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Abstract

The important task of generating the minimum number of
sequential triangle strips (tristrips) for a given triangulated sur-
face model is motived by applications in computer graphics.
This hard combinatorial optimization problem is reduced to
the minimum energy problem in Hopfield nets by a linear-size
construction. The Hopfield network powered by simulated an-
nealing (i.e. Boltzmann machine) which is implemented in a
program HTGEN can be used for computing the semi-optimal
stripifications. Practical experiments confirm that one can ob-
tain much better results using HTGEN than by a leading stripi-
fication program FTSG although the running time of simulated
annealing grows rapidly near the global optimum.

1 Sequential triangular strips

Piecewise-linear surfaces defined by sets of triangles
(triangulation) are widely used representations for geo-
metric models. Computing a succinct encoding of a tri-
angulated surface model represents an important prob-
lem in graphics and visualization. Current 3D graph-
ics rendering hardware often faces a memory bus band-
width bottleneck in the processor-to-graphics pipeline.
Apart from reducing the number of triangles that must
be transmitted it is also important to encode the triangu-
lated surface efficiently. A common encoding scheme is
based on sequential triangle strips which avoid repeating
the vertex coordinates of shared triangle edges. Trian-
gle strips are supported by several graphics libraries (e.g.
IGL, PHIGS, Inventor, OpenGL).

In particular, a sequential triangle strip (hereafter
briefly tristrip) of length m — 2 is an ordered sequence of
m > 3 vertices ¢ = (v1,. .., V) which encodes m — 2
differént triangles {vp, Upt1,Vpt2} for1 <p <m —2
so that their shared edges follow alternating left and right
turns as indicated in Figure 1 by a dashed line. Thus
a triangulation consisting of a single tristrip with n tri-
angles allows transmitting of only n + 2 (rather than
3n) vertices. In general, a triangulated surface model
T with n triangles that is decomposed into % tristrips
¥ = {o1,...,0k} requires only n + 2k vertices to be
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transmitted. A crucial problem is to decompose a tri-
angulated surface model into the fewest tristrips. This
stripification problem has recently been proved to be NP-
complete in article [1] which also contains relevant ref-
erences. In the present paper a new method of generat-
ing tristrips ¥ for a given triangulated surface model T'
with n triangles is proposed which is based on a linear-
time reduction to the minimum energy problem in Hop-
field network Hr having O(n) units and connections.
This approach has been inspired by a more complicated
and incomplete reduction (sequential cycles were not ex-
cluded) introduced in [2].

Fig. 1. Tristrip (1,2,3,4,5,6,3,7,1).

The paper is organized as follows. After a brief re-
view of the basic definitions concerning Hopfield nets
in Section 2, the main construction of Hopfield network
‘Hr for a given triangulation T is described in Section 3.
The correctness of this reduction has formally been veri-
fied 3] by proving a one-to-one correspondence between
the optimal stripifications of 7" and the minimum energy
states in Hp. Thus, Hr combined with simulated an-
nealing (i.e. Boltzmann machine) has been implemented
in a program HTGEN which is compared against a lead-
ing stripification program FTSG in Section 4. Practical
experiments show that HTGEN can compute much bet-
ter stripifications than FTSG although the running time
of HTGEN grows rapidly when the global optimum is
being approached.

2 The minimum energy problem

Hopfield networks [4] having well-constrained con-
vergence behavior represent a very influential associative
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memory model which is connected to the much-studied
Ising spin glass model in statistical physics [5]. Part of
the appeal of Hopfield nets also stems from their natu-
ral hardware implementations using electrical networks
or optical computers, and their application in combina-
torial optimization {6].

Formally, a Hopfield network is composed of s com-
putational units or neurons, indexed as 1,...,s, that
are connected into undirected graph or architecture, in
which each connection between unit 7 and j is labeled
with an integer symmetric weight w(i,j) = w(i,j).
The absence of a connection within the architecture indi-
cates a zero weight between the respective neurons, and
vice versa. For example, w(j,j) = 0 is assumed for
j =1,...,s. The sequential discrete dynamics of such a
network is here cons1dered in which the evolution of the
network state y(* (y . ,ygt)) € {0,1}" is deter-
mined for dlscrete time mstants t=20,1,..., as follows.
The initial state y(©) may be chosen arbitrarily, e.g.
y©@ =(0,...,0). At discrete tlme t > 0, the excztatton

