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Abstract

Ensemble design techniques based on resampling the
training set are successfully used to improve the clas-
sification accuracies of the base classifiers. In Boost-
ing technique, each training set is obtained by drawing
samples with replacement from the available training set
according to a weighted distribution which is iteratively
updated for generating new classifiers for the ensemble.
The resultant classifiers are accurate in different parts of
the input space mainly specified the sample weights. In
this study, a dynamic integration of boosting based en-
sembles is proposed so as to take into account the hetero-
geneity of the input sets. In this approach, a Dempster-
Shafer theory based framework is developed to consider
the training sample distribution in the restricted input
space of each test sample. The effectiveness of the pro-
posed technique is compared to AdaBoost algorithm us-
ing nearest mean type base classifier.

1 Introduction

Boosting is a popular ensemble creation technique
which takes into account the classification results of the
previous classifiers to construct additional ones. The se-
quential structure of the algorithm allows to create new
classifiers which are more effective on the training sam-
ples that the current ensemble has a poor performance.
In order to achieve this, weighting is applied on the train-
ing samples where a training sample with a high weight
has a larger probability of being used in the training set
of the next classifier. The weights are updated in an it-
erative manner so that new classifiers mainly focus on
the samples difficult to classify. AdaBoost is the most
popular boosting algorithm.

In AdaBoost technique, the reliability of the classifier
outputs is dependent on the input due to the weighted
resampling [1]. For instance, the decision of a classi-
fier for an input lying in a restricted space that is resam-
pled by a large number of times is expected to be reli-
able. However, this may not be true for the input spaces
which have no representatives in the resampled training
set. Hence, the fact that the classifiers developed using
AdaBoost may be accurate in some regions of the in-

put space should be considered during the combination
operation. The weighted majority voting rule used in the
AdaBoost algorithm does not take into account this input
dependent information. Dynamic combination schemes
that take into account the distribution of the training sam-
ples in the restricted space where the given test sample
lies may provide better results.

In order to take into account the distribution of
the training samples in different parts input space, a
Dempster-Shafer theory based (evidential) pattern clas-
sification technique is proposed by Denaeux [2]. In that
approach, each neighbor of a given test sample in the
training set is considered as a piece of evidence support-
ing the class that the training sample belongs. The ba-
sic probability assignments from all neighbors are then
combined to predict the class of the tested sample. In
boosting technique, weights for different samples are
naturally available where the ultimate aim is analogous;
each training sample has a different influence on the de-
cision depending on the difficulty of its classification
since, more replicas of difficult samples are used than
easier ones in classifier training. However, the sample
weights are explicitly considered only in the training
phase. In this study, an evidence-theoretic framework
for boosting is proposed so as to take into account the
weights and distances of the neighboring training sam-
ples in both training and testing boosting based ensem-
bles. In the proposed approach, the weight update mech-
anism of AdaBoost is preserved where a weight and
distance dependent belief structure assignment is devel-
oped. The proposed approach is used for boosting near-
est mean classifier (NMC) where better accuracies than
AdaBoost are obtained.

2 Evidential Pattern Classification

Let Q denote the set of class labels and S —
{(#n> Vn)}, n = 13 • • •»N be the set of training sam-
ples where xn denotes the nth input sample and yn 6 fl
is its label. Given a test sample x, each training sample
is considered to provide a piece of evidence about the
class label of x. In other words, each xn e S induces a
belief structure mn with two focal elements, {wq} and
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fl where wq e ft is the class that the training sample xn

belongs as,

mn({wq}) = a<t>q{\\xn - x\\) =

mn(ft) = 1 -mn({wq})
(1)

where | |x n — x| | is the Euclidean distance between xn

and x. The class-independent design parameter a and
the class-dependent parameter j q determine the way ba-
sic probability values are assigned to {wq} and fl. As
a increases, the evidence provided is considered to be
more certain. The influence of the distance on basic
probability assignments is class dependent and it is ad-
justed by 79 . As the distance increases, more probability
mass is assigned to ft. These belief structures are com-
bined using Dempster's rule of combination [3]. In or-
der to make a joint decision, pignistic probabilities can
be computed as PBet(wi) = E ^ c s 7 ^ > v ^ € ^
where B denotes the focal elements getting nonzero ba-
sic probability value [4]. Then, the class getting the max-
imal PBet(-) value can be selected as the joint decision.

In summary, the main idea is to treat each neighboring
sample as a piece of evidence for the class label of the
tested sample. In this paper, this idea is used to propose
an evidence-theoretic framework for boosting where the
sample weights are explicitly used to compute the mea-
surement level classifier outputs.

