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Abstract

Thinking about the “Symbol Grounding Problem” and
the brain structure of living things, the author believes
that it is the best solution for generating communica-
tion in robot-like systems to use a neural network that
is trained based on reinforcement learning. As the first
step of the research of symbol emergence using neural
network, it was examined that parallel analog communi-
cation signals are binarized in some degree by noise ad-
dition in reinforcement learning-based communication
acquisition. In this paper, it is shown that two con-
secutive analog communication signals are binarized by
noise addition using recurrent neural networks. Further-
more, when the noise ratio becomes larger, the degree of
the binarization becomes larger.

1 Introduction

We humans can communicate complicated informa-
tion skillfully using symbols. It has been thought that
artificial neural networks(ANNs) are good at continu-
ous nonlinear approximation, but are not good at sym-
bol handling or logical processing. In living things, the
functional difference has been pointed out between the
left-brain and the right-brain[1]. Based on these, the idea
of the specialization that the ANN corresponding to the
right-brain is used for pattern processing, and a digital
computer corresponding to the left-brain is used for log-
ical processing has been accepted generally. However,
there is no general idea about what signals should be
transferred between the ANN and the computer, and that
causes the “symbol grounding problem”. Furthermore,
the left-brain and the right-brain looks almost the same
in the real brain compared with the difference between
the ANN and the digital computer.

The author believes that in order to solve the serious
“symbol grounding problem”, the pattern processing and
the logical processing should not be distinguished. Ac-
cordingly it is expected for the ANN to perform the both
without any discriminations. For this reason, it is very
significant to show that symbols emerge in the ANN
only by applying reinforcement learning inspired by the

learning of living things. Then, there appears a question
“is it true that ANN is not good at symbol! processing?”

Here, for simplicity, symbols are considered as dis-
cretized signals. Considering from the point of neces-
sity, the reason why the communication signals are dis-
cretized can be either “logical thinking” or “elimination
of noise effect”. Considering from the point of struc-
ture, associative memory, in other words, fixed-point dy-
namics can be a solution to realize the discretization.
As the first step of the research of symbol emergence,
the necessity of “elimination of noise effect” has been
focused on, and it was examined whether parallel ana-
log communication signals are discretized by noise ad-
dition in reinforcement learning-based communication
acquisition[2][3].

In this paper, like a “word”, a series of signals are
communicated on behalf of the parallel signals. Same
as the previous work, binarization of the signals by re-
inforcement learning in noisy environment is examined.
It seems more difficult than the case of parallel signals
because memory is necessary to generate and recognize
the communication signals.

2 Learning and Task

A simple communication environment in which only
two agents exist is assumed here. Referring to [4], one of
them can transmit a communication signal to the other.
They are put on an one-dimensional space as shown in
Fig. 1. When the both agents touch together, they get
a reward. The transmitting agent (transmitter) cannot
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Fig. 1. Communication task employed in this paper.
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Fig. 2. Architecture of each agent and signal flow in one time step.

move, but can observe the relative location of the op-
ponent, and generates a series of communication signals
by its own recurrent neural network (RNN). The receiv-
ing agent (receiver) interprets the communication signals
and generates its motion command also by its own RNN.
It can move according to the motion command. It cannot
observe anything except for the communication signal,
and cannot transmit anything. Both agents are trained
based on reinforcement learning independently.

The transmitter is fixed at the left edge on a one-
dimensional space where the left edge is linked to the
right edge. The length of the space is 1.0. The receiver
is located randomly at every trial. When the motion com-
mand is positive, it moves to the right, and when nega-
tive, it moves to the left. The absolute value decides the
moving distance. When the distance between the trans-
mitter and receiver is less than 0.11, they can touch each
other and get a reward. However, if the motion com-
mand is too large for the distance, it goes past the trans-
mitter, and they cannot get the reward. Accordingly, the
receiver’s motion should be in a range, and the range is
gradually sifted according to the receiver’s location.

