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Generating Sequential Triangle Strips by Using Hopfield Nets
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Abstract

The important task of generating the minimum number of
sequential triangle strips (tristrips) for a given triangulated sur-
face model is motived by applications in computer graphics.
This hard combinatorial optimization problem is reduced to
the minimum energy problem in Hopfield nets by a linear-size
construction. The Hopfield network powered by simulated an-
nealing (i.e. Boltzmann machine) which is implemented in a
program HTGEN can be used for computing the semi-optimal
stripifications. Practical experiments confirm that one can ob-
tain much better results using HTGEN than by a leading stripi-
fication program FTSG although the running time of simulated
annealing grows rapidly near the global optimum.

1 Sequential triangular strips

Piecewise-linear surfaces defined by sets of triangles
(triangulation) are widely used representations for geo-
metric models. Computing a succinct encoding of a tri-
angulated surface model represents an important prob-
lem in graphics and visualization. Current 3D graph-
ics rendering hardware often faces a memory bus band-
width bottleneck in the processor-to-graphics pipeline.
Apart from reducing the number of triangles that must
be transmitted it is also important to encode the triangu-
lated surface efficiently. A common encoding scheme is
based on sequential triangle strips which avoid repeating
the vertex coordinates of shared triangle edges. Trian-
gle strips are supported by several graphics libraries (e.g.
IGL, PHIGS, Inventor, OpenGL).

In particular, a sequential triangle strip (hereafter
briefly tristrip) of length m — 2 is an ordered sequence of
m > 3 vertices a = (v\,..., vm) which encodes m — 2
different triangles {vp, vp+i, Vp+2} for 1 < p < m — 2
so that their shared edges follow alternating left and right
turns as indicated in Figure 1 by a dashed line. Thus
a triangulation consisting of a single tristrip with n tri-
angles allows transmitting of only n + 2 (rather than
3n) vertices. In general, a triangulated surface model
T with n triangles that is decomposed into k tristrips
£ = {oi,..., ak} requires only n + 2k vertices to be

transmitted. A crucial problem is to decompose a tri-
angulated surface model into the fewest tristrips. This
stripification problem has recently been proved to be NP-
complete in article [1] which also contains relevant ref-
erences. In the present paper a new method of generat-
ing tristrips S for a given triangulated surface model T
with n triangles is proposed which is based on a linear-
time reduction to the minimum energy problem in Hop-
field network HT having O(n) units and connections.
This approach has been inspired by a more complicated
and incomplete reduction (sequential cycles were not ex-
cluded) introduced in [2].
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Fig. 1. Tristrip (1,2,3,4,5,6,3,7,1).

The paper is organized as follows. After a brief re-
view of the basic definitions concerning Hopfield nets
in Section 2, the main construction of Hopfield network
HT for a given triangulation T is described in Section 3.
The correctness of this reduction has formally been veri-
fied [3] by proving a one-to-one correspondence between
the optimal stripifications of T and the minimum energy
states in WT- Thus, %T combined with simulated an-
nealing (i.e. Boltzmann machine) has been implemented
in a program HTGEN which is compared against a lead-
ing stripification program FTSG in Section 4. Practical
experiments show that HTGEN can compute much bet-
ter stripifications than FTSG although the running time
of HTGEN grows rapidly when the global optimum is
being approached.

2 The minimum energy problem
Hopfield networks [4] having well-constrained con-

vergence behavior represent a very influential associative
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memory model which is connected to the much-studied
Ising spin glass model in statistical physics [5]. Part of
the appeal of Hopfield nets also stems from their natu-
ral hardware implementations using electrical networks
or optical computers, and their application in combina-
torial optimization [6].

