Figure 4(b) specifies the constitu-
tive relation in the case of rigid-plastic response.
Assuming the decomposition (2.14), we can write in the softening regime:
: . : T T T
0 =0, +6 =—— — = ——, 2.25
t t + t Kt Kr Ks/ ( )

where K, is the softening modulus associated with the plastic slip component ;. From
Equation (2.25) we have

1 1 1 K,

= — = 2.26
KS KT Kt’ s l_KT‘/Kt ( )

Thus, the softening response for the elasto-plastic interface is dependent on the ratio
K./K;. When ( = K,./K; = 1, we have the brittle response of the interface. On the
other hand, when K; — oo, that is for rigid-plastic response, there is K; = K.

The discussion of a dilatant contact condition can be found in the paper by Mréz and
Seweryn (1998).
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Figure 5. Plate bonded to the substrate. Anti plane shear state b > L

2.2 Anti-Plane Shear State

In the present section we shall formulate equations of an anti-plane shear state al-
lowing for analytical solution of delamination process due to mechanical loading. Sub-
sequently longitudinal shear delamination due to temperature loading will be treated
resulting in a simple mathematical model for delamination and segmentation.

Let us consider a plate of length L, width b, and thickness ¢, bonded to a rigid
foundation by an interface layer of thickness h, h << t, as shown in Figure 5.

The uniform compressive traction o,, = —o is assumed to act at the upper plate
surface. The plate is loaded by the shear force T' = 7,4(0)A, A = bt, at the end section
x = 0. The other end at x = L remains traction free. Assuming the transverse dimension
b to be larger than the plate length L, the flexural effects can be neglected and the state
of anti-plane shear can be assumed with two shear stress components 7, and 7., so
that the equilibrium equation is:

Oryz | O7ys

= 2.27
ox Oz 0 ( )

and 0., = —o = const is the initial stress induced by the lateral compressive traction
along the z-axis. Denoting by w = w(z, z) the displacement field along the y-axis and
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Figure 6. Fiber pullout.

using the Hooke’s law:

Ow Ow
Tyz = _G25;~, Toy = —G15;7 (228)
the equilibrium equation (2.27) takes the form :
8w 0w
~ = 2.29
Gy 5.2+ Go 5.2 0, (2:29)

where GG; and Gy are the shear moduli along x and z axes. The boundary conditions

at the interface z = 0: 7,, = —7y; at the upper boundary z = —t: 7, = 0 and at the

transverse boundaries x = 0 : 7, (0) = fo(y,2), £ = L : T4y (L) = 0 should be satisfied.
A simplified solution can be generated by assuming the distribution of 7., namely:

z
Tyz = —7(z) (1 + z)’ (2.30)
where 7(x) is the interface shear stress at z = 0. The equilibrium (2.27) takes the form:
OTgy T
-=0. 2.31
or + t (2:31)

Let us note that this form of (2.31) can be obtained by assuming the shear beam
model, that is assuming w = w(z), 74y = —Gdw/dz and writing the equilibrium equation
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for the elastic beam interacting with the interface cohesive layer:

d7yy

A
dx

+br =0, (2.32)
where A = bt denotes the transverse cross section area. This formula can be rewritten
in the form: )
d
—AGSS 4 br =0. (2.33)
dz?

This form of equation can be generated from (2.29) by assuming Go — oo, that is
neglecting shear deformation along the z-axis and regarding the shear stress 7, as a
reaction. Alternatively, this equation can be obtained from (2.29) and (2.30) by satisfying
the equilibrium equation at the interface z = 0. In the following, we shall provide the
analytical solution using the simplified equation.

It should be noted, that the same set of equations apply for a fiber pullout problem
as presented in Figure 6. By assuming the problem to be axisymmetric and reflecting
the deformable medium surrounding the fiber by the interface constitutive equation with
the surrounding medium to be rigid, one obtains the equilibrium equation

d
A v br=o. (2.34)
dx
The three dimensional effects associated with normal stresses due to Poisson’s ratio are
then ignored. Additionally, treating the fiber as an elastic body, we have the linear

constitutive relation between displacement field » and normal stress o:

— (2.35)
dz
with F being the Young modulus. By substituting (2.34) into (2.35), one obtains a
differential equation in the form:
d2
—AES Y 4 br=0 (2.36)
dz?
identical to (2.33). The results of fiber pullout based on such a one dimensional model
of decohesion were discussed by Schreyer and Peffer (2000).

2.3 Longitudinal Shear Delamination Due to Temperature Loading

In a similar fashion we shall now derive equations for an elastic plate of length 2L,
width 2B and thickness ¢ bonded to a rigid substrate, as presented in Figure 7(a). Due
to temperature loading, the structure delaminates and the tractions at plate-substrate
interface induce stresses acting on the plate material. In order to obtain an analytical
solution for the problem, we shall consider a simple one dimensional strip model presented
in Figure 7(b).

The plate material is elastic - perfectly brittle as depicted in Figure 7(c). The critical
stress is denoted by .. We want to analyze the plate response under monotonic and
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cyclic temperature loadings, assuming different constitutive laws for the bond interface.
The equilibrium equation has the form:

do 7

= _ =9 2.37
dez ¢t ( )
with ¢ denoting the normal stress. 7 the shear stress at the interface and ¢ the plate
thickness. Figure 8. Since we consider temperature loading, the stress - strain relation
takes the form:

ﬁ:%+aAT (2.38)

where ¢ is the plate elongation along z axis. o denotes the thermal expansion coefficient
and AT is the temperature variation with respect to reference state. It is assumed that
the substrate does not crack. so the problem can be reduced to a model of interaction
with the rigid substrate. The strain ¢ is defined as

_du

= — 2.39
€= (2.39)

with u = u(x) being the displacement field along . Combining Equations (2.37), (2.38)
and (2.39) provides a formula relating u with the interface shear stress 7:
Pu | aaT) T
dr? dz Et

(2.40)

Assume the uniform temperature distribution within the plate material, that is AT is
not a function of x AT(z) = AT = const. Then Equation (2.40) becomes

da?

Equations (2.33), (2.36), and (2.41) have the same structure. As will be presented
in the following. the delamination process is identical in nature in the case of transverse
and longitudinal shear as well as fiber pull-out problem (Schreyer and Peffer (2000)).

The temperature gradient along the thickness of the plate results in a bending moment
to be specified from vanishing curvature of plate deflection, that is assuming a full contact
between the plate and the substrate. The appropriate condition takes the form:

~Et— +7=0. (2.41)

k=nrM+ kT =0, (2.42)
with ™ equal:
M (2B)t3
M
- = 2.43
TEEr Tt o (2.43)
and the curvature 7 resulting from temperature gradient:
AT
T = o JBT) (2.44)
0z

where z denotes the normal direction to the plate.
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Figure 7. (a) Plate bonded to a rigid substrate. (b) One dimensional strip model.
(¢) The constitutive law for the plate material.

By substituting Equations (2.43) and (2.44) into Equation (2.42), one obtains:

AT
M = —EJa(——). (2.45)
0z
The value of normal stresses o™ resulting from temperature gradient is given by:
oM = Mz _ —aEza(AT). (2.46)
J 0z

When a linear temperature variation across the plate thickness is assumed, we have:

AT, — AT,

oM = aFEz ; ,

(2.47)
where AT, is the temperature loading at the upper plate surface and AT, is the tem-
perature change at plate-substrate interface. In the following we shall assume a uniform
temperature variation across plate thickness, AT} = AT}, resulting in o™ = 0.

Now the interfacial constitutive model is used to describe the deformation of the in-
terface layer. In the analysis we shall use rigid-friction and rigid-cohesive-friction formu-
lations for the interface material. Two types of temperature loadings shall be considered,
namely monotonic and cyclic.

2.4 Cyclic Loading of Interface

Consider now a cyclic loading of interface with varying shear stress 7 and normal
traction o kept constant. In order to simplify mathematical considerations let us assume
that the interface is rigid-cohesive-frictional as presented in Figure 4(b). We shall dis-
tinguish between two consecutive semi-cycles constituting loading and unloading stages,
respectively. The interface state variables for the n-th and n — 1-st stages are 6, 7n,



226 M.Bialas and Z. Mréz

Figure 8. Stresses acting on an infinitesimal strip element.

8¢, 4y Tn—1, with Stn = —St"q. The constitutive equation for the plastic zone now takes
the form:
Tn(x) = _KS (6tn (I) - 5tn_1(x)) - Tn—l(x)v (248)

where d;, _,(z), To—1(z) are respectively the displacement and stress fields at the end
of n — 1-st semi cycle, as denoted in Figure 4(b). The equilibrium Equations {2.33)
and (2.41) provide:

" 2 _ 2 "
6tn + Ts(stn = Ts5tn_1 - 5tn—1

where r; = /K /Gt, § = w for for anti-plane shear and r; = \/K,/Et, §; = u for lon-
gitudinal delamination. Equation (2.49) is a recursive relation between functions 4, (x)
and &, ,(z) and allows for an analytical solution. Though it is easy to specify the
integration constants for a monotonic loading program, a cyclic case requires substan-
tial algebraic manipulations. In practice, it is necessary to use a computer software,
eg. Mathematica Wolfram (1999), able to perform symbolic mathematics.

(2.49)

3 Anti-Plane Shear — Analytical Solution

Let us now consider transverse delamination of a plate in an anti-plane shear state. In
order to obtain formulas that can be easily treated in an analytical fashion we shall
neglect the elasticity for interface layer by assuming K, = K; — oo. Thus we have
rigid-softening-friction interface constitutive relation. By substituting Equations (2.23)
and (2.24) into (2.33), one obtains ordinary differential equations providing formulas for
displacement fields wP and wf, respectively for plastic and frictional interfaces. Thus,
for the plastic case we have

. K
wP(x) = Cy cos(rgzx) + Cosin(rsz) + %-mgn(w) s =\ G (3.1)

whereas the displacement field within the frictional zone is given by the following formula

w!(z) = sign(w)%g—tﬁ +Csx+Cy (3.2)
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with Cy, Cy, C3 and Cj4 being the integration constants to be specified from boundary
and continuity conditions. Here r, = \/K,/(Gt) is a parameter of dimension 1/length.
In the following, monotonic and cyclic interface failure modes will be discussed separately.

3.1 Monotonic Interface Failure

Let us assume monotonic damage at the material interface and examine the effect of
progressive delamination on stress and displacement fields. In order to do that, we shall
combine functions (3.1) and (3.2) using appropriate boundary and continuity conditions.
Three different solution types can be distinguished, each being defined by the plate
dimensions. They are characterized in the following sections where the consecutive stages
of delamination process are described.

Short plate solution. There are two zones at the interface during the first stage
of loading, namely undamaged and cohesive zone. They are schematically presented
in Figure 9. Due to the rigid-plastic interface model, the undamaged zone has zero
displacement field, whereas the plate displacement field for the cohesive region is provided
by Equation (3.1) with the integration constants C; and Cs to be specified from the
boundary conditions:

wP(s1) = wP'(s1) = 0. (3.3)

The value of s; specifies the coordinate of the transition point between undamaged and
plastic (cohesive) zones. The displacement field w? takes the form:

Te

Ks{l —cos[rs(z —s1)]}, O0<z<s (3.4)

wP(x, s1) =
where sy is taken as a loading parameter describing the damage zone evolution. The
corresponding stress in the plate 7., can be obtained by making use of Equation (2.28),
thus:

P
T

y(T,81) = —Grs-;;i sinfrg(x — s1)], 0<z<s1. (3.5)

s
Formula (2.33) provides the shear stress at the plastic interface:

TP(x, 81) = Te cos[rs(x — 1)), 0<z<sg. (3.6)

The short plate solution takes place when the plate is short enough for the plastic
zone to cover the entire length L. This is true when the following condition is satisfied:

w”(xzo,sl:L)<wp:TC—uU

<, = (37)

stating that there is no frictional zone developed at the interface while its undamaged
part has finally vanished. The inequality (3.7) reduces to

L G no
—< — 3.8
< 1/ K arccos - (3.8)
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Figure 9. Short plate solution; delamination phases and contact stress distribution.
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where the condition put on plate dimensions is shown explicitly. This condition may be
rewritten in a dimensionless form:
x < arccos7, x =rsL, n= ETZ. (3.9)
C

requiring the dimensionless parameter x to be bounded. In a particular case, we can
vary the softening modulus K, keeping the plate length constant and, as a result, we will
obtain a short plate solution for small values of K. It is seen that the system response
depends on a complex interaction between mechanical and geometrical characteristics to
be captured by two dimensionless parameters y and 7.

There is only plastic zone at the interface during the second loading phase, as pre-
sented schematically in Figure 9. The displacement field is given by Equation (3.1),
where the integration constants can be specified from the boundary conditions:

wP' (L) =0,  wP(0) = wh, (3.10)

with w] being the loaded end displacement. At this stage, the value of wf becomes the
loading parameter. The displacement field, shear stress 77, and interfacial traction 77
fields are:

P py_ (. p_ Tc cosrs(L — )] T <z<L 311
wP (z, wy) (wo Ks)—cos(rsL) + K. 0<z <L, (3.11)
7o \ sin[rg(L — )]
2 (z,uf) = —Gr, (w{; - é) W 0<z<L, (3.12)
» o (Te _ p cos[rs(L — )] << a1
™z, wy) = (Ks wo)——__sin(rsL) , 0<z<L. (3.13)

A friction zone starts to develop at the interface for the displacement w} reaching
wp = (1. — po)/Ks and a subsequent loading phase begins, as presented in Figure 9.
There are two interfacial zones, namely plastic and friction with respective displacement
fields given by Equations (3.1) and (3.2). The integration constants are specified from
the boundary and continuity conditions:

Te — WO
K,

wP' (L) =0, wP(ss) = w’(sy) = . wP(sy) = wfl(SQ), (3.14)

where s3 is a coordinate of the transition point between plastic and frictional zones. The
displacement and stress fields take the form:
— plastic zone, so <z < L:

P, 59) = 2o 1o o8l (L )]
wP(x, s2) = K. K. cosira(L—52)]’ (3.15)

o, g snlnL )
K, ° 7 cos[rs(L — s2)]’

cos[rs (L — )]

coslrs(L — s2)]’

h,(x, 82) (3.16)

m(z,82) = po (3.17)
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— friction zone, 0 < z < s9:

Hes) = B9 (0 ap)? 4 BT o) — s) + BT
w’ (z,89) = e (x —s2)" + X tan[rs(L — s2)|(xz — s2) + K, (3.18)
uorsG
Tay(T,82) = —T(:c —89) — % tan{rs(L — s2)], (3.19)
¥ (z, 89) = po, (3.20)

so for this loading phase the value of s takes over wg as the loading parameter and its
monotonic increase describes the damage growth.

For sy equal to L the interface has been fully damaged and progressive delamination
is accomplished. The limit shear stress subjected to the plate equals

o) = £ (3.21)
and is equilibrated by the frictional forces at the interface.

Figure 10(a) presents a relation between the loading traction 7.,(0) and the loaded
end displacement for various values of the dimensionless parameter x = r L satisfying
the condition (3.9). The dashed line is a solution obtained for an interface with no
cohesive strength, simply rigid-frictional interface. It should be noted that there is a
slope discontinuity on the load-displacement curves at limit points P, corresponding to
the maximal load value, Figure 10(a). In fact, the limit point P; corresponds to the state
when the damage zone reaches the plate boundary s; = L. The subsequent response is
associated with reduction of length of damage zone when s, approaches L.

