
449

Recovering the Cyclic-Code of Generated Polynomial by Using
Evolutionary Computation

Kangshun Li 1 2 3 , Yuanxiang Li12, Haifang Mo2

1 State Key Laboratory of Software Engineering, Wuhan University, Wuhan, 430072, China.
2 Computer School of Wuhan University, Wuhan, 430072, China

3 School of Information Engineering, Jiangxi University of Science & Technology, Jiangxi, 341000,
China.

Li Kangshunjks@publicl.gzptt.ix.cn

Abstract
The data integrity in computer security is a key
component of what we call trustworthy computing,
and one of the most important issues in data
integrity is to detect and correct error codes, which
is also a crucial step in software and hardware
design. Numerous methods have been recently
proposed to solve legal-codes of the cyclic-code
generated polynomial g(x). We think that a
better approach for this purpose is to solve the legal-
codes by finding the roots of the cyclic-code
generated polynomial. However, as it is well known,
finding roots of polynomials of high degree in the
modulo-g space GF(q) is very difficult. In this paper
we propose a method to solve the roots of cyclic-
code generated polynomial by using evolutionary
computation, which makes use of randomized
searching method from biological natural selection
and natural genetic system.

1 Introduction
With the fast development of computer, there are
more and more demand on computer application in
all fields, and the trustworthy computing play more
and more important role in the software design and
network communication. The computer detecting
error codes and correcting error codes is the basic
demand of trustworthy computing, therefore, the

computer detecting error codes and correcting error
codes is of significance to trustworthy computing
and to computer security. The precise bits of
detecting error codes and correcting error codes111

are 64 bits nowadays in MILKWAY-II computer
while there was only 1 bit in the past, and in the
future, the spaceflight technology of shipping
persons and GPS will all request higher capacity of
error-correcting and error-detecting. Therefore, we
need more scientific and more complete trusted
computing means. This paper introduces
evolutionary algorithm with simulative biologic
genetic evolution through population crossover and
mutation to attain the solutions of problem, and to
solve the roots of exponential cyclic-code generated
polynomial g(x) in modulo-^ space GF(q).

2 The Theory of Evolutionary Computation

The method of evolutionary computation121 is a
random searching method referencing biological
natural selection and natural genetic mechanism. It
includes genetic algorithms (GAs), evolution
strategies (ESs), evolutionary programming (EP)
and genetic programming (GP). It is also a new
method to solve problems through combining nature
genetics with computer science.
If we consider an optimizing problem as following:

min{/(jc) | x e X}

Foundation item: This work was supported by the National Natural Science Key Foundation of China
with the Grant No.60133010 and the National Research Foundation for the Doctoral Program of Higher
Education of China with the Grant No.20030486049.
Biography: Li Kangshun (1962-), male, Ph. D candidate, senior engineer, research direction:
Evolutionary computation, computer security.

450

subject to
g, (*) = 0, / = l ,2,-. . , / i

where f(x) is an objective function in domain
X, VJC e XJ(x) > 0 o X is a feasible set of its
solutions. It can be a finite set (for example, a
combination optimization problem), it can also be a
subset of real space Rn (for example, continuous
optimization problem) etc.

3 Steps of Evolutionary Computation
Algorithm

Step 1: Producing the initial population
P(t) = {xl(t),x2(t), ,*„(/)} and computing

the corresponding function fitness values.
The basic genetic unit of biological
individual *,(/) is gene, and the genes are

ranked in sequence to form chromosomes.
The initial population13* consists of a certain
amount of chromosomes at the beginning of
the search. In fact fitness function is the
objective function of optimization problem,
the evolutionary algorithm will search for
the chromosome with maximum fitness.

Step 2: Selecting, crossing and mutating the
individuals. The individuals with the better
fitness replace the worse individuals,
namely, the selection operation embodies
the biological genetic process of fitted
survival. Crossover operation is the
exchanging of gene pieces of the male
parent chromosome and female parent
chromosome. Some parts of the genes are
changed in mutation operation

Step 3: Computing the fitness values of the new
individuals: the sub-generation generated by
the male parent and the female parent forms
a new generation (population), and then we
compute the all fitness values of a new
generation to prepare a new evolutionary
operation.

Step 4: Stopping the operation when the most
optimal fitness solutions are solved or stop criterions
are satisfied, and then output the solutions of the
chromosome; otherwise, return to step 1.

4 The Theory of Cyclic-Code Generated
Polynomial

4.1 Field114]

If F is a set included at least one element, and satisfy
the follow criterions:

a. All elements of F constitute a plus Abel-
group, and the plus unit element is marked 0.

b. All non-0 elements of F constitute a multiple
Abel-group, and the multiple unit element is
marked 1.

c. The elements of F satisfy the distributive and
associative regulations between plus and
multiple as follows:
a(b+c)=ab+ac
(b+c)a=ba+ca

where a9b,c e F, so we call Fa field.