Formally, a Hopfield network is composed of s com-
putational units or neurons, indexed as l , . . . , s , that
are connected into undirected graph or architecture, in
which each connection between unit i and j is labeled
with an integer symmetric weight w{i^j) = w(i, j).
The absence of a connection within the architecture indi-
cates a zero weight between the respective neurons, and
vice versa. For example, w(j,j) = 0 is assumed for
j = 1 , . . . , s. The sequential discrete dynamics of such a
network is here considered, in which the evolution of the
network state y<*> = (j/f \ . . . , y]p) G {0,1}S is deter-
mined for discrete time instants t = 0 , 1 , . . . , as follows.
The initial state y(°) may be chosen arbitrarily, e.g.
y(°) = ( 0 , . . . , 0). At discrete time t > 0, the excitation

of any neuron j is defined as £J ' = Xw=i w(^J)Vi ~
h(j) including an integer threshold h(j) local to unit j .
At the next instant t + 1, one (e.g. randomly) selected
neuron j computes its new output yj = H(£j ) by
applying the Heaviside activation function H, that is, j is
active when H(£) = 1 for £ > 0 while j is passive when
H(£) = 0 for f < 0. The remaining units do not change
their states, i.e. yj*+1) = y^ for i ^ j . In this way the
new network state y^+ 1 ) at time t + 1 is determined.

Also macroscopic time r = 0 ,1 ,2 , . . . is intro-
duced during which all the units in the network are
updated. A computation of a Hopfield net converges
or reaches a stable state y(r*^ at macroscopic time
r* > Oify ( T* J = y ( r * + 1 ) . The well-known fun-
damental property of a symmetric Hopfield net is that
its dynamics is constrained by energy function E(y) =

- | £ ; = i £ ; = i w ( U t o + ES=iMi)% which is
a bounded function defined on its state space whose
value decreases along any nonconstant computation path
(f W zfz 0 is assumed without loss of generality). It fol-
lows from the existence of such a function that start-
ing from any initial state the network converges towards
some stable state corresponding to a local minimum of
E [4]. Thus the cost function of a hard combinatorial
optimization problem can be encoded into the energy
function of a Hopfield net which is then minimized in
the course of computation. Hence, the minimum energy
problem of finding a network state with minimum en-
ergy is of special interest. Nevertheless, this problem is
in general NP-complete [5] (see [7] for related results).

A stochastic variant of Hopfield model called the
Boltzmann machine [8] is also considered in which ran-

domly selected unit j becomes active at time t + 1, i.e.
yf+l) = 1, with probability P{tf) which is com-
puted by applying the probabilistic activation function
P : R —> (0,1) defined as P(f) = 1/(1 + e - 2 ^ T ( r ) )
where T^ > 0 is a so-called temperature at micro-
scopic time r > 0. This parameter is controlled by
simulated annealing, e.g. T ( r ) = T (°Vlog(l + r) for
sufficiently high initial temperature T^°\ The simulated
annealing is a powerful heuristic method for avoiding the
local minima in combinatorial optimization.

3 The reduction
For the purpose of reduction the following definitions

are introduced. Let T be a set of n triangles that rep-
resents a triangulated surface model homeomorphic to a
sphere in which each edge is incident to at most two tri-
angles. An edge is said to be internal if it is shared by
exactly two triangles; otherwise it is a boundary edge.
Denote by / the set of internal edges in triangulation T.
Furthermore, a sequential cycle is a "cycled tristrip", that
is, an ordered sequence of vertices C = (vi,..., vm)
where m > 4 is even, which encodes m - 2 different
triangles {vp,vp+i,vp+2} for 1 < p < m — 2 so that
vm-i = vi and vm — V2. Also denote by Ic and Be
the sets of internal and boundary edges of sequential cy-
cle C, respectively, that is Ic — {{vP, ^p+i} ; 1 < P <
m - 2} and Be = {{vp, Vp+2} ; 1 < p < m - 2}. An
example of the sequential cycle is depicted in Figure 2
where its internal and boundary edges are indicated by
dashed and dotted lines, respectively. In addition, let C
be the set of all sequential cycles in T.

