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Abstract

Supervised learning by perceptron networks is inves-
tigated a minimization of empirical error functional. In-
put/output functions minimizing this functional require
the same number m of hidden units as the size of the
training set. Upper bounds on rates of convergence to
zero of infima over networks with n hidden units (where
n is smaller than m) are derived in terms of a variational
norm. It is shown that fast rates are guaranteed when
the sample of data defining the empirical error can be in-
terpolated by a function, which may have a rather large
Sobolev-type seminorm. Fast convergence is possible
even when the seminorm depends exponentially on the
input dimension.

1 Introduction

The goal of supervised learning is to adjust parame-
ters of a neural network so that it approximates with a
sufficient accuracy a functional relationship between in-
puts and outputs known only by a sample of input/output
pairs. It is desirable that the system also generalizes well,
i.e., it satisfactorily processes new data that were not
used for training. Learning from data with generalization
capability was studied theoretically in the framework of
regularized optimization [4], [14], [10]. Theoretical re-
sults describing optimal solutions can be applied to ker-
nel models, a special case of which are radial-basis func-
tion networks with constant width. But the most com-
mon neural networks built from perceptrons cannot be
represented as kernel models.

In this paper, we investigate minimization of empirical
error functionals over sets of functions computable by
perceptron networks. We estimate rates of convergence
of infima over networks with n hidden units to the global
infimum achievable by a network with the same number
of hidden units as the size of the training set.

2 Approximate minimization of empirical error

Let 1Z denote the set of real numbers, Vt be a non-
empty set and z = { (^ , vi) G Q x 71, i = 1 , . . . , m}
be a sample of input/output pairs of data. A stan-
dard approach to learning from empirical data used,
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e.g., in back-propagation, is based on minimization of
the empirical error functional defined as £z,v(f) =

hTZiVUiui)^i\ w h e r e V ' K x n "* [0,oo),
satisfying for all y G 1Z, V(y, y) = 0, is called a loss
function. The most common loss function is the square
loss V{f(u),v) = {f(u) — v)2, we denote by £z the
empirical error functional with this loss function, i.e.,

M/) = £E™i(/K)-o;)2-
Let M be a subset of a normed linear space (X, ||.||)

and $ : X —> 1Z be a functional. Using standard nota-
tion from optimization theory, we denote by (M, $) the
problem of minimization of $ over M; M is called the
hypothesis set. Elements of the set argrain (M, $) =
{g G M : $(g) = inf^M $(#)} are called solutions (or
minimum points) of the problem (M, $) . For e > 0, el-
ements of the set argmine(M, 3>) = {g G M : $(g) <
infgzM $(#) + ^} a r e called e-near minimum points of
(M, $) . A sequence {gn} of elements of M is called
^-minimizing if limn^oo $(#n) = inf^€M $(#)•

Typical hypothesis sets used in neurocomputing
are sets of functions computable by neural networks
with n hidden units of a given type and one lin-
ear output. Such sets are of the form spann G =
(Zir=i wt9i : wi ^H, 9i € G}> where G is the set of
functions computable by the computational units.

Standard hidden units are perceptrons. For Q C lZd

and ip : H -> U we denote by Pd(^,f2) = PdW =
{/ :Q-+n\ f(x) = ip(ai • x + 6*), a* G 1ld, h G 11}
the set of functions on Q, computable by perceptrons
with the activation function ip (we write P«*(V0 when
Q is clear from context). The most common activation
functions are sigmoidals, which are monotonic increas-
ing functions a :1Z-^1Z (i.e., for all t\,t2 G 7£, t\ < t2

implies cr(ti) < crfa)) satisfying limt_>-oo &(t) = 0
and limt_>oo c(£) = 1-

An important type of a sigmoidal is the Heaviside
function d{t) = 0 for t < 0 and tf(t) = 1 for t > 0. To
shorten notation, we write Hd(Q) instead of Pd(#, fi).
Note that Hd{tt) is the set of it characteristic functions
of closed half-spaces of1Zd intersected with £1

Ito [6, p.73] proved that any function defined on a fi-
nite subset of 1Zd can be exactly represented as a function
computable by a perceptron network with any sigmoidal
activation function. The following theorem is a reformu-
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lation of Ito's result in terms of optimization theory.

