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Abstract
This paper describes results concerning the robustness and
generalization capabilities of a supervised machine learning
method in detecting intrusions using network audit trails.
We also evaluate the impact of kernel type and parameter
values on the accuracy with which a support vector
machine (SVM) performs intrusion classification. We show
that classification accuracy varies with the kernel type and
the parameter values; thus, with appropriately chosen
parameter values, intrusions can be detected by SVMs with
higher accuracy and lower rates of false alarms.
Feature selection is as important for intrusion detection as it
is for many other problems. We present support vector
decision feature selection method for intrusion detection. It
is demonstrated that, with appropriately chosen features,
intrusions can be detected in real time or near real time.

1 Introduction
Intrusion detection is a problem of great importance
to protecting information systems security, especially
in view of the worldwide increasing incidents of
cyber attacks. Since the ability of an Intrusion
Detection System (IDS) to identify a large variety of
intrusions in real time with accuracy is of primary
concern, we will in this paper consider performance
of SVM-based IDSs with respect to classification
accuracy and false alarm rates, and their relation to
parameter selection and kernel type.
AI techniques have been used to automate the
intrusion detection process; they include neural
networks, fuzzy inference systems, evolutionary
computation, machine learning, etc. Several research
groups recently have used SVMs to build IDSs.
However, most groups that studied SVMs for IDS
considered only a small set of kernels and parameters
[1-5]. Although several groups have extensively
considered model selection in SVMs, optimal
parameters are usually domain specific. In this paper,
we present a methodology to evaluate the impact of
model selection (kernel types and parameter values)
on the performance of a SVM to detect intrusions.
Data mining techniques have been introduced to
identify key features that characterize intrusions [6-
8]. We performed experiments to rank the importance
of input features using support vector decision
function for each of the five classes (normal, probe,

denial of service, user to super-user, and remote to
local) of network traffic patterns in the DARPA data.
It is shown that using only the important features for
classification gives better performance.
Intrusion detection data used for experiments is
briefly explained in section 2. A brief introduction to
model selection using SVMs for intrusion detection is
given in section 3. In section 4, we analyze
classification accuracies of SVMs using ROC curves.
A brief introduction to feature selection and SVM-
specific feature identification is given in section 5.

2 Data Used for Analysis
A subset of the DARPA intrusion detection data set is
used for offline analysis. In the DARPA intrusion
detection evaluation program, an environment was
set up to acquire raw TCP/IP dump data for a
network by simulating a typical U.S. Air Force LAN.
The LAN was operated like a real environment, but
being blasted with multiple attacks [9,10]. For each
TCP/IP connection, 41 various quantitative and
qualitative features were extracted [6] for intrusion
analysis. Attacks are classified into the following
types.
Attack types fall into four main categories:
1. DOS: denial of service
2. R2L: unauthorized access from a remote machine
3. U2Su: unauthorized access to local super user

(root) privileges
4. Probing: surveillance and other probing

3 Model Selection
In any predictive learning task, such as classification,
both a model and a parameter estimation method
should be selected in order to achieve a high level of
performance of the learning machine. Recent
approaches allow a wide class of models of varying
complexity to be chosen. Then the task of learning
amounts to selecting the sought-after model of
optimal complexity and estimating parameters from
training data [11,12].
Within the SVMs approach, usually parameters to be
chosen are (i) the penalty term C which determines
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the trade-off between the complexity of the decision
function and the number of training examples
misclassified; (ii) the mapping function O; and (iii)
the kernel function such that

In the case of RBF kernel, the width, which implicitly
defines the high dimensional feature space, is the
other parameter to be selected [13].
We performed a grid search using 10-fold cross
validation for each of the five faults in our data set.
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Fig. 1. SVM model for Normal.

Fig. 2. SVM model for Probe.

Fig. 3. SVM model for DoS.

- 3 B 10<C> 3

Fig. 4. SVM model for U2Su.

Fig. 5. SVM model for R2L.
First, we achieved the search of parameters C and /
in a coarse scale and then we carried through a fine
tunning into the five detection faults proper space.
Model selection results obtained through grid search
are given in figures 1 to 5 for normal, probe, DoS,
U2Su, and R2L, respectively.

