78

A Memory-Based Reinforcement Learning Model
Utilizing Macro-Actions

Makoto Murata and Seiichi Ozawa
Graduate School of Science and Technology, Kobe University, Japan
E-mail: ozawasei@kobe-u.ac.jp

Abstract

One of the difficulties in reinforcement learning (RL)
is that an optimal policy is acquired through enormous
trials. As a solution to reduce waste explorations in
learning, recently the exploitation of macro-actions has
been focused. In this paper, we propose a memory-based
reinforcement learning model in which macro-actions
are generated and exploited effectively. Through the ex-
periments for two standard tasks, we confirmed that our
proposed method could decrease waste explorations es-
pecially in the early training stage. This property con-
tributes to enhancing training efficiency in RL tasks.

1 Introduction

Recently, in order to avoid waste explorations in rein-
forcement learning (RL) tasks, several researchers have
studied leaming algorithms that allow agents to find a
series of useful actions called macro-actions [1, 2]. For
example, when we stand in front of a door we have never
seen, first we recognize the knob, reach out our hand for
it, and then try to push and pull the door to open. We
often attempt to apply some acquired macro-actions to
a new task, instead of searching for all combinations of
possible actions. Clearly, even when we search for ap-
propriate actions, we exploit some knowledge on actions
learned from the past experiences. This fact indicates
that we should introduce a mechanism of generating and
exploiting macro-actions into reinforcement learning.

On the other hand, we have proposed an RL agent
model based on function approximation, in which a
value function is approximated by Resource Allocat-
ing Network with Long-Term Memory (RAN-LTM)
[4]. In RAN-LTM, several representative input-output
pairs (called memory items) on the approximated value
function are stored in long-term memory. Although
this learning scheme can be categorized into memory-
based learning, the differences from the conventional ap-
proaches lie in the number of memory items and their
embedded information. In RAN-LTM, memory items
are restricted to the minimum number that can suppress
the interference caused by incremental learning, and the
memory items can store not only the information on an
approximated value function but also some other infor-

mation (e.g., complexity of approximated functions).

In this paper, we propose a new version of RAN-LTM
which has a mechanism of generating and exploiting
macro-actions to enhance the learning efficiency in RL
tasks. To realize this mechanism, new information on
the usefulness of state-action pairs as a component of
a macro-action is added to the memory items. This in-
formation is accumulated in all of the retrieved mem-
ory items during an episode. The degree of usefulness
is decided depending on how much a series of retrieved
memory items contribute to receiving high reward; if this
usefulness is high, the corresponding state-action is re-
garded as a component of a macro-action. Thus, this in-
formation is exploited to control the randomness of ac-
tion selection; that is, when a memory item with high
usefulness is retrieved, the probability function of action
selection is changed such that a greedy action is taken.

This paper is organized as follows. In Section 2, we
present an Actor-Critic model in which function approx-
imators are implemented by RAN-LTM. Section 3 de-
scribes how to introduce a mechanism of generating and
exploiting macro-actions into RAN-LTM. In Section 4,
several experiments are carried out in the two standard
tasks. Finally, we state conclusions in Section 5.

2 Actor-Critic Model Using RAN-LTM

Actor-Critic model 1s one of the most frequently used
RL models [3]. In Actor, an action is selected based on
a preference value Py (x(t), a(t)), while Critic is used to
estimate a state value V(2(t)). After selecting an action,
Critic evaluates a new state (¢ + 1) based on TD error
e(t) shown below:

e(t) —rt+ 1) +4V(x(t+ 1)) - V(x(t) @)

where ~ is a discount factor. The preference value for a
selected action is updated as follows:

P (x(t), a(t)) «— Pw (x(t),at)) + fe(t) ()

where k&’ is the index of the action selected in Actor and
[is a positive constant.

To approximate a value function V' (x(t)) and a prefer-
ence Py (x(t),a(t)), RAN-LTM is adopted as a function

1
Input Hidden Output
Layer Layer Layer

: Critic

Xy

1
]
I X2+ VI |
> ! !
: i M '
1 Input Hidden Output
_ | Layer Layer Layer |
State Reward Action
g Environment

Fig. 1. Structure of Actor-Critic model using RAN-LTM.

approximator in both Actor and Critic. The structure of
the Actor-Critic model is shown in Fig. 1. The outputs
of the two RAN-LTMs correspond to V(x(t)) in Critic
and Py (x(t),a(t)) in Actor.