It also follows from Figure 10 that the normalized maximum traction 74,(0) /TJICZ” (0)
subjected to the plate becomes higher while the length L, that is the dimensionless
parameter Y, decreases. The reason for this scale effect is the softening law used for the
material interface.

Since the solution strategy is similar in the case of short, medium and long plate, the
resulting displacement and stress fields will not be included in the following sections. In
order to avoid repetitive formulations, only general guidelines and the most important
conclusions shall be considered now with the detailed mathematical expressions to be
found in Appendix.

Medium length solution. Let us assume now that the condition (3.8) is not satis-
fied. As opposed to the short plate solution, there are following interface zones during
the second loading phase: friction, plastic and undamaged, as schematically presented
in Figure 11. The displacement fields for the plastic and friction zones are given by
Equations (3.1) and (3.2), respectively. The integration constants can be specified from
the boundary and continuity conditions:

Te — [0
K,

where, as before, 51 is the coordinate of the transition point between undamaged and
plastic regions, and s indicates the point between plastic and friction zones. Assume

wP(s1) = wP (51) =0, wP(s2) =w(sy) = , wP(sg) = wf/(SQ), (3.22)
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Figure 10. Short (a) and medium length (b) solutions; the loading traction versus
displacement for varying values of x = r,L, n = 0.32.
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Figure 11. Medium length solution; delamination phases and contact stress distribution:
(a) plastic and friction zones inside the interface, s; < L; (b) plastic zone reaching the
boundary, s; = L; (c) limit friction state.



Damage Modelling at Material Interfaces 233

that s; is now a monotonically increasing control parameter of the loading process and
both shear stress and displacement at the loaded boundary x = 0 are specified in terms
of s1. It subsequently follows from the conditions (3.22):

Sg = 81 — e arccos 7, 84 = 81 — 82 = — arccosr1, (3.23)
Ts Ts

that is the plastic zone length sy is constant during the second loading phase. The

displacement and stress fields for plastic and friction zones are presented by Equa-

tions (5.4)+(5.9) in Appendix.

The whole interface is damaged during the subsequent delamination stage, that is for
s1 = L. The value of s2 becomes the control parameter of the loading process, so the con-
sidered situation is identical to the third delamination phase of short plate solution, with
plastic and friction zones at the interface. The obtained stress and displacement fields are
specified by Equations (5.10)=+(5.15) in Appendix. One should remember though, that
these formulas are valid for monotonic interface loading only, that is when the following
condition is satisfied:

w > 0. (3.24)

Having in mind that s, is a control parameter during the third delamination stage, the
inequality (3.24) can be rewritten as:

Ow(z, s2)
882

This condition is satisfied for the length to height ratio L/t smaller than

L [ G n
= —_ —_ 3.26
7 < K (arccosn—l— T2 —772> ( )

or in a dimensionless form:

>0 Vre<0,L>. (3.25)

x < arccosn + ———71——, X =71sL, n= iy (3.27)
V1 —n? Te

Plate satisfying the inequality (3.27) will provide a medium length solution. In a dimen-

sionless form, it is defined by the following formula

n
< _— .
arccosn < x < arccos” + \/1___775 (3.28)
As in the case of short plate solution, it is a condition put on parameter x and expressed
in terms of both the plate length and the softening modulus K. It is seen that two
dimensionless parameters x and n govern the system response.

Figure 10(b) presents a relation between the loading traction 74,(0) and the loaded
end displacement for various values of dimensional parameter xy = rsL satisfying the
condition (3.28). The dashed line is a solution obtained for an interface with no softening
effect, simply rigid-frictional interface. Similarly to the short plate solution, the scale
effect is manifested by a decrease in the normalized maximum traction 7,,(0) /Tégm(O)
accompanied by an increase in plate length L, that is in the parameter x.
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Long plate solution. The static solution for this case can be constructed by assuming
the existence of a reverse slip zone near the loaded boundary (L-1 solution). For a longer
plate, multiple zones may develop near the loaded boundary (L-2 solution). We shall
discuss in detail the L-1 solution and specify its domain of validity in terms of plate and
interface parameters. The details of L-2 solution will be presented in a companion paper
accounting for the elasticity of the interface.

L-1 solution. Let us consider now a long plate solution, when the material and geo-
metric parameters satisfy the following condition:

_n_
VI—n%
The first two delamination stages are identical to those of medium plate solution, that
is there are initially the following zones at the interface:
first phase: plastic and undamaged zones, Equations (5.1)+(5.3) in Appendix;
— second phase: friction, plastic and undamaged zones, Equations (5.4)+(5.9) in
Appendix.
A difference appears when the plastic zone reaches the boundary s; = L. Assume now sz,
specifying the transition between plastic and friction zones, to be the control parameter
of the process. For the progressive delamination the value of s9
increases from $; to L, where 33 corresponds to the instant when s; = L, thus in view
of Equation (3.23) we have

x = rsL > arccosn +

So =L — -1— arccos 7.
s

Assuming existence of plastic and friction zones within the interface we have the dis-
placement and stress fields given by Equations (5.10)=(5.15) in Appendix. However,
they cannot be accepted as the correct solution, since the rate of deflection changes its
sign within the frictional interface. In fact, the derivative dw’(z, s2)/0s2 vanishes at
z = s3 and becomes negative for 0 < x < s3. Thus, there is a transition point between
the forward (wf > 0) and the reverse (w/ < 0) displacement zones. By substituting
(5.10) into equation

ow’ (z,s2)

0 3.29
95y (3.29)
one obtains a formula relating s3 to the loading parameter s:
1
s3 = 89 — — cotrs(L — $2)]. (3.30)
T's

The constitutive relation for the reverse displacement interface is given by
7T = posign(w) = —uo, (3.31)

as previously indicated in Figure 4. Upon substituting Equation (3.31) into (2.33), we
obtain an ordinary differential equation specifying the reverse deflection field:

w'(x) = _%‘?”2 + Csz + Cg (3.32)
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Figure 12. The end of second and beginning of third loading phases - 5 as the control
parameter.

where Cys and Cg are the integration constants to be specified from the continuity con-
ditions: ,
w'(s3) = wl(s3),  w(s3) =wl (s3). (3.33)

The displacement field takes the form:

_% [2(z —s3)% — (& —59)?] — (;Ltis tan[rs(L—s2)|(z—s2)+ T K:w

Figure 12 presents the displacement field at the instance when s; = L, that is at the
end of the second loading phase. The dashed line refers to the onset of the subsequent
delamination stage when so = 85. It is seen that there is a discontinuous switch from
forward to reverse displacement within the segment z € [0, 53] characterized by the snap-
back response at the end of beam and accompanied by the discontinuous load variation.
Such discontinuous response is typical for the rigid-plastic-friction interface model.

In order to obtain a continuous response, we may assume that s, is fixed at the value
s = 5 and the reverse friction slip zone propagates from the loaded end z = 0 until it
reaches the length x = §3 specified by

w'(x,89) =

. (3.34)

§3 =83 — 1 cotrs(L — 52)) (3.35)

Ts

and obtained from Equation (3.30) for so = 52. It is schematically presented in Fig-
ure 12. Assuming 5 to represent the position of the propagating zone, we can specify the
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deflection field from (3.32) and determine the integration constants from the continuity
conditions at z = &:

w(z = 5) = wf (x = 5,59 = 52), w"' (z = 3) :wf/(:czs,sz = 32). (3.36)

The obtained displacement and stress fields within the reverse slip zone are given by
Equations (5.16)+(5.18) in Appendix.

For § = 53 the reverse slip zone reaches its maximal length. The third delamina-
tion phase then begins and formulas (5.10)+(5.15), c¢f. Appendix, become valid for the
progressive slip within the interval s3 < z < L. The reverse slip deflection within the
interval 0 < x < s3 is characterised by Equation (3.34). It follows from Equation (3.30),
that ds3/0s92 < 0, so for $3 > 0 we have $3 < 0 and the reverse slip zone is decreasing
and eliminated when s3 = 0. The stress fields within the plate and at the interface can
be obtained from Equations (3.34), (2.28) and (2.33) providing

Ty (T, 82) = ut—o[Q(x —s3) — (z — s2)] + g tan[rs(L — s2)], 0<z<s3 (3.37)

T"(x, 82) = —po, 0 <z < sz, (3.38)

where the relation between s3 and s is given by (3.30). The evolution of forward and
reverse friction zones is presented schematically in Figure 13.

The fourth phase of deformation is associated with the progressive slip and evolution
of so to its limit value s = L, when the plastic zone is erased and the limit state is
reached. The stress and displacement fields are specified by Equations (5.10)+(5.15) in
Appendix for friction and plastic interfacial zones.

The load-displacement diagrams are presented in Figure 14. The combined decrease
in loading traction and loaded end displacement corresponds to the snap-back of the
loaded end and generation of the reverse slip zone. It is subsequently erased and the last
section of the 7(0) ~ w(0) diagram refers to progressive slip and failure within the plastic
zone, similarly to the case of short and medium plate solutions. Figure 14 presents the
calculated response diagram for n = 0.32 and several values of x = rsL.

The present solution describes the quasi static response assuming the process to be
controlled by the progressive front of the plastic zone. Figure 14 reveals a complex re-
sponse, that cannot be realized either by stress or displacement controlled loading. In
practice it may lead to an unstable behaviour with a critical point related to the dis-
appearance of undamaged interfacial area. A dynamic mode could follow next starting
from this limit state. However, the present solution clarifies the nature of critical points
associated with the delamination process and can provide a reference solution for nu-
merical algorithms attempting to generate equilibrium paths in the post critical states.
The reason for the combined decrease in loading traction and loaded end displacement
is the elastic energy stored in the plate during the previous loading phase and its release
to debond the structure. Thus, an extra work by external loadings would produce a
dynamic response.

We shall check now, whether the presented scenario is compatible with the slip rule
at the interface. In order to do that, one should analyze the sign of the derivative
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Figure 14. Long plate solution L-1. loading traction versus displacement: illustrative
solutions with response curves for 7 = 0.32 and varying x.

Ow"(x. s2)/dso. representing the rate of slip within the reverse slip zone with respect to
control parameter so. Equations (3.34). (3.37), (3.38) are valid only when the inequality

ow(z. s
' (z, 52) <0 (3.39)
(952
is satisfied. which is compatible with the interfacial shear stress within the reverse slip
zone T = —po. By substituting (3.34) into (3.39), this condition takes the form:

C-D<0, (3.40)

where:
C = cos[rs(L — s2)] + rs(a — s2)sin[re(L — s2)),

D = —3 — 12cos[2rg(sy — L)] — cos[drs(s2 — L)].

The value of C is always negative for every = € [0, s3] and the sign of product C - D
depends on D only. Thus, in order for the reverse slip zone to be compatible with the
slip rule, the condition D > 0 should be satisfied. That is true only when the control
parameter sy is lower than the value of 55, thus:

0.8716
arccos(2v2 —3) = L — . (3.41)

s Ts

82§§2=L4

For values of s, not satisfying this condition, that is for ss > §2, we have the inequality
Ow"(x, $2)/0s2 > 0, meaning that there is a subsequent change in the rate of slip within
the reverse slip zone for « € [0, s3] during the course of delamination.
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Figure 15. Response domains in the plane {x,7n}.

Upon substituting (3.41) into Equation (3.30) one obtains the length of reverse slip
zone at the instant when the subsequent change in displacement rate takes place:

1.7125
§3 = 83(52) =L — 5 (342)

Ts

It becomes obvious that for §3 = 0 we have a situation when the reverse slip zone has
vanished before the slip rate in this particular area is changed.

In view of (3.42), the delamination process presented in Figure 13 and Figure 14 is
valid for a plate of length L satisfying the inequality:

n
N

The domain of validity of this solution in the plane y, 7 is shown in Figure 15.

arccos 7 + < x < 1.7125, x =7rsL. (3.43)

L-2 solution. For x > 1.7125 a different type of system response occurs with more
complex evolution of slip zones. Now, subsequent changes in the slip rate within the
zone z € [0, §3] should be considered. Detailed analytical solution cannot be constructed
using the rigid-plastic interface model. It can be constructed though by means of finite
differences method when the elastic-softening interface is considered. The progressive
delamination of the structure occurs in a cyclic deformation process with hysteretic
response generated in load-displacement diagram. The length of zone € [0, §3] decreases
to zero with progressive increase of control parameter sy provided by Equation (3.30).
When the value of s3 reaches zero, there are two interfacial zones left at the interface:
friction and plastic. The situation is identical to previously considered and the stresses
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and displacement fields are specified by the medium length solution (3.15)+(3.20). For
s = L the plastic zone is erased and the limit state is reached. A complete solution
for this case is discussed by Bialas and Mréz (2004). Here only the final results are
presented. Figure 16 reveals a complex system response. It is seen that in order to
perform the progressive delamination. a cyclic loading along a specific loading path is
required. The number of hysteretic loops in the 7,,(0) — w(0) relation depends on the
value of dimensionless parameter xy. By keeping the K constant and varying only the
plate length L, we obtain a different number of loops. The number of loading cycles
required to damage the interface increases with increasing L. The results show that the
part of the structure in the z €< 0.53 > zone performs a flattering movement with
subsequent forward and reverse displacements. This process cannot be executed either
by stress or displacement controlled loading. In practice it may lead to an unstable
behaviour with a critical point related to the disappearance of undamaged interfacial
area. A dynamic mode could follow next starting from this limit state. However, the
present solution clarifies the nature of critical points associated with the delamination
process and can provide a reference solution for numerical algorithms attempting to
generate equilibrium paths in the post critical states. The reason for the combined
decrease in loading traction and loaded end displacement is the elastic energy, stored in
the plate during the previous loading phase and being released to debond the structure.
For a longer plate there is more elastic energy in the structure and consequently a greater
number of loading cycles is required for its dissipation at the frictional interface. Any
extra work by external forces would result in a dynamic response.

Figure 15 presents the response domains provided by conditions (3.8), (3.26), for
short, medium and long solution types in {x,n} plane. The L-1 and L-2 regimes are also
indicated. It allows for a prediction of structural response when the set of geometric and
material parameters is known.

Finite element validation. In the present section the obtained analytical results
of the shear beam model will be compared with a finite element analysis of an elastic
plate bonded to a rigid substrate by a cohesive interface. The problem presented in
Figure 5 shall be treated as two dimensional, with elastic plane stress elements for the
plate material and with zero thickness interfacial elements. The delamination process
is displacement controlled by an increasing value of displacement u,(y,z = 0) of plate
boundary for x = 0. It has been assumed that the displacement u,(y,z = 0) in z
direction is constrained. that is we have u,(y,2 = 0) = 0.