Fig. 2 shows the architecture of each agent and the
signal flow in one time step. Each agent has an Elman-
type RNN that enables memorization of some necessary
information. There are two stages in one time step. In
the first stage, the transmitter observes the receiver’s lo-
cation, and generates the first communication signal by

computing its RNN. The receiver receives the signal, and
computes its RNN. The outputs are not used at this stage,
but the hidden outputs are used as the feedback inputs at
the stage 2. In the stage 2, the transmitter receives the
first communication signal as input, and generates the
second communication signal. The receiver receives the
signal, and generates the motion command.

The information of receiver’s location is localized by
N Gaussian units. This helps the neural network to learn
a strong nonlinear transformation. The center of each
Gaussian is arranged between 0.0 and 1.0 with the con-
stant interval of 1.0/(N — 1), where N is the number of
Gaussian units. The size of each Gaussian o is the same
as the interval. The output is described as

GS;(loc) = exp (—% ((N—-1)loc—~ i)2> , (1)

where i is the index of each Gaussian unit ({ =
0,1,2,..,N — 1), loc is the receiver’s location. Here,
N =30.

As a reinforcement learning architecture, actor-critic
is employed for each agent. Here, the transmitter deals
with the communication signal as its action, while the
receiver deals with the communication signal as its state.
One of the outputs of each network is used as critic, and
the other is used as actor. The hidden neurons are used
in common by the both types of outputs. The training
signals are generated based on reinforcement learning,



and the network is trained by BPTT (Back Propagation
Through Time). TD (Temporal Difference) error 7 is cal-
culated as

Fe1 =1 +7P — Py 2)
where 7, is the reward, P; is the critic output at ¢ time
step, and 7y is a discount factor. The critic output is
trained by the training signal as

Py 1 =P+ H1=r+7P,. (3)

As the critic output P, the output at the stage 1 is used
for the transmitter, while the output at the stage 2 is used
for the receiver. The training signal is also given to the
output at the stage 1 for the transmitter, while to the out-
put at the stage 2 for the receiver. The actual motion M,
is calculated as

M, = a(2.5A; + rnd; + ny) 4)

where A, is the actor output, rnd is the random number
for trial and error, and n is the noise factor that is not
added in the case of the receiver’s motion, but is added
in the case of the communication signal. « is a constant.
The actor output is trained by the training signal as

Agi1 = Ag1 + B irndy &)

where 3 is a constant, and it is 0.5 here. The training sig-
nal is given to the output at each stage for the transmitter,
while to the output at the stage 2 for the receiver. When
the training signal is given to the output at the stage 2, the
learning traces back also to the stage 1 based on BPTT.

The output function of each hidden or output neuron
is a sigmoid function that ranges from -0.5 to 0.5. All the
training signals are limited from -0.4 to 0.4 to avoid the
saturation area of the sigmoid function. In Eq. (4), by
multiplying 2.5 to each actor output, the range becomes
from -1.0 to 1.0, and after that, the trial and error fac-
tor and noise are added. When the value becomes larger
than 1.0 or less than -1.0, it is returned to 1.0 or -1.0
respectively. Here, the trial and error factor is cubed uni-
form random number whose level, in other words, whose
amplitude is +-0.4. The noise factor is a uniform random
number whose level is varied from 0.0 to £1.6 with
the interval of 0.2 in the following simulations. Even in
the case that the noise factor is always zero, the random
number for the trial and error factor of the transmitter is
received as a noise for the receiver.

For the critic computation based on TD learning in Eq.
(2) and (3), 0.5 is added to the critic output actually. The
reward that is given to each agent is 0.9. To generate the
communication signal, « in Eq. 4 is 1.0 in the transmit-
ter. For the motion command, « is 0.4 in the receiver so
as that the receiver can touch the transmitter in one step
from any locations by an appropriate motion. If the re-
ceiver’s motion is discretized completely, no less than 4
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Fig. 3. The communication signals as a function of the re-
ceiver’s location. The random number level is 0.4.
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Fig. 4. The receiver’s motion command as a function of the
receiver’s location. The random number level is 0.4
and the noise level is 1.0.

levels of output is required. The number of layers is 3,
and the number of neurons in the hidden layer is 10 for
both agents. All the initial connection weights from the
hidden layer to the output layer are 0.0, and those from
the input layer including feedback inputs to the hidden
layer are decided randomly in the range from-1.0 to 1.0.