The inputs of RAN-LTM in Actor and Critic at time ¢
is denoted as z(t) = {z1(¢), - ,z1(t)} and they cor-
respond to the agent’s states s(t) = {s1(¢), -, sr(t)}.
Here I is the number of input units (states). As shown in
Eq. (3), the hidden outputs §(t) = {§1(t),--- ,4s(t)}
are given by

— 2
| =(t) . Al) G=1,---,J) 3)

§;(t) = exp(~ p

where ¢; and o7 are a center vector and a width para-
meter of the jth radial basis function; J is the num-
ber of hidden units. The hidden outputs §(¢t) =
{9 (t), -~ ,9s(¢t)} are normalized by the sum of hid-
den outputs. Then, the network outputs z(¢) are obtained

from

J

() =D wiyi(H) +ye k=1, ,K) (4
i=1

where y;, wi; and 7 are a normalized hidden output, a
connection weight from the jth hidden unit to the kth
output unit and a bias of the kth output unit, respec-
tively; K is the number of output units. As stated before,
the outputs of Critic correspond to state values V' (z(t)),
while the outputs of Actor correspond to the preference
of actions Py (x(t),a(t)). In the softmax strategy, the
agent actions are selected based on the following proba-

79

P (1)) /(1)

Zf: | eP@(8)an)/7(t)

Pr{ia(t) =a} = (5)

where 7(t) is a temperature to control the randomness
of agent actions. Note that K is equal to the number of
actions to be selected by agents.

In reinforcement learning, a training sample is given
incrementally. In such a situation, neural networks can
easily forget the knowledge acquired before. To sup-
press unlearning, we utilize memory items that are ex-
tracted from the approximated function. When learning
a new training sample, some memory items are simulta-
neously trained with the new sample in RAN-LTM to
keep input-output relations as much as possible. The
readers who want to know the detail training procedures
in RAN-LTM can refer to [4].

3 Generating and Exploiting Macro-Actions

In this section, we introduce a mechanism of gen-
erating and exploiting macro-actions into Actor-Critic
model described in the previous section. As stated in
Section 1, we define macro-actions as a deterministic se-
ries of useful actions that lead to large rewards with high
possibility. To generate such macro-actions, an agent has
to retain all the state-action pairs leading to high rewards
in some way. However, if the agent’s states are continu-
ous, it is obvious that all the possible pairs cannot be held
in memory. Considering that memory items in RAN-
LTM are distributed over the state space, we easily come
upon to add extra information on successful experiences
to these memory items.

Let us introduce a new index L,, in the mth memory
item in Actor. When an agent receives a reward rp at
time T', Ly, of all memory items retrieved during the
current episode are updated as follows:

LYEW pLOLP 4 pT=tm=Y(pp — 7)) (6)

where 7, t,, and 7 are the average reward, the time to re-
call the mth memory item, and a decay constant, respec-
tively. This update is based on the profit sharing method.
Note that L,, of the mth memory item becomes large
when an action taken in the corresponding state leads
to a high reward to the end and an agent frequently en-
counters the state. This suggests that a state with large
L, should be considered as the component of a macro-
action. On the other hand, if an agent encounters a state
with large L,,, the action with the highest preference
should be taken deterministically.

Based on this idea, we propose the following al-
gorithm of selecting agent’s actions which gives a
mechanism of generating and exploiting macro-actions

80

for the agent model shown in Fig. 1. Let us denote
this agent model RAN-LTM-MA. Note that RAN-
LTM-MA does not generate and exploit macro-actions
explicitly; macro-actions are generated as a result of
controlling the temperature 7(t) in the action selec-
tor that is determined by L,,, of the nearest memory item.

[Algorithm]

1. Recall a memory item My, : (£, Ly, tn,) whose
., has the nearest distance to the state x;.

2. If the distance between x; and &, is smaller than
a threshold, set ¢,,, = ¢.

3. Update 7(t) as follows: 7(t) < 7(¢)/L,,. Select
action a; 4 according to the probability in Eq. (5).
If the agent receives no reward, go back to Step 1.
Otherwise, go to Step 4.

4. Update L,, for all retrieved memory items M,
based on Eq. (6).

5. Reset ¢, then go back to Step 1.

4 Experiments

To see the usefulness of introducing macro-actions in
RAN-LTM, RAN-LTM-MA is applied to the following
two standard problems: Mountain-Car Task and Grid-
World Task [3].

4.1 Mountain-Car Task

Mountain-Car Task is a task in which a car driver
(agent) learns an efficient policy to reach a goal located
on a hill. In this task, the goal of a car agent is to suc-
cessfully drive up a steep slope and to reach the goal as
soon as possible. There are three actions to be selected:
full throttle to the goal, zero throttle, full throttle in the
opposite direction. These actions are represented by the
following values: a(t) = (+1,0,—1). A car agent is
positioned at random when starting an episode. The po-
sition u(¢) and velocity 4(t) are updated based on the
following equations:

u(t+1) = Blu+ u(t)]
u(t+ 1) = Blu(t) + 0.07a(t) — 0.0025 cos(3u(t))]

where B is a function to restrict the working area, {u | —
1.2 <4 <0.5}, {a] —0.07 < @ < 0.07}. u(t) and u(t)
are given as inputs of Actor and Critic, and the value of
-1 is given at every step as rewards to all actions taken.
The training is carried out through 200 episodes,
which are divided into the 4 learning stages: 1-50, 51-
100, 101-150 and 151-200. Since we expect that the in-
troduction of macro-actions contribute to enhancing the
training speed, the average steps needed to reach the
goal is examined at the above 4 stages. For compar-
ative purposes, the average steps are evaluated for the

Table 1. The average steps at the 4 learning stages.