4.2 GF(q) -Field

GF(q) is a field which satisfies the following
criterions

a. The GF(q) includes q elements

b. All results calculated by modulo-^ plus and
modulo-^ multiple with the elements of
GF(q) belong to GF{q).

Example 1: Assume
GF(9) ={0,1,2,3,4,5,6,7,8}, {8} and {7} belong to

GF(9), then (8+7) modulo 9=6 belongs to GF(9),

8*7 modulo 9=2 belongs to GF(9) too.

Example 2: Assume p{x) = x3 + x +1 is a
polynomial that cannot be divided by other
polynomial of GF(2), then the set consisting of 8
leaves of polynomials

{0,1, 3C,3C2,JC + 1 , X 2 + A : , X 2 + 1 , X 2 4 - J C 4 - 1 }

produced by modulo p(x) form a finite set

GF(23) of 8 degrees.

Therefore, we know that the GF{q) is a plus

cyclic group and a multiple cyclic group.

451

4.3 Cyclic codes[161

In N-dimensional linear space Vn in field GF(q), if

Vnk is a ^-dimension subspace, and to any

C,=(CW , ,CM_2 , . . . ,C0)GFW , there is

Q=(C f l .2V . ,C05C f l ,)6F^, so we call Vnk a cyclic

subspace or cyclic code, where GF(q) is finite field

of q exponentials, it's clear thatK k is a ^-dimension

linear subspace of ^-dimension linear space.
From above, we know that cyclic codes in field
GF{q) are linear grouping codes which every code

has cyclic feature. Therefore, we can get another
definition of cyclic codes:
Assume that C is a linear and a = (a0,ax,.-..,«„_,) is a

legal code of C, a new code is formed by shifting the
elements along one place and taking one off the end
and putting it on to the beginning, then we get
b = aT = (ana2,...,an_]9a0), and b is a legal code of C

too, so we call C a cyclic code.
For example, suppose a cyclic-code generated
matrix and a checkout matrix of Hamming code C
are as follow:

1000101"
0100111
0010110
0001011

From the first line of generated matrix based on
left moving a place, we get 16 codes (1000101)
(0001011) (0010110) (0101100) (1011000)
(0110001)(1100010)
(0100111) (1001110) (0011101) (0111010)

(1110100) (1101001) (1010011) (1111111)
(0000000)
From these codes we can easily see that if C, is the

code of C , moving cyclic code leftward or
rightward a place, we can also get the code of C. So
this group of linear grouping code is cyclic code.
Assume C = (C/).),Cw_2,...,C0) is a code of [n,k] cyclic
codes, the corresponding polynomial is
C(x) = cn_lx"-1 +Cn_1x

n-2 + '- + C0 . It is called the

polynomial of code C (or code polynomial).

4.4 The cyclic-code generated polynomial [3,4,6,7]

G=
1110100

0111010

1101001

Assume f(x) an n -exponential polynomial on
GF(q) , and g(x) the first 1-coefficient factor of
f{x), namely, / (*) = g(x)h(x).
A set: / = {m(x)g(x) | dm(x) <n-\- dg(x)}, where d

is exponential numbers of polynomial. Then, we call
g(x) the generated polynomial of/ , namely, / is
generated by g(x).

Assume g(x) a cyclic code (polynomial), then
we call it the cyclic-code generated polynomial.
There are two important theories of solving legal
codes as follows:
Theory 1: C(x) is the cyclic legal code if and only

if C(a,)=0,/ = lA-»,/f-*. Where at is the

root of g(x) (/ = 1,2,- ",n-k)

Theory 2: Assume C(x) is the cyclic code,
cn-PCfl-2»'"'co a r e the corresponding

coefficients of C(x) , and

C(a) = 0,/ = 1,2,-•-,«-&. Where ai is the

root of g(x) (i = 1,2,",n-k), and

a. * aj (i * j) . Then, we can solve the

values of <:„_,,crt_2,•••,c0 through solving

= 0,

and the cyclic legal code is (co,c,,-••,£„_,).

Therefore, we can use the roots of cyclic-code
generated polynomial g(x) to construct the cyclic
legal code C. But the difficulty in constructing
cyclic legal code C is how to solve the roots of
cyclic-code generated polynomial. But general
method to solve the roots is to factor cyclic-code
generated polynomial, as we know, this method is
infeasible for solving the roots of high-exponential
polynomial. To resolve this difficulty, in the next
section we will propose a feasible method on how to
use evolutionary computation to solve the roots of
cyclic-code generated high-exponential polynomial

a"'',a

a,-',a

n-\

^n-k '

n-l

n-2

2 »

a k
i - 2

,a2

1

,1

a j

c

c

c

452

5 The Algorithm of Solving the roots of
Cyclic-Code Generated polynomial by
Evolutionary Computation

Assume g(x) is a cyclic-code generated polynomial,
then we convert the solving problem to a single-
objective optimal problem as following,

subject to x e GF(q) and g(x) > 0

Because the field GF{q) is the modulo-^ field,
the method of finding optimal solutions is more
difficult than classical method of evolutionary
computation. Therefore, we have to improve the
algorithm of evolutionary computation as following:
Step 1, initialize population Po, set t = 0, produce n

integral individuals Po = {or0,} , / = 1,2,-• • N at

random, and calculate the function fitness values of
the corresponding individual, and sort the modulo-^
values in the order from small to large.
Step 2, Select some individuals to form a
reproduction pool
/> ={«',}, i = l,2,---ro