3 Result

It was observed whether the transmitted signals be-
came discrete when the noises were added to the com-
munication signals during the learning. The consecutive
two communication signals and the motion command af-
ter learning with no noise are shown in Fig. 3(a) and Fig.
4(a), and those with some noise (level=1.0) are shown in
Fig. 3(b) and Fig. 4(b). The initial connection weights
are the same between the two cases. The sloping lines
in Fig. 4 indicate the maximum and minimum limit val-
ues of the motion for the receiver to touch the transmit-
ter in one time step by the motion as a function of the
receiver’s location.

Roughly, the results are similar to the case of the par-
allel communication signals[2][3]. In the both cases,
the transmitter generated the first communication signal
from the receiver’s location and generated the second



one from the first communication signal and the feed-
back inputs. Then the receiver received the first commu-
nication signal, kept the information through the feed-
back inputs, and could acquire appropriate motions from
the stored information and the second signal at the stage
2. After learning with noise, each communication signal
was almost binarized, and only around the boundary of
the binary values, the signal took a medium value. How-
ever, it is clear that the degree of binarization is larger
than in the case of no noise. The receiver’s motion is
discretized into four levels in the optimal range by the
combination of the two consecutive binary communica-
tion signals. The motion is more clearly discretized than
the communication signals. The reason might be that the
receiver also learned to binarize the received signal uti-
lizing non-linear transformation of the neural network.
When the number of communication chances was in-
creased to three times, the assignment of information to
the signal of each chance could not be done well, and the
optimal motion command could not be acquired. That is
different from the case of parallel signals.

The degree of the binarization according to the noise
level was also observed. The degree of binarization that
means how the signal is close to the maximum value 1.0
or the minimum value -1.0 is defined as

Nec Nd
bin = > |coms;|/(Nc- Nd) (6)

iy

where Nc¢ is the number of communication chances, Nd
is the number of sampled receiver’s locations, and com
is the communication signal without the random number
and noise. If the communication signal is always -1.0
or 1.0, the degree becomes the maximum of 1.0, while
if the signal is always 0.0, it becomes the minimum of
0.0. The degree of binarization according to the noise
level is shown in Fig. 5(a). Each small circle shows the
average degree over 50 simulations, and the vertical line
shows the standard deviation. It can be seen that when
the noise level becomes larger, the degree becomes larger
and the deviation becomes smaller. However, when the
noise level becomes larger than 1.0, the degree decreases
slightly according to the noise level. When the noise
level is 1.6, the both signals encode the same information
as the signal 1 in Fig. 3(b) in most cases. That results in
the high degree of binarization.

The noise tolerance was also examined. Fig. 5(b)
shows the average time steps to the goal as a function of
the noise level in the learning phase for each noise level
in the test phase after learning. It can be seen that when
some noise is added in the test phase, the performance
is the best when the noise level in the learning phase is
1.0. It is interesting that under the same condition, the
degree of binarization is the maximum. However, when
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Fig. 5. Noise Effect. (a)Degree of binarization according to
the noise level in the learning phase. (b)Noise toler-
ance according to the noise level in the learning phase.

the noise level in the learning phase is larger than 1.0,
the performance becomes worse even if the noise level
in the test phase is 0.0. This means that the large noise
in the learning phase disturbed the proper learning even
for the case of no noise.

4 Conclusion

It was shown that as well as the case of the parallel
communication signals, noise addition has the effect to
promote the binarization of the signal only by reinforce-
ment learning in the case of a series of signals. The rea-
son why appropriate signals cannot be obtained in the
case of more than two signals should be examined.
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