Let us assume that the plate is a granite block with the value of Young modulus equal
to E = 4-10* MPa and Poisson’s ratio v = 0.25. The shear strength is 70 = 30 MPa and
the friction coefficient u = 0.64. The resulting Kirchhoff modulus is G = 1.6 - 10* MPa.
The plate dimensions are L =2 m b =4 m ¢ = 0.2 m in order to provide the anti-plane
shear state. The traction ¢ acting on the upper surface has the value ¢ = 20.1 MPa and
the resulting friction stress for the fully damaged interface is po = 12.9 MPa. The value
of the dimensionless parameter

n = po/(uo + 7°0) equals n = 0.3. By varying the interfacial softening modulus Kj,
we can obtain the delamination scenario characteristic for short, medium and long plate
solutions.
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Figures 17 presents the relation between the displacement u, and the stress 7., at
point 0, that is at the origin of coordinate system, see Figure 5. They have been obtained
for short, medium and long plates by varying the value of interfacial softening modulus
K. The continuous line was obtained using the analytical solution for the shear beam
model, whereas the dashed line is a result of numerical simulation performed for the
two dimensional system. The simulation results are very close to the analytical solution
during the early delamination stages. As the failure progresses though, the differences
become more visible and disappear only during the last delamination stage, that is when
there is only frictional interaction at contact. It is seen, that the decrease of loading
force is smoother in the case of two dimensional simulation. In particular, the delami-
nation stage associated with the decrease in loading force after the elastic zone has been
terminated, is significantly different for the medium plate solution. The shear beam
model provides an abrupt jump in the value of loading traction, whereas the numerical
simulation results in a more compliant system response.

For K, > 1999 MPa/m we have a long plate solution. Due to the numerical conver-
gence problems, the full delamination process could not be performed. These difficulties
arise from the fact, that displacement controlled simulation does not lead to a progressive
failure evolution and the quasi static equilibrium path can not be generated. Figure 17(c)
presents the solution for Ky = 4500 MPa/m obtained only up to the point of loss of con-
vergence. It is associated with the first loop in the load-displacement curve for the shear
beam model. Thus, the simple model of decohesion provides a reference solution for
numerical algorithms searching for quasi static equilibrium paths in more complex cases.

Figures 18(a-e) present the variation of interfacial shear stress 7, during the delami-
nation process obtained for the following values of displacement at point 0O: 26-107% m,
0.02 m, 0.032 m, 0.042 m, 0.06 m. For clarity, the deformed mesh has been magnified
and does not present the exact solution for the displacement field. Figures 18 were ob-
tained for subsequent delamination phases of short plate and thus we have: in (a) the
interface is fully elastic and the shear stress is below the critical value 7; in Figure 18(b)
the interface is in the elastic and plastic regimes; Figure 18(c) presents the evolution
of interfacial plastic zone; Figure 18(d) shows both plastic and frictional stresses at the
interface, whereas in Figure 18(e) only frictional stress for fully damaged interface is
presented. The 7, stress presents a slight dependence on the y coordinate, so interfacial
zones of elastic, plastic and frictional stresses are not exactly parallel. This is due to the
flexural effects still present during the course of delamination and playing a dominant role
mainly along the stress free boundaries. Moreover, as presented in Figure 18(e), the fully
frictional interface becomes unloaded below the frictional stress value po = 12.9 MPa,
which is also a result of flexural response of the structure.

3.2 Cyclic Loading: Plastic Shake Down and Incremental Failure

Consider now a cyclic loading process induced by the boundary traction 7,,(0) vary-
ing between +77, and —77 , that is a symmetric loading program. It is assumed that the
cyclic response is represented by the same softening diagram as in the monotonic case,
Figure 4(b). We shall distinguish between two consecutive semi-cycles constituting load-

ing and unloading stages, respectively. The equilibrium Equation (2.49) is a recursive



244 M.Bialas and Z. Mréz

(d)

#iili

'Y

H e
L T

i

Figure 18. The variation of interfacial shear stress 7, [MPa] during the course of de-
lamination for the short plate response; the subsequent displacements uy of boundary
z =0: (a) 26- 107° m; (b) 0.02 m; (c) 0.032 m; (d) 0.042 m; (e) 0.06 m.
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Figure 19. (a) The change in displacement fields during two subsequent semi cycles.
(b) The friction zone unloading. The shear stress at the interface.

relation between functions w,(z) and w,—(x) and allows for an analytical solution. For
n = 1 we have the displacement field given by Equation (3.1).

Frictional shake-down solution, 77, < poL/t. Let us consider the n — 1-st semi
cycle and assume that there are friction, plastic (damage) and undamaged zones at the
interface. The transition point between friction and plastic region has a coordinate z,—1.
The value of s, specifies the transition point between plastic and undamaged zones,
as presented in Figure 19(a). The loading traction at the end of n — 1-st semi cycle is
Tay» SO We assume it to be a loading stage. We shall consider the subsequent n-th loading
stage. The function w,,_;(z) and its derivative w/, _;(z) at the end of n — 1-st semi cycle
provide the continuity conditions:

wn(@) = waoi(a)  wi(a) = w4 (a), (3.44)

allowing for the specification of integration constants for the displacement field function
wy () of n-th semi cycle. The unloading process is presented in Figure 19(a), mean-
ing that there is a change in displacement field only for z € [0,a] and there are no
configuration changes in the remaining plate section, that is for z € [a, L].

Mréz and Biatas (2004) presented a detailed analysis of plate delamination due to
cyclic loading, taking the limit case as the number of cycles approaches infinity. The
results can be summarised as follows. During the cyclic loading process there are fric-
tion slip and damage zones developed at the interface. The interfacial shear stress is
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Figure 20. (a) Adaptation mode (shake down). (b) Incremental failure mode.

equilibrated by the external tractions subjected to the structure. As the loading process
progresses, the damage zone becomes shorter, whereas the friction zone becomes longer.
In the limit case, that is for a number of loading cycles approaching infinity, the cohesive
zone vanishes completely and there is only frictional contact at the interface. The friction
zone reaches its ultimate length S given by

ot
S = —-lT;Zl . (3.45)

which can be easily deduced from Figure 19(b) by considering plate equilibrium in the
limit state.

The loading traction 7., (0) varying between —7;, to +7;, cannot produce any further
bond degradation and it is the frictional stress only to equilibrate the external loading.
The development of interfacial shear stress is schematically presented in Figure 19.
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The reason for this interesting phenomena is the softening response in the damage zone
of the interface material providing progressive decrease in stress magnitude regardless the
loading path. The actual shape of the softening function is not important and does not
change the overall tendency, that is the progressive elongation of the frictional zone
and the ultimate disappearance of cohesive area. In the limit state, the applied cyclic
loading is fully equilibrated by the friction stress in the slip zone 0 < 2 < S. The length
S of friction zone does not depend on the softening function and is dependent on the
amplitude Toy of the loading traction and the value of interfacial frictional stress 7 = uo,
cf. Equation (3.45).

It should be noted, that the interfacial frictional stress allows for the structural adap-
tation to steady cyclic response and thus, it governs the delamination process. The
interfacial friction equilibrates the loading traction in the steady cyclic state. The ulti-
mate length S of debonded area depends on the value of po: it is inversely proportional
to the magnitude of friction stress. In fact, the failure zone can be very long, provided
the frictional stress 7 = po is small.

The present analysis does not consider wear effects at the interface, that is the degra-
dation of friction coefficient p. In practice, these effects are also present and cannot be
neglected. The wear would reduce the value of friction stresses at the interface and, as a
result, the ultimate length S of failure zone would increase. The coupling between wear
and cohesive zone development should be treated numerically, as analytical approach
faces mathematical difficulties.

Incremental-dynamic failure mode, Ty > poL/t.  Our analysis reveals two modes
of structural response to cyclic loading, dependent on the value of amplitude 77, and
the actual length L of the structure. When the loading traction amplitude 77, satisfies
the inequality Toy < poL/t, the limit length S of debonded zone is lower than the plate
length L. Thus, at any stage during the delamination process, there remains an intact
zone at the interface where the bond is not damaged and the loading traction 7,,(0) can
be fully equilibrated by the interfacial shear stress. We have then the case of cyclic shake
down with frictional cyclic dissipation generated within the slip zone. As presented in
Figure 20, the loading cycles approach the asymptotic cycle obtained for an interface
with rigid-frictional constitutive relation with no softening effects. Thus, we have a
situation of structural adaptation to cyclic loading, when the plate can sustain even
an infinite number of loading cycles. For 77, > poL/t we have an incremental failure
mode. An amplitude satisfying this inequality results in the frictional zone limit length S
being longer than the actual length L of the structure, meaning that the entire interface
debonds after a specific number of cycles. The equilibrium curve is then reached with
a subsequent dynamic failure mode. This type of respouse is also valid for a frictionless
case, uo = 0, since the friction stress cannot equilibrate the loading traction and the
debonded area becomes longer from one cycle to the other. No shake down is then
possible as the debonded zone does not stabilize on any length. The structural response
is schematically presented in Figure 20(b).

The delamination process is coupled with two types of energy dissipation at the ma-
terial interface, namely damage and friction dissipation. In the course of delamination
the damage zone disappears, so one dissipative process (friction) eliminates the other
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(damage growth) in the steady-state response. This phenomenon is believed to be an
intrinsic feature of failure evolution at material interfaces subjected to cyclic loading. It
can be generalized to any loading conditions involving cyclic changes in external trac-
tions, not only symmetric cycles assumed in the present analysis. This phenomenon
is present during any delamination process induced by cyclic loading and the following
conclusion can be stated. The steady state cyclic response at the interface is associated
with frictional slip and disappearance of the damaged zone. The transient state evolves
toward the steady cyclic state or the dynamic failure mode.

Numerical predictions. Inorder to present the results for the cyclic loading program,
we shall introduce two dimensionless parameters:

Ho S1
n= ;_C_s ﬁ - S )
where s; is the overall length of debonded zone at the end of the first semi cycle and
S specified by (3.45) denotes the damaged zone length in the limit state. Thus, 3
specifies the length of the damaged interface zone after the first semi cycle is completed
as compared to the overall damage area. The parameter 7 was already introduced in
Section 3.1 and expresses the ratio between interface critical stress and frictional traction

for fully damaged interface. The value of s; can be obtained from Equations (3.5)
and (5.8). So we have:

. TgyKS TC 2
s1 = o~ arcsin Gror for Ty < _— 1-19 (3.46)
and
Te 1y/1-72 1
s1 = 2t — A B arccosn for 77, > Te J1- 2. (3.47)
uo T 7 T ret

The results are provided under the assumption that the plate is long enough to allow
for the adaptation mode. In order to equilibrate the loading traction in the limit cyclic
state the following condition should be satisfied:

noS < 1.81

providing
B >n. (3.48)
So the pair {n, 3} should satisfy the inequalities:
0<n<l, n<pB<l (3.49)

The dimensionless parameter 3 can be expressed as a function of ratio § = Toy /7 in
the form

8= rntd arcsin(rstd) for rstd < \/1—1n2 (3.50)
8= ! (narccosn — /1 —n?) for  rgtd >/1—n? (3.51)

T oretd
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Figure 22. A plate on a substrate. The rigid-friction interface model.

Thus, Equations (3.50) and (3.51) allow for a comparison between the parameter 5 and
more convenient, from a practical point of view, the ratio § = 7, /7.

Figures 21 illustrate the problem solution by showing the evolution of {z,} and {s,},
being respectively friction and combined friction and damage zones lengths. They are
obtained for various values of parameters n and 3 satisfying the condition (3.49) by
recursively integrating Equation (2.49). The number n indicates a particular semi-cycle.
It is seen that throughout the loading process the results come closer to the asymptotic
solution described above: the length of damage zone approaches zero and the length of
friction zone approaches S. The diagrams (21) provide also the number of semi cycles
leading to failure in the case of incremental collapse. For a given L < S and an amplitude
Tpy> One can read the maximum number of semi cycles the structure can sustain by an
intersection of an appropriate s;/S curve with L/S line, as presented in the nomogram
obtained for the values n = 0.3 and 8 = 0.4.

4 Longitudinal Shear Delamination and Segmentation Cracking
Due to Temperature Loading

In the following we shall use equations specified in Section 2.3 in order to analyse the
plate delamination and segmentation cracking induced by temperature loading. In the
analysis we shall use rigid-friction and rigid-cohesive-friction formulations for the inter-
face material. Two types of temperature loadings shall be considered, namely monotonic
and cyclic.

4.1 Monotonic Loading

Rigid-friction interface model. Let us assume a frictional relation between the shear
stress 7 and the interface deformation v = u/h, where h denotes interface layer thickness.
The interface shear stress equals

T(x) = T¢sign(i) (4.1)



Damage Modelling at Material Interfaces 251

with 7¢ being the constant value of frictional stress and h the interface thickness. By sub-
stituting Equation (4.1) into (2.41) and solving it for u, one can obtain the displacement
field in the form:

u(z) = %sign(u)x2 + A1z + As, (4.2)

where A; and A, are integration constants. Equation (4.2) together with (2.38), (2.39)
and the boundary conditions

u(s) =0, o(L) =0, [o(s)] =0 (4.3)

presented in Figure 22, provide the problem solution. Here [e]| denotes the discontinuity
of the enclosed state field. Equations (4.3)2 and (4.3)3 indicate that the interface in the
middle of the plate remains intact and the deformation takes place in the frictional zone
only. With s being the loading parameter, we obtain the displacement field u(z, s) in the
form:

i 2
= — —_— . 4'4
u(z, 8) YT (z—s) (4.4)
The temperature AT is related to s by the formula:
Tf(L — 8)
AT(s) = — =t 4.5
(3) atE (45)

The corresponding normal stress o(z) within the friction zone is a linear function:
o(z,s) = TTf(L —z), (4.6)

whereas in the intact layer zone its value is independent of z and equals 0 = 7¢(L — s)/t
in order to compensate the normal strain. The plots of 7, o, € and u are presented
in Figure 23. It should be noted that although the plate is being cooled down and
subsequently being shrunken, the normal stress acting on it is positive and therefore
the plate is in tension. It is clearly seen that the maximum value of the normal stress
o is achieved for s = 0 and equals 7;L/t. The condition s = 0 means that the entire
interface has been damaged and further variation in temperature AT will not affect the
stress state. The limit value of AT is equal to —7yL/(atFE) and can be obtained from
Equation (4.5) for s = 0.

The influence of temperature gradient O(AT)/0z on the stress state in the plate
material can be specified by the ratio o™ /o where o™ is given by Equation (2.47) and
o by Equation (4.6):

oM aEz(AT; — ATy)

I re(L—z) (4.7)

Having in the above formula z = t/2 and requiring ™ /o < 0.05, we obtain the max-
imal plate thickness for which the influence of temperature gradient on normal stress
distribution is less than 5%:

0.174(L — z)
oF (ATt — ATb) '
It is obvious that the temperature gradient effect plays dominant role at stress free end
for £ = =L and reduces in the middle section of the structure.

t< (4.8)
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Figure 23. The shear stress at the interface, normal stress, strain and displacement
fields for the rigid-friction model.

Let us now consider the brittle fracture of the plate material. The critical stress value
0. indicates the strength in tension. As it is seen in Figure 23 the maximum value of the
normal stress is attained along the entire middle zone, therefore this simple model can
not properly predict the place where fracture occurs. As a matter of fact, we assume that
the plate would break exactly in the middle. It corresponds to the realistic assuraption
that interface material cannot be perfectly rigid and, if so, the maximum stress o is
always attained in the middle for £ = 0. It will be clarified when elastic - frictional
model of the interface is considered.

