
Ensemble Methods for Cluster Analysis

Kurt Hornik and Friedrich Leisch

1 Introduction

Ensemble methods create solutions to learning problems by constructing a set of in-
dividual (different) solutions (“base learners”), and subsequently suitably aggregat-
ing these, e.g., by weighted averaging of the predictions in regression, or by taking
a weighted vote on the predictions in classification. Such methods, which include
Bayesian model averaging (Hoeting et al., 1999), bagging (Breiman, 1996) and boost-
ing (Friedman et al., 2000) have already become very popular for supervised learning
problems (Dietterich, 2002).

Employing ensemble methods for cluster analysis can be attractive or even neces-
sary for several reasons, the main three being as follows (see e.g. Strehl and Ghosh,
2002):

• To improve quality and robustness of the results. In general, aggregation yields
algorithms with “low variance” in the statistical learning sense so that the re-
sults obtained by aggregation are more “structurally stable”. For example, many
clustering algorithms are sensitive to random initializations, choice of hyper-
parameters, or the order of data presentation in on-line learning scenarios. An
obvious idea for possibly eliminating such algorithmic variability is to con-
struct an ensemble with (randomly) varied characteristics of the base algorithm.
This idea of “sampling from the algorithm” is used e.g. in the voting and vot-
ing/merging approaches of Dimitriadou et al. (2002, 2001), see also Section 3.
Another idea is to try to improve quality via varying the data by resampling or
reweighting. “Bagged Clustering” (Leisch, 1999), see also Section 2, constructs
bootstrap samples; a similar approach is used in Dudoit and Fridlyand (2002).
Other possible strategies include varying the “features” used for clustering
(e.g., using various preprocessing schemes), and constructing “meta-clusterers”
which combine the results of the application of different base algorithms as an
attempt to reduce dependency of results on specific methods.

• To reuse existing knowledge. In applications, it may be desired to reuse legacy
clusterings in order to improve or combine these. Typically, in such situations
only the cluster labels are available, but not the original features or algorithms.

• To accommodate the needs of distributed computing. In many applications, it is
not possible to use all data simultaneously. Data may not necessarily be avail-
able in a single location, or computational resources may be insufficient to use a
base clusterer on the whole data set. More generally, clusterers can have access
to either a subset of the objects (“object-distributed clustering”) or the features
(“feature-distributed clustering”).

261



262

To fix notations and terminology, suppose we are given a set X of n objects, each
holding the measurements on the same variables or features. A K-clustering of X
assigns to each xi in X a (sub-)probability K-vector C(xi) = (µi1, . . . , µiK) (the
“membership vector” of the object) with µi1, . . . , µiK ≥ 0,

∑
k µik ≤ 1. Formally,

C : X → M ∈ R
n×K ; M ≥ 0, M1 ≤ 1.

This framework includes both “crisp” (where each C(xi) is a unit vector) and fuzzy
clustering, as well as incomplete (e.g., completely missing) results where

∑
k µik < 1.

Changing the labels (which correspond to the columns of the membership matrix M )
amounts to replacing M by MΠ, where Π is a suitable permutation matrix. Finally, a
clusterer is an algorithm producing a clustering.

Given an ensemble of clusterings, the following key distinction can be made for
possible aggregation strategies to determine a “consensus” clustering. If each clus-
tering is of the vector quantization type, aggregation can be based on the underlying
prototypes (provided that these are available). Otherwise, if only the memberships
are available, aggregation can proceed by finding a suitable clustering which “opti-
mally represents” the base clusterings. “Bagged Clustering” and “Voting” are two very
promising examples from these two aggregation categories, and will be described in
more detail in Sections 2 and 3, respectively.

2 Aggregation Based on Prototypes

A large number of partitioning algorithms represent clusters by one prototype ck for
each cluster and (for crisp partitions) assign each observation xi to the cluster of the
closest prototype. Hence, the cluster memberships µik can be written as

µij =

{
1, ∆(xi, cj) = mink ∆(xi, ck)
0, otherwise

for a suitable distance measure ∆. Fuzzy partitions assign memberships inversely pro-
portional to distance (or ranks of distance). The well known K-means algorithm uses
Euclidean distance as ∆ and cluster means as prototypes.