4 ROC Curves
The Receiver Operating Characteristic (ROC) curves
are generated by considering the rate at which true
positives accumulate versus the rate at which false
positives accumulate with each one corresponding,
respectively, to the vertical axis and the horizontal
axis in Figures 6 to 10.
The point (0,1) is the perfect classifier, since it
classifies all positive cases and negative cases
correctly. Thus an ideal system will initiate by
identifying all the positive examples and so the curve
will rise to (0,1) immediately, having a zero rate of
false positives, and then continue along to (1,1).
Detection rates and false alarms are evaluated for the
five-class pattern in the DARPA data set and the
obtained results are used to form the ROC curves.
Figures 6 to 10 show the ROC curves of the detection
models by attack categories as well as on all
intrusions. In each of these ROC plots, the x-axis is
the false alarm rate, calculated as the percentage of
normal connections considered as intrusions; the y-
axis is the detection rate, calculated as the percentage
of intrusions detected. A data point in the upper left
corner corresponds to optimal high performance, i.e,
high detection rate with low false alarm rate [14].

Fig. 6. SVM detection accuracy for normal.
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Fig. 7. SVM detection accuracy for probe.
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accuracy for DoS.

Fig. 9. SVM detection accuracy for U2Su.

Fig. 10. SVM detection accuracy for R2L.

5 Feature Ranking and Selection
Feature selection is an important issue in intrusion
detection. Of the large number of features that can be
monitored for intrusion detection purpose, which are
truly useful, which are less significant, and which
may be useless? The question is relevant because the
elimination of useless features (the so-called audit
trail reduction) enhances the accuracy of detection
while speeding up the computation, thus improving
the overall performance of IDS. In cases where there
are no useless features, by concentrating on the most
important ones one may well improve the time
performance of an IDS without affecting the accuracy
of detection in statistically significant ways.

The feature selection problem for intrusion detection
is similar in nature to various engineering problems
that are characterized by:

• Having a large number of input variables x = (JC/,
X2> • ••> xn) of varying degrees of importance to the
output y; i.e., some elements of x are essential, some
are less important, some of them may not be mutually
independent, and some may be useless or noise (in
determining the value of y)

• Lacking an analytical model that provides the basis
for a mathematical formula that precisely describes
the input-output relationship, y = F (x)

• Having available a finite set of experimental data,
based on which a model (e.g. intelligent systems) can
be built for simulation and prediction purposes

5.1 SVM-specific Feature Ranking Method

Information about the features and their contribution
towards classification is hidden in the support vector
decision function. Using this information one can
rank their significance, i.e., in the equation

F (X) = IWJXJ + b

The point X belongs to the positive class if F(X) is a
positive value. The point X belongs to the negative
class if F(X) is negative. The value of F(X) depends
on the contribution of each value of X and Wi. The
absolute value of Wi measures the strength of the
classification. If Wi is a large positive value then the
i* feature is a key factor for positive class. If W* is a
large negative value then the i**1 feature is a key factor
for negative class. If Wj is a value close to zero on
either the positive or the negative side, then the ith

feature does not contribute significantly to the
classification. Thus, a ranking can be done by
considering the support vector decision function.
We validate the ranking by comparing the
performance of the classifier using all input features
to that using the important features; and we also
compare the performance of a classifier using the
union of the important features for all fives classes.

Table 1 SVM detection accuracies
Class

Normal
Probe
DoS

U2Su
R2L

Classifier Accuracy (%)
SVMs

(41 features)
99.55
99.70
99.25
99.87
99.78

SVMs
(6 features)

99.23
99.16
99.16
99.87
99.78
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Table 2 Most important feature descriptions
Class

6 Most
Important
Features

Feature Description
• source bytes: number of bytes sent

from the host system to the
destination system

• dst_host_srv_count:: number of
connections from the same host
with same service to the destination
host during a specified time window

• count: number of connections made
to the same host system in a given
interval of time

• protocol type: type of protocol used
to connect (e.g. tcp, udp, icmp, etc.)

• srv_count: number of connections
to the same service as the current
connection during a specified time
window

• flag: normal or error status of the
connection

6. Conclusions
A number of observations and conclusions are drawn
from the results reported in this paper:
SVMs easily achieve high detection accuracy (higher
than 99%) for each of the 5 classes of DARPA data,
regardless of whether all 41 features are used, or only
the important features for each class are used. Using
the important features for each class gives the most
accurate performance.
A grid search for intrusion detection (Figures 1 to 5)
which seeks the optimal values of the constraint
penalty for method solution and the kernel width
(C,y) has been performed. We demonstrate that the
ability with which SVMs can classify intrusions is
highly dependent upon both the kernel type and the
parameter settings.
We note, however, that the difference in accuracy
figures tend to be small and may not be statistically
significant, especially in view of the fact that the 5
classes of patterns differ tremendously in their sizes.
More definitive conclusions perhaps can only be
drawn after analyzing more comprehensive sets of
network data.
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