Due to the assumption that the plate would fracture in the middle, a new boundary
is created for x = 0 and the stress field has to satisfy the condition ¢(0) = 0. This
leads to creation of two more frictional zones in the vicinity of the plate fragmentation
point. The plateau where o(x) is equal to o, still exists though, and the two successive
fragments fracture again. The process continues until there are no more critical stresses
o. attained at any of the plate fragments. Thus, the total number of fragments N may
equal 1,2,4,8,....,n;,2n,,.... The fragmentation process is illustrated in Figure 24.

Let N be the number of plate fragments. From the condition

o(0) < o, (4.9)

we can derive a formula for N, when all material and geometry parameters are given.
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Condition (4.9) applied to Equation (4.6) provides
Tf L
R _ 4.10
o) =2 <o, (1.10)

The fact that the length of each of N-th fragments is 2L/N now has been used. From
inequality (4.10) it can be derived that the total number of plate fragments is the smallest
natural number N of the set {1,2,4,8,...,n;,2n;,...} that obeys the condition

L

N > (4.11)

g. t

It should be noticed, that according to this model all fractures occur at the same tem-
perature AT, = 75 /(atE).

Rigid-Cohesive-Friction Model Now, let us assume the cohesive interface model
and study the progressive delamination at the interface combined with plate cracking.
The relation between the shear stress 7 and the interface deformation exhibits softening
and is that presented in Figure 4(b). In the case of monotonic loading it takes the form:

Te —Tf
K, ’

T =T, — Ku, u €< 0,u, >, U = (4.12)

for the cohesive zone, and

for the frictional zone. By substituting Equation (4.12) into equilibrium Equation (2.41)
and solving for u, it can be obtained that the displacement field within the cohesive zone
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is expressed in the form:

u(zx) = C; cos(rsz) + Cosinlrsz) + %, (4.14)
S
where ry = /K /(Ft) and C; and Cs are the integration constants. The displacement
field (4.2) still applies for the frictional zone. To describe the delamination phenomena
we have to combine displacement fields (4.2) and (4.14) using appropriate boundary and
continuity conditions. It appears that there are two distinct cases to be considered,
namely a short and a long plate solution.
During the first stage of delamination there is only the cohesive zone developed at
the interface. From Equation (4.14) we can determine the constants C; and C; which
satisfy the boundary conditions:

u(s) =0, o(L)=0. (4.15)

Similarly to the rigid friction model, there is a central zone where the interface is intact,
that is
u(z) =e(z) =0 (4.16)

for x €< —s,s >. From Equation (2.38) it follows that the normal stress within this
zone is constant and equals

o(z) = aATE zEC —8,8>. (4.17)

Equations (4.15) and (4.17) allow us to write the displacement field u, the normal
stress field o, the interface shear stress field 7 and the temperature AT as functions of s:

u(z,s) = _IT{_CS %%ﬁ:—zﬂ + }(T” sinfrs(s — z)] tan[rs(L — s)], (4.18)
o(z.8) = EI”{T (sin[rs(L — 8)] + sin[rs(s — m)]), (4.19)
Tz, s) = ~7, coslrs(s — @), (4.20)
AT(s) = -;(Ta sinrs(L — s)]. (4.21)

The equality
7(0)]s=0 = —7¢ (4.22)

implies the condition for two types of solution. The plate will be called a long one if
there are three zones., namely friction, cohesive and intact, developed at the interface.
For the short plate solution there are either one or two zones developed for every stage
of the loading process. At first there are cohesive and intact zones developed, next the
cohesive one only and subsequently both cohesive and friction zones.
From Equation (4.22) the condition for the short plate solution can be derived in the
form:
Xs < arccosm, (4.23)

where x; = r,L, n = 7;/7.. The long plate solution applies when

Xs > arccosmn. (4.24)
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Short plate solution. Let us consider the short plate solution in detail. After the
intact zone has disappeared there is only cohesive zone left. The stress and displacement
fields can be derived from Equation (4.14) by satisfying boundary conditions:

w(0) = o(L) = 0. (4.25)
Accounting for Equation (4.25), one obtains:

_Te icos[rs(L —z)] AT« sin(rsz)

= 4.26
u(z) K, K cos(rsL) rs cos(rsL)’ (4.26)
cos(rsz)  Frgr.sin[ry(L — z)]
= —FEAT EaAT 4.27
o(a) o b cos(rsL) K cos(rsL) (4:27)

The decohesion process continues with temperature decreasing from
ATy = —rsresin(rs L)/ (Ksa)

down to
ATy = —rg[7./sin(rsL) + 7¢ cot(Lrs)] /(Ksa).

When AT reaches AT; the friction zone starts to develop together with the cohesive one.
The displacement and stress fields can be obtained from Equation {4.14) by satisfying
the boundary conditions:

u(0) =0, u(z) = —Ue, (4.28)

where z is the coordinate of point between the friction and cohesion zones. The continuity
condition

o(z) = Tt—f(L —2) (4.29)
provides the relation between the temperature T and the parameter z:

T Tesinfrg(z —2)] — 75 sin(rsx)
u(z) = K K sin(roz) , (4.30)

Erg tccoslrs(z — z)] — 7p cos(rsx)

4.31
K, sin(rs2) ’ (431)

o(z) = —EAT(2)x

rs Te — Tfcos(rsz)

AT(z) = ——-(L - 2) - Eta  sin(rs2)

4.32
FEta ( )

It follows from Equation (4.32) that when z tends to zero AT tends to minus infinity.
Therefore, the stage when the interface is totally delaminated is attained only asymp-
totically.
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Long plate solution. We shall consider now the long plate solution in detail. During
the first stage of the loading process there are two zones at the interface: intact and
cohesive and Equations (4.18)-(4.21) apply. During the second stage the friction zone
develops additionally. The condition

u(z) = e(x) =0, T EC —8,8> (4.33)

still holds within the intact zone providing the value of the normal stress acting in this
zone:

o(x) = —aATE, re< —8,8>. (4.34)

By satisfying the continuity conditions:

o(s) = —aATE,
u(s) =0,

o(z) = T—tf(L ~2), (4.35)
u(z) = —uc,

we can obtain displacement and stress fields, temperature AT and the value of z in the
function of s:

w(z) = — T T sin[rs(z —z)] 7y sinfry(s — )] (4.36)

Ers 75 cos[rs(s — a)] — 7c cos[rs(z — 2)]

U(.L) = —EATOL + E— - 7’2 5 (437)
1
z=s+ —- arccos?), (4.38)
Tf 1 TsTe o)
N a1 sm) — e 4.39
AT(s) Eta(L $ o arccos 1) Koo 1-n (4.39)

It should be noted that the length of the cohesive zone |z — s| is constant and equals
arccos 7/rs.

The last stage of the loading process starts when the intact zone disappears and there
are only two zones left, namely cohesive and frictional. This particular case was solved
before and is described by Equations (4.30)-(4.32). All previous remarks apply.

Brittle fracture of plate. Let us discuss now the brittle fracture of the plate. In
order to do that. we shall examine the maximum normal stress acting in the plate, that
is at the center z = 0. It can be done by making use of Equations (4.17), (4.27), (4.31)
and (4.34). Results are presented in Figure 25. It is seen that in the short plate case the
maximum normal stress is attained at the end of the first loading stage, whereas for the
long plate, at the end of the second one.
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Figure 25. The maximum normal stress o(0) during the loading process: (a) short plate,
(b) long plate: o(0) at point A equals Ers7.\/1 — n?/K,; o(0) at point B is equal to
Ergten/1 —n?/Ks + 174(L — arccosn/rs)/t.

Let us discuss the fragmentation of the short plate first. If o, that is the fracture
strength, is greater than Er,7.sin(rsL)/K, then no fragmentation occurs. For o, satis-
fying the inequality

oo < BT Gnr, 1) (4.40)
K

fractures will appear during the first stage of loading process, that is when there is
cohesive zone developed together with the intact one. After a fracture, a new boundary
is created for z = 0 and the stress field has to satisfy the condition ¢{0) = 0. This
leads to creation of two cohesive zones in the vicinity of the plate fragmentation point.
The plateau where o(z) = o, still exists though, and the plate breaks again. The
process continues until there are no more critical stresses o. attained at any of the plate
fragments. The scenario is similar to that of rigid-friction model and can be illustrated
by Figure 24.

Let n be the number of plate fragments. From the condition
o(0) < o (4.41)

we will derive a formula for N when all material and geometry parameters are given.
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Figure 26. The fracture of a long plate.

Condition (4.41) applied to Equation (4.19) provides

rsl
— 4.42
arcsin(Z¢tr,) (4.42)
which means that the total number of fragments is the smallest N in the set N &
{1,2,4,8,...,n;,2n;,...} that satisfies condition (4.42).
We shall concentrate now on the long plate solution. Three different cases should be
discussed. For

ErgT,
0_C< sic

1—n? (4.43)

38
fracture occurs when two zones exists, namely intact and cohesive. Equation (4.42)

applies since the considerations are identical with those of the short plate. If the critical
stress o, satisfies the condition:

Erste 07—
l 1_/’72<O—(_-

K,

\/ 2+ U Ly - l arccos7), (4.44)

then fracture occurs when there are three interfacial zones developed, namely: intact,
cohesive and friction. As it is presented in Figure 26 the condition for the cracks to stop
occurring can be written in the form:

L
— 4.4
I+d> <, (4.45)
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where | and d are the lengths of friction and damage zones respectively. From (4.45) it
follows

Lr
N > s , (4.46)
arccosmn — ———”1;772 + %ftrs

where N is the smallest number of the set {1,2,4,8,...,n;,2n;,...}.

For

E 1

oe > 225/ T—n? + ZL(L ~ — arccosn)
s S

no cracks occur and there is delamination only.

4.2 Discussion

Let us compare the maximum number of plate fragments provided by discussed mod-
els. They are given by expression (4.11) for the rigid-friction model and by formulas (4.42)
and (4.46) respectively for the short and long plate solutions in case of rigid-cohesive-
frictional interface. In order to compare the results we shall introduce the following
dimensionless parameters:

Xs = Lrs, £ = ﬁtrsy n= T_f
TC TC
Having done that, we can rewrite the expressions (4.11), (4.11), (4.42) and (4.46). They
take the form:
o the rigid-friction model

N> X (4.47)
€s
e the cohesive-friction model
— short plate solution
arcsin &

- long plate solution

N>—%X _ fore, <112 (4.49)

arcsin &

Xs
N > for & > /1 — 173, (4.50)
arccos + 5 (&s — /1 —n?)

where N is the smallest natural number of the set {1,2,4,8,...,n;,2n;,...}.

By having equality in the conditions (4.47), (4.48), (4.49), (4.50) and N being a
number of the set {1,2,4,8,...,n;2n,,...}, we obtain a family of functions &V (xs).
They are plotted in Figure 27 and Figure 28. Thus, the plane (xs,&s) is divided into
separate regions providing the resulting maximum number of plate fragments for given
parameters ys and &;.

The solutions for the rigid-cohesive-friction model are plotted in Figure 28 for several
values of dimensionless parameter 1 = 74/7.. It is clearly seen that for n being close
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Figure 27. Number of plate fragments in the plane (xs,&s) for the rigid-friction and
elastic-friction models.

to 1 the resulting number of fragments versus the parameters xs,&s is similar to that
provided by the rigid-friction model. It can be easily explained since a value of 7 close
to unity means that the softening effect of the rigid-cohesive-friction model is very small.
As a consequence, it provides similar results to those of the rigid-friction model.

In order to obtain a high number of plate fragments the ratio £;/xs has to be small
enough. It can be achieved by several means. Firstly, a small value of the critical stress
0. results in small & and, consequently, a high number of fragments. It is not strange
since a weaker plate tends to break into more segments. In order to obtain a small value
of & one can also have a high value of 7., that is the maximal interfacial strength. As a
consequence, it follows that a strong bond between the plate and the substrate may lead
to a high damage within the entire structure.

4.3 Cyclic Loading: Rigid-Cohesive-Friction Model

We now consider the cyclic loading case.As in the case of anti-plane shear, for-
mula (2.49) is a recursive relation between the displacement fields of two subsequent
semi-cycles. By having u,_; one can solve Equation (2.49) in order to obtain u,. In the
following we shall consider symmetric cyclic loading.

Limit solution. In this section we shall consider a limit solution referring to a situation
after an infinite number of cycles. First let us focus on the cooling and heating cycles
and assume that the plate is long enough to have three interface zones developed, namely
intact, cohesive and friction. The normal stress at the center is constant and its absolute
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Figure 28. Number of plate fragments in the plane (x;, &) for the rigid-cohesive-friction
model and values of 7 equal to 0.1, 0.3, 0.5, 0.9.

value is aFEAT,. It compensates the thermal deformation of this plate portion and
therefore there is no shrinkage in this zone.

At the end of the subsequent heating there is an intact zone in the center portion
as well, but this time shorter than at the end of previous semi-cycle. In order to com-
pensate its thermal expansion the damage interface zone gets longer. The reason of this
is the softening effect in the cohesive zone and subsequent reduction in absolute value
of interfacial shear stress. The phenomena continues during the following cycles. An
asymptotic solution is that the cohesive zone vanishes completely and there are only
friction and intact zones remaining, provided the plate is long enough. The process is
illustrated in Figures 29 and is identical to that presented by Mréz and Bialas (2004).
This scenario can be called an adaptation mode, since the structure exhibits only partial
delamination and there always remains an undamaged interfacial zone, regardless the
number of loading cycles.

Let us derive the limit length S of a single friction zone during the asymptotic limit
state. The normal stress 0 = AT, has to compensate the plate deformation in the
central portion. Moreover, it has to be continuous at the transition point between both
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Figure 29. Plate response to cyclic loading for adaptation mode. The limit state: L > S.

intact and friction zones. Therefore we can write:
T
o= 7fs = aEAT,

and subsequently:
AT, Fta

Tf

s (4.51)

Results. Let us assume that the plate length satisfies the condition:
L>8,

that is there is always an intact interface layer in the middle of the plate. We shall
introduce two dimensionless parameters allowing to describe the plate response to cyclic
loading. The first one 7 is given by the formula:

i

Te

’[’:

The other dimensionless parameter 3 is defined as follows:

s

1
=%
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where s is the length of damage zone at the end of first semi-cycle, and S is given by
Equation (4.51). Thus, 8 says how long is the damaged interface zone after the first
semi-cycle when compared to the overall length of the damaged zone. The value of s; is
provided by
. AT, Ko
s1 = — arcsin —————
Ts TsTe

for the short plate solution and by

_m2 Et
LLJL_ME|‘X

1
§1 = — arCCOST’ -
Ts TsT] Tf

for the long plate solution.

Parameters 77 and § have already been used in Section 3.2 where anti-plane cyclic
shear loading was considered. The same condition applies, namely 8 and 7 are bounded
by the inequalities:

0<n<l, n< g <l

Figures 21 present the problem solution by providing the evolution of lengths of single
friction and cohesive zones. They are obtained for several values of parameters n and 3 by
integrating Equation (2.49). The number n indicates a particular semi-cycle. They are
the same as for anti-plane shear cyclic loading, since they were obtained by integrating
Equation (2.49), valid both for longitudinal and transverse delamination. It is seen that
throughout the loading process the results are closer to the asymptotic solution described
above: the lengths of cohesive zone for increasing number of cycles tend to zero and the
length of friction zone tends to S.

