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Abstract

Wavelet neural networks (WNN) have recently attracted great
interest, because of their advantages over radial basis function
networks (RBFN) as they are universal approximators. In this
paper we present a novel wavelet neural network, based on
Beta wavelets, for 1-D and 2-D function approximation. Our
purpose is to approximate an unknown function f: R" 2 R
from scattered samples (x;; y; = f(x)) i=1....n, where:

v we have little a priori knowledge on the unknown
function f which lives in some infinite dimensional smooth
function space,

v the function approximation process is performed
iteratively: each new measure on the function (x;; f(x;)) is

used to compute a new estimate £ as an approximation of
the function f.

Simulation results are demonstrated to validate the
generalization ability and efficiency of the proposed Beta
wavelet network.

1 Introduction

Combining the wavelet transform theory with the basic
concept of neural networks [1-3], a new mapping
network called wavelet neural network or wavenets
(WNN) is proposed as an alternative to feedforward
neural networks for approximating arbitrary nonlinear
functions. Kreinovich proved in [14] that if we use a
special type of neurons (wavelet neurons), then the
resulting neural networks are optimal approximators in
the following sense: as ¢ — 0, the number of bits that is
necessary to store the results of a 3-layer wavelet neural
network approximation, increases slower than for any
other approximation scheme.

Wavelets occur in a family of functions and each is
defined by dilation a; which controls the scaling
parameter and translation ¢ which controls the position
of a single function, named the mother wavelet y(x).
Mapping functions to a time-frequency phase space,
WNN can reflect the time-frequency properties of
function more accurately than the RBFNN. Given an »n-
element training set, the overall response of a WNN is:

y(w) wn+Zw:‘Px(x t') )

where Np is the number of wavelet nodes in the hidden
layer and w; is the synaptic weight of WNN. A WNN

can be regarded as a function approximator which
estimates an unknown functional mapping:

=ftx) +& )
where f'is the regression function and the error term ¢
is a zero-mean random variable of disturbance. There
are a number of approaches to WNN construction (a
brief survey is provided in [9-12] ), we pay special
attention on the model proposed by Zhang [1, 6, 8].

2 The Beta wavelet

The Beta function [13] is defined as:
if p>0, >0, (p, q) € IN
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2.1. The derivatives of Beta function

We proved in [4, 5] that all derivatives of Beta function
€ L*(IR) and are of class C”. The general form of the
™ derivative of Beta function is:
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The first (BW1), second (BW2) and third (BW3)
derivatives of Beta wavelet are shown graphically in
Figure 1.




Fig.1. First, second and third derivatives of Beta function.

2.2, Proposition

ifp=q,foralln € INand 0 <n <p the functions
d B (x

Wa(x) =—a€——5—2 are wavelets [4, 5]. (5)

3 Experiments

In this section, we present two experimental results of
the proposed Beta Wavelet Neural Networks (BWNN)
on approximating two functions using the Stepwise
selection by orthogonalization training algorithm. First,
simulations on the 1-D function approximation
f(x)=0.5xsin(2x)+cos*(2x) are conducted to validate and
compare the proposed BWNN with some other wavelets.
The input x is constructed by the uniform distribution on
[-2.5, 2.5], and the corresponding output y is functional
of y = f{x) and is artificially contaminated by random
errors. The training and test data are composed of 50
points and 500 points, respectively. Beta wavelet is
chosen as the mother wavelet for training network.
Second, the two-dimension function:

—-]%[(xl - 057 +(x2 - 05y]
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approximated to illustrate the robustness of the proposed
wavelets family. The training set D contains 11x11
uniform spaced points, and 11x11 stochastic points. The
test set V is constructed by evenly spaced 21x21 grid on

[-1, 1]x[-1, 1].

3.1 1-D interpolation using the stepwise selection by
orthogonalization algorithm

These results are given, using the Stepwise selection by
orthogonalization algorithm, on a Neural Wavelet
Networks using 9 wavelets, 4 levels decomposition, 500
iterations, 50 points for training and a uniform spaced
points. f{x)=0.5xsin(2x)+cos*(2x).
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Fig.2. Result of interpolation by Mexican hat.
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Fig.3. Result of interpolation by BW2.

Approximated functions are displayed in Figures 2 and
3. The Normalized Root Mean Square Error NRMSE of
the Mexican hat WNN is 0.0138434 compared to
0.009344716 the BW2 WNN achieved. From these
simulations we can deduce the efficiency of Beta
wavelet in term of function interpolation. The table
below gives the normalized square root mean square
error and mean square error using traditional wavelets
and Beta wavelet:

Stepwise selection by
orthogonalization algorithm

Wavelets NSRMSE MSE (e-005)
Mexican hat 0.0138434 10.7061
Beta | 0.0295078 48.6430
Beta 2 0.00934716 4.88097

Table.1 Comparison of NSRMSE and MSE for Beta wavelets
and some others in term of 1-D approximation.

3.2 1-D interpolation of noisy data using the stepwise
selection by orthogonalization algorithm

These results are given, using on a Neural Wavelet
Network using 9 wavelets, 4 levels decomposition, 500
iterations, 50 points for training, uniform spaced
points.

Sfx)=0.5xsin(2x)+cos?(2x)+&(x) (6)
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Fig.5. Result of interpolation of noisy data by Mexican hat
wavelet.
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Fig.6. Result of interpolation of noisy data by BW2 wavelet.

We display in figure 5 the result of approximation of a
noisy signal using Mexican hat WNN and in figure 6
the Beta WNN one. From these simulations we can see
that Beta 2 WNN is more efficient than the Mexican
hat wavelet on noisy data approximation.

3.3 2-D interpolation using the stepwise selection by
orthogonalization algorithm
These results are given, using the Stepwise selection by
orthogonalization algorithm on a Neural Wavelet
Networks using 4 wavelets, 4 levels decomposition,
200 iterations, 11x11 points for training.
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Fig.7. 2-D data to be interpolated.

Fig.8. Result of 2-D interpolation by Mexican hat wavelet
after training using uniform spaced input patterns.
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Fig.9. Result of 2-D interpolation by BW2 wavelet after
training using uniform spaced input patterns.

——t

Fig.10. Result of 2-D interpolation by Mexican hat wavelet
after training using randomly input patterns.
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Fig.11. Result of 2-D interpolation by BW2 wavelet after
training using randomly input patterns.



We display in Figure 7 the 2-D data we use in our tests,
in figure 8 the result of 2-D interpolation using Mexican
hat WNN on which we see some distortion in amplitude
and at the edges. In figure 9 using Beta 2 WNN we
reduce the amplitude distortion. In figure 10 we display
the result of interpolation using Mexican hat WNN on
which distortion becomes greater than its homolog using
Beta 2 WNN displayed in figure 11.

4 Conclusion

We present two experimental results of the proposed
Beta Wavelet Neural Networks (BWNN) on
approximating two functions using the Stepwise
selection by orthogonalization training algorithm. First,
simulations on the 1-D function approximation on which
we prove the superiority of Beta wavelets in term of
NSRMSE. Second, the two-dimension function is
approximated with the second derivative of Beta wavelet
and the Mexican hat wavelet to illustrate the robustness
of the proposed wavelets family. The training set D
contains 11x11 uniform spaced points, and 11x11
random points, the test set V is constructed by evenly
spaced 21x21 grid on [-1, 1Jx[-1, 1]. So the new Beta
wavelets family has the superiority of approximation in
the 1-D and the 2-D case. This new wavelet family can
be used to approximate volume using the 2-D 1-D 2-D
technique.
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