A simple method for selection of inputs and structure
of feedforward neural networks

H. Saxén and F. Pettersson

Heat Engineering Laboratory, Abo Akademi University, Finland
E-mail: hsaxen@abo.fi

Abstract

When feedforward neural networks of multi-layer perceptron
(MLP) type are used as black-box models of complex processes,
a common problem is how to select relevant inputs from a large
set of potential variables that affect the outputs to be modeled.
If, furthermore, the observations of the input-output tuples are
scarce, the degrees of freedom may not allow for the use of a
fully connected layer between the inputs and the hidden nodes.
This paper presents a systematic method for selection of both
input variables and a constrained connectivity of the lower-layer
weights in MLPs. The method, which can also be used as a
means to provide initial guesses for the weights prior to the final
training phase of the MLPs, is illustrated on a class of test
problems.

1 Introduction

When neural networks of muiti-layer perceptron (MLP)
type are used in black box modeling, e.g., for prediction
of variables in a complex industrial process, a frequently
occurring problem is that there are numerous factors that
may potentially influence the variables to be modeled
(predicted). Furthermore, it is also common that the
number of observations is limited. The second problem
has the consequence that the number of inputs and/or the
number of hidden nodes has to be restricted to yield a
meaningfu} parameter estimation problem (with, say, the
number of network weights not exceeding a tenth of the
number of output residuals [1]). This also means that all
potential inputs cannot be included in the model. A
remedy would be to limit the dimension of the input space
by considering only meaningful variables. If knowledge
of the system studied exists, it is possible to use such for
the elimination of superfluous inputs or for preprocessing
of the inputs, thus reducing the input variable dimension.
In cases where there is no such knowledge, one has to
resort to automatic methods for selection of relevant input
variables. In nonlinear modeling, there are no general
criteria for making such choices, even though papers have
been published on how to tackle the problem [2,3]; an
excellent review on pitfalls in measuring the importance
of inputs is provided in [4]. A way to tackle the problem
is to use constructive methods based on a growing neural
network [5,6], but these techniques are often not well

suited for problems where the input variables are
correlated. Furthermore, their ability to solve problems
with a low signal-to-noise ratio is also limited. On the
other hand, pruning of large trained networks have also
been proposed as a remedy [7,8], and in more recent
papers the possibility to use genetic algorithms for a
simultaneous optimization of network weights and
structure has been explored [9-11]. However, most
pruning methods are hampered by a laborious retraining
process. Furthermore, the risk of getting stuck in local
minima, which is always present in MLP training, may
result in “wrong decisions” concerning the usefulness of
certain network connectivities.

The present paper proposes a simple pruning approach,
where a large single-layer sigmoid network with random
initial weights in the lower layer of connections is used as
a starting point. The complexity of this network part is
gradually decreased by removing, on each iteration, the
least significant connection. In comparing the networks
with each other, the upper layer weights are determined
by linear least squares. This makes the method simple,
efficient, rapid and robust. The method is described in the
next subsection, followed by an illustration of it in
Section 3. The final section presents some concluding
remarks.

2 The Method

The method proposed in this paper is based on the
following assumptions: We confine our study to
feedforward neural networks of MLP type with a single
layer of hidden nonlinear (typically sigmoidal) units and a
single linear output node. The former limitation is
motivated by the fact that such networks have been
shown to be able to approximate any continuous
differentiable function to arbitrary accuracy, if the
number of hidden nodes is large enough, while an
extension to networks with multiple outputs is obvious.

The approach is based on the practical observation that
for an arbitrary, but known, choice of weights in the
lower layer of connections, W, (cf. Fig. 1) there are
generally a corresponding set of weights, w, to the output

10

node that will lead to a relatively good solution of the
approximation problem at hand. After propagating the K
input vectors through the first layer of connections and
through the hidden nodes, the corresponding outputs of
each of the » hidden nodes, can be determined. Collecting
these together in a matrix, Z, where a first column of ones
(for the bias) is included, the upper-layer weights can be
easily determined by solving the linear problem

2
} 6

min{F =V -f

w

where
! Loz, 2z, Zin || Mo
J2 Lozyy 2, oz, || W 2)
f=1/1=11 2z, 2z, = 2z, {|{w|=2Zw
ka bozg, z4, Zxa || Wn

by, e.g., Householder reflections using an orthogonal-
triangular factorization [12].

y
(D
OO0
S

X1 N

Figure 1. Schematic of the networks used in the study.