of any neuron j is defined as §j =37, w(z,])yi
h(j) including an integer threshold h(j) local to unit j.
At the next instant £ + 1, one (e.g. randomly) selected
neuron j computes its new output y§t+l =H (§](.t)) by
applying the Heaviside activation function H, that s, j is
active when H (&) = 1for £ > 0 while j is passive when
H(&) = 0 for £ < 0. The remaining units do not change
their states, 1.e. y(t“) (t for i # j. In this way the
new network state y(t+1) at time ¢t + 1 is determined.
Also macroscopic time T = 0,1,2,... is intro-
duced during which all the units in the network are
updated. A computation of a Hopfield net converges
or reaches a stable state y{™") at macroscopic time
™ > 0if yO) = y("+1)_ The well-known fun-
damental property of a symmetric Hopfield net is that
its dynamics is constrained by energy function E(y) =
—3 Yt Tim Wi yiy; + Xjoy h(5)y; which s
a bounded function defined on its state space whose
value decreases along any nonconstant computation path
f(t) # 0 is assumed without loss of generality). It fol-
Iows from the existence of such a function that start-
ing from any initial state the network converges towards
some stable state corresponding to a local minimum of
E [4]. Thus the cost function of a hard combinatorial
optimization problem can be encoded into the energy
function of a Hopfield net which is then minimized in
the course of computation. Hence, the minimum energy
problem of finding a network state with minimum en-
ergy is of special interest. Nevertheless, this problem is
in general NP-complete [5] (see [7] for related results).
A stochastic variant of Hopfield model called the
Boltzmann machine [8] is also considered in which ran-

domly selected unit j becomes active at time ¢ + 1, i.e.

(tH) = 1, with probability P(E( )) which is com-
puted by applying the probablhstlc activation function
P:R — (0,1) defined as P(€) = 1/(1 + e~26/T7)
where T¢") > 0 is a so-called temperature at micro-
scopic time 7 > 0. This parameter is controlled by
simulated annealing, e.g. T(") = T /log(1 + 7) for
sufficiently high initial temperature 7(®). The simulated
annealing is a powerful heuristic method for avoiding the
local minima in combinatorial optimization.

3 The reduction

For the purpose of reduction the following definitions
are introduced. Let T be a set of n triangles that rep-
resents a triangulated surface model homeomorphic to a
sphere in which each edge is incident to at most two tri-
angles. An edge is said to be internal if it is shared by
exactly two triangles; otherwise it is a boundary edge.
Denote by I the set of internal edges in triangulation 7.
Furthermore, a sequential cycle is a “cycled tristrip”, that
is, an ordered sequence of vertices C = (v1,...,Um)
where m > 4 is even, which encodes m — 2 different
triangles {vp, Up41,Vp42} for 1 < p < m — 2 so that
Um—1 = v1 and v, = vy. Also denote by I and Be
the sets of internal and boundary edges of sequential cy-
cle C, respectively, that is Ic = {{vp,vp+1};1 < p <
m — 2} and B¢ = {{vp,Vp42};1 < p<m~—2}. An
example of the sequential cycle is depicted in Figure 2
where its internal and boundary edges are indicated by
dashed and dotted lines, respectively. In addition, let C
be the set of all sequential cycles in 7.

For each sequential cycle C € C one unique represen-
tative internal edge ec € I can be chosen as follows.
Start with any cycle C' € C and choose any edge from I¢
to be its representative edge ec. Observe that for a fixed
orientation of triangulated surface any internal edge fol-
lows either left or right turn corresponding to at most two
sequential cycles. Thus denote by C’ the sequential cy-
cle having no representative edge so far which shares its
internal edge ec € Ic N Ier with C if such C’ exists;
otherwise let C' be any sequential cycle with no repre-

Fig. 2. Sequential cycle (1,2,3,4,5,6,1,2).



sentative internal edge or stop if all the sequential cycles
do have their representative edges. Further choose any
edge from Ic: \ {ec} to be the representative edge ec:
of C’ and repeat the previous step with C replaced by
C'. Clearly, each edge represents at most one cycle be-
cause set Icr \ {ec} # 0 always contains only edges that
do not represent any cycle so far. If it were not the case
then another sequential cycle C* different from C would
obtain its representative edge ec+ from Ic» N Io» and
hence a representative edge would already be assigned
to C’ before C is considered.

Hopfield network ‘He corresponding to triangulation
T will now be constructed. With each internal edge
e = {v1,v2} € I two neurons £, and r. are asso-
ciated whose states either y,, = 1 or y,, = 1 indi-
cate that e follows the left or right turn, respectively,
along a tristrip according to the chosen orientation of
triangulated surface. Let L, = {e,e1,e3,e3,e4} with
e = {'U]_,’Ug}, €y = {’l)2,’l)3}, ez = {'Uz,vl;}, and
es = {v1,vs} be the set of edges of the two triangles
{v1,v2,v3}, {v1,v2,v4} that share edge e. Denote by
Je = {€s,ry; f € Le N I} the set of neurons local
to e that are associated with the internal edges from L..
Unit £, is connected with all neurons from J, via neg-
ative weights except for units r., (if e; € I), £, and
re, (if e4 € I) whose states may encode a tristrip that
traverses edge e by the left turn. Such a situation (for
L, C I)is depicted in Figure 3 where the edges shared
by triangles within the tristrip together with associated
active neurons 7, , £, 7., are marked. Similarly, unit r,
is connected with neurons from J. except for units £,
(if ey € I), 7., and £, (if e3 € I) corresponding to
the right turn. Thus for each internal edge e € I define
weights w(i,€.) = =7 fori € Je \ {rep, e, Te, } and
w(i,re) = —Tfori € Je \ {le,,Te, Le; }. Hence, the
states of Hopfield network Hr with the negative sym-
metric weights which enforce locally the alternation of
left and right turns encode tristrips. Furthermore, for
each representative edge ec (C € C) define jo = £,
if ec follows the left turn along sequential cycle C or
Jjo = re. if ec follows the right tumn along C. Let
J = {jo; C € C} be the set containing all such neu-
rons whereas J' = {l.,r. & J;e € I} denotes its
complement. The thresholds of neurons associated with
internal edges are defined as h(j) = —5 + 2b,;) for
j € J and h(j) = 1 + 2b(;) for j € J where e(j) = e
forj € {€c,rc} and b, = [{C € C; e € By}| <2 for
By = B \ L.