For each sequential cycle C G C one unique represen-
tative internal edge ec £ Ic c a n t>e chosen as follows.
Start with any cycle C G C and choose any edge from Ic
to be its representative edge ec- Observe that for a fixed
orientation of triangulated surface any internal edge fol-
lows either left or right turn corresponding to at most two
sequential cycles. Thus denote by C the sequential cy-
cle having no representative edge so far which shares its
internal edge ec G Ic H Ic with C if such C exists;
otherwise let C be any sequential cycle with no repre-

Fig. 2. Sequential cycle (1,2,3,4,5,6,1,2).
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sentative internal edge or stop if all the sequential cycles
do have their representative edges. Further choose any
edge from Ic \ {ec} to be the representative edge ec
of C" and repeat the previous step with C replaced by
C". Clearly, each edge represents at most one cycle be-
cause set Ic \ {ec} ¥" $ always contains only edges that
do not represent any cycle so far. If it were not the case
then another sequential cycle C" different from C would
obtain its representative edge ec from Ic n Ic and
hence a representative edge would already be assigned
to C" before C is considered.

Hopfield network HT corresponding to triangulation
T will now be constructed. With each internal edge
e = {v\yV2} G / two neurons £e and re are asso-
ciated whose states either yte = 1 or yre = 1 indi-
cate that e follows the left or right turn, respectively,
along a tristrip according to the chosen orientation of
triangulated surface. Let Le = {e3ei,e2,e3,e4} with
d = {^1,^3}, e2 = {^2,^3}* e3 = {v2,v4}9 and
e4 = {^1,^4} be the set of edges of the two triangles
{^1,^2,^3}, {VI,V2,VA} that share edge e. Denote by
Je = {tf,rf ; / G Le n / } the set of neurons local
to e that are associated with the internal edges from Le .
Unit £e is connected with all neurons from Je via neg-
ative weights except for units re2 (if e2 G / ) , £e, and
re4 (if e4 G / ) whose states may encode a tristrip that
traverses edge e by the left turn. Such a situation (for
Le C / ) is depicted in Figure 3 where the edges shared
by triangles within the tristrip together with associated
active neurons re2, £e,re4 are marked. Similarly, unit re

is connected with neurons from Je except for units £ei

(if e\ G / ) , re, and £e3 (if e$ G / ) corresponding to
the right turn. Thus for each internal edge e G / define
weights w(i,£e) = - 7 for i G Je \ { r e 2 , 4 , r e 4 } and
w(i,re) = - 7 f o r z G Je \ { 4 i , r e , 4 3 } - Hence, the
states of Hopfield network HT with the negative sym-
metric weights which enforce locally the alternation of
left and right turns encode tristrips. Furthermore, for
each representative edge ec (C G C) define jc = £ec

if ec follows the left turn along sequential cycle C or
j c = rec if ec follows the right turn along C. Let
J = [jc ; C G C} be the set containing all such neu-
rons whereas J' = {£e,re # J; e G / } denotes its
complement. The thresholds of neurons associated with
internal edges are defined as h(j) = - 5 -f 2be^ for
j G J ' and h(j) = 1 + 26cy) forj G J where e(j) = e
for j G { 4 , r e } and&e = \{C G C; e G fl^}| < 2 for

Nevertheless, Hopfield network H T rnust also avoid
the states encoding cycled strips of triangles around se-
quential cycles [1]. Such infeasible states would have
less energy E than those encoding the optimal stripifica-
tions [3]. For this purpose, two auxiliary neurons dc> ac

Fig. 3. The construction of HT related to e € I.

are introduced for each sequential cycle C G C. Unit dc
computes the disjunction of outputs from all neurons i
associated with boundary edges e(i) G B'c of C which,
being active, enables the activation of unit jc associated
with representative edge e<?. Hence, any tristrip may
pass through edge ec along the direction of C only if a
boundary edge of C is is a part of another tristrip cross-
ing the sequential cycle C. This ensures that the states of
Hopfield network HT do not encode sequential cycles.
In addition, unit ac balances the contribution of dc to
energy E when jc is passive. As depicted in Figure 4
this is implemented by thresholds h(dc) = h(ac) = 1
and symmetric weights w(i,dc) = w(dc,i) = 2 for
e(i) G B'c, w(dc,jc) = w(jc,dc) = 7, w(dc,ac) =
w(ac,dc) = 2, and w(jc,ac) = w(acjc) = -2,
for each sequential cycle C G C. This completes the
construction of Hopfield network HT-