3 Evidence Theoretic Framework for Boosting

Let Wt{n) denote the weight of the nth training sam-
ple in S initialized to 1/N and t denotes the iteration
count, fl = {wa,Wb} since a 2-class problem is con-
sidered. Let St denote bootstrap sample set obtained
by drawing with replacement N samples from S using
distribution Wt. dn(j) is defined as the Euclidean dis-
tance of xn to its j th nearest neighbor in S denoted by
neign(j). dn(l) is zero which is the distance of the sam-
ple with itself and dn{2) is the distance from the closest
different sample.

The proposed algorithm named as E-Boost is given
below. The initial classifier makes use of equal sam-
ple weights. In each iteration, the weights of the cor-
rectly classified training samples are decreased. Given
the current weight vector Wt, the training set is resam-
pled to generate a new ensemble member. Then, each
training sample xn is classified by taking into account its
/c-nearest neighbors. For this purpose, each neighboring
sample having the same class label as the classifier deci-
sion (totally, kf ^ k) induces a belief structure rrij with
focal elements {wq} being the decision of the trained
classifier and fl. The main idea behind this is to com-
pute the total support on the output of the classifier. It
should also be noted that k' is different for each training
sample.

fort = 1,...,T
Build classifier Ct using sample set <St resampled from S using
distribution Wt.
for n = 1 to N

Compute the most likely class, wq = Ct(xn)
Compute the k-nearest neighbors of xn in S using

for j = 1 to k' II consider neighbors of the same class as wq

mj({wq}\neign(j)) = f(qtWt(neign(j))>dnU))
mj(Sl\neign{j)) = 1 - rrij({wq}\neign{j))

end
m^m6(.) = mi(.\neign(l)) 0 . . .®mk< {.\neign{k'))
Compute pignistic probability as,

PBet(wq) = m^omb(wq) + m™ornh{Q.)/2

The combined decision is computed as,

c fx \ =
 W(i lf \pBet(wq) - PBetWq)\ > r

rand({wa,vJb}) otherwise
(2)

p Calculate the weighted error using et =
jf ^=1 wt(n){l - qn,t) where qn>i - 1 if x n is correctly
classified and zero otherwise.

Compute at = \ ln( x ~ e t ) , et E (0,0.5) and update the
weights using

Wt+\(n) = —T^-e~at \fCt{xn) = yn, where Zt is a
normalization factor so that Wt+i is a distribution,

end

end

The basic probability assignment is defined as,

mj({wq}\neign(j)) = ± ^ _ , , ,„_„ , (3)

where Wt^max is the maximum weight value at the tth
iteration. dq

avg used in the denominator is the within-
class average of /c-nearest neighbor Euclidean distances
for the class wq. As seen in the equation, the basic proba-
bility value is proportional to the weight of the neighbor;
higher weights correspond to stronger evidence. The
weights are normalized by their maximum values so that
mj({wq}\nei9n(j)) < 1. The denominator also de-
pends on the decided class. As the distance increases
above the average dq

avg, the evidence provided is consid-
ered to decrease whereas a smaller distance corresponds
to an increasing evidence.

kf belief structures are then combined using Demp-
ster's rule of combination to compute the combined be-
lief structure, mj o m 6( . ) . The pignistic probabilities ob-
tained from the combined belief structure are used to
select the most likely pattern class. If the decision of
the classifier is wat it is expected that Pseti^a) »
PBet{wb) where the support on wt> comes from the ba-
sic probability assigned to ft. In the proposed algo-
rithm, the threshold r is used to make sure that there
is enough support on the decision of the classifier. If
PBet(wa) ~ PBet{wb), the classifier is not considered
to provide reliable information about the class of the
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sample under concern. Also, it may be the case that
PBet(wa) — PBet(wb) = 0 due to no local support.
In both of these cases, the decision is randomly selected.

The decisions generated by the tth classifier after
combining the evidence from each fc'-nearest neighbors
are used to compute the weighted error, et as in Ad-
aBoost. If et € (0,0.5), the weights of the correctly clas-
sified samples are updated. In the proposed approach,
the weights of misclassified samples are not increased
since, it is observed that this may easily lead to classi-
fiers with higher error rates than 0.5. Such an update
was also considered for AdaBoost and named as conser-
vative AdaBoost. When the condition that et 6 (0,0.5)
is not satisfied, the algorithm is terminated. The output
of the algorithm is a set of T different weight vectors,
T classifiers and the at values obtained for each weight
vector.