If we are given B clusterings of the same set of objects X with K prototypes each,
we may view the set of B × K prototypes cbk as a new data set that can be used to
assess the structural stability of the clusterer. Prototypes that show up often indicate
“typical” clusters, while rare prototypes may indicate random fluctuations.

The bagged clustering algorithm (Leisch, 1999) uses this approach to find struc-
turally more stable partitions: By repeatedly training on new data sets one gets differ-
ent solutions which should on average be independent from training set influence and
random initializations. A collection of B training sets can be obtained by sampling
from the empirical distribution of the original data X , i.e., by bootstrapping (Efron
and Tibshirani, 1993).

The complete algorithm works as follows:

1. Construct B bootstrap training samples X1, . . . ,XB by drawing with replace-
ment from the original sample X .



263

2. Run the base clusterer (K-means, competitive learning, . . . ) on each set, result-
ing in B×K prototypes c11, c12, . . . , c1K , c21, . . . , cBK where K is the number
of prototypes used in the base method and cij is the j-th prototype found using
Xi.

3. Combine all prototypes into a new data set C = {c11, . . . , cBK}.

4. Run a hierarchical cluster algorithm on C, resulting in the usual dendrogram.

5. Let c(x) ∈ C denote the prototype closest to x (minimum distance ∆). A parti-
tion of the original data can be obtained by cutting the dendrogram at a certain
level, resulting in a partition C1

B, . . . , Cm
B , 1 ≤ m ≤ BK , of set C. Each point

xi ∈ X is now assigned to the cluster containing c(xi).

Bagged clustering combines the prototypes using hierarchical clustering because dif-
ferent data structures (convex, not convex, . . . ) can be accounted for using different
linkage methods and the resulting dendrograms can be easily interpreted by practition-
ers. But many other techniques could be used instead. Unfortunately it is not possible
to compare prototypes of partitions directly (e.g., c11 with c21 etc.) due to the rela-
belling problem, see also Section 3 below for a more detailed discussion of this most
important problem for all cluster ensemble methods.

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

Figure 1: Cassini problem: 200 centers placed by bagged clustering (left) and final
solution (right) by combining the 200 centers using hierarchical clustering.

Throughout this paper we use a 2-dimensional artificial data set called “Cassini”
to demonstrate some aspects of cluster ensembles. The data set has 3900 objects in
3 groups (see Figure 1): 900 in the interior, 1500 each in the outer groups, all drawn
uniformly from the respective shapes. The problem is “hard” for VQ-type base clus-
terers due to non-convexity of the outer groups, e.g., for the K-means algorithm with
K = 3 the correct solution is a local minimum only, the global minimum of the K-
means objective function splits one of the outer groups into two halves and ignores
the inner group.

We apply the bagged cluster algorithm to this data using B = 10 bootstrap train-
ing samples and K-means as base method with K = 20 centers in each run. The



264

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2

3

4 5
6 7 8

9
10

11 12 13 14 15 16 17 18
19 20

Figure 2: Cassini problem: Hierarchical clustering of 200 bagged cluster centers using
single linkage. The upper plot shows the usual dendrogram. The lower plot shows the
height of the splits together with their first differences, which can be used to determine
the number of clusters (here 3).

left plot in Figure 1 shows the resulting 200 centers. We then perform hierarchical
clustering (Euclidean distance, single linkage) on these 200 points, see Figure 2. The
three-cluster partition which results from cutting the dendrogram into its three main
branches can be seen in the right plot in Figure 1. It recovers the three clusters without
error. Note that direct hierarchical clustering of this data set is infeasible due to its
size.

