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Abstract

In this paper, we present a scheme for steganalysis based on
statistical correlations and machine learning. In general, digital
images are highly correlated in the spatial domain and the
wavelet domain; hiding data in images will affect the
correlations. Different correlation features are chosen based on
ANOVA (analysis of variance) in different steganographic
systems. Several machine learning methods are applied to
classify the extracted feature vectors. Experimental results
indicate that our scheme in detecting the presence of hidden
messages in several steganographic systems is highly effective.

1 Introduction

Steganography has recently received much attention due
to its applications in copyright protection and covert
communications. Unlike traditional watermark methods it
does not affect the appearance of the image. With digital
images (audios or videos) as carriers, detecting the
presence of hidden messages poses significant challenges.
Westfeld performed the blind steganalysis on the basis of
statistical analysis of PoVs (pair of values). This method,
so-called y’-statistical analysis [1], gave a successful
result to a sequential LSB (Least Significant Bit)
embedding steganography. Provos [2] extended this
method by re-sampling the test interval and re-pairing
values. Fridrich [3] introduced a RS steganalysis which is
based on the partition of an image’s pixels into three
groups: Regular, Singular and Unusable and estimate the
possible embedded message length of the LSB
steganography. Farid and Lyu [4,5] described an approach
to detect hidden messages in images that uses a wavelet-
like decomposition to build higher-order statistical
models of natural images. Support vector machines are
then used to discriminate between untouched and
adulterated images. In [6], Avcibas, et al. presented
techniques for steganalysis of image based on image
quality metrics. In [7], Rate-Distortion Curves are used
for steganalysis.

On the side of steganography, Kawaguchi presented
BPCS-steganography [8] to obtain a large hiding capacity;
Westfeld proposed the F5 algorithm [9], which hides
messages in the DCT (Discrete Cosine Transform)
domain and can defeat y’-statistical analysis. Yu [10]

proposed SES (Steganography Evading Statistical
analyses) which can stand y’-statistical analysis and RS
steganalysis. Meanwhile, many ordinary steganography
tools can be downloaded from the Internet based on
different hiding methods [11-14].

In this paper, we present a scheme for steganalysis based
on statistical correlations and machine learning. In
general, digital images are highly correlated in the spatial
domain and the wavelet domain; hiding data will affect
the statistics of images. Based on the correlation features
extracted from images, ANOVA (analysis of variance)
[15] is applied to choose the good measures and machine
learning algorithms are applied to discriminate between
untouched and adulterated images.

2 Correlation and Feature Extraction

2.1 Statistical Properties of Images

Several papers [16-19] described the statistical models of
natural images such as probability models for images
based on Markov Random Field models (MRFs) and the
Gaussian Mixture Model (GMM). In general, natural
images are highly correlated in adjacent pixels; as shown
in the following.
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Fig. 1. A grayscale image (a) and the joint probability of
adjacent pixels (b)

Figure 1 (a) is a grayscale ([0 255]) image with size mxn.
V(i) denotes the grayscale value at point (i), v(i+1,)
denotes the grayscale value at the adjacent point (i+1,).
(i), v(i+ly)) is the grayscale value pair at the two
adjacent points. Figure 1 (b) shows the joint probability
distribution o(v(ij), v(i+1y)), which indicates that the
adjacent pixels are highly correlated.
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2.2 Statistical Correlations for Feature Extraction

Throughout plenty of experiments, there are also
correlations in intra-bit plane and inter-bit plane of
images. M,(1:m, 1:n) denotes the binary bits of the Least
Significant Bit Plane and My(1:m, 1:n) denotes the binary
bits of the second Least Significant Bit Plane. We present
the correlation coefficients C1, C2 and C3 as follows:

Cl =cor (M;, My) )

C2 = cor (X5, X¢) )

C3 = cor (X7, Xg) 3
Where

Xs=Mi(l:m -1, 1:n), X¢=M(2:m, 1:n)

X;= Ml(l:m, l:n— 1), Xg = M,(l:m, 2:71)

Besides the correlations in the spatial domain, we
consider the autocorrelation of the probability density in
the histogram. p, denotes the probability density of the
histogram at grayscale sample & (£ = 0,1, ...,N-1, for 8-bit
grayscale image, N = 256).

H = (o, o1, po-.-pna) stands for the probability
distribution in the histogram. H,, H,, H;; and Hy, are
defined as follows:

He = (00, p2, Ps.-.Pn2) » Ho=(p1, 3, ps...on1)5

He = (00, 1 2.+ on010)s - Hiz = (06 Pir1s Prsz- - Pr1)-
The autocorrelation coefficients C4 and C(k) are defined
as follows:

C4 = cor (H,, Hy) )

C(k) = cor (Hys, Hiz) (5)
k is the lag distance in (5). Setk=1,2,

C5=C(1) (6)

C6=C(2) )

Meanwhile, wavelet decomposition is an analysis of
scale- ‘and location-dependence. There are high
correlations in intra-subbands. cA, ¢H, ¢V and c¢D denote
the approximate sub band, horizontal, vertical and
diagonal detail sub bands with size m'xn’, respectively.
Define the following autocorrelation coefficients in the
wavelet domain.