For L < S the intact zone vanishes and there are only cohesive and friction zones left
at the interface. Figures 21 allow for specification of number of thermal cycles leading
to failure. For a given set of parameters (n, 3} one simply has to read the semi-cycle for
which the following condition is satisfied:

s, L

ERch
A similar failure mode for an interface subjected to cyclic loading was presented in the
paper by Mréz and Biatas (2004).

For L < S the intact zone vanishes and the whole plate shrinks during cooling or
elongates during heating. This is the incremental failure situation, when the interface
is damaged after a critical number of cycles. Due to the softening effect the length of
cohesive zone tends to zero, but the state when it vanishes completely can be obtained
only asymptotically. This is because of the structural symmetry. The point at the center
z = 0 cannot be displaced and the interface will not be damaged there. The plate
response for this particular case is schematically presented in Figure 30.

Figures 31 present the development of friction and cohesive zones when L < S. They
are obtained for several values of 5, 8 and L/S. Likewise in the previous case, the length
of cohesive zone becomes shorter as loading progresses.
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Figure 30. The plate response to cyclic loading — incremental failure mode: L < S.

5 Summary and conclusions

The present work was aimed at analytical solutions of damage growth at the interface
between an elastic plate and a rigid foundation, assuming compressive normal traction
acting on the interface. The concept of plastic damage zone ahead of delamination front
was used in order to simulate progressive damage and ultimate failure. The analysis was
simplified by assuming two basic delamination modes, namely longitudinal and trans-
verse shear. The assumption of anti-plane shear and the strip model allowed for one
dimensional treatment and analytical solutions. The control parameter driving the fail-
ure process was the length of damage zone. Thus, a particular attention could be given
to the analysis of critical and post-critical states associated with growth of delamination
zone under monotonic and cyclic loading. It was shown that two types of response can
be specified in terms of two dimensionless parameters x and n with corresponding short,
medium and long plate solutions.

The quasi static solutions were specified assuming monotonic progression of delam-
ination front. Obviously, under boundary traction control the quasi-static deformation
process Is terminated at the limit point corresponding to maximal load and the dynamic
failure mode would be developed. Similarly, for the displacement control the snap-back
state is reached in the long plate solution at the maximal load point with snap back as-
sociated with the reverse slip effect. In order to execute a quasi-static delamination both
the loading traction and the loaded end displacement should follow a unique equilibrium
path, resulting in a histeretic response. The structure close to the loaded end performs
a flattering movement with subsequent forward and reverse displacements. The number
of cycles leading to complete delamination is dependent on the plate length. The reason
for the combined traction and displacement interaction is the elastic energy stored in the
plate and next released to debond the structure. Thus, an extra work by external forces
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would be transformed into kinetic energy and a dynamic mode would follow.

The shear beam model was validated by a finite element analysis. It was shown, that
one can neglect the flexural deformation provided that the plate width is greater than its
length. The analytical solution describes qualitatively the delamination process and is
close to the numerical results during the early delamination phases. Following the critical
point associated with maximum value of traction subjected to the structure, differences
increase and disappear only when the structure is fully debonded with frictional contact
at the interface.

Displacement control does not provide a complete solution for the long plate case.
There is a divergence in numerical procedure at the beginning of first hysteretic loop.
Thus, the analytical shear beam model provides a reference solution for numerical algo-
rithms searching for quasi-static equilibrium paths.

The softening constitutive relation in the case of rigid-cohesive interfacial model al-
lows to describe the progressive delamination induced by cyclic temperature loading.
Two types of structural response can be exhibited: either adaptative delamination and
subsequent structural adaptation to cyclic loading, or incremental delamination mode
resulting in full delamination after a specific number of loading cycles. The wear ef-
fects accompanying cyclic deformation would reduce the friction coeflicient, leading to
an accelerated incremental failure mode.

In the case of temperature loading, the delamination was coupled with segmentation
cracking. The model describes the saturation stage, when the crack density stabilizes at
a constant value unaffected by further loading. A common feature for the used interface
models is the fact, that strong bond between the plate and the substrate may lead to
dense segmentation cracking per unit length. High value of critical shear stress at the
interface results in high normal stresses acting on the plate and thus, mitigates the
segmentation process. Both cracking and delamination resistance have to be considered
in practical applications, in a way that a proper balance between these two factors is
maintained.

It follows from the proposed model that the segmentation cracking can result in
delamination process, since there are new damaged zones created at the interface in the
vicinity of every segmentation crack, leading to a potential slip mechanism. On the
other hand, delamination can reduce the risk of potential segmentation cracking, since
the resulting normal stress acting on the plate is lower in the case of delaminated layer
than for fully bonded structure.

Bibliography

D. C. Agrawal and R. Raj. Measurement of the ultimate shear strength of a metal-ceramic
interface. Acta metall., 37(4):1265-1270, 1989.

D. C. Agrawal and R. Raj. Ultimate shear strengths of copper-silica and nickel-silica
interfaces. Materials Science and Engineering, A126:125-131, 1990.

S. P. Baker, X. Wang, and C.-Y. Hui. Effect of nonlinear elastic behavior on bilayer
decohesion of thin metal films from nonmetal substrate. Journal of Applied Mechanics,
69:407-414, July 2002.



Damage Modelling at Material Interfaces 267

G. I. Barenblatt. The mathematical theory of equilibrium cracks in brittle fracture. In
Advances in Applied Mechanics, volume 7, pages 55-129. Academic Press, New York,
1962.

S. J. Bennison and B. R. Lawn. Role of interfacial crack bridging sliding friction in the
crack resistance and strength properties of non-transforming ceramics. Acta Metal-
lurgica, 37(10):2659-2671, 1989.

M. Bialas and Z. Mr6z. Modelling of progressive interface failure under combined nor-
mal compression and shear stress. Submitted to International Journal of Solids and
Structures, 2004.

B. F. Chen, J. Hwang, 1. F. Chen, G. P. Yu, and J-H. Huang. A tensile-film-cracking
model for evaluating interfacial shear strength of elastic film on ductile substrate.
Surface and Coatings Technology, 126:91-95, 2000.

S. Chi and Y .-L. Chung. Cracking in coating-substrate composite with multi-layered and
fgm coatings. Engineering Fracture Mechanics, 70:1227-1243, 2003.

Y .-L. Chung and C.-F. Pon. Boundary element analysis of cracked film-substrate media.
International Journal of Solids and Structures, 38:75-90, 2001.

D. S. Dugdale. Yielding of steel sheets containing slits. Journal of Mechanics and Physics
of Solids, 8:100-104, 1960.

B. Erdem Alaca, M. T. A. Saif, and Huseyin Sehitoglu. On the interface debond at the
edge of a thin film on a thick substrate. Acta Materialia, 50:1197-1209, 2002.

A. G. Evans and J. W. Hutchinson. Effect of non-planarity on the mixed mode fracture
resistance. Acta Metallurgica, 37(3):909-916, 1989.

T. S. Gross and D. A. Mendelsohn. Model I stress intensity factors induced by fracture
surface roughness under pure mode IIT loading: application to the effect of loading
models on stress corrosion crack growth. Metallurgical and Material Transactions A,
20(10), 1989.

U. A. Handge, Y. Leterrier, G. Rochat, I. M. Sokolov, and A. Blumen. Two scaling
domains in multiple cracking phenomena. Physical Review E, 62(6):7807-7810, 2000.

U. A. Handge, I. M. Sokolov, and A. Blumen. Disorder and plasticity in the fragmentation
of coatings. Physical Review F, 64:106-109, 2001.

A. Hillerborg, M. Modeer, and P. E. Peterson. Analysis of crack formation and crack
growth in concrete by means of fracture mechanics and finite elements. Cement and
Concrete Research, 6:773-782, 1976.

D. R. Hiltunen and R. Roque. A mechanics-based prediction model for thermal cracking
of asphaltic concrete pavements. Association of Asphalt Paving Technologists, 63:
81-117, 1994.

J. W. Hutchinson and Z. Suo. Mixed mode cracking of layered materials. In J. W.
Hutchinson and T. Y. Wh, editors, Advances in Applied Mechanics, volume 29, pages
63-191. Academic Press, 1991.

S.-R. Kim and J. A. Nairn. Fracture mechanics analysis of coating/substrate systems.
part i: Analysis of tensile and bending experiments. Engineering Fracture Mechanics,
65:573-593, 2000a.

S.-R. Kim and J. A. Nairn. Fracture mechanics analysis of coating/substrate systems.
part ii: Experiments in bending. Engineering Fracture Mechanics, 65:595-607, 2000b.



268 M.Bialas and Z. Mréz

K. Kokini and Y. R. Takeuchi. Multiple surface thermal fracture of graded ceramic
coatings. Journal of Thermal Stresses, 27:715-725, 1998.

Z. Mréz and M. Biatas. A simplified analysis of interface failure under compressive normal
stress and monotonic or cyclic shear loading. International Journal of Numerical and
Analytical Methods in Geomechanics. In press, 2004.

Z. Mrdz and A. Seweryn. Non local failure and damage evolution rule: application to a
dilatant crack model. Journal de Physique IV, 8(Pr 8):257-268, 1998.

Z. Mréz and S. Stupkiewicz. Hysteretic effects and progressive delamination at compos-
ite interfaces. In R. Pyrz, editor, IUTAM Symposium on Microstructure - Property
Interactions in Composite Materials, pages 247-264. Kluwer Academic Publishers,
1995.

J. A. Nairn and S.-R. Kim. A fracture mechanics analysis of multiple cracking in coatings.
Engineering Fracture Mechanics, 42:195-208, 1992.

M. Ortiz. Computational micro-mechanics. Computational Mechanics, 18(5):324-338,
1996.

H. L. Schreyer and A. Peffer. Fiber pullout based on a one-dimensinal model of decohe-
sion. Mechanics of Materials, 32:821-836, 2000.

G. W. Schulze and F. Erdogan. Periodic cracking of elastic coating. International Journal
of Solids and Structures, 35(28-29):3615-3634, 1998.

F.-S. Shieu, R. Raj, and S. L. Sass. Control of mechanical properties of metal-ceramic
interfaces through interfacial reactions. Acta metall. mater., 38(11):2215-2224, 1990.

D. H. Timm, B. B. Guzina, and V. R. Voller. Prediction of thermal crack spacing.
International Journal of Solids and Structures, 40:125~142, 2003.

S. Wolfram. The Mathematica Book ({th ed.). Wolfram Media/Cambridge University
Press. 1999.

Z. C. Xia and J. W. Hutchinson. Crack patterns in thin films. Journal of Mechanics and
Physics of Solids, 48:1107-1131, 2000.

B. Yang and K. Ravi-Chandar. Antiplane shear crack growth under quasistatic loading
in a damaging material. International Journal of Solids and Structures, 35(28,29):
3695-3715, 1997.

T.-Y. Zhang and M.-H. Zhao. Equilibrium depth and spacing of cracks in a tensile residual
stressed thin film deposited on a brittle substrate. Engineering Fracture Mechanics,
69:589-596, 2002.

Appendix

1. Plastic and undamaged interface zones.
~ plastic zone: 0 <z < s

wP(z,51) = ;—2{1 — cosfrs(z — s1)]}, (5.1)
T2, (T, 51) = —G’r’si sin[rs(z — s1)], (5.2)

K,
7P(z,51) = Te coslrs(z — s1)]. (5.3)
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2. Undamaged, plastic and friction interface zones.
— plastic zone: s9 <z < 51

wP(z,81) = %{1 — cos[rs(z — 1)}, (5.4)
o, (T,51) = —Grs s1n[rs(x s1)l, (5.5)
7P(x,81) = Te cos|rs(z — s1)], (5.6)

- friction zone: 0 < z < 3o

c Te — KO
w! (z,51) = :Gt(z—sz(sl))2_rs%s—\/l—nz(g:—SQ(sl))_F stv‘ . (5.7)

Tgy(x7 51) =

B2 (2 — sa(s1) )+Grs Vi, (5.8)

t
(2, 81) = po, (5.9)

where:

1
s2(s1) = 81 — — arccos 7.
Ts

3. Plastic and friction interface zones.
— plastic zone: s <x <L

Te WO cos[rs(L — z)]

P = s 5.10
wh(®, 52) K, K,cos[rs(L — s2)]’ (5.10)
. uo sin[rs(L — )] 511
(@ s2) = K,'* cos[rs(L — s2)]’ (5:11)
Pl s9) = uo L8 (L = 2)] 5.12
2(a,5) = o et (512)
~ friction zone, 0 < z < sy:
po oTs Te — 4o

w! (z,85) = e ——(z —s82)* + % tan[rs(L — s2)](z — s2) + K. (5.13)

f Uo uorsG
7l (2,82) = ——(x — s2) — tan[rs(L — s2)], (5.14)

Y t K

¥ (z,59) = po. (5.15)

4. Propagation of reverse slip zone.
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— reverse slip zone: 0 <z <3

W (@, 5) = — 2 (z — 5)2 +w™ (5)(x — 5) + w(3), (5.16)
2Gt
77, (2.5) = %(;g —5) - Gu™(3), (5.17)
7" (2.8) = —puo, (5.18)
where:
el Te _ Te — U0
w'(5) = -2’—G—t(s %) e VI P - 5) + KS“ :
w''(s) = G (5 = %) ~ragE VIS,

1
59 = L — — arccosn.
Ts
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Abstract. The present contribution focuses on the problem of mechanical response of the
composite ceramic material containing internal structure. This initial internal structure of
the material consists of: grains, intergranular layers, initial defects (like porosity or micro-
cracks) and initial reinforcement. During deformation process the initial structure of the
material changes (evolves) due to development of dislocation bands, local stress concentra-
tion and further nucleation of microdefects, their growth into mesocracks and finally to
macrocracks leading to the failure of the material. This contribution describes all phases of
deformation process of polycrystalline of composite ceramic material including phenomena
governing changes of internal structure of the material like: nucleation, growth of defects.
In particular to the description of the material response including internal damage process,
the micromechanical approach will be used by application of averaging procedures. In or-
der to show local stress concentrations the Finite Element Analysis (FEA) will be applied.

1 Introduction

In general, polycrystalline materials - depending on their internal structure - can be treated as
multiphase materials. Even one phase ceramic porous material can be analysed as two-phase
solid, where gas existing in the pores is considered as a second phase.

The initial internal structure of the composite material consists of: grains, intergranular lay-
ers, initial defects (like porosity or microcracks) and initial reinforcement (small particles,
whiskers, short or long fibers), see Figure 1. The first problem in modeling of such materials is
estimation of the effective behavior of nonlinear composite materials. The overview of differ-
ent methods was discussed at CISM courses: in 1996 entitled “Continuum Micromechanics”
(Sequet ed.), in 2000 entitled “Mechanics of Random and Multiscale Microstructures” (Juelin
and Ostoja-Starzewski eds.) and in 2002 entiled “Modern Trends in Composite Laminates
Mechanics” (Altenbach and Becker eds.). The non-linearity problem of composites was dis-
cussed by Ponte Castafieda and Sequet (1998) whereas mixed mode of cracks in layered
materials by Hutchinson and Suo (1991).

