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Abstract
In this work, associative memories are used for diagnostic
classification of needle EMG signals. Vectors containing 44
autoregressive coefficients represent each signal and are
presented as stimuli to associative memories. As the number
of training stimuli increases, the method recursively updates
associative memories. The obtained classification results are
equivalent to the ones provided by the traditional Fisher's
discriminant, indicating the feasibility of the proposed
method.

1 Introduction
Adaptive techniques have been applied to the study of
electromyographic (EMG) signals. Artificial neural
networks were used to control functional electrical
stimulation in paraplegics, by adapting to changing
environments and allowing patient's interaction with
the network's operation [1]. An adaptive feature
extraction algorithm was used for the classification of
motion commands used in prosthetic arms [2].
Adaptive classification of motor unit action potentials
was designed to deal with shape changes due to
muscular fatigue [3].
EMG signals have also been used for diagnostic
purposes [4]. Clinicians diagnose patients, based on the
knowledge or experience that has been acquired over
the years. An automatic classification technique should
mimic a physician, by storing previous classification
results and improving its diagnostic ability. However,
most papers that deal with automatic EMG
classification for diagnostic purposes present non-
adaptive techniques [5], [6], [7].
In this work, we propose an adaptive EMG
classification technique for diagnostic purposes and
study its feasibility. EMG signals are represented by
autoregressive models, since encouraging classification
results have been presented in the literature [6], [7].
Associative memories are used as classifiers, for they
provide reliable results [8] and they can be computed
by a recursive algorithm. In order to validate the
obtained classification results, they are compared to the
ones obtained by the traditional Fisher's discriminant.

2 Methodology
2.1 Signal Acquisition and Autoregressive Modeling
A data bank with needle EMG signals was used in this
work. These signals were recorded at 50% MVC, from
the biceps brachii muscle, using a 10kHz low-pass
filter, at the Duke University Medical Center.
Signals were acquired at the Biomedical Engineering
Laboratory of the University of Sao Paulo with a 12-bit
AID converter and a sampling rate of 25kHz. We
selected 800-ms EMG signals, recorded from 6 normal
patients (72 signals), 6 myopathic patients (56 signals)
and 5 neuropathic patients (43 signals). All signals
were classified as stationary, both in mean and
variance, by the run test [9], for a 5% significance level
and 20 segments. EMG signals were modeled as
outputs of autoregressive models. Burg's method [10]
was used to estimate the autoregressive coefficients.
Order 44 was used in this work, since previous studies
[8] showed that this order provided the best
classification results for the same data bank.

2.2 Classification
The use of a two-step classification procedure is
reported in the literature [5], [6]. We used the two-step
classification, since it provided better results than a
single-step classification, in a previous research using
the same data bank [11]. The first classification step
separated EMG signals into normal and pathological
classes. The second step separated the signals
previously classified as pathological into neuropathic
and myopathic classes.
The classification procedure was implemented by two
linear classifiers—associative memories and Fisher's
discriminant—, which are described in the following
subsections.

2.2.1 Linear Associative Memories
According to psychologists, an associative memory
(AM) often results from learning the relationship
between a stimulus and a response (operant
conditioning) [12]. The same terminology is used in the
mathematical formulation of associative memories
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[13]. A response r is associated to a stimulus s9 through
an associative memory M, according to equation 1:

r = M-s. (1)
The conditioning process is called training. Among all
the signals from the data bank, a training set of signals
is created. Autoregressive coefficients of each training
signal form a column of the training stimuli matrix.
The known classification of the signal is represented in
a column of the training response vector. For each
signal, an integer number represents the classification.
In the first classification step, T stands for normal and
'2' for pathological signal. In the second step, T stands
for neuropathic, while '2' stands for myopathic. An
associative memory vector Mj+\ is estimated, by using
the training stimuli matrix Sj and the training response
vector/fy [13]

MJ+l =Rj-SJ9 (2)

where Sfj indicates the Moore-Penrose inverse of the
training stimuli matrix 5/ [14],
As the number j of stimuli in the training matrix Sj
increases, the computation of the generalized inverse
becomes more burdensome. The stimuli matrix at they-
th iteration can be expressed as:

Sj=]S» Sj], (3)
where S^ is the previous stimuli matrix and ay is the
newest stimulus vector to be included in the training
group. As one can observe, the number of columns in
the stimuli matrix increases with the number of training
signals. As a consequence, the direct computation of
the generalized inverse could be a hindrance to the use
of associative memories as classifiers. However,
Greville's recursion [14] enables us to update the
generalized inverse by calculating:

(4)

where b+j is the generalized inverse of vector bj, which
is defined by

If bj given by equation 5 is equal to zero, then we must
use another formula to compute bj

where the superscript V indicates the transpose matrix.
In our Matlab® implementation, we calculated the norm
of vector bj given by equation 5. Whenever this norm
was smaller than 10"7, we substituted bj by the value
provided by equation 6. This procedure avoided
numerical errors.

The generalized inverse of matrix Sj is obtained by
computing the generalized inverse of column vector bj9

which has length 44 (the number of autoregressive
coefficients). Vector bj itself is either a function of the
previously computed S^i or a function of the
generalized inverse of the product (Sj.\ Stj.\), which is
square matrix of size (44 x 44). In this way, we can
compute Sfj by inverting smaller matrices or vectors
that do not increase in size, as the number of training
signals increases.
We also provide the recursion to compute the
associative memory vector:

Mj+^Mj-MjSjbl+rjb;, (7)

where Vj is the response corresponding to the newest
training stimulus vector sj9 and Mj is the previous
memory vector.
In order to evaluate the performance of these adaptive
associative memories, we must use test stimuli sk of
known classification responses. The response rk

associated to each test stimulus is estimated by

rk=
Mj'sk> («)

for j varying from 1 to the number of training stimuli
and for k varying from 1 to the number of test stimuli.
These responses are real values and do not correspond
exactly to the integer values associated to the classes.
As a consequence, we must use a criterion to separate
the obtained responses into the classes. In the first
classification step, responses r,- below 1.5 were
classified as normal signals (class 1), while responses r}

greater or equal to 1.5 were classified as pathological
signals (class 2). This same value was used in the
second classification step, in order to separate
neuropathic (class 1) from myopathic signals (class 2).