The fact that an arbitrary (but well scaled) weight matrix
W is sufficient is also in agreement with the seemingly
odd observation, reported by numerous investigators, that
a large network trains more rapidly than a small network,
despite its larger weight space. The reason is that in a
large network the likelihood increases of initially finding
hidden nodes that operate in a proper region for solving
the problem at hand. Obviously, such a large network is
over-sized in a parametric sense, so it should be possible
to remove superfluous connections in its lower part
without major loss of accuracy of the fit. This brings us
into the basic pruning step of the method that in a nutshell
can be condensed into the following algorithm:

1. Select a (sufficient) maximum number of hidden
nodes, n, and generate a random weight matrix,
W,, for the lower layer of connections. Introduce
a set of indices to its weights, /, (excluding the
biases), and set the iteration index to i = 1.

2. Reset, in turn, a weight j in the set [I.;, and
determine the corresponding optimal upper-layer

weights W, by Eqgs. (1) and (2) and determine

the value of the objective function, F;;.
3. Set W; =W, and I, = I,,. Remove the weight,

j,.* that corresponds to the minimum value of the

objective function, i.e., jl_* =arg min{E ,—} from
both Wi and I,’.

4. Seti=it+l.If i<n-N, goto 2. Else, end.

3 Illustration of the Method

In order to illustrate the method outlined above, the
following function with N = 3 inputs, (x; , x; and x3) and
one output (y) is used.

y=alx? +0.5xx,)+ (1-a)0.5x,x, + X})+ be (3)

Obviously, the function is designed to yield a varying and
nonlinear dependence between inputs and the output for
different values of the parameter a € (0,1): The output, y,
is independent of x; for a = 1, for @ = 0 it is independent
of x;, while for 0 <a < 1 it depends on all input variables.

A few runs of the algorithm next illustrate its possible
use. In the analysis the inputs as well as the noise term, g,
are taken to be normally distributed random variables
with zero mean and unit variance, i.e., g, x; = N (0,1),
while the non-negative parameter b is used to control the
signal-to-noise ratio. The analysis is started from a
network with six hidden nodes, which was considered
sufficient for the task at hand.

3.1 Reference case

The model was first run with K, = 100 observations in the
training set, using an additional K,. = 100 observations in
a test set for verification of the resulting models, using the
parameter values ¢ = 0.5 and » = 0.2. Figure 2 shows an
example of the inputs and the output of a training set.

Figure 3 illustrates a typical evolution of the method on
the training (solid lines) and test (dashed lines) sets,
where the root-mean square errors F;« (cf. Eq. (1)) have
been depicted as a function of the remaining weights
(excluding biases) in the lower part of the networks. Note

that the “iterations” progress from right to left in the
figure. In summary, five to seven non-zero weights (to
five active hidden nodes) are sufficient to produce an
acceptable fit, and the corresponding networks generalize
well on the test set. This is also seen in Fig. 4, which
shows the resulting fit on the test set for the network with
five remaining lower-layer weights.

0 10 20 30 40 50 60 70 80 90 100
2k) T T T T " " T 4
—2
[} |‘0 2‘0 3‘0 4‘0 5‘0 BIO 70 8’0 90 100

Figure 2. Inputs and output in a training set of the
reference case.

6 8 1‘0 1‘2 |l¢ |‘S 18
Remaining lower-layer weights

Figure 3. Evolution of the errors with the number of
remaining weights (excluding biases) in the lower part of
the network (: training set, - - - test set).

Figure 5 shows the errors on the training set for networks
evolved from four random weight matrices. Even though
the levels of the errors are seen to differ between the
networks, the general features are very similar, especially
as far as the minimum connectivity for achieving a good
fit is concerned. A noteworthy fact is also that the fits for
the largest networks are worse than those of the
somewhat pruned networks, even on the training set.
Thus, superfluous lower-layer connections can be directly
detrimental for the model. This is the result of the fact
that the lower-layer weights are not retrained, but it still

11

serves to illustrate the impact of the initial weights on the
conditioning of the training problem. Therefore, the
proposed technique can also be seen as a method for
initializing a (sparse) network.

Figure 4 Example on the model fit on the test data using
five non-zero weights in the lower part of the network

¢ observations, -+ model).
12
1.1
W+
09
0.8
W7 07
06
0.5
04}
03
0'20 5 ; é 8 13 1‘2 1'4 116 |’a
Remaining lower-layer weights
Figure 5. Evolution of the training errors with the

number of remaining weights (excluding biases) in the
lower part of the networks from four random weight
matrices.