3 Aggregation Based on Memberships

If aggregation is to be based on cluster memberships M1, . . . , MB only, a natural way
to proceed is by looking for clusterings which “optimally represent” the ensemble.
(Note that due to possible relabeling we cannot simply compute average member-
ships.) Suppose that d(M, M̃) measures dissimilarity (or distance) between two clus-
terings C and C̃ with corresponding membership matrices M and M̃ , respectively.
Given d, we can for example look for Ms which minimize average dissimilarity, i.e.,
which solve

M∗ = argmin
M∈M

∑B

b=1
d(M, Mb)



265

over a suitable set M of membership matrices M . If M contains all crisp clusterings,
Gordon and Vichi (1998) call M ∗ the median partition, if M = {M1, . . . , MB} it is
the medoid partition.

We refer to this minimization problem as the (simple) cluster ensemble prob-
lem. Many extensions are possible, such as minimizing

∑
b ωbd(M, Mb) + λΦ(M),

where the ωb are weights quantifying “importance”, and Φ can e.g. measure fuzziness,
thus converting the above hard-constrained simple problem into a soft-constrained ex-
tended one. Also, one could consider criterion functions resulting in yet more robust
solutions, such as the median or trimmed mean of the distances d(M, Mb).

Unfortunately, the simple cluster ensemble problem is computationally very hard.
Even if “only” crisp solutions are sought, it would in general be necessary to search
all possible crisp clusterings (the number of which is of the order (K + 1)n) for
the optimum. Such exhaustive search is clearly impossible for most applications. Lo-
cal strategies, e.g. by repeating random reassigning until no further improvement is
obtained, or Boltzmann-machine type extensions (Strehl and Ghosh, 2002) are still
expensive and not guaranteed to find the global optimum.

Gordon and Vichi (1998) use the Rand index (Rand, 1971) as distance measure
d, while Krieger and Green (1999) use the Rand index corrected for agreement by
chance (Hubert and Arabie, 1985). Solving for M ∗ is NP-hard in both cases, hence
the corresponding mathematical programming problems scale bad in the number of
observations. Krieger and Green (1999) propose a greedy search algorithm together
with “smart” initialization.

The situation can considerably be improved if more information on the structure of
the optimal clustering is available. Dimitriadou et al. (2002) use the distance measure

dDWH(M, M̃) = min
Π

‖M − M̃Π‖2

where the minimum is taken over all permutation matrices Π. In the crisp case, dDWH

counts (a multiple of) the number of differently labeled objects after optimal relabel-
ing. For this distance measure, one can show that the optimal (fuzzy) solution M ∗ to
the cluster ensemble problem is of the form

M =
1

B

∑B

b=1
MbΠb

for suitable permutation matrices Π1, . . . ,ΠB . In the all-crisp case, the aggregated
memberships are obtained by simple majority voting after relabeling, which motivates
the name “voting” for the proposed framework. Simultaneous determination of the
permutation matrices still being computationally hard, the above representation moti-
vates a greedy forward aggregation algorithm where in each step b, a locally optimal
Π∗

b for relabeling is determined, and the optimal aggregationM ∗
b of M1Π

∗
1, . . . , MbΠ

∗
b

is obtained by on-line averaging. The locally optimal permutation matrix can be deter-
mined via linear programming using the so-called Hungarian method for solving the
weighted bi-partite graph matching problem (e.g., Papadimitiou and Steiglitz (1982)).



266

Formally,

Π∗
b = argmin

Π
dDWH(M∗

b−1, MbΠ)

M∗
b = (1 − 1/b)M∗

b−1 + (1/b)MbΠ
∗
b

The final M∗
B is the consensus clustering obtained by “voting”.

Figure 3 shows the improvements on the Cassini problem obtained by successive
voting using K-means with K = 3 clusters as the base learner. Figure 4 demonstrates

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

1st run

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

20th run

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

50th run

Figure 3: Aggregation by voting on k-means

how voting on the aggregated results of B = 50 runs of K-means, Hard Competitive
Learning, and an on-line version of fuzzy C-means further improves performance,
resulting in (almost) perfect learning of the underlying structure.