Step 3, crossover the individuals of Px

where jr/?, = q9 0 < pi < q are random number,

Step 4, use new individual to mutate the parents. If
the function fitness value of independent a 2 is
better than the worst modulo-^ value calculated by
step 1, then, use a2 to replace the corresponding
individual, otherwise, return to step 3.
Step 5, If the fitness value of function ||C7(JC)|| < 1010

or / > T is reached, output the modulo-^ individuals,
and stop the running. Otherwise, return to step 3.

6 Numerical Experiments

In this section, we apply evolutionary computation
to solving the roots of cyclic-code generated
polynomial in a special modulo-g field GF(q) to
indicate that we can use this method to replace
traditional method in which factor the polynomial by

artificial operation to solve the roots in this complex
modulo-^ field GF(q).

Experiment 1: Suppose the length of a code 14,
namely, n=14, and the places of checking-code is
4,so n-k equals 10, the cyclic-code generated
polynomial is as following:

g(x) = x14 + 4xn + lxw + 6x9 + 4xy + x +1 = 0

subject to g(x) > 0 and 1 < x < 1000, x e GF(2*)
we set maximum iteration times r=20000, after

running 543 times the 10 roots are attained as in the
following table

No.
1
2
3
4
5

Root
49
985
129
689
33

No.
6
7
8
9
10

Root
681
41
993
681
105

Experiment 2: Suppose the length of a code 14,
namely, n=14, and the places of checking-code is
2,so n-k equals 12, the cyclic-code generated
polynomial is as following:

g(x) = x*+ 3x7 + x6 + 5*3 + 3x2 + 2x +1 = 0

subject to g(x) > 0 and 1 < x < 1000, x e GF(2y)
we set the maximum iteration times T= 15000, after
running 148 times the 12 roots are attained as in the
following table

No.
1

2

3
4

5
6

Root

993

757

989

65

13

73

No.
7

8

9
10

11

12

Root

25

997

785
21

13

77

Through the analysis of the above experiments, we
conclude that this method has at least two
advantages, compared with the method of traditional
manual factorizing polynomial. The first is that
using evolutionary algorithm to solve the roots of
cyclic-code generated polynomial can save much
time, it only takes some minutes to solve the roots,
which is impossible by factorizing the polynomial in
such short time; the second is that this method can
solve all the roots of the polynomial, while using the

453

method of factorizing the polynomial is difficult to
solve all the roots of the cyclic-code generated
polynomial, sometimes not even a single one.

7 Conclusions

This paper proposed an innovative method to solve
the roots of the cyclic-code generated polynomial in
the complex modulo-^ field GF(q) by using
evolutionary computation. Through the experiments
and the theoretical analysis, this method is the best
method to solve the roots of this type of polynomials
up to now, and authors haven't found anyone who
proposed such high performance method. Therefore
this method will change the method that only factor
the cyclic-code generated polynomial of high
exponential to find the roots manually in modulo-^
field GF{q), and it will also resolve the difficult
problem of having roots but could not be solved. So,
it extended the application of evolutionary
computation in computer security, it also enhanced
the reliability of the trustworthy computing at the
same time.

References
[1] Wang Xingmei, Zhang Huanguo, Ma Jianfeng,

Tan Zhongping, 1999. "Error-Correction Code
Technology in Computer". People's Post Press.

[2]. Pan Zhengjun. Kang Lishan, Chen Yuping,
Evolutionary Computation, Tsinghua University
Press, 1998.

[3] Ye Dacheng, 1996, 24(12). "The solution to
genetic algorithm of route selection and volume
allocation problem in computer communication
network". Electronic Journal.

[4] Wang Xinmei, 1991, 280 - 284. "Error-
Correcting Code—Theory and Method". Xian:
Xidian University Press.

[5] Holland J H. 1975, "Adaption in Natural and
Artificial Systems". Ann Arbor: University of
Michigan Press.

[6] Spillman R. 1993, 17(4), "Cryptanalysis of
Knapsack Chipers Using Genetic Algorithms".
Cryptologyia,

[7] Zhang Muxiang, 1994, 76(3), "Simulated
Annealing Approach to the Minimum Distance of
Error-Correcting Codes". Int J Electronics.