3.2 Detection of relevant inputs

The capability of the model to detect and remove
irrelevant inputs is next evaluated by creating a data set
with identical parameters to those of the previous
subsection, except a = 0.1. This gives rise to a function y
that only slightly depends on x;. The algorithm was used
to detect the one of the inputs that would be first
eliminated, i.e., would lose all its connections to the
hidden layer.

12

Starting from 20 random initial weight matrices, W, the
first input variable to be eliminated was always x,. Table
1 shows the “frequency” of the number of remaining
weight connections at the point where the final
connection to x; was excluded. Even though there is some
scattering, it is interesting to note that the required lower-
layer complexity at this point corresponds quite well to
the one required for solving the task with a = 0.5.
Another interesting observation is that the generalization
ability of the networks at these very points turns out to be
close to optimal for many of the runs. Figure 6 illustrates
this behavior for four of the runs, where the test set errors
have been depicted. The arrows in the figure indicate the
network complexity where the first input variable (x,)
was excluded from the model. Moving from left to right,
these are the points where a further added complexity
does not improve the function approximation provided by
the network.

Table 1. Frequency of remaining lower-layer weights at
the point where the first input (x,) was eliminated by the
pruning method for the function (3) with a =0.1.

Remaining | Frequency
weights
3 2
4 5
S 4
6 6
7 1
8 1
9 1

6 8 10 I‘Z 1“ 1‘6 18

Remaining lower—layer weights
Figure 6. Test set errors of four networks trained on y
generated by Eq. (3) with @ = 0.1. Arrows denote the
points where x; was excluded from the model.

4 Conclusions

The paper has described a systematic method for selection
of both input variables and a constrained connectivity of
the lower-layer weights in MLPs. It also provides initial
guesses for a gradient based training. The method has
been illustrated on a class of test problems, where it has
shown promising performance.

REFERENCES

[1] Principe J. C., N. R. Euliano and W. C. Lefebvre, (1999)
Neural and adaptive systems: Fundamentals through
simulations, John Wiley & Sons, New York.

[2] Sridhar, D.V., E. B. Bartlett and R. C. Seagrave, (1998)
“Information theoretic subset selection for neural
networks”, Comput. Chem. Engng. 22, 613-626.

[3] Bogler, Z., (2003) “Selection of quasi-optimal inputs in
chemometrics modeling by artificial neural network
analysis”, Analytical Chimica Acta 490, 31-40.

[4] Sarle, W.S., (2000) “How to measure importance of
inputs”, ftp://ftp.sas.com/pub/neural/importance.html

[5] Frean, M., (1989) “The Upstart Algorithm. A method for
Constructing and Training Feed-forward Neural
Networks”, Edinburgh Physics Department, Preprint
89/469, Scotland.

[6] Fahlman, S.E. and C. Lebiere, (1990) “The Cascade-
Correlation Learning Architecture”, in Advances in Neural
Information Processing Systems 11, (Ed. D.S. Touretzky),
pp. 524-532.

[7] Le Chun, Y., J. S. Denker and S. A. Solla, (1990) “Optimal
Brain Damage”, in Advances in Neural Information
Processing Systems 2, ed. D.S. Touretzky, pp. 598605,
(Morgan

[8] Thimm, G. and E. Fiesler, (1995) “Evaluating pruning
methods”, Proc. of the 1995 International Symposium on
Artificial Neural Networks (ISANN'95), Hsinchu, Taiwan,
ROC.

[9] Maniezzo, V., (1994) “Genetic Evolution of the Topology
and Weight Distribution of Neural Networks”, IEEE
Transactions on Neural Networks §,39-53.

[10] Gao, F., M. Li, F. Wang, B. Wang and P. Yue, (1999)
“Genetic Algorithms and Evolutionary Programming
Hybrid Strategy for Structure and Weight Learning for
Multilayer Feedforward Neural Networks”, Ind. Eng.
Chem. Res. 38, 4330-4336.

[11] Pettersson, F. and H. Saxén, (2003) “A hybrid algorithm
for weight and connectivity optimization in feedforward
neural networks”, in Artficial Neural Nets and Genetic
Algorithms (eds. Pearson, D. et al.), pp. 47-52, Springer-
Verlag.

[12] Golub, G., (1965) “Numerical methods for solving linear
least squares problems”, Numer. Math. 7, 206-216.

