
50

Interval Basis Neural Networks

A. Horzyk1

1 Department of Automatics, University of Science and Technology, Poland
E-mail: horzyk@agh.edu.pl

Abstract
The paper introduces a new type of ontogenic neural networks
called Interval Basis Neural Networks (IBNNs). The IBNN
configures the whole topology and computes all weights after a
priori knowledge collected form training data. The training
patterns are grouped together producing intervals separately for
all input features for each class after statistical analyses of the
training data. This IBNNs feature make possible to computed all
network parameters without training. Moreover, the IBNN takes
into account the distances between patterns of the same classes
and builds the well-approximating model especially on the
borders between the classes. Furthermore, the IBNNs are
insensitive for quantity differences in patterns representation of
classes. The IBNNs always correctly classify training data and
very good generalize other data.

1 Introduction
Though neural networks are very modern computational
tool they are not always easy to use because of many
unknown configuration parameters. Many ontogenic
neural networks [1,3-8] can help to solve problems of
architecture construction but many times their
generalization is poor. The generalization is a
fundamental problem of ontogenic neural networks use.
This paper introduces a new type of ontogenic neural
networks - called Interval Basis Neural Networks
(IBNNs). The IBNNs are non-linear three-layers partially
connected ontogenic neural networks constructed after
the statistical analyses of the training data. The
construction of IBNNs is deterministic. Training data are
analyzed separately for each input feature searching for
intervals characteristic for each class. Such separable
intervals are completed with non-linear concave functions
with controlled shape of descend that make possible to
achieve good approximation especially on the borders
between different classes. The shape of these concave
functions (fig. 2) are computed after the quantity and
distances of other training data of the same class from the
hyperregions and sub-hyperregions borders. The
hyperregions and sub-hyperregions are produced after the
intervals computed for all training patterns of the same
class.

The adaptation of RBF networks by Lowe [6] also
enables to change the shape of radial basis functions.
Lowe describes the importance of the adaptation of RBF
function in view of generalization. The shape of slopes
can be regulated also for bicentral functions [2].

2 IBNN Construction Process
For any given training data

U = {(u\Cmx),..., (uN,Cmx)} consisting of the pairs: the

input vector u" = \u"9...,u^\ (u"k e<R), the adequate

class Cm e{c\...9C
M} of this input vector u" eCm"

and input features 1, ..., K, the intervals (for each feature)
of patterns of the same class can be computed (fig. 1).
Different intervals are characteristic for different groups
of patterns of each class and can partially identify them.
The model of each class can be defined by combining
such intervals for all input features into hyperregions and
sub-hyperregions in the input space. In order to find out
such intervals effectively training data have to be sorted
after each input feature.

Fig. 1. Extraction of intervals and computation of transfer
function for these intervals in view of hyperregions.

In order to generalize correctly especially outside the
computed intervals the concave slopes (fig. 1.-2.) are
added at the borders of such intervals. These concave
slopes are functions that project the quantity and the
distances of other input patterns of the same class from



51

the considered intervals. The training patterns are
classified always as 100% similar to their classes. Each
interval defines a single neuron in the 1-st layer of the
constructed neural network (fig. 3.). Such a neuron is
connected to the input related with feature of its interval.
The transfer function fT of the 1-st layer neurons is
defined as follows:

/,(*)=

\-tgh-
+ ak

-x

if x >xR

U xk > xk

ifxL
k<xk<x« (1)

ifxk<4
where
XL - is a left limit of the concerned interval,

xR - is a right limit of the concerned interval,

aL - is a left slope parameter of the transfer function,

aR - is a right slope parameter of the transfer function,

The slope parameters of the transfer function (fig. 2) are

defined as follows:
i

ieL

where
L = {u":u"eUnCm&u"k<xL

k]

R = {u":uneUnCm&u"k>x«}

(2)

(3)

(4)

(5)

« (6)
K-Nm

N - is a number of training data,

Nm - is a number of training data that define class Cm ,
K - is a number of classes defined in the training data.
The slope parameters (2) and (3) define the slopes of the
transfer function (1). They depend on other training
patterns of the same class. The more training patterns in
the left (L) or in the right (R) direction of the interval are
the less sharp the suitable slope is. This feature of the
IBNN is very important in view of generalization. The
specifically computed slopes of transfer functions contain
information about other training patterns that define the
same classes. Such intervals of each class define models
of classes for each feature separately.
Coefficient qm makes the computations of slope
parameters (fig. 2) insensitive for differences in patterns

quantity representating classes, for quantity of training
data and for quantity of classes defined in the training
data.

