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Abstract

In this paper, we present a technique for tracking groups of
partials in musical signals, based on networks of adaptive
oscillators. We show how synchronization of adaptive
oscillators can be utilized to detect periodic patterns in outputs
of a human auditory model and thus track stable frequency
components (partials) in musical signals. We present the
integration of the partial tracking model into a connectionist
system for transcription of polyphonic piano music. We provide
a short overview of our transcription system and present its
performance on transcriptions of several real piano recordings.

1 Introduction

Music transcription could be defined as a process of
converting an audio signal into a note-level (parametric)
representation, where notes (pitches), their starting times
and durations are extracted from the signal. Transcription
is a challenging problem for current computer systems;
separating notes from a mixture of other sounds, which
may include other notes played by the same or different
instruments or simply background noise, requires robust
algorithms with performance that should degrade
gracefully when noise increases.

Automatic transcription of polyphonic music would be
useful in a variety of applications, ranging from content-
based retrieval of music (i.e. query by example systems)
and music analysis systems to accompaniment systems
and musicological studies.

In recent years, several transcription systems have been
developed [1-4]. All authors, except for Bello [2], base
their systems on frequency domain analysis of the musical
signal. Cues, such as local energy maxima, are extracted
from the time-frequency representation of the signal and
used in subsequent processing stages to find notes that are
present in the signal. Various techniques, such as
statistical frameworks, blackboard architectures, distance
metrics or ICA are used in the process of grouping the
found cues into notes, relying on information such as
harmonicity and common onset/offset times. To reduce
the complexity of the TF representation, to reduce noise
and to incorporate some kind of temporal processing,

partial tracking has been used in some systems to locate
stable frequency components in the audio signal [4,5].

In this paper, we present a connectionist approach to
music transcription. Transcription is a challenging task, so
we limited the domain of our system to transcription of
polyphonic piano music. The paper focuses on our
approach to partial tracking with networks of adaptive
oscillators, provides a short description of our entire
transcription system, and presents some results obtained
on transcriptions of real piano recordings.

2 Partial tracking with networks of adaptive
oscillators

A melodic sound can be roughly described as a sum of
components with relatively stable frequencies and time-
varying amplitudes, called partials. By finding partials in a
signal, one isolates the stable frequency components most
likely belonging to tones, and discards noisy components.
This is especially desirable in transcription systems, where
the goal is to find all the tones present in the audio signal.
Currently, most partial trackers used in transcription
systems are based on a procedure similar to the tracking
phase vocoder [6], where peaks are computed in each
frame of the time-frequency representation. Detected
peaks are then linked over time according to intuitive
criteria such as proximity in frequency and amplitude to
form partial tracks. Such approach is quite susceptible to
errors in the peak peaking procedure, where missed or
spurious peaks can lead to fragmented or spurious partial
tracks.

We propose an alternative partial tracking approach that is
not based on the standard peak-picking/peak connecting
paradigm, but on connectionist principles. It is composed
of two parts: an auditory model, and adaptive oscillators
that extract partials from outputs of the auditory model.

2.1 Auditory Model

The auditory model emulates the functionality of human
ear and transforms the audio signal into a probabilistic
representation of firing activity in the auditory nerve.
Amongst the several auditory models available, we chose
to use a combination of the Patterson-Hodsworth
gammatone filterbank [7] and Meddis' model of hair cell



transduction [8}, as their implementations are readily
available. The gammatone filterbank emulates the
movement of basilar membrane in the inner ear. Its
outputs are processed by the hair cell model, which
converts each output into a probabilistic representation of
firing activity in the auditory nerve. Its operations are
based on a biological model of the hair cell and it
simulates several of the cell's characteristics, most notably
half-wave rectification, saturation and adaptation.
Saturation and adaptation are very important to our
model, as they reduce the dynamic range of the signal, and
in turn enable our partial tracking model to track partials
with low amplitude. These characteristics can be observed
in Fig. 1, displaying outputs of three gammatone filters
and the hair cell model on the 1., 2., and 4. partial of
piano tone F3 (pitch 174 Hz).
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Fig. 1. Auditory analysis of three partials of piano tone F3.

2.2 Partial Tracking

Output of the auditory model consists of a set of quasi-
periodic functions describing firing activities of inner hair
cells in different parts of the basilar membrane (Fig. 1).
Temporal models of pitch perception are based on the
assumption that detection of periodicity in output channels
of the auditory model forms the basis of human pitch
perception. Periodicity is usually calculated with
autocorrelation, resulting in a three-dimensional time-
frequency representation of the signal called
autocorrelogram, with time, channel center frequency and
autocorrelation lag represented on orthogonal axes. In
contrast, we propose to use a set of adaptive oscillators to
estimate periodicity in output channels of the auditory
model.