Episodes | RAN | RAN-LTM | RAN-LTM-MA
1-50 980 814 490
51-100 586 451 206
101-150 | 480 324 210
151-200 | 327 245 258

Actor-Critic models in which Resource Allocating Net-
work (RAN) [5] and RAN-LTM are adopted as function
approximators. The results are shown in Table 1.

As seen from Table 1, at the early stage (1-100
episodes), the average steps in RAN-LTM-MA are
greatly reduced as compared with those in the other two
models. This result suggests that RAN-LTM-MA can
find a proper policy with less experiences by generating
and exploiting macro-actions. However, at the last stage
(151-200 episodes), the differences in the performances
of RAN-LTM and RAN-LTM-MA are not clear. This
shows that there are no significant differences in the ac-
curacy as a function approximator; thus one can say that
introducing macro-actions contribute to avoiding waste
exploration in the early stage of learning.

4.2 Grid-World Task

In this task, the purpose of an agent is to find the short-
est path from a start point to a goal in a 10 x 10 grid-
world. Here we adopt 6 grid-world tasks as shown in
Fig. 2. In these tasks, an agent can move in 4 direc-
tions (east, south, west, north). At the beginning of an
episode, an agent is placed at each start point. The re-
ward (41) is only given to the agent when reaching the
corresponding goal.

The training is carried out through 100 episodes, and
in each episode the agent’s policy is evaluated by the
number of steps to the goal. To remove the dependency
on random seeds, the training is repeated 30 times and
the average steps are evaluated.

Figure 3 shows the time courses of the average steps
taken by an agent and the action probability in Task
1. This action probability is obtained by averaging the
probability of selecting optimal actions on the three typ-
ical shortest paths. If this value is high, one can say
that the agent takes optimal actions deterministically. As
seen from Fig. 3, the average steps of RAN-LTM-MA
rapidly decrease from the 20th episode; at the same time,
the action probability rapidly increases. This result sug-
gests that some useful macro-actions are generated on
the optimal paths in RAN-LTM-MA and the exploitation
of these macro-actions leads the decrease of the average
steps. To verify this, we examine the actions selected
with 99% and 90% probability. The result is shown in
Fig. 4 where black and white arrows correspond to the

Task 5

800| 1

» 600 . . ~ 0.9 2

& .7 Action Probability 8
~ -

& " {08 8

& 49 . v

< — RAN-LTM-MA o

200 Average Steps T ".::.

/ - 40.6 <

S - 0.5
0 20 40 60 80 100

Episodes

Fig. 3. Time courses of average steps and action probability in
Task 1.

directions of selected actions with 99% and 90%, respec-
tively. In Fig. 4, we can see that some series of deter-
ministic actions are generated in RAN-LTM-MA after
the 20th episode.

Table 2 shows the number of needed episodes to get
a proper policy in the 6 grid-world tasks. Here we de-
fine that an agent acquire a proper policy when the steps
to a goal is less than the following value: (steps of the
shortest path) x 1.2. From the results in Table 2, we
can conclude that RAN-LTM-MA can get a proper pol-
icy promptly in all tasks.

5 Conclusions

In this paper, we proposed a new agent model in
which macro-actions were generated and exploited ef-
fectively. Through the experiments, we verified that our
proposed model could decrease waste explorations espe-
cially at the early stage of training. Further experiments
are needed to ensure whether such macro-actions really
contributes to enhancing the training efficiency in any
RL tasks.

Acknowledgment

This research was partially supported by the Ministry
of Education, Science, Sports and Culture, Grant-in-Aid
for Scientific Research (C) 16500130, and by the Okawa

81

41 — 50 episodes
(a) RAN-LTM

1 i sp
11 — 20 episodes 41 — 50 episodes
(b) RAN-LTM-MA
Fig. 4. Selected actions with 99% and 90% in Task 1. Black

and white arrows correspond to the directions of se-
lected actions with 99% and 90%, respectively.

1

Table 2, The number of needed episodes to get a proper policy

in the 6 grid-world tasks.
Task | RAN | RAN-LTM | RAN-LTM-MA
1 64 64 33
2 66 65 33
3 70 70 41
4 59 59 26
5 54 54 27
6 86 86 39

Foundation for Information and Telecommunications.

References

[1] Mcgovern, A., Sutton, R. S., Fagg, A. H. (1997)
Roles of macro-actions in accelerating reinforce-
ment learning. Proceedings of the 1997 Grace Cele-
bration of Women in Computing: 13-18

[2] Precup, D., Sutton, R. S. and Singh, S. P. (1997)
Planning with closed-loop macro actions. In Work-
ing Notes of the 1997 AAAI Fall Symposium on
Model-directed Autonomous Systems: 70-76

[3] Sutton, R. S. and Barto, A. G. (1998) Reinforcement
learning - An introduction. The MIT Press

[4] Ozawa, S. and Abe, S. (2004) A memory-based rein-
forcement learning algorithm to prevent unlearning
in neural networks. In Neural Information Process-
ing: Research and Development: Rajapakse, I. C.
and Wang, L., Eds., Springer-Verlag: 238-255

[5] Platt, J. (1991) A resource allocating network for
function interpolation. Neural Computations, 3:
213-225