Nevertheless, Hopfield network Hz must also avoid
the states encoding cycled strips of triangles around se-
quential cycles [1]. Such infeasibie states would have
less energy E than those encoding the optimal stripifica-
tions [3]. For this purpose, two auxiliary neurons d¢, ac
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Fig. 3. The construction of Hy related toe € 1.

are introduced for each sequential cycle C € C. Unitde
computes the disjunction of outputs from all neurons ¢
associated with boundary edges e(i) € By, of C which,
being active, enables the activation of unit j< associated
with representative edge ec. Hence, any tristrip may
pass through edge ec along the direction of C only if a
boundary edge of C is is a part of another tristrip cross-
ing the sequential cycle C'. This ensures that the states of
Hopfield network 7 do not encode sequential cycles.
In addition, unit ac balances the contribution of d¢ to
energy I when jc is passive. As depicted in Figure 4
this is implemented by thresholds h(d¢c) = h(ac) = 1
and symmetric weights w(i,d¢) = w(dc,i) = 2 for
e(t) € Bg, w(de, je) = w(jc,dc) = 7, w(dc,ac) =
w(ac,dc) = 2, and w(jc,ac) = w(ac,jc) = -2,
for each sequential cycle C € C. This completes the
construction of Hopfield network Hr.

Moreover, observe that the number of units s = 2|I|+
2|C| (similarly the number of connections) in Hr is lin-
ear in terms of triangulation size n = |T'| because the
number of sequential cycles |C| can be upper bounded
by 2|I| = O(n) since each internal edge can belong to

Fig. 4. The construction of Hy related to C € C.
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Table 1. The average number of tristrips for “grid” models obtained by HTGEN and FTSG

n_ | HTGEN | FTSG
TO =5,6=03 | T =10, =0.05 | T® =18, =0.01

392 | 88 63 53 67
™ = 23(0.10s) T = 166 (0.72s) 7* = 1648 (7.21s)
T =5,¢e=01 | T® =10, =005 | T® =15¢=0.1

1152 | 243 172 151 187

" = 442 (0.76s)

7" = 347 (6.01s)

7" = 1107 (18.99s)

7O =7 6=0.1

T© =10,¢ = 0.05

TO =15, =0.1

2312 | 404 337
7" =117 (5.31s)

at most two cycles. In addition, it has been proved [3]
that the classes of equivalent optimal stripifications of T’
are mapped one to one to the minimum energy states that
are reached during any sequential computation by Hp
starting at the zero initial state (or H can be initialized
arbitrarily if one asymmetric weight is introduced).

4 Experiments

A C++ program HTGEN has been created to automate
the reduction from Section 3 including the simulation
of Hopfield network #r using simulated annealing (see
Section 2). The input for HTGEN is an object file (in
the Wavefront .obj format) describing triangulated sur-
face model T by a list of geometric vertices with their
coordinates followed by a list of triangular faces each
composed of three vertex reference numbers. The pro-
gram generates corresponding 77 which then computes
stripification of 7". This is extracted from final stable
state y("") of H at microscopic time 7* into an output
.obj file containing a list of tristrips together with vertex
data. The user may control the Boltzmann machine by
specifying the initial temperature T(9 and the stopping
criterion € given as the maximum percentage of unstable
units at the end of stochastic computation.

Program HTGEN has been compared against a lead-
ing practical system FTSG that computes stripifica-
tions [1]. Apart from other data, experiments have been
conducted using “grid” models which are generated by
randomly triangulating each square in a b x b regular grid
containing of n = 2(b— 1)? triangles. The average num-
ber of tristrips obtained by HTGEN and FTSG are sum-
marized in Table 1 where 10 random models were used
for each grid size b = 15,25,35. The results from HT-
GEN were further averaged for each model over 10 tri-
als of simulated annealing applied for three different ini-
tial temperatures T(®) and stopping criteria €. The cor-
responding average convergence times 7* together with
the running times in seconds (on common PC) increase
as T(® increases (and € decreases). Thus T controls

7" = 489 (21.29s)

297 373
7" = 1967 (86.28s)

the trade-off between the running time and the quality
of stripification. One can achieve much better results
by HTGEN than by using FTSG with its most success-
ful options (-dfs, -alt) although the running time of HT-
GEN grows rapidly when the global optimum is being
approached. As concerns the time complexity, system
HTGEN cannot compete with real-time program FTSG
providing the stripifications within a few milliseconds.
Nevertheless, HTGEN can be useful if one is interested
in the stripification with a small number of tristrips at a
preprocessing stage.
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