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Abstract

Our recent works on artificial neural networks point
to the possibility of extending the activation function of
a standard artificial neuron model using the conditional
signal accumulation technique, thus significantly en-
hancing the capabijlities of neural networks. We present
a new artificial neuron model, called Sigma-if, with the
ability to dynamically tune the size of the decision space
under consideration, resulting from a novel activation
function. The paper discusses construction of the pro-
posed neuron as well as training Sigma-if feedforward
neural networks for well known sample classification
problems.

1 Introduction

The basic constituent of a classic artificial neural net-
work (ANN) is the neuron, used to process signals pre-
sented as input, through an activation function and a
nonlinear output (threshold) function. The former func-
tion, hereafter referred to as A, determines the activa-
tion level of the neuron, while the latter (F) bases on
the result returned by A to construct the neuron’s output
value. [1,2] The importance of the threshold function as
well as of the weights attached to individual interneural
connections is well discussed in numerous publications.
[1,3,4,5] However almost all of them assume the acti-
vation function to be a simple weighted sum of neuron
input values and connections weights. In fact, analyz-
ing the behavior of artificial neurons with nonstandard
activation functions may lead us to develop new classifi-
cation structures, with interesting and useful properties.
[6-13]

2 Sigma-if Neuron

The authors propose a special type of neuron, whose
activation function can be clearly interpreted from a bi-
ological perspective. In the case of real neurons, indi-
vidual dendrites differ in length, allowing a biological
neural network to associate incoming signals with par-
ticular connections and processing areas. Such a prop-
erty can be incorporated into classic feedforward neural
network models through connections grouping and con-
ditional signals accumulation technique. [11,14]

More specifically, the M dendrites of a Sigma-if neu-

ron are divided into K distinct groups, by complement-
ing each i-th input connection with an additional integer
parameter 6; € {0,1,..,K—1}, determining membership in
one of the groups. This allows us to divide the process of
signals accumulation into K steps, where K is a function
of neuron’s grouping vector 87=[61,6,, ..., 01

K (6) = max(6). (1)

=

During each step k (from 0 to K-1) the neuron accumu-
lates data belonging to one selected group, such that

6; = k. (2)

Within each k-th group, partial activation Ag(k) is de-
termined as a weighted sum of input signals and the ap-
propriate Kronecker’s delta:

Aglk,w,z,6) = Zw@;c, (k,8;) (3)

where w; and z; are coefficients of the neuron’s weight
vector w and input vector x. This process is repeated
until the activation derived from respective groups ex-
ceeds a preselected activation threshold net*. It can be
described by the following recursive formula (vectors w,
x and € are omitted for clearness):

et (k)z{AOg(k)H(net*—net(k—l)H netk—1) ’]:zg @

where H is Heaviside’s function. This sum is then treated
as the neuronal activation value. Input from remaining
(heretofore unconsidered) groups is neglected. Thus, the
proposed form of activation function A is:

Alw, z,0) = net(K,w, z,0). 5)

For completeness, it is also important to note that in the
final stages of determining the output value Y of the neu-
ron, function (5) serves as a parameter of the nonlinear
threshold function F:

Y(w,z,0) = F(A(w, z,8)). 6)

Neurons of the presented type can easily be used for
building network structures. One can choose architec-
tures stmilar to classic synchronous feedforward neural
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networks, but recurrent realizations are also possible.
While there are no special restrictions regarding net-
work architecture, Sigma-if neurons can work in fully-
connected as well as in sparse structures.

3 Training the Sigma-if Neural Network

The Sigma-if network requires a suitable training pro-
cedure. To characterize the influence of neuron modi-
fications on network capabilities, we have separated the
problem of grouping vector coefficients selection from
that of connections weights calculation.

While in our study we use fully-connected feedfor-
ward Sigma-if networks with one hidden layer, the
weights vector can be determined through a slightly
modified back propagation algorithm. Its modification
involves adding an assertion stating that during each
weight adjustment cycle, only those weights can be
changed, which have recently influenced the output val-
ues of the network. The reason for such an approach is as
follows: the training algorithm should limit the influence
of immediately-recognizable patterns on network struc-
tures used in categorizing data which rely on connections
with greater 8; values.

The selection of coefficients of the grouping vector
should also be adjusted to the problem considered by the
network. Yet, looking for an optimal grouping vector
is generally a very difficult task. In practice it involves
computationally expensive multidimensional and multi-
modal optimization. Thus use of reasonable heuristics is
hence justified.

Following preliminary experiments we have decided
to use the random walk technique. When the random
grouping vector selected at the beginning of the learning
process doesn’t enable the backpropagation algorithm to
reduce the network classification error below an assumed
target level, we randomly select all theta values again.
This process is repeated for every hundred backpropa-
gation cycles until the network is successfully trained.
Experience shows that the typical number of grouping
vector selection attempts required to properly train the
network is on the order of 10. Considering that, and re-
membering that our main goal was to check the basic
properties of the Sigma-if model, the proposed solution
seems to be acceptable.

