
361

Comparison of nature inspired and deterministic scheduling
heuristics considering optimal schedules

Udo Honig and Wolfram Schiffinann
FernUniversitat Hagen

Lehrgebiet Rechnerarchitektur
58084 Hagen, Germany

E-mail: {Udo.Hoenig, Wolfram.Schiffinann }@FernUni-Hagen.de

Abstract
We report about a performance evaluation of na-

ture inspired stochastic vs. conventional deterministic
scheduling algorithms. By means of a comprehensive
test bench, that comprises task graphs with diverse prop-
erties, we determined the absolute performance of those
algorithms with respect to the optimal solutions. Sur-
prisingly, the nature inspired stochastic algorithms out-
performed all the investigated deterministic algorithms.

1 Introduction
The analysis and comparison of scheduling heuris-

tics is subject of many recent publications. The usually
used test sets consist either of randomly generated task
graphs or program traces of mathematical algorithms
(e.g. Gauss-Seidel, Cholesky, ...)• In very few cases,
comparisons to optimal schedules were conducted. Al-
though many authors use big task graphs to evaluate their
heuristics, the number of test cases is rather small.

Unfortunately, most authors do not reveal their test
sets, making it impossible for other scientists to com-
pare their own algorithm to the analyzed ones. For our
best knowledge, Kwok and Ahmad [1] are the only au-
thors who published the used test set on their web-page.
It consists of 350 task graphs of different sizes and is
structured according to the method the task graphs were
produced and the Computation to Communication Ratio
(CCR) which represents the ratio of a task graph's node-
and edge-weights. Since some of the test case classes
consist of only five task graphs, it is possible that a sin-
gle outlier could distort the analysis' results.

For these reasons, we developed a comprehensive
structured test bench with 36000 test cases [2]. The task
graphs were generated randomly and structured concern-
ing the graph's size, its meshing degree, its average edge
length and the node- and edge-weights. To emphasize a
certain graph property (e.g. a high meshing degree), the
random numbers were determined by a Gaussian distrib-
ution. Since this test bench should also provide test cases
which are unbiased with respect to one or more graph at-

tributes, test classes with uniform distributed attributes
are provided as well.

2 Survey of the investigated algorithms
We used the current interim version1 of this test bench

to compare some well known scheduling algorithms,
namely Dynamic Level Scheduling (DLS), Earliest Time
First (ETF) and Modified Critical Path (MCP) with im-
plementations of three nature inspired heuristics, Ant
Colony Optimization Algorithm (ACO), Genetic Algo-
rithm (GA) and Simulated Annealing (SA). Since Kwok
and Ahmad [3] provide a detailed description of the
observed deterministic algorithms, this section concen-
trates on some aspects of our nature inspired heuristics'
implementations. An overview of these meta-heuristics'
general properties is given by Blum and Roll [4], Since
nature inspired heuristics have many parameters for tun-
ing their processing, their results can only represent a
single implementation and its parameter settings but not
the overall meta-heuristics it is based on.

To provide a fair comparison between the nature in-
spired and the deterministic heuristics, we decided not to
make use of a heuristic for the determination of a start-
ing point for the nature inspired algorithms. Otherwise
it would be possible to select the best result of all the de-
terministic algorithms, implying that the nature inspired
heuristics would perform better for every situation.

The process of scheduling a task graph can be subdi-
vided into two phases: the selection of the task which
will be mapped next and the mapping of this task to
an idle processor. Since all of the observed determin-
istic heuristics perform a greedy mapping2, we decided
to reduce the complexity of the nature inspired heuris-
tics' search spaces by reducing their search to the selec-
tion process, too. Therefore, the nature inspired heuris-
tics generate task sequences which are forwarded to a

1 Since the computation is still in progress, only 30511 optimal so-
lution are currently available.

2This means, that a task is mapped to the processor where it can
start as soon as possible.



362

greedy mapping mechanism that allocates the tasks to
the processors. The resulting schedules are returned
to the heuristics for evaluation and optimization of the
search process.

Each individual of the genetic algorithm's population
is a valid task sequence. Its fitness is computed by map-
ping the tasks in the given sequence to the considered
target architecture. To keep the algorithm's runtime low,
every run consists of only 36 generations with 32 in-
dividuals. While testing this algorithm, these settings,
combined with a cross-over rate of 90% and a mutation
rate of 10%, achieved the best results.

The starting temperature of the SA's cooling process
is chosen with respect to the given task graph problem.
The initial task order is generated randomly. To reduce
the probability of getting stuck in local optima in the
late phase of the cooling process, SA uses a proportional
cooling strategy. A task sequence's neighborhood is de-
fined by all sequences where exactly one task is placed
at another position.