Moreover, observe that the number of units s = 2 | / | +
2\C\ (similarly the number of connections) in HT is lin-
ear in terms of triangulation size n — \T\ because the
number of sequential cycles \C\ can be upper bounded
by 2 | / | = O(n) since each internal edge can belong to

Fig. 4. The construction of HT related to C G C.
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Table 1. The average number of tristrips for "grid" models obtained by HTGEN and FTSG

n I HTGEN I FTSG

392

1152

2312

T ( 0 ) = 5, e = 0.3
88
r* = 2 3 (0.10s)
T ( 0 ) =5,6 = 0.1
243
T* = 442 (0.76s)
T ( 0 ) =7,e = 0.1
404
r* = 117 (5.31s)

T ( 0 ) = 10, e = 0.05
63
T* = 166 (0.72s)
T ( 0 ) = 10, 6 = 0.05
172
r* = 347 (6.01s)
T ( 0 ) = 10, e = 0.05
337
r* =489 (21.29s)

T ( 0 ) = 18, e = 0.01
53
r* = 1648 (7.21s)
T ( 0 ) = 15,6 = 0.1
151
r* = 1107 (18.99s)
T ( 0 ) = 15,6 = 0.1
297
r* = 1967 (86.28s)

67

187

373

at most two cycles. In addition, it has been proved [3]
that the classes of equivalent optimal stripifications of T
are mapped one to one to the minimum energy states that
are reached during any sequential computation by HT
starting at the zero initial state (or %T can be initialized
arbitrarily if one asymmetric weight is introduced).

4 Experiments
A C++ program HTGEN has been created to automate

the reduction from Section 3 including the simulation
of Hopfield network %T using simulated annealing (see
Section 2). The input for HTGEN is an object file (in
the Wavefront .obj format) describing triangulated sur-
face model T by a list of geometric vertices with their
coordinates followed by a list of triangular faces each
composed of three vertex reference numbers. The pro-
gram generates corresponding HT which then computes
stripification of T. This is extracted from final stable
state ŷ 7"*) ofHr at microscopic time r* into an output
.obj file containing a list of tristrips together with vertex
data. The user may control the Boltzmann machine by
specifying the initial temperature T(o) and the stopping
criterion e given as the maximum percentage of unstable
units at the end of stochastic computation.

Program HTGEN has been compared against a lead-
ing practical system FTSG that computes stripifica-
tions [1]. Apart from other data, experiments have been
conducted using "grid" models which are generated by
randomly triangulating each square in a b x b regular grid
containing of n = 2(6 - 1 ) 2 triangles. The average num-
ber of tristrips obtained by HTGEN and FTSG are sum-
marized in Table 1 where 10 random models were used
for each grid size b = 15,25,35. The results from HT-
GEN were further averaged for each model over 10 tri-
als of simulated annealing applied for three different ini-
tial temperatures T^ and stopping criteria e. The cor-
responding average convergence times r* together with
the running times in seconds (on common PC) increase
as T ( o ) increases (and e decreases). Thus T ( o ) controls

the trade-off between the running time and the quality
of stripification. One can achieve much better results
by HTGEN than by using FTSG with its most success-
ful options (-dfs, -alt) although the running time of HT-
GEN grows rapidly when the global optimum is being
approached. As concerns the time complexity, system
HTGEN cannot compete with real-time program FTSG
providing the stripifications within a few milliseconds.
Nevertheless, HTGEN can be useful if one is interested
in the stripification with a small number of tristrips at a
preprocessing stage.
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