4 Properties of the Sigma-if network

It is worth mentioning that proper selection of connec-
tion #; parameters between the input and hidden layers
is very important. If the selection of grouping vector
coefficients is highly disadvantageous, some highly im-
portant data attributes served through connections with
high 6; values, may end up not being considered at all.
This is a particularly pressing issue when the low-theta

connections carry strong noise, exceeding the activation
threshold net* of the neuron. Nevertheless, it is not a
hopeless situation, due to another property of the Sigma-
if network. It can perform reactivation of inactive and
important attributes through minimization of active con-
nection weights. This is achieved through the back prop-
agation algorithm by lowering the weights of dendrites
which distort the classification process.

The above property suggests that diversification of
theta values may have other positive consequences. It
enables neurons to separate disruptive input signals from
those that carry useful information, thus increasing the
signal-to-noise ratio. This can act as very effective noise
filter, but only when noised connections have greater
theta values than inputs required for proper classification

The next consequence of neuronal inputs grouping
is that simple analysis of the activity of input to hid-
den layer connections in a properly trained network may
yield information about subsets of data attributes impor-
tant for the classifier. This analysis is reduced to observ-
ing which neuronal inputs are considered when estab-
lishing the network output as a response to a particular
test input patterns.

However the most important feature of the proposed
network is the ability to discriminate the input space in
an adaptive manner. The conditional signal accumu-
lation technique enables it to partition the data space
with hypersurfaces using an increasing number of di-
mensions, where the number of attempts is determined
by the number of distinct theta values assigned to neu-
ronal inputs. This can easily be observed in the case
of a single Sigma-if neuron. Despite the use of a sig-
moid threshold function in its body, the Sigma-if neuron
- unlike the classic neuron - can solve simple linearly
inseparable problems, since it is able to use (depending
on the circumstances) all or just some of the information
present on its inputs.

It should, however, be noted that the presented ap-
proach fails for the XOR function. In this case, each
straight line perpendicular to one of the dimensions of
the data space and passing through a selected point cor-
responding to a training pattern from class zero contains
a point belonging to a class different than zero. It is
therefore impossible to separate both points by means of
straight lines perpendicular to selected normal vectors of
data spaces (hypersurfaces reduced to one dimension).
In this case, a different solution may be utilized: rotat-
ing the coordinate set by a preselected acute angle. Fol-
lowing such a transformation, a single Sigma-if neuron
will be able to properly classify points defining the XOR
function.



5 Results of Experiments

The main goal of our experimental study was to find
evidence for the basic theoretical expectations concern-
ing the presented Sigma-if neuron model. The second
goal was to compare classification capabilities of Sigma-
if and classic neural networks, and to show that con-
ditional signal accumulation technique can be useful in
data mining applications. At the end we wanted to check
if there are any differences between classic and Sigma-if
networks in the context of knowledge extraction.

The tested networks were trained using the previously
described modified back propagation algorithm, with
randomly selected theta values, controlled by a separate
algorithm which oversaw the space of convergence of
the learning process. Behind tests with single neuron,
the number of neurons in the hidden layer was set to the
value assuring best training results for the classic net-
work model. All neurons used a bipolar sigmoid thresh-
old function and the activation threshold level was set to
a value of net*=0.4.

5.1 Single Sigma-if Neuron

The basic functionality test of the Sigma-if network
involved gauging the properties of a single neuron. Ac-
cording to theoretical analysis, this neuron is not able
to properly dissect the data space of the XOR problem
(over the real number space). However, even a slight
repositioning on one of the points defining the data space
enables rapid training of the neuron. Such a modification
allows the Sigma-if neuron to dissect the decision space
with two different hypersurfaces, one of which must be
a straight line perpendicular to one of the dimensions.

Xy

ASERON

~,.I I_
H
N

0

Fig. 1. Sample shape of trained Sigma-if neuron decision bor-
ders for the modified XOR function.

Fig. 1 presents a fragment of the decision space of
a sample Sigma-if neuron trained to properly classify
points belonging to the following function:

_ 0 :( 1, )6{(0,0),(0.8,0.8)}
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The parameters of this trained neuron are as follows:
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weight vector w =[1.3, 2.5] and grouping vector 6=[0,
1]. Thus since 8, is less than 65, input z2 will be consid-
ered only if the partial neuron activation Ag(0) (equal
to the product of w; and z1) is less than the activation
threshold net*. It can be seen that when the neuron’s
output values less or equal to 0.5 and greater than 0.5 are
treated as classes 0 and 1 respectively, the Sigma-if neu-
ron with the presented parameters correctly solves the
linearly inseparable problem defined by (eq. 7).