An oscillator is a system with periodic behavior. It
oscillates in time according to its two internal parameters:
phase and frequency. An adaptive oscillator adapts its
phase and frequency in response to its input (driving)
signal. When a periodic signal is presented to an adaptive
oscillator, it adjusts its phase and frequency to match that
of the driving signal and thus synchronizes with the signal.
By observing the frequency and phase of a synchronized
oscillator, an accurate estimate of the frequency and phase
of its driving signal can be made. After reviewing several
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models, we decided to use a modified version of the
Large-Kolen adaptive oscillator [9] in our partial tracking
model.

The rationale behind the use of adaptive oscillators for
partial tracking is simple. As periodicity in an output
channel of the auditory model points to the presence of a
frequency component (partial) in the input signal, analysis
of periodicity in the channel indicates the exact frequency
of the partial. In our model, periodicity is detected by a set
of adaptive oscillators. If these synchronize with their
stimuli (outputs of the auditory model), this indicates that
the stimuli are periodic, and consequently that partials are
present in the input signal. Frequencies of partials can be
estimated by observing the frequencies of synchronized
oscillators. Such a model has several advantages, when
compared to standard approaches: it produces a
continuous estimate of partials in a signal; because
oscillators constantly adapt to their stimuli, partials with
slowly changing frequencies (vibrato...) can be tracked;
and as the auditory model reduces the dynamic range of
the input signal and thus boosts partials with low
amplitudes, these can be tracked as well.

2.3 Oscillator networks

As most tones are harmonic, we extended the model of
tracking individual partials to a model of tracking groups
of harmonically related partials by joining adaptive
oscillators into fully-connected networks. Each network
contains oscillators that track a series of harmonically
related partials, so the frequencies of oscillators in a
network are set to integer multiples of the frequency of the
first oscillator (Fig. 2). As each oscillator in the network
tracks a single partial close to its initial frequency, a
network of oscillators tracks a group of harmonically
related partials, which may belong to one tone with pitch
equal to the frequency of the first oscillator.
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Fig. 2. A network of adaptive oscillators.

Within a network, each oscillator is connected to all other
oscillators with excitatory connections. These connections
are used to adjust frequencies and outputs of non-
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synchronized oscillators in the network with the goal of
speeding up their synchronization. Only a synchronized
oscillator can affect frequencies and outputs of other
oscillators in the network. Output of a network is
calculated as a weighted sum of outputs of individual
oscillators in the network and represents the strength of a
group of partials tracked by osciliators in the network.
Connecting  oscillators into networks has several
advantages if the goal is to obtain a compact
representation of a signal, suitable for transcription.
Output of a network represents the strength of a group of
harmonically related partials tracked by its oscillators.
Such output provides a better indication of presence of a
harmonic tone in the input signal than do outputs of
individual oscillators. Noise usually doesn't appear in the
form of harmonically related frequency components, so
networks are more resistant to noise and provide a clearer
time-frequency representation. Network connections are
used by synchronized oscillators to speed up
synchronization of non-synchronized oscillators, leading
to a faster network response and faster discovery of a
group of partials. Missing partials (even missing
fundamental) are tolerated, if enough partials are found by
other oscillators in the network.

An example is given in Fig. 3, which displays slices taken
from three time-frequency representations of piano chord
C3E3B4, calculated 100 ms after the onset: representation
with uncoupled oscillators, repre-sentation with networks
of adaptive oscillators and short-time Fourier transform.
The representation with uncoupled oscillators was
calculated with 88 oscillators tuned to pitches of piano
tones A0-C8. Oscillator outputs (independent of partial
amplitudes) are presented in Fig. 3A. Fig. 3B shows
outputs of 88 oscillator networks, tuned to the same
pitches. Product of networks’ outputs and amplitudes of
partials is shown in Fig. 3C. Fig. 3D displays the first 440
frequency bins of the Fourier transform calculated with a
100 ms Hamming window.

Individual oscillators have no difficulty in finding the first
few partials of all tones (A). Some of the higher partials
are not found, as they are masked by louder partials of
other tones (we use only one oscillator per semitone).