Fig. 2. The transfer function for the 1-th layer neurons.

Fig. 3. The 3-layer topology of the IBNN for hyperregions.

Each neuron of 1-st layer is always connected to a single
input corresponding with a certain input feature. The
weights of 1-st layer neurons are always equal 1. The 2-
nd layer contains neurons (fig. 3) that compute (limited -
for sub-hyperregions) products of some combinations of
output values of the 1-st layer neurons producing
hyperregions or sub-hyperregions. Only these
combinations given by training data that are related to
intervals of different existing input features are
transformed to connections. Each 2-nd layer neuron
represents a group of training patterns of the same class.
Such neurons can correctly approximate the values of
classification inside the intervals (hyperregions or sub-
hyperregions) and outside them after the specific
information came from the computed value of slope
parameters. Moreover, the advanced analyses of the
sorted input data for all features lead to find out the
separate sub-hyperregions for each class. The sub-
hyperregions in data subspace can not include patterns of
other classes. The sub-hyperregions are easy to find
because they are convex. The sub-hyperregions are
finally grouped together creating different sub-



52

hyperfigures as shown in the figures 4-5. Theoretically,
there could exist many possible sub-hyperflgures in the
hyperspace that consist of the different sub-hyperregions
covering the training data in different ways as shown in
the figure 6. Each training pattern has to be closed in at
least one sub-hyperregion. The smallest sub-hyperregions
can consist of single point in the input space representing
single pattern. In order to avoid the problem of ambiguity
of sub-hyperfigures there are used two criteria:
1. Criterion of the density of the patterns of the same

class: the longer distances between patterns the lower
density in the space and the lower probability to create
the sub-hyperregion.

2. Criterion of maximum quantity of training samples
closed in sub-hyperregions taking into account the
quantity of patterns representing different classes. The
sub-hyperregions for different classes are compared
regarding the quantity of patterns they contain divided
by the quantity of patterns representing appropriate
classes they represent in order to make the IBNN
insensitive for differences in quantity representation
of different classes.

The described criteria are used to define the k-th sub-
hyperregion coefficient computed as follows:

nk

RC*=:-~ (7)
where
Q - quantity of patterns included in the given sub-

hyperregion,
V - volume of the sub-hyperregion.
where k-th sub-hyperregion consists of patterns of m-th
class.

o <>

Fig. 4. Producing multiple sub-hyperregions after the intervals.

In order to IBNN classify properly using concave
functions at boarders of sub-hyperregions forming sub-
hyperfigures representing classes two important
conditions have to be true:

1. The sub-hyperregions for the patterns of the same
class should overlap if only possible.

2. The sub-hyperregions for the patterns of different
classes have to be always separate.

Finally, the overlapped sub-hyperregions of different
classes are compared together using coefficients
computed for them after the described criteria in order to
choose this one which has the maximal value of this
coefficient. Other overlapping sub-hyperregions should
be omitted or cut off by the winning sub-hyperregion.

o <>

Fig. 5. Connected sub-hyperregions producing sub-hyperfigures
for the presented classes.

The transfer function of the 2-nd layer neurons is defined
as follows:

fn{y)=f[yk (8)
*=l

The weights of 2-nd layer neurons are always set to 1.

i

[

PI

- B -

A
k

—pt

I

•

—a
A

1 I
D

[

i
i

i3 .

O 0
)

Fig. 6. The use of the criterion (7) prevent the possible
collisions of sub-hyperregions.

The 3-rd layer neurons choose the maximum value of the
2-nd layer neurons of the same class. The output values



53

of the 3-rd layer neurons measure the similarities to the
classes defined in the training data set. The transfer
function of the 3-rd layer neurons is defined as follows:

fe} (9)
The result classification is defined by the function:

fc{s) = arg max k : sm = f"{z)} (10)
/M=1,...,M

This function can be optionally transformed to the neuron
of 4-th layer of IBNN. If there is no maximum value for
3-rd layer neurons the output can be defined as zero. The
zero output suggest that the network can not univocally
qualify the input vector to any of the trained classes.