4 Summary and Outlook

The main focus of this paper is on aggregation strategies for cluster ensembles. It
may be desirable to subject the thus obtained consensus clustering to further computa-
tions, such as for collapsing labels representing similar groups, using for example the
“Merging” procedure in Dimitriadou et al. (2001). Cluster ensembles can also be used
for tuning hyper-parameters of clustering algorithms, such as determining the number
of clusters to be employed (Dudoit and Fridlyand, 2002).

Cluster ensembles have already been successfully employed in a wide range of
application domains, including market segmentation (Dolničar and Leisch, 2003) and
the analysis of fMRI data (Barth et al., 2003). Nevertheless, there is still room for
substantial improvements of the underlying theory. For example, it is currently not
known under which conditions to solutions to the (unconstrained) cluster ensemble
problem can be represented as convex combinations (“weighted voting”) of the possi-
bly relabeled membership matrices (including the result of Dimitriadou et al. (2002)
as a special case), or can be computed in polynomial time. Such knowledge could re-
sult in the construction of substantially more efficient aggregation algorithms, making
large-scale application problems computationally tractable.



267

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

kmeans ensemble

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

hardcl ensemble

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

ufcl ensemble

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

all ensemble

Figure 4: Aggregation by voting on voting on k-means, Hard Competitive Learning,
and fuzzy c-means

Bibliography

Barth, M., Dimitriadou, E., Hornik, K., and Moser, E. (2003). Ensemble clustering
of fMRI data. In 20th Annual Meeting of the European Society for Magnetic Reso-
nance in Medicine and Biology (ESMRMB 2003).

Breiman, L. (1996). Bagging predictors. Machine Learning, 24:123–140.

Dietterich, T. G. (2002). Ensemble learning. In Arbib, M. A., editor, The Handbook of
Brain Theory and Neural Networks, pages 405–408. MIT Press, Cambridge, Mass.

Dimitriadou, E., Weingessel, A., and Hornik, K. (2001). Voting-merging: An ensem-
ble method for clustering. In Dorffner, G., Bischof, H., and Hornik, K., editors,
Artificial Neural Networks – ICANN 2001, volume 2130 of LNCS, pages 217–224.
Springer, Berlin.

Dimitriadou, E., Weingessel, A., and Hornik, K. (2002). A combination scheme for
fuzzy clustering. International Journal of Pattern Recognition and Artificial Intel-
ligence, 16:901–912.

Dolničar, S. and Leisch, F. (2003). Winter tourist segments in Austria: Identifying sta-
ble vacation styles using bagged clustering techniques. Journal of Travel Research,
41:281–292.



268

Dudoit, S. and Fridlyand, J. (2002). A prediction-based resampling method to estimate
the number of clusters in a dataset. Genome Biology, 3:0036.1–0036.21.

Efron, B. and Tibshirani, R. J. (1993). An introduction to the bootstrap. Monographs
on Statistics and Applied Probability. Chapman & Hall, New York.

Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: A
statistical view of boosting. The Annals of Statistics, 28:337–407.

Gordon, A. D. and Vichi, M. (1998). Partitions of partitions. Journal of Classification,
15:265–285.

Hoeting, J., Madigan, D., Raftery, A., and Volinsky, C. (1999). Bayesian model aver-
aging: A tutorial. Statistical Science, 14:382–401.

Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification,
2:193–218.

Krieger, A. M. and Green, P. E. (1999). A generalized Rand-index method for consen-
sus clustering of separate partitions of the same data base. Journal of Classification,
16:63–89.

Leisch, F. (1999). Bagged clustering. Working paper, SFB “Adaptive Information
Systems and Modeling in Economics and Management Science”, Vienna University
of Economics and Business Administration.

Papadimitiou, C. and Steiglitz, K. (1982). Combinatorial Optimization: Algorithms
and Complexity. Prentice Hall, Englewood Cliffs.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Jour-
nal of the American Statistical Association, 66:846–850.

Strehl, A. and Ghosh, J. (2002). Cluster ensembles – a knowledge reuse framework for
combining multiple partitions. Journal on Machine Learning Research, 3:583–617.