In this presentation we will focuse on the problem of modelling ceramic matrix and ceramic
polycrystalline materials of the types illustrated in the Figure 1d - h. Even one phase polycrys-
talline material can be treated as a composite because of different mechanical and fracture
properties of grains and grain boundaries, Davidge (1979). It is due to existence of:

e misorientation of crystalline axes on the grain boundaries of two adjacent grains and

o different kind of microdefects generated at grain boundaries during the technological

process of material preparation
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It means that the initial structure of the material is complicated, changes from point to point
inside of the material and is difficult for experimental investigations concerning estimation of

local mechanical and fracture properties.
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Figure 1. Type of composites: a) short-fiber, b) long fiber, ¢) layered, d) particle, ) FGM, f) polycrystal-
line with different grain boundary fracture properties, g) polycrystalline with small interfaces, h)
polycrystalline with thick interfaces.

In many cases, ceramic polycrystalline material has the second phase introduced to the

material as an interface of the small thickness in

comparison to the grain diameter. Such inter-

faces result from technological process or are intentionally introduced to the material to create

a new internal structure.

One can distinguish four kinds of polycrystalline materials containing intergranular phases.

The internal structure of the material consists of:

® ceramic grains with brittle interphases. An example of such material is alumina ceramics,
where glassy phase added as sintering aid between grains changes significantly response
of the material to a mechanical loading, Raiser et al., (1994), Espinosa and Zavattieri
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(2003). Under dynamic loading this intergranular glassy phase decreases tensile strength
(spall) when the amount of this phase increases. This problem was analysed by Sundaram
and Clifton (1998) for alumina ceramics containing 15% glassy binder

® ceramic grains and metallic interphase (cermets). The problem of modelling of a ductile
layer in ceramics was considered, for example, by Tvergaard (1997)

® metallic grains surrounded by ceramic interphases(cermets)

® metallic grains surrounded by the layer of a soft ductile material, softer than the grain inte-
rior. This case is very important for alluminum alloys applied in aecrospace purposes (e.g.
Vasudevan et.al. (1987), Pardoen et. al. (2003)

In all cases the role of intergranular phase is very important for the description of such
composite materials having very complex internal structure.

Generally the deformation process of the composite materials passes through two stages:

® stage I — purely: elastic, elasto-plastic or elasto-viscoplastic deformations in which we ob-
serve the stress concentrations at particular points of the internal structure of the
material

o stage II — additional inelastic deformation due to: microdefects initiation (inside of each
phase or at the boundary between phases) and their propagation, interphase or transphase
failure, fragmentation of phases and flow of metallic phase or crushing of brittle phases (in
case of compressive load).

The stage 1 is very important for the further material behaviour because depending on the type
of loading (mechanical, thermal etc.) the stress concentration takes place in different points of
the material. It means that the further damage process in composites highly depends on the
description of loading process (uniaxial, multiaxial, monotonic, cyclic, etc.) of the material and
even initially isotropic treated material becomes anisotropic due to defects growth in the stage
II. The above specified stages of the deformation process will be discussed in the next chapters
for different kind of composites and different types of loading.

2 Prediction of Mechanical Response under Uniaxial Tension of Polycrystalline Ceramics
Containing Brittle or Metallic Inter-granular Layers

Let us consider polycrystalline material containing interfaces between grains, Figure 1g. The
theory was formulated by Sadowski et all. (2004) for the case of brittle and metallic inter-
granular layers. For the theoretical considerations we use the SEM photographs material pre-
senting fracture surface of polycrystalline ceramic, Figure 2a. Figure 2b presents contours of
grains and small interface layers. Another examples of the internal structures of the materials
can be shown, for example, in Davidge (1979) or Sadowski et al. (1997).
In order to model polycrystalline material containing interphase between grains, it is neces-

sary to have microscopic observations of the internal structure of the material showing:

« interface thickness distribution

* pore size distribution
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* grain size distribution,
* pore placement inside the material

Figure 2. Internal structure of polycrystalline ceramics a) SEM photograph, b) contours of grains and
interfaces

2.1 Theoretical formulation of the problem

In order to formulate general model of the polycrystalline material containing interfaces be-
tween grains, covering all four specified cases in previous chapter, it is important to include
time rate effects in description of the material response. This allows to include in the modelling
creep effects, viscoplastic response and modelling of the changes of the internal material struc-
ture under dynamic and temperature loading. The different phases of the considered composite
can exhibit various physical and mechanical features. Therefore in order to describe all the
essential characteristics of the visco-elastic-plastic materials response, following Perzyna
(1971), the total strain rate £, can be split into elastic strain rate S,j and viscoplastic strain rate
&
€, =€, +€ Lj=123 .1

Dot over the symbol denotes time differentiation. Having the elastic strain rate £ and speci-
fied elastic properties defined by elasticity matrix C,,, , one can calculate the total stress rate:

0, =Céy (2.2)
The visco-plastic behaviour of the material occurs, when the following yield condition is sat-
isfied:

F(o,.")>F, @3)

ij»
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where F, denotes the uniaxial yield stress. Assuming associated plasticity theory the viscoplas-
tic strain rate g7 can be postulated in the following form:
oF

&7 =y(exp[M (F - F,)/F,]~ I>80' 24

y

where ¥ is the fluidity parameter related to the plastic flow rate and M is the constant describ-
ing the particular plastic behaviour of the material. The next step in the problem formulation is
calculation of a strain increment Ag”l’(”) for a time increment Ar™ =" -, Taking into ac-
count the Euler time integration scheme we assume that the strain increment is fully described
by conditions specified in time £ :

Agi;l’(n) — él;p(n)At(n) 2.5)

Similar to Owen and Hinton (1980), one can define viscoplastic strain rate g‘i;f""“) for the time
while of the loading process ¢

8;p(n+1) _ gvp(n) +H;ZI)A0'W (2.6)

where matrix H is given by:

ikl
wp W
HY = %8, Q2.7)
ijkl .
00,

and the stress increment, taking into account strain-displacement relation Ae” = B’Ad"
and (2.5), is expressed by:

Ac” =C (B A — €1 At™) (2.8)

i jkl

where B, is the strain-displacement matrix.

The loading process of the material should satisfy equillibrium equation for any instant of
time :

JIBEZI) 0dQ+ £ = 2.9)

where 7™ represents vector of equivalent nodal forces and £2 denotes considered volume of
the analysed material. During time increment As™ it is necesasary to satisfy also incremental
form of equillibrium equation (2.9) expressed in the linearised form:

[IBRT a0dQ+ A" =0 (2.10)
Q

where Af™ is the increase of load corresponding to At . The calculated current component
of the total stress G("“) *0'(") +A6(") are not strictly correct. Therefore it is necessary to
calculate the residual forces in order to make corrections:
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(n+[) _J‘[B(rwrl) l(jn+])dQ+f:Y(n+l) ¢0 (2.11)

ijs

where B{™" is evaluated for a current displacement state d"*" = d " + Ad;" . Formula (2.11)
as a of set of equation is solved by iteration procedure (Newton Raphson method) The itera-
tive process is continued untll the solution converges to the nonlinear solution, which is
indicated by the condition !// =0

Introducing tangential stiffness matrix K7":

T(ny () {n) pln}
Ksm - I[ijs Ci/'kl BklmdQ (2~12)
one can calculate the inrease of pseudo-load:

AV = j[B‘"’] CUET ™Al dQ + Af™ (2.13)

ijm
and increase of nodal displacements:

Ad;n) [KT(H)] Av(n) (214)

sm

Then the current values of the stress state and displacement are: o'(”*”

d(n+l) d(n)+Ad(n)

Finally one can calculate the strain increment:

_ () (n)
o,”+Ac; and

Ag\p(n) _ B(n)Ad(n) CU—IJIAO.,((IH) (215)

ijs

and the current components of the visco-plastic strain for the time " take the form:

8}7)(n+1) — gl;p(n) +A8,;p(n) (2.16)

ij

Moreover, the equivalent visco-plastic strain is calculated according to:

v 2 14 v
el = /[g) e;’e)” 2.17)

and the Huber - von Mises equivalent stress:

V4o, -0 )+, —0,) +6lc% +02 +02) (2.18)

A o
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2.2 FEM mesh for polycrystalline material containing interphase and loading conditions

The internal structure of the material was modelled within Finite Element Method (FEM)
using eight-node isotropic hexagonal elements to represent grains and interfaces. The Repre-
sentative Volume Element (RVE) of the following dimensions: 100 um x 200 ym x 20 pm was
cut out. It was assumed that RVE was subjected to a uniform pressure O and due to appropri-
ate symmetries only one quarter of the RVE was analysed, i.e. sample of the following
dimensions: 100 um x 100 ym x 10 um . The exemplary internal structure on the surface of the
material is shown in Figure 2b. The corresponding FEM mesh is shown in Figure 3, whereas
interphase is presented in Figure 4. Number of used elements to model REV was 58,016.

Figure 4. Interphase FEM mesh

In order to present the influence of the heterogeneity of the material on the stress distribu-
tion inside RVE, the polycrystalline sample was subjected to the uniaxial tension. The manner
of specimen loading and displacement boundary conditions are shown in Figure 5. The poly-
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crystalline sample is situated horizontally and on the right hand side is simply supported to
constrain free displacement along x-axis. This RVE can model one quarter of the total speci-
men subjected to uniaxial pressure when we assume that the symmetry plane are coincided
with plane xy and yz. The specimen is subjected to quasi-static increase of pressure ¢ up to
the limit corresponding to ultimate strength of alumina oxide.

uniform
pressure

(8] X

v
0 um

o

100 um 100 pm

uniform
pressure
o3 x Ei
«— |
L - /’J'
. ' /
-~ A

Figure 5. Specimen, RVE loading and boundary conditions.

2.3 Numerical example

The mechanical properties of the polycrystalline samples were presented in Table 1. Two
examples with the same grains made of alumina oxide were considered. In the first example
interphase was created from a weak elastic material, eg. alumina oxide containing porosity. In
the second example the interphase was build up from metallic phase, eg. cobalt. The aim of this
work was to show the different behaviour between those two kinds of composite materials with
regard to stress distribution.
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Table 1: Mechanical properties of the polycrystal

Part of polycrystal Material in example 1 Material in example 2
Grains E, =4.110" MPa

elastic material - Al,O

( 205 v, =025

weak elastic material plastic material — cobalt
(Co)
_ 11
Interphase E,=2.110" MPa E,=2.110" MPa
Vgr = 0-235 Vgr = 0.235

0, =297 10° MPa

Polycrystalline material with strong elastic grains and weak elastic interphase (example 1).
Figure 6 illustrates the distribution of stress o _ . As it was expected, the low values of stress are
concentrated along parts of interfaces parallel to loading direction. It is due to quasi-
homogeneous distribution of the displacement u, . The higher values of stress can be observed in
parts of grains lying along side surfaces of RVE parallel to x-axis, but they do not exceed fracture
stress for ALO; equal to = 400 MPa. The maximum of ¢, appears in interfaces at the bottom of
the RVE and is equal to 467 MPa, whereas the minimum amounts 195 MPa. The degree of in-
homogeneity

44074
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5 T8 14
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Figure 6. Distribution of stress 0 for the material with elastic interface.
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measured as the relative difference between maximum and minimum values of 6 in RVE is
equal to 58%.

Figure 7. Distribution of stress 0, for the material with elastic interface.

Figure 7 presents distribution of shear stress ¢ . The shear stress concentrates along inter-
faces (white and black lines) in the form of bands inclined to the loading direction at +£(20-45)°.
Concentration of such high values of the stress in the narrow bands can cause grain rotation. The
values of stress inside the grains are one order less in comparison to interfaces.

T2
K- 1
24313
AB/413 --.

413413

-48T¢13

S

Figure 8. Distribution of stress 0, for the material with elastic interface.
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Figure 8 shows distribution of the stress perpendicular to the loading direction, ie. o, .
One can observe that interfaces inclined to the x-axis at the angle 75-90° are subjected to ten-
sion, whereas interfaces inclined at the angle 10-45° are subjected to compression. The
maximum of tension is equal to 69 MPa, whereas the minimum of compression appears in the
interface inclined at the angle 10° and is equal to —58 MPa. Nongomogeneity parameter is of
order 218%. One can point out that the level of stress ¢, in grains is less more than one order
in comparison to the interfaces.

i

Figure 9. The Huber - von Mises equivalent stress O :qFM for the material with elastic interface.

In order to estimate the material effort, the Huber - von Mises equivalent stress, Eq. (2.18),
was calculated in the interfaces, Figure 9. It is interesting to notice that the maximum of o, ™
appears at the “triple points” of interfaces of polycrystalline structure of the material. These
interfaces are inclined at the angle 80-90° to the loading direction. The relative inhomogeneity
of the Huber - von Mises stress distribution is of order 53%.

Polycrystalline material with strong elastic grains and visco-plastic interphase (example 2).
The material properties of the second polycrystalline are presented in Table 1. In the numerical
examples the visco-plastic strain rate (Eq. (2.11)) was modelled using a fluidity parameter within
the range ye (107'°,107°)[MPa -s]". Figures 14 — 22 show the results obtained for the material
containing interfaces characterised by y =10~ [MPa-s]".

Figure 10 illustrates the distribution of stress o ,., which is similar to example 1 (Figure 6).
The lower value of stresses are concentrated along the interfaces parallel to the loading direc-
tion i.e. the x-axis. This is due to the quasi-homogeneous distribution of displacement u, . The
higher values of stress can be observed in parts of grains lying along side the surface of the
RVE parallel to the x-axis, but they do not exceed the fracture stress for ALO; (= 400 MPa).



282 T. Sadowski

483414

441414

41814

397414

375414

55314

331414

30814

504412
-158413
258413
-357+13

45518 [0

555413 4
B54413

[ |
753413 |

852413

Figure 11. Distribution of stress ¢, for the material with visco-plastic interface.

The maximum value of ¢, appears in the interfaces at the bottom of the RVE and is 484 MPa,
an increase in comparison to example 1 of 3,6%. The minimum value of ¢ _ is 156 MPa and a
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decrease in comparison to example 1 of 21%. The degree of inhomogeneity measured as the
relative difference between maximum and minimum values of & in the RVE is 68%.

Figure 11 shows the distribution of shear stress ¢, . In a similar way to example 1 (Figure
7), the shear stress concentrates along the interfaces (white and black bands) inclined to the
loading direction at +(20—45)° . The concentration of such high values of stress in the narrow
bands is due to plastic slip and grain rotation. The maximum value of stress is = 20% greater
than in example 1. The stresses inside the grains have values one order of magnitude less than
the interfaces.

Figure 12, Distribution of stress O ,y for the material with elastic interface.

Figure 12 presents distribution of &, . One can observe that the interfaces inclined to the x-
axis at an angle of about 90° are subjected to tension, whereas the interfaces inclined at an
angle 10-45° are compressed. The maximum tensile stress is 105 MPa, whereas the minimum
compressive stress appears in the interfaces inclined at 10° and is -74 MPa. Then the non-
homogeneity parameter is of order 242,3%. The level of stress o, in the grains is more than
one order of magnitude less than the interfaces, similar to example 1.

The equivalent visco-plastic strains were calculated according to Eq. (2.17) and are pre-
sented in Figure 13. The equivalent visco-plastic strains are concentrated at the interfaces. The
maximum value of €.} appears both in the middle of the straight segments of the interfaces,
and at the so-called “triple points”. Grains are free of equivalent visco-plastic strains. Therefore
it is instructive to plot only the interfaces, Figure 14. The analysis of this plot leads to the
conclusion that the third dimension (along the z-axis) plays a very important role in the
problem of strain concentration and the initiation of further defects.
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Figure 14. The equivalent strain 6:5 in the visco-plastic interface.