Oscillator networks (B) produce a clearer representation
of the signal; the first two or three partial groups of each
tone stand out. Networks coinciding with tones E3 and B4
produce the highest outputs, because almost all partials in
the networks are found. When amplitudes are combined
with network outputs (Fig. 3C), only four partial groups
stand out, corresponding to first partials of all three tones
(C3, E3, B4) and the second partial of tone E3. If we
compare Fig. 3C with the Fourier transform in 3D,
advantages of partial group tracking for transcription are
obvious.

Overall, oscillator networks produce a compact and clear
representation of partial groups in a musical signal. The
main problem of this representation lies in occasional
slow synchronization of oscillators in networks, which can
lead to delayed discovery of partial groups. This is
especially true at lower frequencies, where delays of 40-
50 ms are quite common, because synchronization only
occurs once per oscillator cycle; an oscillator at 100 Hz
synchronizes with the signal every 10 ms, so several 10s
of milliseconds are needed for synchronization. Closely
spaced partials may also slow down synchronization,
although it is quite rare for a group of partials not to be
found.

3 Transcription of piano music

The described partial tracking model has been
incorporated into our system for transcription of piano
music, called SONIC [10]. Next to partial tracking, the
system also includes a note recognition module, an onset
detector based on a network of integrate-and-fire neurons,
a module for resolving repeated notes, based on multilayer
perceptrons and simple algorithms for estimation of
tuning, note length and loudness.

A note recognition module is the central part of every
transcription system. Its input consists of a set of cues
extracted from the time-frequency representation of the
input signal and its task is to associate the found cues with
notes. Statistical methods are frequently used for this task;
in our transcription system the task is performed by a set
of neural networks. Inputs of each network are taken from
outputs of the partial tracking module presented in
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Fig. 3. Representations of piano chord C3E3B4
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previous sections. Each network is trained to recognize
one piano note in its input; i.e. one network is trained to
recognize note A4, another network recognizes note G4...
After extensive testing of several neural network models,
we decided to use time-delay neural networks (TDNNs) in
our system, as they provided the best performance.
Networks were trained and tested on a database of approx.
150 synthesized piano pieces of various styles, combined
with randomly generated chords. Tests showed that the
incorporation of the partial tracking module significantly
improved overall accuracy of transcription, halving the
number of spurious notes [10].

4 Performance analysis

To analyze the performance of our transcription system,
we tested it on a number of synthetisized and real
recordings. The real recordings were transcribed by hand
with the help of the original score. Originals and
transcriptions of several pieces can be found on
http://lgm.fri.uni-1j.si/SONIC. Table 1 lists performance
statistics of three real piano performances: percentages of
correctly found and spurious notes in transcriptions, as
well as percentages of octave errors for missed and
spurious notes are given.

COIT. spur. missed spurious
notes notes octave err. octave err.
1 88.5 15.5 35.1 80.5
2 68.3 13.6 303 79
3 85.9 15.2 70.3 87.4

Table 1. Performance statistics on real recordings

The transcribed recordings are: (1) J.S. Bach, English
suite no. 5, 1st mvt, performer Murray Perahia, Sony
Classical SK 60277; (2) F. Chopin, Nocturne no. 2, Op.
9/2, perf. Artur Rubinstein, RCA 60822; (3) S. Joplin,
The Entertainer, performer unknown, MCA 11836.

Overall, most transcription errors are either due to octave
errors or errors related to missed or spurious repeated
notes. In Bach's English Suite, next to octave and repeated
note errors, most of the missed notes are either quiet low
pitched notes or notes in arpeggios and thrills. Chopin's
Nocturne is a good example of very expressive playing,
where a distinctive melody is accompanied by quiet,
sometimes barely audible left hand chords. The system
therefore misses over 30% of all notes, but even so the
resynthesized transcription sounds quite similar to the
original (listen to the example on the aforementioned URL
address). When we compared transcriptions of the real
and a synthesized version of The Entertainer, both turned
out to be very similar. Transcription of the real recording
contains more spurious notes, mostly occurring because of
pedaling, which was not used in the synthesized version.
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The number of correctly found notes is almost the same in
both pieces. Octave errors are the main cause of both
missed and spurious notes. For a more detailed analysis,
see [10].

5 Conclusion

In this paper, we presented a connectionist approach to
partial tracking in musical signals. Our approach is based
on a human auditory model and on adaptive oscillators for
discovery and tracking of partial groups. By using a
connectionist approach, we avoided some of the pitfalls of
classical partial tracking approaches. We presented a brief
overview of our transcription system and presented
performance statistics on transcriptions of several real
piano recordings. Overall, results are very promising and
we believe that connectionist approaches to transcription
should be further studied.
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