While SA and GA operate on complete task or-
ders, ACO's virtual ants evaluate pairs of preceding
and succeeding tasks. Every ant passes all tasks in a
valid sequence and forwards this task sequence to the
greedy mapper which returns the corresponding sched-
ule's length. According to this schedule length a cer-
tain amount of pheromone is distributed equally to all
predecessor/successor pairs belonging to the ant's path.
Succeeding ants can use these information to select their
path through the available tasks.

3 Results

The comprehensive structure of the test bench de-
scribed above as well as the availability of optimal so-
lutions is the base for a more thorough analysis than had
ever been performed before. To point out the limits of
the hitherto used methods, we will start this analysis by
comparing the heuristics relatively to each other and to
the best solution found by one of them. Next, we will
show the additional information that can be achieved by
using our comprehensive test bench: Firstly, by using
the optimal schedules, the algorithms can be scored ab-
solutely. In this way, one gets a more precise view of the
algorithm's real performance. Secondly, the test bench's
structure allows a more detailed examination of the ob-
served heuristic's strengths and weaknesses.

The heuristics were pairwise compared considering
the test bench's 36000 task graph problems3. The re-
sults are presented in table 1, where every cell contains
the comparisons of the two heuristics which are assigned
to the cell's column and row. The uppermost value rep-

resents the number of test cases, where the heuristics'
results differ. The second value relates to the number
of test cases, where the heuristic which belongs to the
cell's row finds worse schedule lengths than the col-
umn's heuristic. The third value describes the inverse
case.

Table 1: Relative comparison of the observed heuristics.

ACO

DLS

ETF

GA

MCP

SA
1721
932
789
19232
19213
19
20631
20604
27
4543
4221
322
19525
19509
16

MCP
19522
16
19506
13447
6632
6815
16867
9523
7344
19425
853
18572

GA
4576
367
4209
19190
18377
813
20505
19795
710

ETF
20614
39
20575
9643
3539
6104

DLS
19220
15
19205

Obviously, the nature inspired algorithms find clearly
better schedules than the deterministic heuristics. While
SA and ACO are by far the most successful of the in-
vestigated algorithms, the GA performs still better than
the deterministic algorithms from which DLS is the best,
followed by MCP and ETF.

The degradation from the best known solution
(degFromBest), is defined by means of the found sched-
ule length SL and the best known schedule length
SLbest as degFromBest = 100 * SLs££*™% • This is
another characteristic parameter which is widely used in
scheduling literature [5]. A high degradation value indi-
cates a strong deviation from the best solution and there-
fore poor results.

Table 2 shows the observed heuristics' degradation
from the best found solution4, averaged over all 36000
test cases. Again, SA and ACO perform much better
than GA. The best deterministic algorithm is DLS, fol-
lowed by MCP and ETF. Although this comparison gives
a very clear view of the algorithms' results' relative qual-
ity, it has three significant disadvantages. Firstly, it still
does not give any clue about the absolute quality of a
heuristic's results. Secondly, since all comparisons are
related to the best known solution, this analysis's results
is strongly dependent of the heuristics selected for analy-
sis. Choosing another set of algorithms could change the

3 Note that this comparison is independent from the optimal solu-
tions.

4This best solution was found by one of the observed heuristics and
might therefore differ from the optimal solution.



363

results to a large extend. Thirdly, every time a heuris-
tic is added for comparison, the whole analysis has to be
repeated.

Table 2: Average degradation from the best solution (in %).

SA
0,048

MCP
3,472

GA
0,423

ETF
3,738

DLS
3,415

ACO
0,054

These disadvantages are eliminated by the knowl-
edge of optimal schedule lengths. Table 3 shows the
heuristic's average degradation from the optimal solu-
tions of 30511 task graph problems. All heuristics per-
form worse than before, because for 5562 test cases
(« 18,22%) none of the heuristics found the optimal so-
lution. For the nature inspired algorithms, the difference
between table 2 and 3 is larger than for the determinis-
tic ones, because they found the best solution more often
and therefore had only few suboptimal test cases which
had to be considered in this analysis.

Table 3: Average degradation from the
optimal solution (in %).

SA
0,707

MCP
4,019

GA
1,039

ETF
4,209

DLS
3,937

ACO
0,723

Figure 1 shows the percentage of test cases, to which
the observed heuristics were able to find optimal solu-
tions. Again SA and ACO perform much better than
GA and the deterministic algorithms. Out of those,
DLS found more optimal schedules than MCP and ETF.
While the difference between the nature inspired and
the deterministic algorithms is quite large, the last-
mentioned behave nearly in the same manner and differ
by only «2,8%.

Fig. 1. Comparison considering the number of found optimal
solutions.

As already mentioned above, the diverse structure of
our test bench allows a thorough analysis of a heuristic's

properties. The following results should give a first im-
pression of possible examinations.