In order to estimate the material effect in the interfaces, the Huber - von Mises equivalent
stress was calculated according to Eq. (2.18), Figure 15. It is interesting to note that the
maximum value
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Figure 15. The von Mises equivalent stress GZ_M for the material with visco-plastic interface.

of O'Z’M appears at the “triple points” of the interfaces of the material polycrystalline

structure, see Figure16 for more details. These interfaces are inclined to the loading direction at
an angle 80-90°.

Figure 16. “Triple point” in the visco-plastic interface.

The relative nonhomogeneity of the Huber - von Mises stress distribution is of the order 63%.
Figure 16 shows the stress concentration in the “triple point”. One can see additionally the
change of stress distribution along the z-axis and observe the stress concentration (K, = 1.21) at
the top surface of the RVE. This means that defects can nucleate at the surface of the material
and propagate into the volume of the material.
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It is important to note that the variation of the fluidity parameter within the range
ye (107°,107°)[MPa-s]™ causes variation of the equivalent visco-plastic strain, Figure 17,
but does not affect the Huber - von Mises equivalent stress.
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Figure 17. Variation of the equivalent visco-plastic strain with the fluidity parameter.

2.4 Polycrystalline material containing single viod inside of the interface
Let us consider the case of the material containing single void in the interface, Figure 18. The
diameters of this void are 0.5 pm x 3.3 um x 8.5um. The existence of any defect strongly

disturbs the stress distribution inside of the material. It can be observed in the Figure 19. The
stress concentration factor at the border of the void 1s K, = 1.42.
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Figure 19. Single void inside one facet of the interface.
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2.5 Conclusions and remarks

The aim of this lectures is to highlight qualitatively and quantitatively the problem of non-
homogeneity of displacement, stress and strain distributions in real polycrystalline material
structures. In particular, the work focuses on the influence of thin inter-granular layers between
grains on the material behaviour. The properties of these components of the material structure
play a fundamental role in the description of the microscopic and macroscopic material
response. In this work, consideration is limited to polycrystalline materials having strong
elastic grains and relatively weaker interfaces: purely elastic or visco-plastic.

Presented results show the real micro-stress distributions in the polycrystalline material. In
general these distributions are very complicated. The degree of nonhomogeneity is relatively
high. One can also observe many sites of the local concentrations:

e at interfaces and particularly at the so called “triple points”

¢ on the surface of the specimen.
These can act as future sources of defect nucleus, when the local tensile strength is overcome.
In the first case, in relation to a particular case of loading: a circular, elliptic or other shaped
cracks can initiate and develop as an isolated defect. In the second case the stress concentration
on the surface of the material (at the interfaces) can be a source of a semi-circular surface crack
(e.g. Fett (2001), Fett and Munz (1997)), which spreads into the volume of the material.

As an example, the stress concentration around the single void inside of interface was
analysed. It indicates that the stress concentration factor is of order 1.42 what is higher value in
comparison to stress concentration inside the material without defect (1.21). Further
investigations are necessary in order to obtain more details of crack initiation and propagation
in modern and complicated materials i.e. composites. The model outlined above is currently
being developed in order to describe the material behaviour more precisely.

3 Modeling of Porous Ceramics Response to Compressive and Tensile
Loading

3.1 Introduction

Popularity of porous ceramic materials results from many engineering applications, like: thermal
insulators, filters, grinding wheels, electrodes, surgical implants, etc. Rice (1998), Pampuch
(1988).
Porous ceramic materials can be treated as two-phase materials with a gas existing in pores as a
second phase. Such materials are widely used in steel making or cement factories as furnace
lining because of good thermal stress resistance and relatively good compressive strength.
The volumetric porosity of refractory materials is up to 30%. Grains of ceramic material create
a skeleton of the solid phase, which determines the final mechanical properties. Pores of
elliptical or spherical shape arise in the material during the technological process (isotropic
pressing and sintering at high temperature) e.g. Ostrowski and Rodel (1999). A typical example
of a refractory material is magnesium oxide — a semi-brittle ceramic exhibiting limited
plasticity at room temperature and microcrack development during loading.

The Scanning Electron Microscopy (SEM) observations of the polycrystalline material
structure before and after fracture give the following information:
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—  grain size distribution,

—  pore size distribution,

— pore distribution in the material,

— mode of microcracking process (intergranular or transgranular).

Experimental findings for MgO and Al,Os, e.g. Sadowski et al. (1997), show that pores are
spherical and their diameters are much smaller than the grain diameter. They are distributed
along grain boundaries and inside grains. Crack initiation mechanism for semi-brittle ceramics
can be described by Zener-Stroh’s model [7], i.e. dislocations pile-up at the grain boundary of
the polycrystalline material structure. The observations of the fracture surface (Davidge (1979),
Sadowski et al. (1997)) , lead to conclusion that for quasi-static load increase, microcracks
propagate mainly intergranularly. Moreover experiments let us establish the distribution of the
basic mechanical features as the Young’s modulus or the Poisson’s coefficient in relation to
porosity of the material (Lam et al. (1994) and Nanjangud (1995).

The purpose of this lecture is theoretical modelling of the behaviour of porous ceramic materials
under compression and tension, taking into account necessary experimental data. Unfortunately,
the behavior of polycrystalline ceramic materials under compression have been studied little, Fett
and Munz (1999). This work aims at removing lack in theoretical modeling.

3.2 Modeling of the material response

Micromechanical basis of constitutive equations. Constitutive modeling of polycrystalline
semi-brittle and porous materials under active loading process obeys a description of the:

e elastic deformations of initially porous material,
o existence of shear dislocation bands,
¢ deformations connected with crack growth.

In order to model the considered material behavior for plane strain condition we introduce a
Representative Surface Element — RSE (e.g. Krajcinovic (1989), Namat-Nasser and Horil
(1993), Kachanov (1993), Kachanov et al. (2001)) with the surface area of A, Figure 20. We
assume that RSE contains N hexagonal grains. All defects inside the material: porosity,
dislocation bands and microcracks create local microscopic additional strains in comparison to
purely elastic material behavior. Let us denote by:

Let us denote by:
)

T

the surface area of one pore “s”,
A the surface area of the single grain “s” with activated slip system,
AY the surface area of one crack “s”,

A, the surface area of all pores and cracks inside RSE.
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Figure 20. Representative Surface Element.

The RSE area A can be divided into the surface area of grains A, (deforming elastically or
elasto-plastically) and surface area of defects A, ,ie. A=A +A,.

In micromechanical approach we analyze development of all existing (pores) and nucleating
(cracks) defects inside RSE. Let us assume that the initially porous polycrystalline material is
subjected to monotonically increasing compressive load o‘ﬁ?, Figure 21. Then within the
material, local microstrains at arbitrary point x,, are created €', (xm,O'(b)) due to the change of
pores shape, development of dislocation bands and cracks. Note that i, j,m=1,2. These
microstrains should be averaged over the appropriate areas. As a result we obtain:

- the elastic strains

£ (x, o;‘y)_— j € (x,,08)dA 3.1)

“ i1

- the additional strains due to single pore

PO (x,,00) = £ (x,,,00)dA . (3.2)

L
A

- the additional strains due to activation of slip system in grain

“ >

&) (5,00 == [ €70 (x,.08)dA, (3.3)
LAY
- the additional strains caused by smgle crack “s”

8;1'(5 ( (b))_ - .[ 6/cr(x)( m,G(b))dA (34)
Acr Af’
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Figure 21. Compressive loading of the specimen.

In order to obtain macroscopic constitutive relation we mtroduce the following surface
densities: f, = A,/ A characterizing all defects inside RSE, fp(, =AY/A -fora single pore

“S7 S o = A( )/ A - for one grain “s” with activated slip system, £’ (' A(X /A - for a single
crack “ ” Applymg the mixture rule we can get the constitutive equations:

[l—fd] £;(x,; 05)) +Z el (x,: 05) +
o) = (3.5)

Ny

z (S)Epl(s)(x : O.(b)) +ch(rf)£cr(5)(x : O.(b))

s=1

£;(x,

m’

N,, denotes the number of pores inside RSE. It is estimated on the basis of SEM observations
of the fracture surface of the specimen and the measurement of the material density by
Archimedes method. In numerical calculations it was assumed N, =const. during whole
loading process. N, (0'72 denote the number of grains with actlvated conjugate slip system in
RSE. This parameter of the model is estimated according to [17]:

Ny (o¥ )—%[ﬁsz (69)-B5 (a)]¥ (3.6)

where BS‘ ( ot ) <p< ﬂs (0'22 ) denotes the fan of inclination angles measured in relation to
the axis x, of activated shp system inside the grains of RSE. Slip system activates, when the
shear stress along its direction overcomes a threshold value 7, characterizing dislocation
resistance to move:
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r(agi_’),ﬁ)z T, (3.7)

T,, results from experimental observations of MgO single crystals.
N, (og)) denotes the number of active cracks inside RSE. It is estimated similarly to (3.6),
ie.

N, ()=, 2[ B (o)~ B, (o2)]¥ a9

The fan of inclination angles of crack to the axis x, S, (o§§))s B<p, (o§’§>) is calculated
from:

t(ag),ﬂ)z T, (3.9)

o in (8) plays the role of material parameter depending on grain size in RSE.
The constitutive equations (3.5) are valid for dilute or at most moderate defect concentration. It
means that the presented model describes the material with porosity less than 40%, Boccacini
(1998) and the interaction of pores is very limited. Taking the above into account, the

constitutive equations can be rewritten to the additive form of macroscopic strain components:
—pC 4P ol L aer
g, =€ +el +el +e =5,0, (3.10)

where: €; are purely elastic strains, £ are pore existence-dependent strains, 851 are plastic
strains, & are crack growth-dependent strains. S, is the compliance tensor of the total
material response, whereas o, is the macroscopic stress tensor.

Porosity of ceramic material. We assume the initial porosity of the material to be closed and
fiistributed in 'gr.ai.ns (p,) or along grain boundaries ( p, ). Both types of. Rqrosity p=p, + Dy
influence the initial components of the compliance tensor S, and the initial (elastic) stage of
deformation process. In case of spherical pores, which at the beginning of the loading process are
homogeneously distributed inside RSE the porosity parameter can be expressed as:

1,
p=tSur a.n)
A s=1

Considering RSE of circular shape A=7R’ we get, see Figure 22:

Ny T 2
= = 3.12
p s=1 R ( )
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Figure 22. RSE containing dilutely distributed pores.
If the loading process is analyzed for plane strain conditions, we have:
o 1)
e = —E—O—[ pdoy -615,)] (3.13)

0
for non-interacting pores or

1_ 2
el = &)_li_p_mgi‘j’f) —0132)5,-,-)]
(3.14) E, [l-p

for interacting pores Kachanov (1993).

Crack growth. Cracks inside the MgO material are initiated by Zener-Stroh’s mechanism.
Microcracks can develop along grain facets changing direction of their propagation, Figure 23.

The description of the crack propagation process is strongly influenced by grain boundary
porosity p,, . Namely, any crack (rectilinear or wing) occupying grain boundaries can grow if

the energy release rate G satisfies the following condition:

G(03),0,0,1L, pg) 2 Ve (D)

(3.15)
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Figure 23. Wing crack model.

where ¢,8 are inclination angles of straight crack and a wing, respectively Namat-Nasser and
Obata (1988) and Sadowski (1994). It is worth pointing out that during compression the
straight crack or central parts of the wing cracks are closed. Their growth is highly influenced
by friction coefficient y of the crack surfaces. Moreover ¥,,(p,,) is the critical value of the
grain boundary fracture surface energy and is considerably less than the grain fracture surface
energy ¥, , Pampuch (1988):

Y (P ) =(0.5 - 0.75)y, (3.16)

In order to describe function 7,(p,) we introduce linear density of holes along grain
boundary p,, . For our purpose let us assume the simplest correlation:

Yoo (Pew) =(L-Dy)Y, 3.17)
or
Yo (Pe) =7, €xp(-0 P,,) (3.18)

It is easy to find correlation p,(p,) or p,(p) from geometrical considerations and finally
Yer(Pg) OF V(D).
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Figure 24. Homogenization procedure of the surface energy for grain boundary.

In order to describe crack growth along grain boundaries we assume (instead of boundary with
a certain set of holes — Figure 24a that grain boundaries are homogeneous and their fracture
energy is expressed by 7,,(p,,), i.e. by formula (3.17) or (3.18) — Figure 24b. The growth of
microcrack occurs when condition (3.15) is satisfied at the crack tip.

3.3 Experimental and numerical results

Empirical evidences. Our objective was an investigation of the initial porosity effect on the
semi-brittle MgO ceramic response to uniaxial compressive stress. In order to estimate the
Young’s modulus in MgO the specimens with the following porosities were experimentally
analyzed: p=0.06, 0.10 and 0.18. The material porosity was estimated by measurement of
material density conducted by the Archimedes method using water as the medium. For each
level of porosity 4 cylindrical specimens of diameter 13mm and height 50mm were loaded
(with the loading rate about 0.01mm/s) to the final failure. The strain gauges were placed at the
central part of the specimens’ height. The elastic part of the stress-strain curve allows to
estimate the values of the Young’s modulus of porous MgO ceramic for compression process —
continuous line in Figure 25. The dot line corresponds to the theoretical model of porous
material containing spherical non-interacting voids, whereas the broken line is related to the
case when holes interact. Figure 25 shows small discrepancy between theoretical modeling of
the porous material by spherical holes only and the real material behavior. The less values of
the Young’s modulus can be caused by existence of small amount of microcracks existing in
the real material, which are created during technological process.

Numerical example. Numerical calculations were performed according to theoretical
formulation presented in section II taking into account the following data (e.g. Davidge (1979)
or Pampuch (1988)):

E,(p=0)=3164 GPa,

G,(p=0)=121.4 GPa,

V,(p=0)=0.20,

Y, (p=0)=1J/m’,

The porosity parameter is included within the range pe (O;O.Z)
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Figure 25. Comparison of numerically and experimentally estimated Young’s modulus for porous
ceramics (MgO).

Moreover, it was assumed polycrystalline structure of the material consists of hexagonal grains
of mean diameter D=45um . The densities of pores and cracks are here low, therefore we do
not take into account interaction between them. As for modeling of grain boundaries it was
assumed that the mean pore diameter is equal 2um (data results from fracture surface SEM
observations) and the surface fracture energy of grain boundaries is assumed to be equal
ng(Pgb) =05.

Figure 26 presents the diagram of normalized compressive stresses versus normalized
compressive strains. The normalizing values of stress 7, =—75MPa and strain

0

€,=-4,75-10" correspond to the point of slip lines initiation inside the grains of
polycrystalline structure of the material. During the compression process of ceramic materials
the initiated microcracks develop as closed cracks with contact friction. It is difficult to
estimate the real value of friction coefficient u along crack facets. Therefore the numerical
calculation were performed for the several values of y = 0.1; 0.2; 0.3; 0.4. It is illustrated for
the case of material without porosity (p = 0). The influence of the initial porosity on the
material behavior is presented for the case p = 0,10 and 0,18. Comparison with experimental
data (dot lines) of deformation process exhibits good confirmation of assumption concerning
theoretical modeling.
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Figure 26. Stress-strain relation for different porosity levels. Experimental data shown by dotted lines;
modelling shown by solid lines.