During testing an unseen input vector, combined be-
lief structures racom&(.) are computed for each different
member classifier. The input vector is firstly tested by
each classifier and then each kl nearest neighbors hav-
ing the same class label as the most likely class gener-
ated by the classifier induces a belief structure, k' belief
structures are then combined using Dempster's rule of
combination to compute the combined belief structure,
mc o m5(.). The pignistic probabilities obtained from the
combined belief structures, {Pl

Bet}J=l are aggregated
to compute the resultant pignistic probabilities using
weighted averaging as,

(4)

Then, the class assigned to the tested pattern is the one
getting the highest P#g?(.) value. Since different belief
structures are obtained using resampling from the same
training set, Dempster's rule of combination cannot be
used. Due to the commutativity property of averaging
and the linear relationship between credal level informa-
tion (using basic probability values) and pignistic prob-
abilities, averaging is considered to be a good candidate
for bagging evidential fc-NN classifiers [5]. Following
this reasoning, the weighted form of averaging as given
above is used in this study.

4 Experiments

In order to investigate the benefits of the proposed ev-
idential framework for boosting, experiments are con-
ducted on artificial and real data sets from UCI machine
learning repository and ELENA database.

Fig. 1. The scatter plot of training samples for 2-D Lithuanin
classes.

4.1 Experiments on Artificial Data Sets

Two different artificial data sets are generated using
the PRTOOLS toolbox [6]. In both of these experiments,
we set k = 5 and r = 0. For the first 2-D classification
problem, Lithuanin classes are generated. For each class,
200 samples are used for training and 200 for testing.
AdaBoost is run to generate an ensemble of three nor-
mal densities based quadratic classifiers. The developed
classifiers are illustrated on the scatter plot of the train-
ing data in Figure 1. The first class is represented using
+'s and the second class samples are represented using
*'s. The test samples that are correctly classified by the
proposed algorithm but misclassified by AdaBoost are
also marked on the figure. D's represent such test pat-
terns from the first class and O's represent those belong-
ing to the second class. As seen in the figure, the pro-
posed technique is more effective on the difficult sam-
ples lying on the border of the classes. Three of the
differently classified test samples belonging to the first
class and five belonging to the second class are misclas-
sified by two of the three classifiers. This is the main rea-
son for AdaBoost to be unsuccessful for these samples.
However, they are correctly classified by E-boost due to
the support from their neighbors. In this experiment the
classification accuracy of the base classifier is 91.25%,
where 93.50% and 95.75% accuracies are achieved by
AdaBoost and proposed algorithm respectively.

For the second 2-D classification problem, 'banana'
classes are generated where the same number of training
and test samples are considered. Figure 2 illustrates ten
NMC type ensemble members obtained using AdaBoost.
Since the NMC type classifier is a weak one, it is less
sensitive to changes in the training set providing deci-
sion boundaries that may be close to some others leading
to correlated decisions and only 1% improvement. How-
ever, making use of the different weights of the training
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Table 1. Experimental results for T = 10 classifiers.

Fig. 2. Ten NMC type ensemble members obtained for 'ba-
nana' data set using AdaBoost algorithm.

Data set

monks-1
monks-2
monks-3

wdbc
breast-cancer-w

sonar
ionosphere

liver
heart

phoneme
clouds

Average

Base

65.97
53.47
80.56
88.30
95.76
65.32
74.29
55.53
61.87
71.73
75.25
71.64

AdaBoost

65.74
54.17
82.64
88.42
95.71
71.77
87.05
61.75
66.37
71.91
75.27
74.62

E-Boost

70.83
64.81
89.35
92.28
96.54
80.48
90.67
62.82
67.47
83.73
77.51
79.68

Fig. 3. Average accuracies achieved by E-boost and AdaBoost
for T = 5, 10, 15 and 20 over eleven data sets.

samples explicitly during testing reduces the correlations
providing 14.75% improvement over the base classifier.

4.2 Experiments on Real Data Sets

In order to evaluate the proposed algorithm, experi-
ments are conducted on nine different data sets in the
UCI machine learning repository and two in the ELENA
data set. The experiments are repeated ten times and the
average accuracies are computed. In order to evaluate
the proposed framework on real data sets, nearest mean
classifier (NMC) is selected as the base classifier. The
experimental results for T = 10, k = 5 and r = 0
are presented in Table 1. As seen in the table, E-Boost
provided much better accuracies compared to AdaBoost.
The experiments are repeated also for T = 10, 15 and
20, and the average accuracies over eleven data sets are
presented in Figure 3. The figure show that better ensem-
bles are obtained as the number of classifiers is increased
up to 20 which is not the case in AdaBoost.

5 Conclusions

In this study, an evidence theoretic framework is pro-
posed for boosting. Experimental results have shown
that the use of local information is highly useful for

boosting based classifier ensembles. The proposed ap-
proach should also be evaluated for other types of clas-
sifiers such as fisher's linear discriminant. Also, the ef-
fect of k and r should be investigated. Our preliminary
experiments have shown that the average accuracy in-
creases to 80.82% for r = 0.15. Also, the performances
achieved are observed to be better for smaller k value
in some of the data sets. Analysis of the proposed al-
gorithm in terms of these parameters and estimation of
their best fitting values are the main topics our current
research.
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