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Abstract
Updating steps in a backpropagation neural network

with multiplicative factors u > 1 and d < 1 has been
presented by several authors. The istatistics field of Sto-
chastic Approximation has a close relation with back-
propagation algorithms. Recent theoretical results in this
field show that for functions of one variable, different
values of u and d can produce very different results: fast
convergence at the cost of a poor solution, slow conver-
gence with a better solution, or produce a fast move to-
wards a solution but without converging. To speed up
backpropagation in a simple manner we propose a batch
step adaptation technique for the online backpropagation
algorithm based on theoretical results on simple cases.

1 Introduction
Speeding up backpropagation has been a constant

challenge and several techniques has been applied like
using second order information [4].

Also several works on multiplicative step update
where developed [5,6,8] and each of them uses the com-
mon update algorithm

It =
It-i

It-i

if condition C
otherwise

where u > 1 and 0 < d < 1 are real parameters. Pos-
sibly variable j t is guaranteed to be limited 0 < Yd <
it < r u .

Condition C could be a gradient condition [5] or a
condition on the quadratic error [6,8]. In both cases the
quadratic error

Et = E(Wt,x,d) = -d)2

i l
(2)

is to be minimized, with (x, d) being the pattern pre-
sented at the iteration, Wt is the weight vector that de-
scribes net state, and NET; is the ith output of the neural
network.

Gradient condition uses change of signs: if

SEt

Sw Sw
(3)

then step must be incremented otherwise reduced. Dif-
ferent updates are going to occur for each weight w in
the net parameters W = (w0, wi,...,wn).

Another type of condition is the error condition which
is based on increases or decreases of global error AEt

causing the step to change.
We propose an algorithm that uses a gradient condi-

tion for step update. Next we present theoretic results
that are guides to the proposed algorithm.

2 Stochastic Approximation and New results
Many problems in Stochastic Approximations are de-

scribed as the following. Consider the problem of
searching for the zero point of a function, according to
the stochastic approximation procedure

(4)

(5)Vt = <p(xt) +

where <p is the function under consideration, xt means
the tth approximation of the zero x* of <p, yt is the tth
disturbed observation of <p with random disturbance &.

If step size values j t of the procedure (4), (5) are de-
terministic and satisfy oo, Yllt < °°» m e

sequence of xt is proved to converge to x* [2]. There
are various versions of (4) and (5) aiming at accelerat-
ing convergence of xt. We are concentrating here on the
methods using step size adaptation in the course of algo-
rithm, decreasing j t every time that the two consecutive
differences Ax t - i = jt-iVt-i and Axt = 7tVt have
the same sign, and increasing *yt, otherwise.

Consider the following update rule

It =
djt-i

if
if

yt-iyt > o,
yt-iyt < o,

(6)

t = 2 , 3 , . . . is used. Here 0 < d < I < u, 0 < 7 0 <
r u , 71 e {min{u7O,r},d7o}, r

u is a positive con-
stant. Let us point out the main differences with standard
algorithm. Suppose that {ft} is a sequence of i.i.d.r.v.
with zero mean, besides P(ft > 0) = P(& < 0). Under
some additional assumptions on ip, f u and F u , stated be-
low, the process defined by (4), (5), (6) a.s. diverges if



23

ud > 1, and converges if ud < 1. In fact this algorithm
can converge to a region near one of the zeros of (p. See
[7] for details.

3 Batch Step Update and Backpropagation
Using the above algorithm with feed forward neural

networks is not possible since partial derivatives changes
sign very frequently indicating a non smooth surface and
this cause a fast step decrease and a very poor solution is
reached.

However, using constant step, one can observe two
facts about a weight w. We use wt to indicate the se-
quence of values of some predetermined weight of the
vector of parameters W. First fact is that during pattern
presentation wt oscilates frequently, causing the training
to freeze. The second fact is that observing wt values
after the full training set has been used one notice that
Wt doesn't oscilate, doing some progression on the same
direction each batch time. Change of weight direction
occurs but not frequently as after each pattern presenta-
tion.

Consider the following 'time' definitions: time T indi-
cate the batch number and is incremented after B pattern
presentations; time t is incremented after each pattern
presentation.

We propose the following batch update rule for step

r_ J min{7T_i x u,Tu}
max{7T_i x d,Fd}

forT= 1,2, ...with

1. w > 1 andO < d < 1;

if AWT X AWT-I > 0
if AWT X AWT-I < 0

(7)

2. 7 T is bounded by F^ and F u constants;

3. 7o some constant that could be much less than F u

since step can grow.

After the step update rule we define the weight update
rule. It is known that online training has been shown to
produce better solutions than weight batch update. So,
each weight is going to be updated after each pattern pre-
sentation. We propose the following update algorithm
for a single weight w

wt =wt-i-
6E{Wt-i,xudt)

(8)

with t = 1,.. .,and where t/B uses integer division, and
E(W, x, d) is defined in (2).

4 A numerical study
We use the MNIST digit database [3] to study the new

algorithm performance but using only digits {0,1,2,3}.

Four identical shape neural networks where used, one
for each digit. Each net has the following structure:
28 x 28 inputs, 10 hidden units and two outputs (first
output is 1 when a good pattern is presented, otherwise
is valued —1, and bad patterns are classifiyed 1 in the
second output, otherwise —1).

Each digit has aproximatly 6000 exemplars (called
good patterns). The remaning digits are 54000 bad pat-
terns). So, the training set has 60000 patterns. The test
set has 1000 patterns (approximately 1000 samples of
each digit).

Each net was trained using the 6000 'good patterns'
against other 6000 randomly choosen 'bad patterns'. So,
total training set is 12000. We used these parameters:
the number oft iterations was 5 x 12000, the step was
updated every B = 3000 (1/4 of training set dimen-
sion) and Tu = 0.001 (that is l/(large fan in), and
Td = 10"7. Initial step was 70 = 0.0001. This two
values where randomly set.

Figure 1 describes the minimum wrong values on the
test set in all the 5 x 12000 iterations. The step schedules
where: Bar 1 u = 1.1 and d = 0.9/1.1 (ud < 1), Bar
2u=l.l and d = 1/1.1 (ud = 1), Bar 3 u = 1.1 and
d = 1.08/1.1 (ud > 1) and last Bar 4 with constant step
7 = 7 o = 0.0001 (u = d = ud= 1).

Fig, 1. Number of wrong classifications vs. step schedule in a
short period of training steps. The dark bar is ud < 1
case, then ud = 1, ud > 1 and finally constant step.

The main observation is that the algorithm with step
update rule ud < 1 behaves better in 3 cases: digits
{0,2,3}.

The number of wrong classifications are very high
for two reasons: small number of iterations and the de-
scribed method of training makes harder for the net to
classify with the simple structure.

As a conclusion of this work we can say that a very
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simple familly of algorithms for step update was pre-
sented and these simple results are encouraging. How-
ever, more work on these methods should be done.
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