Theorem 2.1 (Ito) For all positive integers d, m, all
samples of data z = {{ui,Vi) G lZd x 1Z, i =
1 , . . . , m} with all ui distinct and all sigmoidal func-
tions a, the problem (spanmVd{&),£z) has a solution
andmmfesparl7nPd{(T) £z(f) = 0.

A drawback of this result is that the number of hid-
den units in the network interpolating the sample of data
is equal to the size of the sample. For large samples,
such networks might not be implementable. Moreover
in typical applications of neural networks, a number of
hidden units much smaller than the size of the train-
ing set is chosen before learning. Using such networks,
only suboptimal solutions can be achieved. To compare
such suboptimal Solutions with the optimal one given
by Theorem 2.1 we estimate rates of convergence of
{inf / € s p a n n / f d (n) £z(f)} to zero as n goes to m.

A useful property that allows application of several
tools for investigation of approximate minimization of a
functional is its continuity. The next proposition shows
that continuity of the empirical error defined by a sample
z follows from continuity of the evaluation functionals at
the input data u\,..., um. For a normed linear space
(X, ||.||) of functions on some set ft and x e ft, the
evaluation functional at x9 denoted by Tx, is defined for
a l l / € * as ^ ( / ) = /(*).

Proposition 2.2 Let {X, \\.\\) be a normed linear space
of functions on a nonempty set ft, m a positive integer,
z = {(iii, Vi) G ft x 71, i = 1 , . . . , m}, V : ft x ft - • U
a loss function and f G X. If for all i = 1 , . . . , m, TUi

is continuous at f and V is continuous at (f(ui),Vi),
then £zy is continuous at f.

Proof. By continuity of V we get for every e > 0
some r\ > 0 such that \\f(ui) - </(«*)|| < r\ implies
\V(f(ui)7Vi) - V(g(ui):Vi)\ < e. As all TUi are con-
tinuous at / , there exists S > 0 such that \\g - f\\ < 6
implies ||/(u<) - g(ui)\ < rj and hence \£zy{J) -

£*,v(g)\ = \^ZT=i(y(fM^i)-vigiu^vi))] <
e. U

It is easy to show that £z is continuous on the space
M(ft) of bounded measurable functions on ft C 7ld

with the supremum norm ||.||Sup a^d that it is convex.

Proposition 2.3 Let ft C Hd
f z = {(w»,Vi) G ft x

Then £z : (M(ft), ||.||SuP) -* 11 is continuous and
its modulus of continuity at any f G M(ft) satisfies

for span2Hd{[0y l]d): denoting by Xn the characteris-
tic function of [0, £] x [0, l ] d ~ \ we get a sequence
{nXn} C spari2Hd([0, l]d) with all elements having
£ 2 -norms equal to 1, on which the evaluation func-
tional at zero is not bounded (and thus it is not contin-
uous). Similarly, one can disprove continuity of eval-
uation functionals on span2Pd(o', ft) for any sigmoidal
function a.

Recently, a class of Hilbert spaces of point-wise de-
fined functions, on which all evaluation functionals are
continuous, became popular in learning theory. Such
spaces are called reproducing kernel Hilbert spaces
(RKHS) and they can be represented as completions of
linear combinations of "translations" of kernels (sym-
metric positive semidefinite functions) [1], [4], [14].
Continuity of empirical error functionals on RKHSs al-
lows one to apply theory of generalized inversion and
regularization in infinite dimensional Hilbert spaces to
describe solutions of the problem of minimization of the
empirical error over RKHSs [10]. Moreover, continuity
of empirical errors is essential for derivation of estimates
of rates of approximate optimization over kernel models
of bounded complexity [11], [12].

However, it is not clear, whether there exist kernels,
for which sets Pd{?) are contained in the corresponding
RKHSs. So in investigation of minimization of empirical
errors over perceptron networks, we focus on the space
of bounded measurable functions with the supremum
norm. To derive rates of approximate optimization over
spannHd{ft) we take advantage of a result from nonlin-
ear approximation theory [2] giving an upper bound on
supremum norm rates of approximation by spannHd(ft)
in terms of a norm called variation with respect to half-
spaces. It is a special case of G-variation [9] defined
for any bounded nonempty subset G of a normed linear
space (X, ||.||) as the Minkowski functional of the closed
convex symmetric hull of G, i.e.,

| | / | |G = i n f { c > 0 : c"1 / G cl conv (G U -G)} ,
where the closure cl is taken with respect to the topology
generated by the norm ||.||. Note that G-variation can be
infinite (when the set on the right-hand side is empty).