This experimental confirmation of the theoretical po-
tential of the Sigma-if neuron is further strengthened by
achieving positive results for a training set which in-
cludes XOR function points, rotated by 45° around point
(1,0). It is , however, important to note that training re-
sults depend on the activation threshold level. For the
presented problem positive results were obtained only
for net* between 0 and 1. Outside that range, successful
training was not possible.

5.2 Sigma-if performance for artificial problems

The promising results described in the previous sec-
tion have led us to check the performance of the pro-
posed model for more complicated artificial problems.
For this purpose we have chosen the well known nested
spirals testbed, and the two-class 10x10 checkerboard
classification task. [15,16] Both problems have been
used to train a fully-connected classic neural network
with two inputs, 50 neurons in one hidden layer and two
outputs. The obtained results have been compared with
the outcome of analogous tests of a Sigma-if neural net-
work with an identical architecture.

Test results have shown that in the case of the nested-
spirals testbed, the Sigma-if network acts very similarly
to the standard feedforward neural network. Both net-
works have been able to properly solve the two-spirals
problem at similar computational cost. The differences
between both types of neural networks only became ap-
parent during the second test. While the standard model
was unable to reduce the classification error below 50%,
the Sigma-if network reached a stage where almost 70%
of patterns were classified correctly.

5.3 Minimization of the number of active attributes

Another experiment involved training the Sigma-if
network to minimize the number of attributes required
for proper classification of selected data sets from the
UCI Machine Learning Repository. This necessitated
extending the mechanism which controlled the random
selection of grouping vector parameters with facilities
for analyzing changes in the number of active input con-
nections. Thus, when the number of active input at-
tributes exceeds 50%, the training algorithm forces ran-
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dom selection of the grouping vector.

Such a mode of operation, for a limited number of
neurons in the hidden layer (2 to 4, depending on the
training set), enabled us to extract subsets of data at-
tributes which had the greatest impact on the classifi-
cation process. Table 1 presents the capabilities of the
process, assuming at least 80% classification accuracy
with the limited attribute set. The best results have
been achieved for those training sets which can be ex-
pected to contain a lot of redundant data (i.e. Sonar
and Breast-Cancer-W). Surprisingly, for the latter set it
was possible to reduce the number of active attributes to
just two, while retaining a 92% accuracy (the two rele-
vant attributes are Uniformity-of-Cell-Shape and Single-
Epithelial-Cell-Size).

Table 1. Trimming data attribute sets with Sigma-if network.

Training set No. of No. of Gain
attributes attributes [%]
(total) (limited set)
Heart 13 9 30.7
Hypothyroid 29 19 345
Iris 4 3 25.0
Breast-Cancer-W 9 2 71.7
Monkl 6 6 0
Monk2 6 6 0
Monk3 6 6 0
Sonar 60 10 83.3
Vote 16 9 43.7
Mean 32.7

On average, the conducted tests permitted a 30% re-
duction in the number of attributes used in classification.
We can therefore conclude that the proposed solution is
well adapted to real-life applications, where data gather-
ing can often be costly.

5.4 Extraction of knowledge from the Sigma-if net-
work

The promising results of the above experiments raise
questions about whether such networks process and store
knowledge in a way that differs from classic neural net-
works. To shed some light on that problem, it is neces-
sary to use a knowledge extraction method. The task of
extracting knowledge from such an atypical neural net-
work as the Sigma-if network essentially limits the selec-
tion of applicable algorithms to black-box-type methods.
Such methods are scarce, so we have come to rely on the
Trepan algorithm, since the available sources strongly
recommend it. [17, 18}

Just like in the previous experiments, the results ob-
tained are very interesting. It appears that, when com-

pared to decision trees extracted from classic neural net-
works, the Sigma-if trees are much more readable - they
are less complex and use a smaller number of decision
attributes. They also more accurately represent the func-
tioning of the network from which they have been de-
rived as well as the properties of data being classified. It
seems advisable to further study the possibility of apply-
ing Sigma-if networks in data mining applications.

6 Summary

The theoretical considerations presented in this paper
and confirmed by experimental results clearly point to
the fact that conditional signal accumulation is a use-
ful technique in the area of neuronal data processing. In
light of its potential benefits, the proposed modifications
of classic artificial neural networks require further ex-
tensive study. It is, for example, difficult to explain why
Monk training sets have proven more difficuit to classify,
even though they also include redundant data attributes.

It is also worth to underline that full exploitation of
the Sigma-if model’s potential is possible only when a
suitable method of selecting grouping vector coefficients
is used. The heuristic approach, mentioned earlier, has
yielded some interesting results, but no definitive solu-
tion can yet be presented. This problem determines fur-
ther directions of Sigma-if network research.

While the Sigma-if neuron is only a simple computa-
tional model, not designed for modeling biological neu-
rons, it would nevertheless be interesting to research the
relations between the properties of Sigma-if networks
and those of biological processing systems.
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