34 Summary

Presented results show capability of micromechanical approach in modeling of material
with internal structure (Figure 20). One can notice high influence of the porosity on the
material response (Figure 26). It is reflected by significant increase of the components of
compliance tensor S, (p) . Experimental observations of the Poisson’s coefficient lead to the
conclusion that v(p) >v,(p =0) for the analyzed range of porosity. It confirms the theoretical
modeling methods suggesting a small increase of this mechanical property.
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4 Thermal shock crack propagation in functionally graded strip

4.1 Introduction

The aim of this lecture is theoretical modelling of the thermal shock problem in a strip made of
functionally graded composite with an interpenetrating network microstructure of Al,O;and Al
(Sadowski and Neubrand 2003). Such a material could be used in brake disks or cylinder liners
in the future. In both applications it is subjected to the thermal shock.

Now this material is used as brittle surface layers in many high temperature applications
such as thermal barrier coatings for turbines and combustion engines and chemical reactors
because of their superior mechanical properties, oxidation and wear resistance at elevated
temperatures. Temperature gradients and differences in thermal expansion can cause high
thermal stresses in such layers. Large shear and axial stress concentrations are generated where
the interface meets the free edge of the part, Bogy (1970). These stresses promote crack
propagation parallel to the interface Hu et al. (1988). It has been shown that the introduction of
a layer with a gradual transition of the thermomechanical properties can greatly reduce these
stress concentrations, Yang and Munz (1995). Additionally, it has been observed
experimentally that the critical energy release rate for delamination is substantially increased in
such a FGM which further impedes delamination, Bahr et al. (2004). Unfortunately in-plane
thermal stresses parallel to the interface are not always reduced (Itoh and Kishiwaya (1992)
and Droschel et al. (1999)) and the initiation of vertical surface cracks under transient or
constant thermal loads is common in FGMs. In the present work which is based on linear
elastic fracture mechanics, it will be demonstrated that the additional degree of freedom
provided by the gradation of properties can reduce the driving force for the propagation of such
vertical cracks substantially. It will be shown that thermal residual stresses resulting from the
production process can play an important role and should be taken into account in
investigations of thermal shock crack propagation in FGMs. In combination with the increasing
crack growth resistance typically encountered in graded composites, an early crack arrest and a
high residual strength after thermal shock can be obtained for an optimized composition
gradient.

4.2 Formulation of the problem of edge crack problem subjected to high temperature
gradient

Let us consider an infinitely long strip made of functionally graded material (FGM), which in the
initial state is without any crack, Figure 27a. Both the mechanical and the thermal properties of
the strip change gradually along the x direction. Assume that the strip has initial temperature T).
In an unsymmetrical thermal shock one side of strip (x = 0) is cooled by 4T to the temperature T,
whereas the second side of the strip (x = &) remains under constant temperature T). It is assumed
that an edge crack (Fig. 28a) is initiated at the cooling surface due to tensile thermal stress (Figure
27b). This crack can propagate as long as the thermal stress intensity factor exceeds the threshold
value of the crack resistance of the FGM. The aim of the work is to estimate the equilibrium
length b of the edge crack after thermal shock in particular composition of FGM (ALOs/Al).
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Figure 27. Initial configuration of the strip subjected to thermal shock: a) strip dimensions, b) thermal
stress distribution during thermal shock.

The theoretical solution of the considered problem is performed in several steps:
¢ finding the temperature distribution as a function of time ¢, Figure 27a
e calculation of the thermal shock stress distribution as a function of time ¢, Figure 27b
e estimation of thermal residual stress distribution due to technological cooling process
e calculation of thermal stress intensity factors as a function of time and crack length for
an edge crack, Figure 28

Temperature distribution during thermal shock. The temperature function 7(x, y, f) can be
calculated solving the heat conduction equation, which has the following form in the two
dimensional case:

VT +

1(8/@1 8k8T]_i8T @1

Klaxor oydy ) ko

Here the thermal diffusivity is equal to K =k/ pc,, where k is the thermal conductivity, p is
the density and ¢, is the specific heat of the material. Taking into account symmen}/ condition
regarding to y axis, Fig,gre 27, and introducing non-dimensional coordinate £ == and non-
dimensional time ¢ =—>1, equation (1) takes the following form for sought fémperature
function T =T(&,1")

2
d’T l(dde)_ldT 2)

.__2+_ —_— = m
dE® k| dEdE | kdt
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Here, x, =x(£=0), is the thermal diffusivity at the ceramic side of the strip. The above
equation will be solved for the following boundary and initial conditions T¢=0,0=T,and
T(§ = 1, t) = T,. The temperature field T =T(£,t") can be obtained by numerical integration
of (2) using the Runge-Kutta method for given thermal conductivity and thermal diffusivity
functions of the form k(&)= k&' and k(&)= k&' . In the present work the coefficients

of these functions were estimated from experimental data.

T
— Oy
— 4 - > X

Figure 28. Edge crack formation due to thermal shock: a) crack configuration, b) stress applied to the crack
surface.

Thermal shock stress. Having the temperature field inside the strip 7 =T(£,f’) it is possible
to calculate the thermal shock stress by introduction of the Airy stress function (Jin and Batra
(1996)) into the equilibrium equation

O, +pfi =0 (4.3)

where f; are components of the body forces per unit mass. Using the Hooke’s law in the
following form

and assuming small strain, i.e. £, = (u,.~ jTu j.,.)/ 2 one can calculate the thermal shock stress
0';, (&,r*) from the equation
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d2 l-—-\/2 d2
—_— T — = .5
2( o, )+ 3 [(1+V)O£T]—0 4.5)

if body forces are excluded. In equations (4.4) and (4.5) E(&,t") is the Young modulus, v(&,t")
is the Poisson ratio and «(&,t") is the thermal expansion coefficient. All of them are in general
functions of position and time. Equation (4.5) was solved analytically for power law expansions
(in x) for E&,t"), v(E,r) a(é,f") and stress free boundary conditions, i.e. no additional
mechanical loading on the strip boundary. The particular form of the thermal stress function is the
following

o &)= ({—AT) e =

_ ECG)a ) TE.L) .
E, a, AT

[hE A (&) Aﬂ(é)}jE(& P EEOTED) g

. 1 EE. 1) AT
-, E,
VGO Bah ey @-nza, <¢’>}j5E<§ “(5’”(‘5;  pag
(4.6)
where
¢ EE, ¢ EE.1) 2
A ()= jmdé Ay(t) = J.——v e & d¢

1

A=A O=[EEDtaE AW = 4,40~ A

Moreover the values Fy= E(& 0,1) and o= o€ =0, 1), i.e. correspond to the ceramic edge of
the strip. An example of G ,(&,1*) distribution is shown in Fig. 27b.

Thermal residual stress due to technological cooling process. The thermal residual stress
created during technological cooling of the FGM from the processing temperature has a
significant influence on the material behaviour. According to Ravichandran (1995), the thermal
residual stress for a strip as shown in Fig. 27 is
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\ L_E )<5E “E)
g . oA ! 2.7
0'“ (é,l‘ ) AT,&_E@,I ) a(é’t ) E, + EIE3_E22 ( )

where AT, denotes the difference between the process temperature and room temperature.

res

The expressions for A; and A, are
A= ja(g,r*)E«; 1)dg A )= ja(«:,z*)E(é,r*)édé
and E, E, E; are given by
E()= le(&r‘)dé ,  E()= jE(é,r*)édé E ()= jE(é,z“)ézdé

Thermal stress intensity factor during thermal shock. As shown in Figure 28, the crack is
perpendicular to the stress-free boundaries, because it was assumed that the problem is
symmetric with respect to the y axis. Because the length of the crack after thermal shock is
short compared to the specimen dimensions one can simplify the problem by assuming a
constant Young modulus E(& = 0, £") = E,. Then the thermal stress intensity factor in the FGM
strip (Figure 28) can be found in a similar way as described in (Jin and Batra (1996), Erdogan
and Wu (1996), Noda (1999). The thermal stress intensity factor is found by solution of the

integral equation under the given tractions p (x,y=0,1')=-0,(x,y=0,1") along the crack

boundary, Figure 28b. Employing the edge crack opening displacement defined by

Vo, y=0.1")=u (x,40,1 ) —u, (x,0,1") for (O<x<b)
(4.8)

the problem can be reduced to the following integral equation

b

V (x r,t) . 4 ¥
j r+JV\,(x,r,t K(ondr=—nt| — |p, (xr) for (0<x<b) (49
0 0

0
Here K(x,r) is the integral kernel given by
Kx,r)=K,(r,x)+K,(h—-r.h—x)+K,(r,x)+ K,(h—r,h—x)

1 12x 12x°
>+ 3 IR
(r+x) (r+x) (r+x)

K. (r,x)=-
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K, (r,x)= J[fl (rox.y)e™ ™ + £, (r.x,y)e 7 Wy
0

472 372 2 2
F (roy)= Lo 8y Wrx—127°h* (r+x)+ 27" [ 90" +h(r+x)+7x |+
D 3y[2h+r+x]+5+e" [—2‘}/2rx+ 3¥y(r+x) —5]

b (r’x’Y)zl

{—4y3hx(h—r)+6y2 [ +h(x=r)]+
D

+y[-10A+r —x]+3+e7" [y(x—r)-3]

D=1-4y*h* +2)e” " + "

Normalizing the interval x e (0,h) by defining

b b « b .
r:—i(1+w), x=5(1+s), V,(r.t )=Ef(w,t )
the integral equation (4.9) becomes
lf(W,f*) 1
dw+| f(w, e Yk(w,s)dw=g_(s.t' 4.10
:[(w—s)2 Jlf( Jkw,s)dw =g, (s."), (4.10)
where
bY . 4 .
k(W,S)Z -~ K(rsx)’ gyy(s,[ )=_7z e pyy(svt)
2 E,

Let us assume the solution of the integral equation takes the form f (w,t*) =v1-wF (w,t* ) ,

N
where +/1-w is a so called weight function and F (w,t*) = Zam(t*)w’”. Solving (4.10) we
m=0

get the expression for thermal stress intensity factor in the non-dimensional form

1-v,

K b ht)=—T
! E,a,AT~mh

K, (b,t") (4.11)
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4.3 Numerical simulation of unsymmetrical thermal shock in the strip

As an example an ALO3/Al FGM prepared by the so called GMFC process (Neubrand et al.
(2004)) was analysed. This material was chosen because it is one of the rare FGMs for which
all thermomechanical properties including residual stresses and the crack growth resistance
have been studied experimentally in detail (Neubrand et al. (2002 and 2004), Becker et al.
(2001)). For the purpose of this work, the properties of the analysed Al,Os/Al FGM were
expressed as a function of the volume content of Al in the composite c,,. The Young's

modulus at RT (in GPa) was described by the polynomial
E(c,)=-1482.6(c,, )" +1973(c,, )3 ~1096.9(c,, )+398.42 (4.12)

and its temperature dependence was neglected. In a similar manner the thermal expansion
coefficient of the composite between 20°C and 620°C was described by

a(c,)=281.24(c, ) —10298(c, ) +15.112(c, )+7.71 (n109K)  (4.13)
The appropriate function for thermal conductivity & (in W/mK) is given by
k(cy )=37.71+363(c},") - exp[-1.5¢,] (4.14)
The thermal diffusivity x (in cm?/s) is
k(c, )=0.109+1.844(c};))-exp[-2.5¢ ] (4.15)

The crack growth resistance as a function of crack length in the Al,O3/Al FGMs was determined
earlier in Neubrand et al. (2004).

For the calculation of the residual stresses, it was assumed that the composite was stress free
at 620°C (at this temperature the aluminium in the composite is still very soft and cannot exert
high stresses on the ceramic backbone of the composite irrespective of volume content) and
residual stresses during cooling to room temperature were calculated from the thermal expansion
coefficients and elastic modulus data. It has been shown for specimens of a different geometry
that the stresses calculated with these assumptions are in reasonable agreement with experimental
data Neubrand (2002).
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Figure 29. Maximum of the non-dimensional thermal stress intensity factors K ; and corresponding
crack resistance curve K ; for linear change of Al content in FGM (n = 1);

For the calculations of residual stresses during thermal shock it was assumed that the
temperature T, was 620°C and T, was 20°C, i.e. the thermal shock temperature difference AT
was 600°C. The strip had a width of A =10 mm and a composition gradient along the x-
direction which could be described by the function

c,(nE)y=cY +c) & (4.16)

Here, ¢}, ,ci, and n are material parameters describing the composition gradient in the
material. By introducing (4.16) to (4.12)-(4.15) and varying the material parameters, the
thermal shock response of different FGMs can be investigated. In our study, ¢5, equalled 0.03

and ¢}, = 0.3 throughout — at such volume fractions the material behaves macroscopically

brittle, and thus plasticity could be neglected. For n=1 we have a linear composition gradient
of the Al in AL,Os. For n < 1, the metal content increases quickly below the surface, and we
have the case of a “metal rich material”, whereas for n > 1 the metal content increases only
slowly, and we have a “ceramic rich material”.
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The thermal stress intensity factor K, depends on time, crack length and temperature. For a

given crack length the stress intensity factor will reach a maximum at a certain time ¢ which
will increase with crack length. This non-dimensional maximum of the stress intensity factor

K, is plotted in Figure 29 as a function of crack length &_ together with the crack growth

resistance, K, for Al,Oy/Al and K,*** for pure Al,Os;. The point where the curve for the
stress intensity factor intersects the R-curve represents the equilibrium crack length.
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Figure 29. Equilibrium crack length for different kinds of FGM characterised by coefficient n

Figure 29 presents the equilibrium crack length for different values of n=1, 1/3 and 3. The
crack lengths are much shorter in the graded Al,Os/Al composite than in a homogenous
composite with a volume content of Al which corresponds to the surface composition of the
FGM, ¢£=0.

Residual stresses in the graded composite are typically compressive near the surface and lead
to smaller stress intensity factors and equilibrium crack length (for longer cracks the stress
intensity factors even become negative indicating very efficient crack arrest). The effect of
residual stresses is strongest for #n = 1/3 where the equilibrium crack length is reduced by about
60% compared to a hypothetic stress free material. The composite with n = 1/3 shows also the
shortest equilibrium crack length. The short crack length is not only caused by the residual
stresses, but also by the crack growth resistance of the material, which increases quickly due to
its metal-rich composition profile. Close examination of Figures 28 and 29 reveals that the
graded material with n=1/3 would show the lowest stress intensity factors under thermal
shock even if residual stresses were absent. The current contribution thus corroborates earlier
calculations by Noda (1999), which also predict that thermal shock stress intensity factors can
be reduced by gradients. The findings of this work show, however, that significantly shorter
equilibrium crack lengths are expected if the rising crack growth (R-curve) of an FGM is
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combined with a controlled residual stress profile. Residual stress and the rising crack grow
resistance should thus be included in any analysis of the thermal shock resistance of
functionally graded materials.

5 Concluding remarks

The lectures deal with the description of stress concentration, defects nucleation and their growth
leading to creation of macrodefect, which course the final failure of the material. Local stress
concentration plays very important role in the damage initiation process. This process begins at
nano- or micro-scale and is strictly related to the particular kind of the ceramic composite. The
damage growth process can be related to meso- or mili-scale. Final failure corresponds to macro-
scale. The problem of multiscale modelling of composites was illustrated by three examples
presenting different approaches to the general topic of the course.
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