Here we consider #d-variations with respect to the
topology generated by the supremum and £2 -norm (we
indicate the norm by the notation ||.||Hd,suP> IUItfd,£2>
resp. It is easy to check that ||.||jfd,£2 < ||.||Hd,sup as
well as ||.||pd(<7),£2 < \\-\\pd(a),SUp and that \\.\\Hd,C2 =

In contrast to the supremum norm, in the £ 2-
norm evaluation functionals need not to be continu-
ous. Lack of continuity can be easily demonstrated

Barron [2] estimated rates of approximation by
spannHd in the supremum norm (see also [3, p. 201]
and [5, p. 25]).

Theorem 2.4 (Barron) For all positive integers d, n,
every compact ft C 1Zd and every f G A4(ft),
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\\f - spannHd(Q)\\sup <

where c is an absolute constant.

The next theorem estimates rates of convergence of
infima of a continuous functional over spannHd to the
global minimum.

Theorem 2.5 Let ft C lZd be compact, 3> :
(Ai(fl), ||.||sup) —* 72- a functional such that there ex-
ists a solution f° of the problem (Ai(fl),$) at which
$ is continuous with the modulus of continuity LJ,
{sn} a sequence of positive real numbers converging
to zero, and {fn} a sequence of en-minimum points of
(spann Hd(ft), 3>). Then for every positive integer n:
(i) inf /GspannjF/d(Q)<

00 */||/°||jfd(ft),sup <
sequence and $( /n) —

J
o, then {/n} is a ^-minimizing

Proof, (i) For every e > 0, let /^ G spannHd be such
that \\f° - /£||8Up < \\f° - spann Hd\\sup + e. Then
inf/€spann „,<!>(/) - *(/«) < *(/«) - *(/«) <
"(ll/n - f°) < u (||/° - 5pannifd|| + e). By Theo-
rem 2.4, infimizing over e we get inf/Gspann Hd

(ii) By the definition of £n-minimum point,
en. So by (i),

^ . AS

= 0 and ||/o||/fd,suP is finite, {/n} is
minimizing. D

Combining Theorems 2.1, 2.5 and Proposition 2.3 we
get the following upper bound on rates of approximate
minimization of £z over spannHd(Q).

Corollary 2.6 Let fi c lZd be compact, z = {(u», v*) G
Q x n,i = l , . . . , m } , / ° G A4(fi) 5wc/z /to^
£z(f°) = 0, { n̂} ^ sequence of positive reals converg-
ing to zero, {fn} a sequence of en-minimum points of
(spannHd(Q),£z). Then for every n:
(i) mifespariri #d(Q) £z(f) <
(d-n)c2nriif/d)Sup v^+i(2ciirn^iSUP+i;maxiiriiHd,sup)>

00 {fn} is £ ̂ minimizing and £z(fn) <
2 ^ ^

en, where c is an absolute constant.

3 Estimates of variation with respect to half-spaces
Corollary 2.6 shows that the speed of convergence of

suboptimal solutions of the problem of minimization of

£z over the set of functions computable by networks with
n Heaviside perceptrons depends on the smallest value
of i/^-variation on the set of functions interpolating the
data z.

To estimate H^-variations of smooth elements of this
set we take an advantage of a result from [8] bounding
from above i/d-variation of a smooth function by a prod-
uct of its certain Sobolev-type seminorm with

d-i Jy J
which as a function of d is decreasing exponentially fast.

For a function / G Cd(7ld) define

For d odd and / sufficiently rapidly vanishing at infinity,
an upper bound

l,oo (1)

was derived in [8].
Thus by Corollary 2.6, for any sample of data z,

which can be interpolated by a function f° satisfying
II foil < 1 (d2d~2nd-1\1/2

11/ Hi,d,oo < rd ~ \ Td ) >
infima of £z over spannHd converge to zero wi th rate

^1E
as by (1) f° has Hd -variation at most 1.