C7 = cor (cHy, cH,) (8)
C8 = cor (cHs, cH,) )
C9 =cor (cV,, cVy) (10)
C10 = cor (cV3, cVy) an
C11 =cor (cDy, cDy) (12)

C12 = cor (cDs, cDy) (13)

Where

cX; =cX(l: m'-1, I:n"), cX;=cXQ2:m', 1:#'),
cXsy=cX(1: m', L:n'-1), cXy=cX(1:m', 2:n'),
X € {H, V, D}.

After extracting C1-C12 from the image, we apply

ANOVA [15] to choose the good measures according to
the steganographic system.

3 Experiments and Discussion

3.1 Experiments

Over 5000 images are taken from many different souirces
and cover several categories. Some are downloaded from
http://www .freephoto.com and other websites. We store
these images as 8-bit grayscales and hide messages in
these carriers using the hiding methods SES [10], BPCS
[9] and the hiding tools BMP Secrets [14], Invisible
Secrets v4 [11] and Secure Engine 4.0 [12]. The
corresponding hiding ratios are 12.5%, 25%, 25%, 12%
and 12%, respectively. C1-C12 are extracted from the
carriers and the steganograms, and ANOVA techniques
are then applied to choose the good measures.

STPRtool and LS-SVMlab 1.5 are applied in our
experiments. The core of the STPRtool comprises
statistical pattern recognition algorithms [20] and the
algorithms of LS-SVMlab 1.5 are described in [21].
Training sets are chosen at random and the remaining sets
are tested. Classifiers are Fisher Linear Discriminant
(FLD), Quadratic Classifier (QC), Support Vector
Machines (SVM), Kemnel Fisher Discriminant (KFD), and
LSSVM [20-24]. RBF kernels are applied and the kernel
parameters are 0.01 for SVM and KFD in STPRtool and
0.1 for LSSVM.

3.2 Results and Discussion

Table 1 lists the train accuracy and test accuracy for
carriers and steganograms, using the five classifiers. The
feature sets are {C1-C5} for SES, Invisible Secrets and
Secure Engine; {C1, C4-C6} for BPCS and {Cl11, C12}
for BMP Secrets. Table 1 shows kernel-based classifiers,
SVM, KFD and LSSVM have better train accuracy than
FLD and QC.

The ROC curves in Figures 2-6 indicate that the
classification performance is best in the steganalysis of
Invisible Secrets, followed by SES, BPCS and BMP
Secrets; the classification performance in the steganalysis
of Secure Engine is not as good as others. It is probably
attributed to our lack of knowledge regarding its hiding
methods, and so the feature set is likely not the best.
Figure 6 also indicates that the kernel-based classifiers,



KFD and LSSVM are not as good as FLD and QC in
steganalysis of Secure Engine, although kernel-based
classifiers have a better train accuracy (table 1).

We note that the classification accuracy is related to
feature set, kernel parameter, image file format and image
type (gray or color). The details are presented in the
expanded version of this paper.

Table 1. Accuracy comparison of train and classification using
F(FLD), Q(QC), S(SVM), K(KFD) and L(LSSVM). The first
row for each classifier gives train accuracy for carriers; the
second row gives train accuracy for steganograms; the third
gives test accuracy for carriers and the last row gives test
accuracy for steganograms.

SES BPCS BMP | Invisible Secure
Secrets | Secrets Engine
63% 82.5 87.8 65.8 61
99 54 . 84.4 100 87
F 58.5 81.6 85.6 66.8 57.4
98.9 51.7 85.8 100 90.1
69.4 86.9 86.2 73.2 73
99 70 88.8 100 86
Q 67.8 85.7 86.3 71.9 64.4
98.9 63.8 89.5 100 90.1
89 100 94.7 98.7 98
S 97.6 99.6 94.8 98.9 97
85.4 69.7 86.1 97.8 80.2
87.5 96 88 97.3 65.4
91.6 100 96.3 98.7 100
96.6 100 95.8 99.0 97
K 85.8 66.5 85.7 97.6 82.2
85.6 97.7 86.9 97.2 50.5
87 98.9 92.0 96.8 97
L 97.4 96.0 90.3 97.6 97
85.4 88 88 95.2 80.2
93 88.6 88.9 96.8 73.3
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Fig. 2. ROC curves in steganalysis of SES
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Fig. 3. ROC curves in steganalysis of BPCS
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Fig. 4. ROC curves in steganalysis of BMP Secrets
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4 Conclusions

We presented a scheme for steganalysis based on
statistical correlations and learning machine classifiers.
Experimental results suggest that it can be applied
successfully in the steganalysis of several steganographic
systems. Overall, kernel-based classifiers give better train
accuracy and test accuracy than the other classifiers,
except in the steganalysis of images created using Secure
Engine.

Steganalysis is a very challenging problem and, in our
view, the successful development of a steganalytic tool
will likely rely on multiple steganalytic algorithms and
their independent decisions.
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