Figure 2 shows the effect of the target architecture's
size on the quality of the heuristics' results. Obviously,
SA and ACO perform better than all other heuristics. Ex-
cept for target architectures with 2 processors, where S A
finds «2,67% more optimal schedules. While ACO is al-
most unaffected by the target architecture's size, GA and
the deterministic heuristics find optimal solutions more
frequently, if the target architecture's size does not limit
the parallelism of the schedule. Again, DLS performs
better than MCP and ETF.

10 15 20

Target Architecture's size

Fig. 2. Influence of the target architecture's size.

As can be seen in figure 2, SA is the only heuristic
which finds more optimal schedules if the target archi-
tecture is small. Its success rate in finding an optimal
solution drops from 84,21% for target systems with only
two processors to approximately 80% for larger systems.
Figure 3 shows, that for all target architecture sizes SA
has clearly more difficulties in finding optimal schedules
if the task graph has predominantly long edges. In con-
trast, DLS performs slightly better for task graphs with
long edges if the target architecture is large.

Our investigation's next focus is the effect of the task
graph's size on the quality of the found solutions. As can
be seen in figure 4, the percentage of found optimal so-
lutions decreases, when the task graphs' size increases.
Nevertheless, SA and ACO scale better than GA which
in turn performs much better than the deterministic algo-
rithms. In contrast to SA, whose success rate drops from
87,42% to 72,58% (this is a difference of 14,84%), the
MCP algorithm's success rate in finding optimal sched-
ules drops by 52,36%.

With respect to the fact that most publications in liter-
ature use larger task graphs, with sometimes even more
than 1000 tasks, the question arises, if the here presented



364

- •

- / " "

• /

DLS/short Edges
DLS/long Edges
SA/short Edges .
SA/long Edges

Target Architecture's size

Fig. 3. Effect of the average edge length on SA's and DLS's
success rate in finding optimal schedules.

8 10 12 14 16 18 20 22 24

Task graph's size

Fig. 4. Impact of the task graphs' size.

results are of any meaning to real world scheduling prob-
lems. In order to answer this question, we created an-
other test bench which follows the same structure as the
described one, but which consists of task graphs with up
to 250 tasks. A representative test bench with larger task
graphs would require too much hard disk space. First re-
sults with the large task graphs indicate, that the above
observations will mainly hold for scheduling problems
with larger task graphs (see table 4 for details).

4 Conclusion
In this paper, two different kinds of heuristic schedul-

ing algorithms were compared: nature inspired stochas-
tic and conventional deterministic algorithms. Our in-
vestigations are based on a comprehensive test bench
that provides optimal schedules for 30511 test cases and
therefore allows an elaborated comparison of heuristic

algorithms. It could be clearly shown that the nature
inspired algorithms outperform the conventional ones.
Thus, future research in scheduling algorithms should
pay more attention to this approach.

Table 4: Relative comparison with respect to larger task graph
problems (up to 250 tasks).

ACO

DLS

ETF

GA

MCP

SA
29056
20303
8753
34401
29612
4789
34750
30393
4357
32151
29047
3104
34354
28553
5801

MCP
34105
9167
24938
32645
17320
15325
33818
21120
12698
34294
15687
18607

GA
31904
5570
26334
34358
19361
14997
34652
22066
12586

ETF
34741
6901
27840
31746
11505
20241

DLS
34194
8462
25732

Acknowledgments: The authors would like to thank
Mr. Markus Bank for developing the observed heuristics
as part of his diploma thesis.

References
[1] Kwok, Y.-K., Ahmad, I. (1998) Benchmarking the

Task Graph Scheduling Algorithms, Proceedings of
the 12th International Parallel Processing Sympo-
sium, pp. 531-537

[2] Honig, U., Schifrmann, W. (2004) A comprehensive
Test Bench for the Evaluation of Scheduling Heuris-
tics, Proceedings of the sixteenth IASTED Interna-
tional Conference on Parallel and Distributed Com-
puting and Systems (PDCS 2004), pp. 437-442

[3] Kwok, Y.-K., Ahmad, I. (1999) Static scheduling al-
gorithms for allocating directed task graphs to mul-
tiprocessors. ACM Computing Surveys, Vol. 31, No.
4, pp. 406-471

[4] Blum, C, Roli, A. (2003) Metaheuristics in Com-
binatorial Optimization: Overview and Conceptual
Comparison, ACM Computing Surveys, Vol. 35,
No. 3

[5] Dail, H., Casanova, H., Berman, F. (2002) A Decou-
pled Scheduling Approach for the GrADS Program
Development Environment, Proceedings of the 2002
ACM/IEEE conference on Supercomputing, pp. 1-
14