3 Comparison to other methods
The IBNNs are easy to use ontogenic neural networks.
They don't need to be trained because all network
parameters are computed in the configuration process
automatically. They work similarly to RBF networks
(KNN), bicentral based networks and PNN [1, 4, 10, 15]
creating a specific hyperregions in the input data space. In
comparison to well-known RBF networks which are
partially configured and partially trained the IBNNs are
only configured after a priori knowledge about training
data. Only some statistical analyses are needed to find out
specific intervals for each class and each feature. For big
training data sets computation of IBNN could be
sometimes time consuming because the training data have
to be sorted for each input feature in order to separate
intervals. Intervals as well as RBF neurons group together
input data of the same class. In MLP networks the hard-
limiter neuron the boundary is a hyperplane, in RBF
networks the boundary is the circumference of a
hypervolume (hypersphere with Euclidean distance)
centered around class samples, while in IBNNs the
boundary is hyperregion outspreaded on some subset of
class samples. The hyperregions are completed with
specific slope functions that are necessary to approximate
and generalize outside the IBNN hyperregions and sub-
hyperregions. The IBNN is also a good alternative for
automatically configured ontogenic SONN [4-5] because
SONNs demand binary data for configuration of the
networks and computation of weights parameters. IBNN
as well as SONN are deterministic and fully automatic.
They do not demand any configuration parameters.

4 Conclusions
The described IBNNs can be used as an alternative
method to other kernel neural networks (KNN). The
deterministic IBNNs configuration process is based on
some specific statistical analyses of the training data. The
introduced method finds out intervals specific for each

training class and constructs specific sub-hyperregions for
them. Each hyperregion and sub-hyperregion define the
data of one of the trained class and can be used to
approximate and generalize data in-between the
boundaries of a considered hyperregion. There are
defined new specific slope functions that help to
generalize outside the hyperregions. The training data are
always correctly classified. Moreover, the IBNNs are not
sensitive for differences in patterns quantity
representation of classes, for quantity of classes. While
the IBNNs need to sort training data for each input
feature the computations can be time-consuming for big
training data sets. On the other hand, big data sets can be
better optimized and the IBNN model can be better
created.
Acknowledgements: Support from research funds of
Polish Committee for Scientific Research is gratefully
acknowledged.

References
[1] Duch, W., Korbicz, J., Rutkowski, L., Tadeusiewicz,
R. (eds) (2000) Biocybernetics and biomedical
engineering, Neural networks, vol. 6, EXIT, Warsaw.
[2] Duch, W., Jankowski N. (1997) New neural transfer
functions, Journal of Applied Mathematics and Computer
Science, 7(3): 639-658.
[3] Fiesler, E., Beale, R. (eds) (1997) Handbook of neural
computation, IOP Publishing Ltd and Oxford University
Press, Bristol & New York.
[4] Horzyk, A., Tadeusiewicz, R., (2004) Self-Optimizing
Neural Networks, Advances in Neural Networks - ISNN
2004, Proc. of International Symposium on Neural
Networks, Dalian, China, Springer-Verlag, Berlin -
Heidelberg, pp. 150-155.
[5] Horzyk, A. (2003) Introduction to Self-Optimising
Neural Networks for Classification Tasks, Advanced
Computer Systems, Soldek J., Drobiazbiewicz L. (eds),
Szczecin, INFORMA, pp.127-135.
[6] Lowe, D. (1989) Adaptive radial basis function
nonlinearities and the problem of generalization, 1st IEEE
International Conference on Artificial Neural Networks,
London, UK, pp. 171-175.
[7] Specht, D. F. (1990) Probabilistic neural networks.
Neural Networks, 3: 109-118.
[8] Tadeusiewicz, R., Mikrut, Z., (1998) Neural-Based
Object Recognition Support - From Classical
Preprocessing to Space-Variant Sensing. Invited paper. In
M. Heiss (ed.): Proceedings of the International
ICSC/IFAC Symposium on Neural Computation NC '98,
Vienna University of Technology, ICSC Academic Press,
Canada/Switzerland, pp. 463-468.