2.2.2 Fisher's Linear Discriminant
Fisher's linear discriminant (FLD) classifies a signal
associated to a stimulus vector sj9 by estimating the
response [15]

Pj = VTSj . (9)

In order to compute vector v, training stimuli must be
separated into classes 1 and 2. For class 1, the mean
stimulus vector u\ and the covariance matrix Si are
calculated. Similarly, for class 2, the mean stimulus
vector w2 and the covariance matrix E2 are computed.
The optimal projection direction that separates classes
1 and 2 is given by vector v:

v =
nx +n2 - 2

(10)

where nx and n2 are the number of stimuli in classes 1
and 2 respectively. The stimulus Sj is separated into
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class 1, if the response ry is above a threshold value.
Otherwise, it is separated into class 2.
In this work, both AM and FLD were implemented in
Matlab®

2.2.3 Training group
In a real system, the diagnosis of a patient is based on
previous knowledge. Similarly, an initial set of subjects
was used to compose the initial training group. Three
subjects were chosen to form the initial training group,
providing 11 normal, 10 neuropathic and 10 myopathic
signals.
Eight additional subjects were later added to the
training group, at a random order. This random order
of subjects was used because physicians cannot choose
the order in which patients arrive at the clinic. All the
signals of a given subject were inserted one-by-one
into the training process. The following order of
insertion was used: 12 normal, 15 normal, 7 myopathic,
9 neuropathic, 9 myopathic, 6 neuropathic, 16 normal
and 12 myopathic signals.
At each training step, one signal was classified using
all the information stored in the previous training
group. Then, autoregressive coefficients of this signal
were included in the next training stimuli group. The
response associated to each stimulus varied according
to the type of training: unsupervised or supervised [16].
Unsupervised training was based on the results given
by the classifier. The estimated class for each new
signal was inserted as the next training response.
Supervised training was based on the known signal
classification, which was provided by a teacher. For
supervised training, the known classification of the
subject was included as response, regardless of the
estimated class. The known classification inserted in
supervised training could represent the diagnosis
provided by a physician, based on clinical evidence and
exam results, other than EMG.

2.2.4 Test Group
In order to test the variation of classification rate with
the increasing number of training stimuli, we needed
signals that were not used previously in training. All
six of the remaining subjects had already been
separated for the test group, providing 18 signals of
each type. All test signals were classified several times,
as each new training signal was included in the training
group.

3 Results
Classification rates obtained by AM are shown in
Figure 1, while results obtained by FLD are illustrated
in Figure 2. The horizontal axis presents the number of
training signals used at each iteration and ranges from
31 (initial training group) to 117 (final training group).
The vertical axis represents the correct classification
rate in percentage. It is equivalent to the ratio between
the number of correct classifications and the total
number of test signals (54). Dashed lines represent the
classification rate obtained for unsupervised training,
while continuous lines represent supervised training.

40 60 80 100
number of training signals

Fig. 1. Classification rates obtained by AM, for supervised
(continuous line) and unsupervised training (dashed line).

According to figures 1 and 2, supervised training
(continuous line) clearly showed better results than
unsupervised training (dashed line), for both classifiers
(AM and FLD). This result was expected, since the
correct training is fundamental for the classifier's
performance.

40 60 80 100
number of training signals

Fig. 2. Classification rates obtained by FLD, for supervised
(continuous line) and unsupervised training (dashed line).

Unsupervised training seemed to stabilize at values
close to 40%, which is similar to the classification rate
obtained for the initial training group. This result
shows that both classifiers did not 'learn' from
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unsupervised training. On the other hand, supervised
training presented increasing classification rates that
reached values above 75%. The performance of both
supervised classifiers improved as the size of the
training group increased. This result shows that the
supervised classifiers were able not only to store but
also to use previous training information, in order to
improve classification rates.
Comparing FLD and AM results, one can observe that
FLD provides a more erratic behavior than AM,
whenever less than 60 signals are used in training.
The method presented in this work uses simple update
equations, whose computation does not increase in
complexity, as additional training signals are included.
So, the method can be applied to a larger group of
signals and subjects. If we had more subjects in our
data bank, we could have provided the classification
rates in percentage of subjects. However, since we had
only six test subjects, we provided our final
classification rates (above 75%) in percentage of
signals. The classification rates presented in the
literature for FLD (60% to 87.5%) [7], [6] and neural
networks (47.5% to 90%) [17], [7] are given in
percentage of subjects and were obtained for the same
parameters of our study—autoregressive coefficients of
EMG signals.

4 Conclusion
This work presented a recursive method to update
associative memories. These memories 'adapted' as new
signals and their known classification were included in
the training process. The method was applied to 117
training signals and 54 test signals. The obtained 75%
classification rate showed the method's feasibility,
since it is within the range of 47.5% to 90% presented
by other methods in the literature [6], [7], [17].
Training signals were included one-by-one in the
training group and associative memories were updated
by recursive equations. As a consequence, the
computational load did not increase as new information
was added to the training process. This is one of the
advantages of associative memories in comparison to
other methods.
These results indicate that recursive associative
memories could be applied, in the near future, to a
large number of signals in a clinical setting, providing
high classification rates.
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