However, there exist samples of data, which cannot
be interpolated by functions with small if^-variations.
Such samples z = {(ui, Vi), i = 1 , . . . , m} can be ob-
tained from real-valued Boolean functions h : {0, l}d —>
72 by setting {0, l}d = {ui,..., u2d} and Vi = h(ui).
If/ : ft —• IZ is an extension of h, then ||/||/fd(Q),Sup >

To show that there exist functions on {0,1 }d with
Hd({0, l}d)-variations depending on d exponentially,
we use a geometric characterization of G-variation from

II/IIG >
9'f\'

(2)

So functions that have small inner products with all el-
ements of G (are "almost orthogonal" to G) have large
G- variations.

For a Hilbert space (X, ||.||) we define on its unit ball
S\ a pseudometrics px(f,g) = arccos|/ • g\, which
measures the distance as the minimum of the two an-
gles between / and g and between / and — g (it is a
pseudometrics as the distance of antipodal vectors is
zero). For a > 0, let ATa(Si) denote the a-covering
number of Si with respect to px, i.e., the size of the
smallest a-net in Si. The next proposition shows that
when for some a close to TT/2, the cardinality of G is
smaller than fifa(Si)9 then in Si there exists a function
with a "large" G-variation. It also guarantees existence a
function with G-variation at least ^ for any subset G of
the unit sphere Sm~1 in 71™ of smaller cardinality than
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the e-quasiorthogonal dimension dim£m of lZm. For
e > 0, dim£m was defined in [7] as the maximal number
of vectors which are pairwise e-quasiorthogonal, i.e.,

Proposition 3.1 0) V G is a subset of the unit sphere
S\ in a Hilbert space X and a £ [0, n/2] is such that
cardG < Afa(Si) with respect to the pseudometrics
px, then there exists f G Si with \\J\\G > 1/cosa.
00 ¥G C S171'1 C 7lm such that cardG < dim£m,
then there exists f £ S™'1 with \\f\\G > \.

Proof, (i) If card G < J\fa(Si), then there exists/ e Si
such that for all g € G, px (/, g) > ot and hence \f-g\ <
cos a. Then by (2) | | / | |G > 1

G\f-g\ - 1/cosa-
(ii) follows from (i) as dim£m < A/*arccos(£)(Sm~1). •

Theorem 3.2 For every positive integer d there exists a
sample z = {{uu v{) : i = 1 , . . . , 2d} C {0, l}d x n
such that for every Q D {0, l}d and every f : lZd -> K

such that £z(fy=O,\\f\\Hd(Qhsup>
2(d-l)/2

OnProof. It was shown in [7] that dim£m > e™
the other hand, cardHd({0,l}d) = 2d2-dlo

[15]. Denoting H%({0,l}d) the set of normalized
elements of Hd({0,l}d) with respect to /2-norm on

1Z2\ we get ||.||//d({o,i}d),sup > ll-IUd({o,i}d),i2 ^
d < 2d\ for e =

< e ^ £ 2 ) / 2 and hence by

Proposition 3.1 (ii) there exists a function h e S2 ~1

With ||fc||H<l({0tl}'),Bup > \\h\\H°({0,l}),l2 >

and
i) : i — 1 , . . . , m}. Then for every f : ft -> K,

for which £ , ( / ) = 0,1|/||Hd(n)|Bup > ^ S f • •

Note that by (1) for every d odd and f° e Cd{Ud)
sufficiently rapidly vanishing at infinity interpolating
the sample described in Theorem 3.2, ||/°||i,d,oo >

/
dedln2

4 Discussion
We have shown that fast convergence of in-

fima of the empirical error functional £z over net-
works with n Heaviside perceptrons to zero can be
achieved for samples that can be interpolated by func-
tions f° with the Sobolev seminorm ||/°||d,itOo =
maxj a |= d \\Docfo\\Cl(<JZd) depending exponentially on
the input dimension. Note that the seminorm ||/°||i,d,oo
is much smaller than the Sobolev norm ||/o||d,i =
S|a|<d ll^a/oll£iCfcd) a s ms teac^ °f summation of it-
erated^ partial derivatives of / over all a with \a\ < d
only their maximum over a with |a| = d is taken.

We have also shown that there exist samples of data
constructed using special Boolean functions, for which
the Sobolev seminorms of interpolating functions are
even larger than the exponential size allowed for fast
convergence described in Corollary 2.6.

The proof of Proposition 3.1 is existential, but in [13]
a lower bound O(2d/6) on Hd({0, l}d)-variation was
derived for a concrete function, namely the "inner prod-
uct modulo 2".
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